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Abstract

This paper discusses the hardware foundations of the cryptosystem employed
by the XboxX™ video game console from Microsoft. A secret boot block over-
lay is buried within a system ASIC. This secret boot block decrypts and verifies
portions of an external FLASH-type ROM. The presence of the secret boot block
is camouflaged by a decoy boot block in the external ROM. The code contained
within the secret boot block is transferred to the CPU in the clear over a set of
high-speed busses where it can be extracted using simple custom hardware. The
paper concludes with recommendations for improving the Xbox security system.
One lesson of this study is that the use of a high-performance bus alone is not a
sufficient security measure, given the advent of inexpensive, fast rapid prototyping
services and high-performance FPGAs.



1 Introduction and Background

Every cryptosystem is based on some kind of secret, such as a key. Regardless of the
cipher, the security of a cryptosystem is only as strong as the secrecy of the key. Thus,
some of the most startlingly effective attacks on a cryptosystem involve no ciphertext
analysis, but instead find flaws in the protocols that manage the keys. Cryptosystems
based on symmetric ciphers are particularly vulnerable to protocol attacks, since both
the sender and the receiver must be trusted to have a copy of the same secret key.
Despite the difficulty of key management in symmetric ciphers, they remain attractive
because of their algorithmic simplicity and high throughput when compared to public
key ciphers.

Symmetric cipher key management becomes especially problematic when the re-
ceiving party is not trusted or is in a position that can be easily compromised. This
is where tamper-resistant hardware comes into play; a summary of tamper-resistance
guidelines can be found in [6]. Many systems employ tamper-resistant hardware tech-
nigues in varying degrees, including the Sandia National Labs’ “Stronglink” microme-
chanical 24-bit lock [2], the Clipper chip [1], IBM’'s 4758 PCI Cryptographic Copro-
cessor [3], Cryptographic Smartcards [5] [4], Automatic Teller Machines (ATMs), and
now, video game consoles. However, trusting inadequate physical security measures to
protect important secrets is risky. [14] and [15] present examples of how some of the
aforementioned tamper-resistant systems can be defeated with surprisingly simple and
direct methods.

In the case of the Xbd¥' video game console from Microsoft, the secret being
protected is a key and an algorithm for decrypting and verifying a bootloader. This
bootloader then decrypts and verifies a kernel image. Both the bootloader and ker-
nel image are contained in an unsecured FLASH ROM. The kernel then verifies the
authenticity and integrity of the applications it runs. Thus, a chain of trust is grown,
bottom up, from a seed of trust. This seed-the secret key and an algorithm—is planted
in a physically secure, secret boot block.

The Xbox architecture results in the deployment of large number of identical de-
vices, all of which contain the same secret information. As the analysis below illus-
trates, the security of such a system can be readily compromised, even if the secret is
protected by tamper-resistant hardware and obscured by algorithmic complexity.

2 Xbox Hardware Cryptosystem Overview

The Xbox crypto protocol presents a strong defense in the face of unsecured FLASH
ROM-based modifications. Please refer to figure 1. The Xbox boots from a 512-byte
secret boot block that is hard-coded into the southbridge system ASIC (the “MCPX").
This boot block performs the following functions, in order:

¢ loads the “jam tables”, i.e., initializes the console chipset
turns on the processor caches
decrypts the kernel bootloader, contained in FLASH ROM
verifies that decryption was successful
jumps to the decrypted kernel bootloader



The bootloader then performs some more system initialization, decrypts a kernel
image from FLASH ROM, decompresses and verifies the decrypted image, and enters
the kernel. The kernel decryption key is stored within the bootloader image. Note that
the secret boot block code is structured so that the bootloader decryption key is never
written to main memory, thus defeating an attack that involves eavesdropping on the
main memory bus.

The bootloader is encrypted with RC-4 using a 128-bit key. The decryption algo-
rithm and key are stored in the secret boot block and executed by the Pentium CPU;
the busses between the secret boot block and the CPU are not encrypted but assumed
to be secure due to their high speeds. The decryption of the bootloader image is veri-
fied by checking for a 32-bit magic number near the end of the plaintext stream. This
check only ensures that the ciphertext stream was not corrupted; one with knowledge
of the secret key and the magic number can easily create original bootloader images.
It is fairly clear from the code structure of the secret boot block that such a simple,
unreliable check was employed because there was not enough space for anything else.
The magic number check might also confuse efforts to create original bootloader code
based on a key obtained without full knowledge of the secret boot block’s contents,
such as through a personnel leak or brute force. However, a brute force approach to re-
covering the bootloader is probably out of the question, since distributed.net’s “bovine”
effort, running for over 4 years and currently capable of testing over 100 gigakeys/s, is
still working on a 64-bit RC-5 cipher at the time of writing [7].

Given this secure boot protocol, modifying the contents of the FLASH ROM alone
will stand a very low chance of revealing anything useful about the cohsdleis
is compounded by the fact that the FLASH ROM contains a decoy boot block with
halfway reasonable looking decryption and initialization code. The algorithm in the
decoy boot block is a bastardized RC-4, and of course applying this algorithm on the
ROM contents yields nothing but white noise. Further discussion on how the secret
boot block was discovered is contained in the next section.

3 Breaking the Physical Security

This section provides a chronology of how the Xbox’s physical security was reverse
engineered.

Reading out the FLASH ROM contents and tracing the processor’s execution start-
ing from the boot vector proved to be futile, as the contents of the boot block in the
FLASH ROM were a decoy, cleverly designed to thwart such activity. The code within
the FLASH ROM boot block followed the same general flow as the code within the
secret boot block, but the decryption algorithm, the keys and the ciphertext start loca-
tion were incorrect. This initially resulted in a great deal of confusion but was later
explained by the discovery of the secret boot block overlay.

The realization of the existence of a secret boot block happened as a result of the
observation that overwriting the processor reset vector in the FLASH ROM has no
effect on the Xbox boot sequence. This led to a series of experiments that mapped out

LAn important exception recently discovered is described in section 6.



secure hardware boundary

bus clock/
rate

security relationship
not yet known

100Base-T #———

uUsB r
E—
game

pentium
CPU
133 |4 64//
¥ Wiz [ | 32
128/
21+
NV2A Lo
northbridge { SSTL-2 SBEA)lRMABM
+gfx 200
MHz
200 |& DDR
T | 8
MHz 12| 5
DDR [T
MCPX DE
___ . southbridge
secret boot
ROM

controllers | |

dongles w/
executeables |4
(DVD player,

etc.)

FLASH

ROM
(bootloader

+ OS kernel)

bus width:
data/others

trusted code
and data:
digitally signed
with Microsoft
private key

key-locked

hard disk
(executeables,
cached data,
save games)

~

DVD drive
(game data /
executeables)

Figure 1: Overview of the Microsoft Xbox hardware.



the extent of the secret boot block. The block is believed to be 512 bytes in length,
situated at the highest location in processor physical memory.
The following approaches were then considered for extracting the secret boot block
contents:
e decapping the MCPX southbridge ASIC
¢ using the JTAG boundary scan on the Pentium to step through the “real” boot se-
quence
¢ probing the main memory bus for any portions of the boot block that were written
to memory
e probing the processor-northbridge bus using a logic analyzer or custom hardware
e probing the HyperTransport northbridge-southbridge bus using custom hardware

The direct approach of decapping the MCPX southbridge ASIC was rejected be-
cause this ASIC appears to be manufactured in a/Opk8cess with perhaps 6 or 7
metal layers (figure 2). Extracting the bootblock from this ASIC would require a de-
layering facility and access to an electron microscope. While there are companies such
as Chipworks that specialize in these kinds of services, it is a difficult, expensive, and
time-consuming task.

(il
I

Figure 2: Die shot of the MCPX Southbridge ASIC

The JTAG boundary scan approach was rejected on the grounds that the TRST#
pin, used to hold the JTAG chain in reset, was tied active in a manner that was difficult
to modify without removing the processor. Removal and socketing of the processor
was considered to be prohibitively expensive and time consuming; the cost of a BGA
socket for the Pentium Il is estimated to be in the hundreds to thousands of dollars. In
addition, the JTAG boundary scan codes for the Pentium Il are largely proprietary and
would have to be reverse engineered as well.

SDRAM probing was rejected on the grounds that far too many pins (128 data pins



alone) had to be simultaneously probed, and on the grounds that the decryption routine
and/or key could be held entirely in processor cache and never written to SDRAM.
Also, the cost of solder-on TQFP-100-to-logic-analyzer adapters is prohibitive (around
$600 per adapter; four are required). Probing the processor-northbridge bus was re-
jected for similar reasons: at least 64 data pins had to be probed, and tapping such a
large number of GTL+ signals without causing signal integrity issues was thought to
be very difficult.

The northbridge-southbridge bus, however, showed promise because of its sim-
plicity. The bus has a low signal count (10 unique) and all the signal traces are laid
out on the console’s motherboard in a straight flow-through fashion (12-mil center-to-
center spacing within a differential pair, 13-mil spacing between differential pairs, see
figure 4). In addition, the clock and strobe signals for both the transmit and receive
directions are clearly labeled on the motherboard, perhaps for manufacturing debug
and test reasons (figure 3). Data on the nVidia nForce chipset [9], a close relative to
the Xbox chipset, indicates that the bus uses the HyperTransport (formerly known as
Lightning Data Transport (LDT)) protocol. The specifications for the HyperTransport
protocol are open and readily available. [8]
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Figure 3: HyperTransport bus layout showing silkscreen information

The primary difficulties in tapping the HyperTransport bus are its high speed (200
MHz DDR) and its use of differential signaling (few logic analyzers come with support
for differential signaling). It is interesting to note that HyperTransport bus protocol



analyzers are commercially available from vendors such as FuturePlus, but they cost
upward of $25,000. This price does not include the high-end logic analyzer required to
drive the protocol analyzer.

The alternative solution to tapping the northbridge-southbridge HyperTransport bus
was to build a relatively cheap, fully custom, differential-to-single-ended “Tap Board”,
and to connect the output of this board to an FPGA. A Xilinx Virtex-E part was used in
this study because it was readily available, as it was used as part of the author’s thesis
work; however, a better choice would be any of the new Xilinx Virtex-1l FPGAs. A
suitable Virtex-1l FPGA would cost about $50 in single quantities.

The custom Tap Board uses a two-layer, 6 mil trace/space, 15 mil hole process from
Advanced Circuits, offered at a price of $33 per board in small quantities. A Texas
Instruments SN65LVDS386 LVDS-to-TTL converter was used to turn the differential
HyperTransport signals into a single-ended format. It turns out that the HyperTransport
physical signaling specification is similar to LVDS, but with a different common-mode
offset. The output of the converter drives a cable to the FPGA board. The FPGA
is configured to receive the high speed signals with the CTT (Center-Tap Terminated)
“Select 1/O” option. CTT is chosen because it allows the single-ended TTL driversto be
terminated with a low impedance to 1.5V and still function properly. Note that although
Virtex-E FPGAs support LVDS directly, the target FPGA board was not originally
designed to support the LVDS configuration.
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Figure 4: Dimensions of the HyperTransport signal traces on the motherboard.

The Tap Board has on one edge a pattern of traces with no soldermask that matches
the pattern of traces on the Xbox motherboard. The Tap Board was soldered directly
to the Xbox’s northbridge-southbridge bus. Only the receive-direction Tap Board was
mounted for this study. The mating edge was shaped using a belt sander, so that the
tapping traces were flush with the edge of the board, and the board could be mounted
at areclined angle to enhance solderability. The soldermask on the Xbox was removed
with fine-grit sand paper, and the Tap Board was carefully aligned by hand, and then
held roughly in place by soldering a coarse piece of wire between the Tap Board and the
motherboard. A hard-setting adhesive, such as Miller-Stephenson Epoxy 907, was ap-
plied to fix the angle and mating distance of the Tap board to the motherboard; once the
epoxy was cured, the holding wire was removed, and the traces between the Tap Board



and the Xbox motherboard were easily soldered using a fine-tip iron and a microscope.

Figure 5: Tap Board connected to the FPGA board. The FPGA board was originally
developed by the author for another work.

The polarity of the HyperTransport bus signals was determined by probing the idle
state of the wires, assuming that their idle state had a value of 0x00. Those signals that
had the positive and negative pairs swapped relative to the Tap board layout idled to
a “1". Signals with inverted polarity were restored to their true value within the trace
capture FPGA.

Figure 6: Close-up of the Tap Board mounted in the Xbox

A Xilinx Virtex-E FPGA was used to capture traces of HyperTransport bus activ-
ity. It was difficult getting the FPGA to manage the 200 MHz DDR data rates with



low skew. However, careful hand-layout of the input registers, post-layout timing sim-
ulations at nominal temperature and voltage, and iterations to manually tweak delays
and skews eventually centered the clock signal within the data signal on the FPGA's
input registers. The retimed data was then demultiplexed to a very manageable 100
MHz single-data rate 32-bit wide bus and written into a bank of FIFOs, along with

a sequence count that recorded at what cycle relative to a reset signal the data was
captured. Some additional logic was incorporated into the FPGA that discarded idle
values (0x0000 0000) from the trace FIFOs and formatted the deserialized data relative
to the strobe signal, clearly identified on the Xbox motherboard as “RXD8 / RXD*8"
(figure 3) in sector 5D (the Xbox motherboard has a coordinate system printed on its
periphery).

The reset signal can be determined by probing traces near the HyperTransport bus
that behaved like a reset signal. In reality, it is possible that some signal that was not
the true reset signal was used to trigger the trace capture, but that is irrelevant as the
signal chosen seemed to display a consistent timing relationship with respect to the
bus. In fact, the signal used to trigger the trace capture exhibited a 350 ns runt pulse
about 67 ms after power-on-reset; this runt pulse was filtered out by a state machine,
as it was erroneously restarting the trace capture.

Once traces of data were captured by the FPGA, the order of the bits on the Hy-
perTransport bus relative to the Tap Board layout could be determined. This can be
done by correlating known values in the FLASH ROM with data values captured on
the HyperTransport bus. A 1's count can be used to identify candidate patterns and
data sequences for manual correlation. Fortunately, very early on in the trace several
distinctive, sequential values are grabbed from the FLASH ROM: a few values from
the lowest address in FLASH ROM, followed by a few values from the boot vector,
which happens to be identical between the decoy FLASH ROM contents and the secret
boot ROM contents. The order of the traces for the receive-direction bus on the moth-
erboard are believed to be, from the outside to the inside, bit 8 (CTL strobe), 4#, 0#,
T#, 2#, 3#, CLK#, 5, 6#, and 1#. Signals with # after them are inverted with respect to
the Tap Board layout.

The raw trace data captured by the FPGA was then dumped to files and manually
processed. An example illustrating the format of trace data can be found in figure 7.
The sequence number was critical in determining the boundaries of cache traces; blocks
of 8 or 16 words are fetched by the processor, even when the caches are off. Trace data
was differentiated between secret boot code and FLASH ROM data by searching for
the first word of the candidate trace in a dump of the FLASH ROM,; if the data could
not be found in the FLASH ROM, it was guessed to be secret boot code. Because the
processor boots with its caches off, the first roughly 24 million bus cycles contained
repeated line fills of the “jam table” initialization code, and were ignored as they just
performed the wrote initialization of the chipsets. The caches were then turned on
by the boot code, and very clear and simple to read blocks of instructions and data
were found. These instruction traces were mapped into the secret boot block using
the decoy FLASH ROM boot block as a template. The recovered block of code was
then disassembled, and the decryption algorithm was determined to be 128-bit RC-4.
Because the location of the 128-bit key within the secret boot block was ambiguous
(the Tap Board only provides data traces without addresses), a brute-force search was
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00000097 : 664A1D55 ::: E : 000000C6
00000D5C : 05F108F6 :: F : 01000000
0O0OOODEO : 2A1A2841 :: 1 : CC003000
00000E5SD : B6FE7F68 ::: E : A0552C01
OOOOOEDA : 5932C662 ::: 1 : 000000FD
00000F57 : FO9FBA4C1 ::: E : C7C94000
00000FD4 : F7F9B6AE :: 1 : 000000C6
00001051 : 73376133 ::: E : 9EC49400
000010CE : FDO0O127AD :: 1 : 000000D6
0000114B : 34E8FD29 :: E : C7C94000
00001245 : 1814A022 ::: 1 : 000000C6
000012C2 : 38EBD672 ::: E : C7C94000
00022526 : C6CO0847E :: 1 : 000000C6
00022527 : A26216BB :: E : C7C94000
00022528 : 99DA5F80 ::: E : 000000C6
00022529 : 453862E3 ::: 1 : C7C94000
000226D5 : B6DF18CO :: E : 000000C6
000226D6 : DA5K62768 ::: 1 : C7C94000
000226D7 : OF1D66E3 :: E : 000000C6
000226D8 : DDC59B59 ::: 1 : 8D42CBCD

Figure 7. An example illustrating the format of trace data captured by the FPGA.
Format of the data is “sequence : data ::: aligner : unaligned data”.

utilized to help isolate the key. A 16-byte sliding “guess key” window over the captured
data trace was used as input to an RC-4 decryption engine, and a histogram of the data
output was used to determine when the key was found. This information helped resolve
some ambiguities in the placement of the data within the secret boot block, and a full
picture of the important code within the secret boot block was assembled.

Now that the secret boot procedure is understood, it is possible to encrypt a new
ROM for the Xbox console, and to further study the structure of the Xbox bootloader
and kernel. Given the RC-4 algorithm, the 128-bit key, and the magic check number at
the end of the decrypted segment, one can run original code on the Xbox.

4 Lessons Learned

One lesson of this study is that the use of a high-performance bus alone is not a suf-
ficient security measure; the advent of cheap, fast rapid prototyping services and high
performance FPGAs allows even poor students to create devices that can tap the bus.
However, encrypting a bus introduces its own problems. A secure cipher on a high per-
formance bus significantly impacts latency, power consumption, and reliability. Power
consumption is increased because the activity factor for the bus approaches 100%, if
the encryption scheme is any good. In this case, the power consumed driving the bus
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would increase by over an order of magnitude, as the observed activity factor on the
northbridge-southbridge bus was well below 10%. Reliability is hurt because a single
bit error, even during an idle cycle, can corrupt large blocks of data; with a stream
cipher, the corruption would extend until the stream is resynchronized.

A compromise solution to the problem is to simply not trust any bus in the system.
In this case, the secret boot block might employ a digital signature protocol, such as
Authenticod®), using public key algorithms and one-way hashes. [10] Then, all secu-
rity rests in the secrecy of the private key, and the strength of the public key algorithm.
In order to prevent employee leaks from spreading a private key, a system similar to the
BBN SignAssurécould be used to manage the key so that no human ever has knowl-
edge of the private key. The principal drawback of this method is that it requires extra
silicon area to be spent on storing a larger secret boot block, as it is probably difficult,
if not impossible, to code a full public key encryption algorithm plus key storage and
hardware initialization code within 512 bytes.

The above suggestion does not prevent someone from eavesdropping and obtaining
the plaintext of the operating system code, but it does effectively defeat any attempt
to run original code. The public key scheme could be defeated, however, by a mech-
anism that snoops the main memory bus and patches plaintext in main memory. As
discussed previously, this approach is possible, but difficult; however, the tenacity of
an attacker should not be underestimated. For example, a known attack on the Sony
Playstation2 console was developed that is rumored to work by dynamically patching
its high-performance RAMBUS memory system. The difficulty of a memory patch at-
tack could be increased by using a simple periodic hash and check of the critical code
regions in memory.

Buffer overrun exploits are also a point of weakness, and they work regardless of
the secret boot protocol. An attacker sniffing an insecure bus could obtain the de-
crypted kernel code and analyze it for weaknesses. However, any machine architecture
that employs guarded pointers [11] is much more difficult, if not impossible, to attack
using buffer overruns. A fast, efficient guarded pointer scheme with a simple hardware
implementation is described in [12]. This scheme can easily be adapted to work in a
64-bit architecture.

A. Kerckhoffs (1835-1903) once stated that the security of a cryptosystem must not
depend on keeping the algorithm secret; this is referredk@eakhoffs’ Principle[13]
Another way of stating this is that there is no security through obscurity. In particular,
it is an error to assume that a secret, distributed along with the information it guards, is
never revealed. For example, the Sega Dreamcast uses a proprietary GD-ROM software
format; but, the drive can read CD-ROM disks. The discovery of a back door in the
Dreamcast OS allowed executables to be run directly from a standard CD-ROM, thus
nullifying the barrier presented by the proprietary GD-ROM format. Other systems that
rely on well-hidden secrets, including the Clipper chip [14] and the smartcards used
widely throughout Europe to control access to services such as pay-TV, cell phones and
gas, have been shown to be surprisingly vulnerable. [15] In this case, the Tap Board
and trace capture FPGA design was developed in spare time over the duration of three
weeks—including the 5-day turn time for board fabrication—for a total cost of around
$50 per board. In other words, if you ship your secrets in your hardware, it is a good
assumption that the users will eventually—and perhaps quickly—know your secrets.
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The failure of the Microsoft Xbox console security protocol is compounded by the
fact that, as a console manufacturer, design-for-test and design-for-manufacturability
is paramount. Creating a console with too much security makes it difficult to debug
and manufacture. For example, the backside of the Xbox motherboard is populated
with test points—including test points for every pin on the FLASH ROM. These were
originally installed because of the desire to quickly test for faults during manufactur-
ing. The flip side is that one could build a custom “bed-of-nails” tester jig that uses the
the FLASH-ROM test points to reprogram Xbox motherboards with any desired code.
This method would be fast, inexpensive and solder-free. The lesson here is that even if
a manufacturer is very confident about their trust model and security protocols, it must
guard against the possibility that they may someday be broken. To this extent, a sim-
ple physical security measure, such as a spray-on conformal coating, would severely
hamper the re-use of test structures for improper purposes. This of course greatly com-
plicates the repair of hardware failures in the field, but that is a business trade-off the
manufacturer must make.

A more radical alternative would be to design the gaming system using proprietary
hardware and proprietary media formats, thus limiting the practical impact of any at-
tack on the console. Game consoles are manufactured in very high volumes, so the cost
of developing a simple but effective proprietary format can be amortized. The format
could then be patented, providing protection against unauthorized use without the need
for secrecy. This approach was taken by Nintendo with their Nintendo 64 console. [16]
Although patents have a 20 year lifetime, this is an eternity in the video game console
industry: the original Nintendo Entertainment System (NES) had its debut in 1985.

5 Future Work

Understanding the secret Xbox boot protocol is just the first step in understanding
the Xbox. It is now possible to investigate the kernel and bootloader in more detail.
It has been determined that the kernel is also encrypted with RC-4/128, and it is also
believed to be compressed using LZX compression, a scheme employed by Microsoft’s
canonical distribution format, the “Cabinet” file. The structure and function of the
kernel is still being investigated.

One importantissue to investigate is the privacy of users who use the Xbox for on-
line tasks. It is known, through a parallel effort of the author, that information such as
the serial number of the console is stored electronically and is probably accessible to the
kernel. What happens to this information when the Xbox is plugged into the internet?
Because of the encryption used to secure the Xbox, the nature of the information that is
relayed to Microsoft's on-line game servers is unknown. Thus, important future work is
to try to determine what the Xbox reveals about the user’s identity and personal gaming
habits.
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6 Addendum

It has recently been called to the author’s attention that the hardware initialization pro-
cedure of the Xbox contains a significant weakness. [17] Recall from section 2 that
the first step in the Xbox boot process is to load the “jam tables” that configure the
console’s chipsets. This jam table initialization procedure involves a lengthy and com-
plex sequence of writes to various memory-mapped hardware register locations. As a
result, the initialization procedure is implemented using a simple bytecode interpreter
that reads initialization commands and data from the FLASH ROM. These bytecode
commands—stored as plaintext—can be manipulated to cause the initialization procedure
to abort before the kernel decryption/verification routine is executed, and to instead run
insecure code directly out of the FLASH ROM. In other words, with plaintext-only
modifications in the FLASH ROM, one can entirely bypass the Xbox’s security mech-
anism. One could easily fix this security hole, however, by verifying the jam table’s
contents prior to bytecode execution with a one-way hash function, or by explicitly
coding all initialization functions within the secure boot block. Both of these solutions,
however, would require the secure boot block to grow significantly from its current
512-byte size, and neither solution allows easy changes to the initialization procedure
in case a bug is found or in case the hardware evolves as a result of cost reduction
efforts.
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