

CERIAS Tech Report 2001-49

Protecting Software Codes By Guards

Hoi Chang, Mikhail J. Atallah
Center for Education and Research in
Information Assurance and Security

&
Arxan Technologies

Protecting Software Code By Guards �

Hoi Chang and Mikhail J. Atallah

CERIAS, Purdue University

and

Arxan Technologies, Inc.

fchangh,mjag@cerias.purdue.edu

Abstract

Protection of software code against illegitimate
modi�cations by its users is a pressing issue
to many software developers. Many software-
based mechanisms for protecting program code
are too weak (e.g., they have single points of
failure) or too expensive to apply (e.g., they in-
cur heavy runtime performance penalty to the
protected programs). In this paper, we present
and explore a methodology that we believe can
protect program integrity in a more tamper-
resilient and
exible manner. Our approach is
based on a distributed scheme, in which protec-
tion and tamper-resistance of program code is
achieved, not by a single security module, but
by a network of (smaller) security units that
work together in the program. These security
units, or guards, can be programmed to do cer-
tain tasks (checksumming the program code is
one example) and a network of them can re-
inforce the protection of each other by creat-
ing mutual-protection. We have implemented a
system for automating the process of installing

�Parts of this research were supported by CERIAS
and the Purdue Research Foundation.

guards into Win32 executables. 1 Experimen-
tal results show that memory space and run-
time performance impacts incurred by guards
can be kept very low (as explained later in the
paper).

1 Introduction

Software cracking is a serious threat to many
in the software industry. It is the problem in
which a cracker, having obtained a copy of the
software he wants to attack, succeeds in break-
ing the protection that comes built into it. Typ-
ically, crackers would create modi�ed versions
of the software, or crackz, whose copy protec-
tion or usage control mechanisms have been dis-
abled. Cracked software can then be illegally
redistributed to the public, exacerbating the
software piracy problem. With commerce and
distribution of copyrighted multi-media rapidly
moving online, the need for software protection
is even more urgent than before: client software
code running on untrusted machines has to be
secured against tampering.

1A US patent on the technology has been �led by
Purdue University and licensed to Arxan.

1

What makes software cracking so widespread
is in part caused by the simplicity of direct in-
spection and modi�cation of binary program
code with existing software debugging and edit-
ing tools. Here is an example of how a pro-
gram requiring online registration can typically
be cracked. The program would normally go
through a long sequence of procedures asking
for a registration serial number from its user,
and then in a stealthy manner, comparing a
function of the true serial number with the
same function of the entered one. After com-
paring these two items, however, the program
then ends up deciding the authenticity of the
software user with one single instruction, typi-
cally a conditional branch that decides whether
the software can henceforth be used. To de-
feat the entire registration scheme, one only
needs to replace that single instruction in the
binary �le with an unconditional jump (that
jumps to a desired location), or by a sequence
of smaller no-ops (that do nothing except let-
ting the execution
ow to the desired location
naturally). The problem with this protection
scheme is that the branch instruction is a single
point of failure. With sophisticated program
debuggers and hex editors (such as SoftICE [8]
and HIEW), attackers are able to trace targeted
parts of the program, pinpoint the code they
need to compromise, and �nally apply changes
to the program �les.
Many commercial protection schemes employ

what we call monolithic protection schemes, in
which protection is enforced by a single code
module in the program but which is loosely
attached to the program and thus can be dis-
engaged easily (using methods similar to the
above example).
How can software be perfectly secured

against cracking? This looks like an impossi-

ble task if one interprets \cracking" as \even-
tually cracking", i.e., after a long time. The
fact that crackers have huge cracking resources
makes successful attacks possible after a long
enough time (because they could rewrite the
software from scratch after suÆcient analyses
of the code). However, it is possible to \raise
the bar" for attackers and make it suÆciently

secure. Because many software developers only
hope for a minimum length of time during
which they could sell a large enough number
of a newly released product, securing software
code until the end of the period is cost-e�ective.

Protection mechanisms that can e�ectively
protect software running in untrusted environ-
ments should have the following properties:

� Resilience: The protection has no single
points of failure and is hard to disable.

� Self-defense: Able to detect and take ac-
tions against tampering (i.e., code modi�-
cation).

� Con�gurability: Protection is customiz-
able and can be made as strong as one
needs.

� White-box security: Because any
scheme for protection is likely to become
publicly known over time, its strength
should not be based on its secrecy but
rather on the knowledge of a secret key
used at protection-install time (but not
stored anywhere within the protected pro-
gram).

This paper describes a security framework
and system (having the above desirable proper-
ties) for protecting program code against tam-
pering. We extend the traditional ideas of

2

having code check and modify itself to a gen-
eral setting, in which a program is protected
by a multitude of such functional units (called
guards) integrated with the program. To de-
fend themselves against attacks, guards form a
network by which they protect each other in an
interlocking manner. The network of guards
is harder to defeat because security is shared
among all the guards, and each of them is po-
tentially guarded by other guards. The fact
that there are many ways to form a guards net-
work, makes it hard for attackers to predict its
form. Furthermore, more guards can always be
added to the program if a greater level of pro-
tection is desired.

We believe that this guarding framework
can advance the state of software protection
by making protection schemes derived from it
more sophisticated than existing schemes, and
easier to apply. Using our system, we show
that protecting programs using this guarding
framework is possible. Also, we show that the
guarding process can be automated (so that it
will become unnecessary for one to go through
a laborious and error-prone process of manually
guarding the program code).

The paper is organized as follows. Section
2 provides some related work in this �eld. In
section 3, we describe the protection framework
and discuss its security issues. In section 4, we
introduce the system we built. This is then fol-
lowed by experimental results in section 5. The
�nal section concludes and describes enhance-
ments to the system that are currently being
implemented.

2 Related work

The protection mechanisms for software protec-
tion involve two main approaches to the prob-
lem: hardware-based protection (which relies
on secured hardware devices for protection),
and software-based protection (which only re-
lies on software mechanisms for protection).

One hardware solution is the use of secure co-
processors (or processors) [18, 19, 15]. In secure
coprocessors, programs or portions of them can
be run encrypted, so their code is never revealed
in untrusted memory. Thus secure coprocessors
can provide the programs isolated execution en-
vironments that are diÆcult to tamper with.
Although tamper-resistant, this approach re-
quires the use of special hardware for execut-
ing programs, which may not be cost-e�ective
for widespread use (say, in typical home-user
environments).

Using smart cards for software protection is
another solution [2, 10]. Since smart cards con-
tain both secure storage and processing power
(although some only provide secure storage),
security-sensitive computations and data can
be processed and stored inside the cards. A ma-
jor di�erence between smart cards and secure
coprocessors is that the former are resource-
tight (i.e., limited storage space and processing
power), and can be used to protect only small
fragments of code and data.

Dongles have long been in use by the industry
for software protection. They are the hardware
keys plugged in the computer, without which
the programs that came with the dongles can-
not execute. The major drawback of dongles
is that each dongle-enabled software usually re-
quires a di�erent dongle. Moreover, the protec-
tion can often be bypassed because the commu-
nication traÆc between dongles and their pro-

3

grams can be intercepted and modi�ed.

One software-based approach for protection
is code obfuscation, which \scrambles up" pro-
gram code so that it results in some executable
code that has the same functionality as the
original but is diÆcult to understand and an-
alyze [11, 5, 6, 4, 12, 13, 7, 17]. This form of
protection is more
exible than the hardware-
based one because it does not require special
execution environments. But exactly how se-
cure it is is still a matter of debate [3].

There are other software-based approaches
to the problem as well. These include the
use of self-modifying code [9] (code that gener-
ates other code at run-time) and code encryp-
tion and decryption [14] (partially encrypted
code self-decrypting at run-time). A hybrid
approach of the above has been proposed by
Aucsmith [1], which involves the use of crypto-
graphic means to decrypt and encrypt a win-
dow of security-sensitive program instructions
before and after each execution round of those
instructions. One of the problems with this ap-
proach is that it does not scale well as the size
of the aboive-mentioned \window" gets large
(because of the time taken by encryption and
decryption).

3 The guarding framework

In this section, we describe our guarding frame-
work and explore some of its security issues on
an informal basis.

3.1 Guards

In our guarding framework, protection is pro-
vided by a network of execution units (or
guards) embedded within a program. Each

guard is a piece of code responsible for perform-
ing certain security-related actions during pro-
gram execution. Guards can be programmed
to do any computations, and the following are
two useful ones:

� Checksum code 2: Checksum another
piece of program code at runtime and
verify its integrity (i.e., check if it has
been tampered with). If the guarded code
is found altered, the guard will trigger
whichever sequence of actions is desired
for the situation, ranging from the mildest
of silently logging the detection event, to
the extreme of making the software un-
usable (e.g., by halting its execution, or
better yet, causing an eventual crash that
will be hard to trace back to the guard).
If no code changes are detected, the pro-
gram execution proceeds normally. Pro-
grams guarded by checksumming guards
are made, in some sense, \self-aware" of
their own integrity.

� Repair code: Restore a piece of dam-
aged code to its original form before it is
executed or used (as data). One way to
achieve code repairing is to overwrite tam-
pered code with a clean copy of it stored
elsewhere. This repairing action e�ectively
eliminates the changes done to the code by
an attacker, and allows the program to run
as if unmodi�ed. Repairing guards provide
a program with \self-healing" capabilities.

3.2 Guards network

A group of guards can work together and im-
plement a sophisticated protection scheme that

2In this paper, \code" refers to both the runtime data
and executable code of a program.

4

is more resilient against attacks than a single
guard. For example, if a program has multi-
ple pieces of code whose integrity needs to be
protected, then it can deploy multiple check-
summing guards for protecting the di�erent
pieces. Besides sharing the load of protection,
guards have the
exibility to protect one an-
other. Figure 1 shows a possible guarding sce-
nario in which two security-sensitive regions of
a program, C1 and C2, are protected by both
checksumming and repairing guards. Figure
(a) shows the memory image of the guarded
program, in which C1 and C2 are guarded by
guards G1; : : : ; G5 in an interlocking manner.
The corresponding guarding relationships can
be more clearly depicted by a guard graph in
Figure 1 (b), where C1 is repaired by G3 be-
fore C1 executes, and the repaired C1 will sub-
sequently be also checksummed by G1 and G5
(but G2 will repair G5 before G5 executes).
In order to perform their duties, a network of

guards need to be placed into the program and
hooked to its execution
ows in an appropriate
way. For example, a repairing guard has to be
inserted into a point in the control
ow that
is to be reached �rst (in execution order) be-
fore the guarded code is reached; i.e., a repair-
ing guard has to dominate the target code in
their control-
ow locations. On the other hand,
a checksumming guard must be installed at a
point at whose execution time the code to be
checksummed must be present in the program
image. Figure 2 (a) shows a graph that depicts
the dominance relationships between di�erent
pairs of the nodes in Figure 1 (e.g., G3 ! G1
means location of G3 dominates that of G1).
Figure 2 (b) shows two possible scenarios in

which the network of guards can be installed
into the control
ow graph of a program with-
out violating the partial ordering of their exe-

G3

C1

G1

C2 G4

G5

G2

checksums

checksums

checksums

repairs

checksums

repairs

checksums

checksums

checksums

(a) Memory layout of the guarded program

G1 C2 G2 C1 G4G3 G5. . .

checksumschecksums

repairs
checksums

repairs

(b) The corresponding guard graph

Figure 1: Program image guarded by �ve
guards and the corresponding guard graph.

cutions speci�ed in (a). As seen from the �gure,
the larger a program, the more ways there are
to deploy the network of guards.

3.3 Security

Contrary to monolithic protection schemes in
which security is enforced by single security
modules, protection by guards enjoys the fol-
lowing advantages:

� Distributedness. There is no single
point of entry (exit) into (out of) the
guards network because its individual com-

5

C2

C1

G4

G3

G2

G5

G1

C2

C1

G3

G2

G1

G4

G5

Legend

Control flow

Repairing action

Checksumming
action

C2

G3

C1

G1

G4

G5

G2

(b) Two possible placements of the guards in a CFG

(a) Partial execution ordering of the guards

Figure 2: Guards network installed into a pro-
gram CFG.

ponents (i.e., guards) are invoked at dif-
ferent points at runtime. This makes it
much harder for an attacker to detach the
network from the program. To defeat the
guards, their locations and guarding re-
lationships need to be identi�ed (an even
more diÆcult task if the program is large
and complex).

� Multiplicity. Multiple guards can be
used to guard a single piece of code, pro-
viding it a variety of protection at di�erent
times.

� Dynamism. There are many ways in
which a guards network can be con�gured.
For example, a group of ten guards can
form di�erent types of formations, rang-
ing from simple trees to general directed
graphs with cycles. Even if one knows the
general mechanism for guarding programs,
one is still faced with the actual deploy-
ment scheme in the program. Further-
more, a �xed formation can be installed
in various ways because parameters such
as the physical locations of guards and the
exact ranges of code they guard could vary
from installation to installation. (Consider
that each installation is driven by a di�er-
ent random number.)

� Scalability. It is easy for the levels of
guarding to be scaled up for larger or
more security-critical programs by adding
to them more guards.

3.3.1 Strengthening the guards network

A guard cycle is a circular chain of guards each
of which protects its next neighbor, forming
a cycle of guarding relationships in the guard

6

graph. Such a formation allows each guard in
the cycle to be protected without any \loose
ends" (i.e., unprotected guards). Defeating a
guard cycle requires all of the guards to be dis-
abled at the same time. How to implement
checksumming in guard cycles is itself an in-
teresting problem, because the checksumming
function should have a 1-way property (we have
solved the problem but due to page limitation,
we omit the discussion in this paper).

The above property of guard cycles leads to
a more general guards strengthening scheme:
Connect any disconnected components in a
guard graph in such a way that each guard
in the graph can be reached by the rest of
the guards (i.e., the resulting guard graph is
strongly connected). As a result, strong con-
nectivity forces the amount of attack e�orts to
be scaled up proportionally to the total number
of the guards deployed in a program.

3.3.2 Strengthening individual guards

The level of diÆculty in locating guards and
understanding their semantics depend on how
\stealthy" and tamper-resistant the guards are.

� Stealthiness. Guard code should have
no recognizable signatures (e.g., �xed set
of instructions) that an attacker can stat-
ically scan for. Also, their actions should
be made as inconspicuous as possible. For
example, instead of instantly sounding an
alarm upon detection of an attack, guards
should delay such an action until a later
time when it is unclear why and how it
has taken place. To thwart sophisticated
runtime program analyzers from identify-
ing the checksumming or repairing actions
of guards, logical boundaries between the

executable code and runtime data of a pro-
gram should be blurred. For example, the
code sections are made to contain runtime
data, and conversely, the data sections are
made to contain executable code.

� Tamper-resistance. In situations where
the location of a guard has been identi�ed,
it is important to have the guard protect
itself (besides having other guards protect
it). One e�ective way to achieve this is
to obfuscate the guard code. There are
many ways to do so. A simple way would
be to rearrange its instructions and mix
them with dummy code [12]. More aggres-
sive obfuscating transformations are possi-
ble and can make the resulting code very
diÆcult to reverse-engineer. Such trans-
formations involve both control and data

ow obfuscations. Some particular tech-
niques are discussed in [17, 7, 5, 6].

4 Description of system

We have built Version 1.0 of a system for guard-
ing Win32 executables. It takes an EXE pro-
gram �le as input and inserts into it guards
that can perform functions such as checksum-
ming and repairing program code. The guard
installation is an automated process guided by
a user-provided guarding script that speci�es
what and how guards will protect the program
code and themselves (i.e., the description of a
guard graph). Figure 3 gives an overview of our
system.
Our system processes binary code directly

because high-level code lacks much binary in-
formation that guards need (such as memory
addresses and binary contents of the program
code). Also, manipulating code at the bi-

7

 (Unguarded)

Guard graph specification

pgm.exe
(Guarded) pgm.exe

Installation
Guard

System

Figure 3: The guarding system

nary level makes it easier to transform program
code to whatever form is desired without typi-
cal structural restrictions imposed by high-level
languages.

Guard installation by our system involves in-
serting a guard into the program and param-
eterizing it appropriately. We call this guard

instantiation, in which guards are instantiated
from prede�ned guard templates, which are ob-
ject code and stored in a database (of course
these are \polymorphic" in the sense that even
if two of them have the same functionality they
look di�erent; this prevents attacks based on
pattern matching techniques). Below is a sim-
ple example of a guard template, which is pro-
grammed to corrupt stack frame pointer ebp

if the computed checksum is di�erent from
checksum. 3

guard:

add ebp, -checksum

mov eax, client_addr

for:

cmp eax, client_end

jg end

mov ebx, dword[eax]

add ebp, ebx

3The sample template is shown in the NASM assem-
bler language [16].

add eax, 4

jmp for

end:

During instantiation of the guard, the system
initializes client addr and client end with
the addresses of the target code range that the
guard needs to protect. The other parameter,
checksum, is later patched to the guard code
when the checksum value of the target range
has been obtained by the system.

Figure 4 shows the memory image of a
program after it has been installed with 307
guards. (Its linear address space is represented
by a two-dimensional space for easy interpre-
tation of the image contents.) Shown in dark
colors are the four executable regions of the pro-
gram. (The white regions are �le formatting
and data areas of the program.) These four
regions include three types of code: original
(executable) program code, the inserted guard
code, and the code protected by the guards
(which includes portions of the program code
and guard code).

It is important that guard installations be
automated. If done manually, it is a very la-
borious and error-prone process, as it requires
one to deal with binary information in the pro-
gram �les directly (consider implementing by
hand a function that checksums its own code).
The manual task will become more diÆcult and
time-consuming as the number of guards and
complexity of their inter-locking relationships
increase. Furthermore, programs with \hand-
patched" checksumming guards would be very
hard to maintain because one cannot change
the code without recomputing checksums of
the modi�ed code. Our system streamlines the
guarding process by separating the task of soft-

8

0

32

64

96

C8

FA

00
40

02
B

8

00
40

16
40

00
40

29
C

8

00
40

3D
50

00
40

50
D

8

00
40

64
60

00
40

77
E

8

00
40

8B
70

00
40

9E
F

8

00
40

B
28

0

M
em

or
y

ad
dr

es
se

s
m

od
ul

ar
 0

x1
00

Memory addresses of the program code

Memory layout of the guarded program

Orig exe code Guard code Guarded code

Figure 4: The memory image of a program heavily guarded by 307 guards

 Before guarding After guarding (without increasing file size)
File size # instructions File size # instructions # guards installed Avg guard size

gzip 172 KB 38348 172 KB 38897 25 76 bytes
disasm 376 KB 54931 376 KB 56456 70 75 bytes

avi2mpg 380 KB 51647 380 KB 54913 144 78 bytes

Figure 5: Statistics of the guarded programs and their guards

ware development from that of software protec-
tion (which is now done post-compilation).

5 Experimental results

In this section, we examine how much pro-
gram resouces guards would need from several

9

software applications. By program resources
we mean increases in program size and pro-
gram execution time. We applied our system
to three software applications: disasm, gzip,
and avi2mpg. disasm is an Intel x86 disassem-
bler that is branch-intensive; gzip is a GNU
�le compressing and decompressing tool that
has a mixed use of branches and loops; and
�nally, avi2mpg is a Win32 application which
converts an AVI video �le into an MPEG one.
Our experiments were conducted on a Pentium
III 600MHz machine running Windows NT.

5.1 Impacts on program size

The amount of program space required for stor-
ing guard code is proportional to the number
of installed guards and their average size. But
sometimes, Win32 executables can accommo-
date a number of guards without needing more
�le space. To illustrate this, we ran our system
on the test programs and installed into each
as many guards (of the same size) as possible
(while keeping their �le sizes unchanged). Fig-
ure 5 shows the maximum numbers of guards
that can �t into each program without increas-
ing its size. For the sake of this experiment, the
guards inserted into each program were instan-
tiated from the same guard template (of size 62
bytes), which is similar to the one shown previ-
ously. The instantiated guards need more bytes
because extra instructions are needed to hook
their code to the program
ows (of course in a
\production run" of our system we would use
guards having a variety of sizes).

We believe the issue of storage space does
not pose a problem to guarding. As storage
media such as hard disks are getting more spa-
cious and cheaper, software applications also
tend to expand in size (because more function-

ality can be included). Increasing the size of
a program by a few kilobytes (as a result of
guarding) does not even show up on the radar
screen when compared to the natural increase
in the size of software.

5.2 Impacts on program perfor-

mance

In this section we examine how guarding a�ects
program performance. In particular, we want
to answer the basic question: Would guards im-
pose prohibitive time-performance penalty on
programs?

We tested the performances of disasm, gzip,
and avi2mpg as follows. For each program,
its original performance (before guarding) was
measured. Then we created a set of guarded
versions of each program, each version execut-
ing a di�erent number of guards. Inserted into
the program at random locations, the guards
were invoked every time the execution
ow
reached them. All of the guards performed
checksumming on some piece of code of 0x50
bytes long using the same checksumming al-
gorithm. The execution times of this set of
guarded programs are keyed as \uncontrolled
guard invocations" in Figures 6, 7, and 8.

These performance results (and many oth-
ers that we ran) show that if guards are placed
within highly repetitive loops and execute as
many times as they iterate, the performance
would su�er. But the results also suggest that if
the execution frequency of guards is restricted
to a small number, then the programs would
likely perform well without much degradation
in speed. Indeed, in many cases, guards do not
need to execute over and over again if all they
do is to repeat the same checksumming or re-
pairing actions that they have repeated many

10

disasm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20 30 40 50 60

Number of guards executed

P
ro

g
ra

m
 e

xe
cu

ti
o

n
 t

im
e

(s
ec

o
n

d
s)

Controlled guard invocations Uncontrolled guard invocations

Figure 6: Comparison between the runtime
performances of disasm in two scenarios

times already.

To test how controlled invocations of guards
a�ect program performance, for each test pro-
gram we created another set of guarded ver-
sions of it, which were exactly the same as the
set created earlier except that in this case each
guard executed once only (no matter where it
was located in the CFG). The execution times
of these guarded programs are shown in the
same �gures as \controlled guard invocations."
Clearly, the new results indicate only slight in-
crease in execution times, as compared to the
previous results.

In situations where one could avoid installing
guards within performance-sensitive code, the
performance results are expected to be bet-
ter than those reported here. (Our system in-
cludes a graphical user interface that makes
it easy to highlight portions of program code
where guard-installation is recommended, and
portions where it is not recommended, in addi-
tion to highlighting which portions of the pro-
gram code should be guarded.) The reason
we decided to not use this facility in our ex-

gzip

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14

Number of guards executed

P
ro

g
ra

m
 e

xe
cu

ti
o

n
 t

im
e

(s
ec

o
n

d
s)

Controlled guard invocations Uncontrolled guard invocations

Figure 7: Comparison between the runtime
performances of gzip in two scenarios

periments is the diÆculty in quantifying what
\good guard-placement hints" are, and in ac-
counting for their variability from one test ap-
plication to the next. Instead, we ran our sys-
tem in \random guard-installation" mode, be-
cause it makes comparisons easier between one
protected application and another.

6 Conclusion and further re-

marks

We have explored a software-based methodol-
ogy for making program code tamper-resilient
by using guards. Guards are special code seg-
ments in the program which, when deployed
collectively, can make the following possible:

� Distributed protection. Spreading the
load of protection among guards essen-
tially eliminates the \single point of fail-
ure" problem.

� Variety of protection schemes. There
are many ways to group the guards to-

11

0 5 10 15 20 25

 0 (0%) 2 (40%) 4 (40%) 6 (40%) 10 (50%) 13 (52%)
% increase Uncontrolled guard invoc. (bad) 0.0% 23.5% 21.2% 22.4% 20.6% 21.7%
in exe time Controlled guard invoc. (preferable) 0.0% 1.1% 1.6% 3.4% 1.4% 4.1%

0 14 28 42 56 70

0 (0%) 10 (71%) 21 (75%) 30 (71%) 41 (73%) 50 (71%)
% increase Uncontrolled guard invoc. (bad) 0.0% 6.7% 3.3% 4.8% 5.7% 32.2%
in exe time Controlled guard invoc. (preferable) 0.0% 0.5% 2.1% 3.1% 4.3% 4.9%

0 27 55 82 109 136

0 (0%) 2 (7%) 4 (7%) 6 (7%) 10 (9%) 12 (9%)
% increase Uncontrolled guard invoc. (bad) 0.0% -0.1% 5.4% 5.5% 5.5% 5.7%
in exe time Controlled guard invoc. (preferable) 0.0% 0.0% 0.5% 0.6% 0.7% 0.7%

No. (%) of guards executed in a typical run

 gzip
Total no. of installed guards

No. (%) of guards executed in a typical run

 disasm
Total no. of installed guards

No. (%) of guards executed in a typical run

 avi2mpg
Total no. of installed guards

Figure 9: Increases in execution time under the scenarios of controlled and uncontrolled guard
invocations

avi2mpg

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

Number of guards executed

P
ro

g
ra

m
 e

xe
cu

ti
o

n
 t

im
e

(s
ec

o
n

d
s)

Controlled guard invocations Uncontrolled guard invocations

Figure 8: Comparison between the runtime
performances of avi2mpg in two scenarios

gether. As a result, a software devel-
oper can have di�erent copies of its soft-
ware applications protected di�erently so
that successful attacks against one of the
copies would not work for the others (i.e.,
no \wholesale" attacks). We have devel-

oped techniques for preventing \di�" at-
tacks that would compare two di�erently
protected copies of the same software.

� Con�gurable tamper-resistance. The
guarding approach makes it
exible for a
software developer to control the levels of
protection (e.g., how many guards) its soft-
ware applications need, allowing con�g-
urable tamper-resistance with little perfor-
mance degradation.

We have implemented a system that auto-
mates the process of installing guards in Win32
executables in a con�gurable manner. Our ex-
periences have convinced us that it is possi-
ble to easily guard software which is diÆcult
to \unguard"|i.e., asymmetry in the e�orts
(small e�ort to protect, large e�ort to attack).

Our results show that if con�gured appropri-
ately, guards cause only slight impacts on the
performance of guarded programs. We believe

12

that such impacts are insigni�cant in most sit-
uations, and that they are reasonable tradeo�s
for the levels of protection received.
We are currently in the process of complet-

ing Version 1.1 of our system. This version
has the convenience of a graphical user inter-
face integrated with Microsoft Visual C++ 6.0,
and will extend the obfuscation capabilities of
the current Version 1.0. Although the paper [3]
gives theoretical evidence of the diÆculty of ab-
solute obfuscation, \practical" obfuscation (in
the sense of delaying attacks on the software by
substantially \raising the bar" for an attacker)
are still a worthwhile endeavor in many practi-
cal situations. In our case what we really need
out of obfuscation is limited to \code entan-
glement", that is, the binding of guard code
with the original program's code so it is hard
to disentangle them, that is, diÆcult to distin-
guish binary-level guard code from the original
binary code (as mentioned in Section 2, there
are many ways to achieve such binding, rang-
ing from the use of arti�cially introduced de-
pendencies and \dummy code", to the use of
complex mathematical identities, etc). What
we need is more limited, and experiments per-
formed at Purdue and elsewhere lead us to be-
lieve that it is achievable in a practical sense.
This implies that even if the regions of code
containing guards were roughly located by an
attacker, it would still be very diÆcult to \sepa-
rate" and remove the guard code from the code
needed by the program's functionality.
Additional work is also under way to port

the system to other platforms, and to develop
a facility that allows eÆcient and safe software
patch distributions using the scheme described
in this paper; here \eÆcient" is in the sense that
the patch can have a small size compared to the
total program, and \safe" in the sense that it

is does not compromise the guarding network.

References

[1] David Aucsmith. Tamper-resistance soft-
ware: an implementation. In Ross An-
derson, editor, Information Hiding { Pro-

ceedings of the First International Work-

shop, volume 1174 of LNCS, pages 317{
333, May/June 1996.

[2] T. Aura and D. Gollman. Software licence
management with smart cards. In Proceed-
ings of the USENIX Workshop on Smart-

card Technology (Smartcard '99), pages
75{85, May 1999.

[3] Boaz Barak, Oded Goldreich, Russell Im-
pagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan, and Ke Yang. On the
(im)possibility of obfuscating programs. In
CRYPTO 2001, August 2001.

[4] Clark Thomborson Christian Collberg.
Watermarking, tamper-proo�ng, and ob-
fuscation { tools for software protection.

[5] Christian Collberg, Clark Thomborson,
and Douglas Low. Breaking abstractions
and unstructuring data structures. In
IEEE International Conference on Com-

puter Languages, ICCL'98, Chicago, IL,
USA, May 1998.

[6] Christian Collberg, Clark Thomborson,
and Douglas Low. A taxonomy of ob-
fuscating transformations. Technical Re-
port 148, Department of Computer Sci-
ence, The University of Auckland, Private
Bag 92019, Auckland, New Zealand, 1998.

13

[7] Cloakware Corporation. Introduc-
tion to cloakware tamper-resistant
software (trs) technology, March 2001.
http://www.cloakware.com/pdfs/TRS intro.pdf.

[8] Compuware Corporation. Numega softice.
http://www.numega.com/drivercentral-
/components/softice/si features.shtml.

[9] H. G. Joepgen and S. Krauss. Software by
means of the `protprog' method. ii. Elek-

tronik, 42(17):52{56, Aug. 1993.

[10] O. Kommerling and M. Kuhn. Design
principles for tamper-resistant smartcard
processors. In Proc. USENIX Workshop

on Smartcard Technology, Chicago, IL,
May 1999.

[11] Josh MacDonald. On program security
and obfuscation.

[12] Masahiro Mambo, Takanori Murayama,
and Eiji Okamoto. A tentative approach to
constructing tamper-resistant software. In
New Security Paradigms Workshop. Pro-

ceedings, pages 23{33, New York, NY,
USA, 1998. ACM.

[13] Landon Curt Noll, Jeremy Horn, Peter
Seebach, and Leonid A. Broukhis. The
International Obfuscated C Code Contest,
1998. http://www.ioccc.org/.

[14] A. Schulman. Examining the Windows
AARD detection code. Dr. Dobb's Jour-

nal, 18(9):42,44{8,89, Sept. 1993.

[15] S. Smith and S. Weingart. Building a high-
performache programmable secure copro-
cessor. Computer Networks, 31:831{860,
1999.

[16] Simon Tatham and Julian Hall.
Netwide Assembler. http://www.web-
sites.co.uk/nasm.

[17] Chenxi Wang, Jonathan Hill, John
Knight, and Jack Davidson. Software tam-
per resistance: Obstructing static analysis
of programs. Technical Report CS-2000-
12, 12 2000.

[18] Steve R. White and Liam Comerford.
ABYSS: An architecture for software pro-
tection. IEEE Transactions on Software

Engineering, 16(6):619{629, June 1990.

[19] Bennett Yee and J. D. Tygar. Secure co-
processors in electronic commerce applica-
tions. pages 155{170, 1995.

14

	CERIAS Tech Report 2002.pdf
	Protecting Software Codes By Guards

