
Application Note 102
Using the High–Speed Microcontroller

as a Bootstrap Loader

APPLICATION NOTE 102

030998 1/5

OVERVIEW
Some members of the High–Speed Microcontroller
Family incorporate internal EPROM or ROM for pro-
gram storage. Some applications, however, require in–
system reprogrammablility of program memory. Such a
system can be easily implemented using the Dallas
Semiconductor High–Speed Microcontroller with inter-
nal program memory to reload an external nonvolatile
memory such as Flash memory or NV RAM. Using the
internal program memory as a bootloader allows a lower
cost solution than could be obtained by using a device
with internal NV RAM program memory or a costly boot–
block Flash memory.

The most common bootloader configuration incorpo-
rates two elements: a microcontroller programmed with
the bootstrap loader, or bootloader, and an external
memory device such as an NV RAM or Flash memory to
hold the user application software. When the system re-
sets, following a power–on or external reset, it will begin
executing instructions out of the microcontroller’s inter-
nal program memory. The bootloader code, inside the
microcontroller begins by checking for a “loader/no–
loader” stimulus such as a logic low on a specific port
pin, serial port character, etc. This allows the system to
decide if it should load a new user program, or if execu-
tion should begin using the existing user program. If the
stimulus is not received, indicating that no load is de-
sired, the device will disable internal program memory
via the ROMSIZE feature and begin execution from ex-
ternal memory. If the stimulus is present, the device will
execute the bootloader routine, and begin reprogram-
ming the external memory.

This application note will provide examples of how a de-
signer can use an external Flash or NV RAM to add in–
system reprogrammability to a High–Speed Microcon-
troller based design. General hardware and software
design guidelines are presented. Software examples to
support the techniques described herein are available in
electronic format from Dallas Semiconductor via our
anonymous FTP site (Internet) or BBS.

INVOKING THE BOOTLOADER
There are several ways to invoke the loader. The sim-
plest is to dedicate a general purpose I/O pin to be
sampled as part of the reset routine contained inside the
High–Speed Microcontroller. The examples in this ap-
plication note utilize P1.7, INT5, because it is least likely
to interfere with existing 8051 code designs. Following a
reset, the device will begin executing code from internal
EPROM. The internal program will perform a quick test
of the pin to determine if the loader should be invoked.
Because this pin defaults to a high state after reset, it is
recommended that a low condition on this pin be used
as the signal to invoke the loader. Using an interrupt pin
also allows the device to invoke the loader at times other
than reset via the interrupt service routine. The method
used to assert a logic low can be as simple as a dedi-
cated switch, or a more complicated connection via the
RS–232 cable from the host that pulls the pin low when
connected.

An alternate method involves using the serial port to in-
voke the bootstrap loader. Upon reset, the device can
continuously poll the serial port for a character. If a char-
acter is not received in a specified period of time, the
program will exit the loader and begin execution from
the external memory. This approach has the advantage
of not requiring a general purpose port pin. Its primary
disadvantage is that the device will experience a fixed
delay every time it is reset before running the user ap-
plication.

EXITING THE BOOTLOADER
After loading the new software to external memory or if
loader operation is not desired, the system will need to
exit the loader and begin execution from external pro-
gram memory. The ROMSIZE feature provides a fast
and convenient way to do this. The ROMSIZE register
allows software to “turn off” internal program memory
and force all program execution externally, similar to
pulling the EA pin low. The software should then
execute an LJMP to the reset vector at 0000h.

APPLICATION NOTE 102

030998 2/5

The ROMSIZE register must be modified from an exter-
nal memory location that is outside the memory range of
internal memory. For example, the DS87C520 contains
16KB of EPROM. The instruction to modify the ROM-
SIZE register should be located in external memory at
an address of 4000h or greater. Failure to do this could
result in in code execution failure if the memory map
switched in the middle of an instruction.

The simplest way to do this is to map a short routine (~16
bytes) at the high end of memory. If a 64KB memory
space is used, this could be at FFF0h. This offers the
least chance of interfering with the user application
code. Upon completion of the loader routine, software
will jump to external memory (location FFF0h in this ex-
ample), modify the ROMSIZE register to disable internal
program memory, and then jump to location 0000h. This
simulates a reset of the user application code. It is im-
portant to include a NOP or other dummy instruction fol-
lowing the modification of the ROMSIZE register to al-
low one machine cycle for the memory select circuitry to
disable the internal program memory. The following rou-
tine is suggested:

CSEG at 0FFF0h
MOV TA, #0AAh
MOV TA, #55h
MOV ROMSIZE, #0h
NOP
LJMP 0000h

BOOTLOADER SOFTWARE
There are many different features that can be included
in a bootloader, which vary depending on the specific
memory device used. In general, these should include

load, verify, and CRC commands. Flash memory de-
vices will require chip erase commands, and an NV
RAM may find a fill command useful.

Figure 1 illustrates the basic operation of a bootloader
program. The software begins by checking for the signal
to start the loader. If present, the device performs user–
requested bootloader functions. When complete, or if
no loader stimulus was detected, the device will jump to
location FFF0h, modify the ROMSIZE register to dis-
able internal EPROM, and jump back to the restart vec-
tor. This simulates a device beginning execution at ad-
dress 0000h following a reset.

A sample bootloader for the High–Speed Microcontrol-
ler family is available from Dallas Semiconductor. The
assembly language source file HSM_LOAD.ASM incor-
porates optional include files to support several different
memory types, including Flash and NV RAM. The fol-
lowing is an list of some of the commands that are sup-
ported:

• Load Intel Hex file to memory

• Verify Hex file against memory

• Erase chip (Flash only)

• Fill range of memory with data (NV RAM only)

• Calculate CRC

• Modify and read port values

• Dump memory contents in Intel Hex format

• Exit loader

APPLICATION NOTE 102

030998 3/5

BOOTLOADER FLOWCHART Figure 1

PERFORM 1 OR MORE
LOADER FUNCTIONS

E
X

T
E

R
N

A
L

Y

N

Y

N

IS LOADER
STIMULUS
ACTIVE?

RESET

EXIT
LOADER?

JUMP TO FFF0h

MODIFY ROMSIZE
REGISTER USING
TIMED ACCESS

JUMP TO 0000h

BEGIN USER
 APPLICATION AT
ADDRESS 0000h

P
R

O
G

R
A

M
 M

E
M

E
O

R
Y

IN
T

E
R

N
A

L
E

P
R

O
M

APPLICATION NOTE 102

030998 4/5

HARDWARE
Figure 2 illustrates the use of a 29F010 5.0V–only Flash
memory as part of a bootloader design. Although this
configuration was designed to be compatible with the
software presented in the file HSM_LOAD.ASM, it can
be easily adapted for other Flash memory or NV RAM
devices. Some flash memory devices such as the
28Fxxx series require an external 12V VPP for program-
ming. Designs which incorporate these devices will
need to include a voltage source.

Although the 29F010 is a 128KB device, this example
only uses 64KB by tying the A16 address line low. This
will not effect the Flash memory command functions as

most devices are designed to ignore A16 during their
programming algorithms. To use A16, connect it to an
unused general purpose port pin. Be aware that port
pins will default to a logic high state, selecting the upper
64KB of Flash memory. An inverter can be used be-
tween the port pin and A16 on the Flash device to have it
select the lower 64KB on power–up. This will simplify
code placement. The “P” command of the bootloader
can be used to manipulate the A16 pin of the Flash
memory during the loading process to load both the up-
per and lower 64KB banks of the device. More informa-
tion on bank switching can be found in Application Note
81, Memory Expansion with the High–Speed Microcon-
troller Family.

BOOTLOADER HARDWARE Figure 2

PORT 2

PORT 0

ALE

PSEN
RD

WR

74
A

C
37

3

P1.2/RXD1

P1.3/TXD1D
S

23
2A

P1.7/INT5

A8 – A15

A0 – A7

D0 – D7

OE

WE

A16

RUN

LOAD

DS87C520 29F010

PC OR

VCC

OTHER
RS–232

INTERFACE

USING NV RAM WITH THE BOOTLOADER
NV RAM has several advantages when used in a boot-
loader design. It does not require the complicated byte
programming algorithm, making it much faster to pro-
gram. Both data and program can be stored in the same
chip, reducing board space while gaining the advantage
of data nonvolatility. The use of NV RAMs with internal
partitioning, such as the Dallas Semiconductor DS1630
Partitionable 256K NV SRAM or the DS1645 Partition-
able 1024K NV SRAM, prevents accidental code cor-
ruption. Optional include modules are available for the
HSM_LOAD.ASM file to support many Dallas Semicon-
ductor NV RAM products.

ADDENDUM FOR REVISION A4 DEVICES
DS87C520 and DS87C530 devices revision A4 and
earlier incorporate an errata pertaining to the PSEN sig-
nal that requires a minor change to the above hardware.
On these devices, the PSEN signal toggles regardless
of whether the device is operating from internal or exter-
nal program memory. This will cause a conflict during
writes to the Flash memory device. Figure 3 illustrates a
temporary workaround. This configuration places the
restriction that the Load signal on P1.7 must be re-
moved before beginning operation from external
memory. This is a minor point, as most applications will
program the Flash memory in a separate step, reset the
device, and then begin operation. This errata will be cor-
rected on later revisions of the devices.

APPLICATION NOTE 102

030998 5/5

BOOTLOADER HARDWARE FOR DS87C520/DS87C530 REVISION A4 Figure 3

PORT 2

PORT 0

ALE

PSEN

RD

WR

74
A

C
37

3

P1.2/RXD1

P1.3/TXD1D
S

23
2A

P1.7/INT5

A8 – A15

A0 – A7

D0 – D7

OE

WE

A16

RUN

LOAD

DS87C520 29F010

PC OR
OTHER
RS–232

INTERFACE

VCC

