
Application Note 79
Using the DS87C530 Real Time Clock

APPLICATION NOTE 79

030998 1/22

OVERVIEW
The DS87C530 incorporates a real time clock (RTC)
and alarm to allow the user to perform real–world timing
operations such as time–stamping an event, performing
a task at a specific time, or executing very long timing
delays. Although software timing loops or internal timers
could be used for such measurements, they are crystal
dependent, inefficient for long time measurements, and
are incompatible with the use of power management
modes. Integration of the RTC onto the DS87C530
means that only a 32.768 KHz crystal is required. No
load capacitors are required with the RTC crystal. The
RTC is controlled by dedicated Special Function Regis-
ters (SFRs).

The DS87C530 RTC consists of subsecond, second,
minute, hour, day of the week, and two total day count
registers. In addition there is an alarm register for the
subsecond, seconds, minutes, and hours registers. The
subsecond register provides a resolution of 1/256 of a
second, and a maximum rollover count of 1 second. The
registers and control bits used by the RTC are shown in
Table 1. Bits and registers designated as unchanged
after a reset may be indeterminate following a no–bat-
tery reset. Consult the full bit or register description for
complete details.

Both user software and the internal clock directly write
and read the RTC time registers (RTCSS, RTCS,
RTCM, RTCH, RTCD0, RTCD1). To prevent the possi-
bility of both user software and the internal timer acces-
sing the same register simultaneously, the DS87C530
incorporates a register locking mechanism. Updates to
the RTC time registers by the internal timer are tempo-
rarily suspended for up to 1 ms during software read or

write operations. If a subsecond timer tick should occur
in the 1 ms window, it will be processed immediately as
soon as either the RTCWE or RTCRE bits are cleared.
To prevent the possibility of an accidental write to the
RTC time registers, the RTCWE bit should be cleared as
soon as the planned modifications are complete. As a
protective measure, the device will clear the RTCWE bit
automatically after 1 ms if it has not been cleared in soft-
ware. To allow any pending timer ticks to be processed,
software must wait four machine cycles between any
successive modifications of the RTCWE or RTCRE bits.

This scheme will not affect the accuracy of the RTC, as
any subsecond timer tick that may occur during the read
or write window is only temporarily delayed, not dis-
carded. Only the recognition of that single subsecond
timer tick is delayed, and subsequent ticks will be syn-
chronized with the clock. The only possible implication
with respect to RTC operation occurs if a timer tick that
would cause an alarm interrupt occurred during a time
register read operation. In that case, the alarm would be
delayed a fraction of a millisecond until the RTCRE bit
was cleared. As mentioned, the next subsecond timer
tick will occur at the proper time, so the long–term clock
accuracy will not be affected.

It is critical that the 4 machine cycle setup and 1 ms win-
dow timings be observed. Any reads from the time regis-
ters before the 4 machine cycle period may return an
invalid time. Writes to the time registers before the 4
machine cycle period will be ignored. Similarly, any RTC
time register operations outside of the 1 ms window will
result in invalid read operations or ignored write opera-
tions. For this reason, interrupts should be globally dis-
abled before modifying any RTC register.

APPLICATION NOTE 79

030998 2/22

REAL TIME CLOCK CONTROL AND STATUS BIT SUMMARY Table 1

BIT NAME LOCATION FUNCTION RANGE RESET
READ/WRITE

ACCESS

ERTCI EIE.5 RTC Interrupt Enable 0 Unrestricted

PRTCI EIP.5 RTC Interrupt Priority 0 Unrestricted

RTASS.7–0 RTASS RTC Alarm Subsecond 0–FFh Unchanged Unrestricted

RTAS.5–0 RTAS RTC Alarm Second 0–3Bh Unchanged Unrestricted

RTAM.5–0 RTAM RTC Alarm Minute 0–3Bh Unchanged Unrestricted

RTAH.4–0 RTAH RTC Alarm Hour 0–17H Unchanged Unrestricted

RTCSS.7–0 RTCSS RTC Subsecond 0–FFh Unchanged Read: only if
RTCRE=1. Cannot be
written. Cleared when
RTCWE 1 � 0

RTCS.5–0 RTCS RTC Second 0–3Bh Unchanged

R d l if
RTCM.5–0 RTCM RTC Minute 0–3Bh Unchanged

Read: only if
RTCH.4–0 RTCH.4–0 RTC Hour 0–17h Unchanged

Read: only if
RTCRE=1. Write: only
if RTCWE 1 1 ms

DOW2–0 RTCH.7–5 RTC Day of Week 0–7h Unchanged
if RTCWE=1. 1 ms
Read/Write window

RTCD1.7–0
RTCD0.7–0

RTCD1, (MSB)
RTCD0, (LSB)

RTC Day 0–FFFFh Unchanged
Read/Write window

SRCE RTCC.7 RTC Subsecond
Compare Enable

Unchanged Unrestricted

SCE RTCC.6 RTC Second Compare
Enable

Unchanged Unrestricted

MCE RTCC.5 RTC Minute Compare
Enable

Unchanged Unrestricted

HCE RTCC.4 RTC Hour Compare
Enable

Unchanged Unrestricted

RTCRE RTCC.3 RTC Read Enable 0 Unrestricted

RTCWE RTCC.2 RTC Write Enable 0 Read: Unrestricted
Write: Timed Access

RTCIF RTCC.1 RTC Interrupt Flag 0 Unrestricted

RTCE RTCC.0 RTC Enable Unchanged

R d U i d
E4K TRIM.7 External 4096 Hz RTC

Signal Enable
0

Read: Unrestricted
Write: Timed Access

X12/6 TRIM.6 RTC Crystal Capaci-
tance Select

Unchanged
Write: Timed Access

TRM2–0 TRIM.5
TRIM.3
TRIM.1

RTC Trim Bit 2–0 Unchanged Read: Unrestricted
Write: Timed Access

TRM2–0 TRIM.4
TRIM.2
TRIM.0

RTC Inverted Trim Bit
2–0

Unchanged Read: Unrestricted
Write: Timed Access,
must be inverse of
TRM2–0

APPLICATION NOTE 79

030998 3/22

STARTING AND STOPPING THE RTC
The operation of the RTC crystal amplifier is controlled
by the RTC Enable bit, RTCE (RTCC.0). This bit can
only be accessed by a Timed Access procedure, and is
unaffected by any operational reset. The state of the
RTCE bit is undefined after a no–battery reset, however,
and should be initialized. Clearing the RTC Enable bit
will halt operation of the crystal amplifier and the clock,
but all register values (including the time when the clock
was disabled) will be retained. This may be desirable to
preserve the life of the backup energy source during
periods of storage. When restarting the RTC crystal
oscillator, either from a no–battery reset condition or by
setting the RTC Enable bit, the crystal start–up time
must be observed. There is no direct way to detect when
the RTC crystal oscillator has stabilized, and the system
software must allow sufficient stabilization time when
restarting the RTC. Crystal startup times are specified
by the crystal manufacturer, but are usually on the order
of 1 second.

After a loss of battery power or when attaching a battery
for the first time it will be necessary to initialize the RTC.
Although there is no status bit to indicate a no–battery
reset, there are several ways to detect when the real
time clock has lost power / time. The best way is to moni-
tor a reserved location in on–board memory. Because
the DS87C530 on–chip SRAM contents are preserved
by the same energy source as the RTC, an unexpected
change in a previously loaded memory location can indi-
cate a loss of battery power.

READING THE TIME
Reading the current time from the RTC is accomplished
by the following procedure:

1. Disable all interrupts by clearing the EA bit (IE.7),

2. Set the RTCRE bit (RTCC.3),

3. Wait 4 machine cycles,

4. Read the appropriate register(s) within 1 ms of
RTCRE being set,

5. Clear the RTCRE bit (RTCC.3),

6. Enable interrupts by setting the EA bit (IE.7).

SETTING THE TIME
The time on the DS87C530 is set by writing to the Clock
Registers. The Second, Minute, Hour, Day of the Week,
and Day Count can be set by writing to the respective
registers. It is not possible to set the Real Time Clock

Subsecond Register (RTCS; FBh). This register is auto-
matically reset to 00h when the RTCWE bit is cleared,
either through software or the automatic time–out of the
1 ms write window. The procedure for setting an RTC
time register is as follows:

1. Disable all interrupts by clearing the EA bit (IE.7),

2. Perform a Timed Access procedure,

3. Set the RTCWE bit (RTCC.2),

4. Wait 4 machine cycles,

5. Write the appropriate register(s) within 1 ms of
RTCWE being set,

6. Perform a Timed Access procedure,

7. Clear the RTCWE bit (RTCC.2),

8. Enable interrupts by setting the EA bit (IE.7).

USING THE RTC ALARM
The RTC alarm function is used to generate an interrupt
when the RTC value matches selected alarm register
values. An alarm can be triggered by a match on one or
more of the following alarm registers: Subsecond
(RTASS;F2h), Second (RTAS; F3h), Minute (RTAM;
F4h), and Hour (RTAM; F5h). Note that there is no alarm
register associated with the RTC Day or Day of Week
Registers. If an alarm is desired on a specific date, an
alarm can be executed once a day and user software
can compare the current date against the Day Register.
It is not necessary to set the RTC Write Enable bit when
setting the alarm registers.

The alarm can be set to occur on a match with any or all
of the alarm registers. An alarm can occur on a unique
time of day, or a recurring alarm can be programmed
every subsecond, second, minute, or hour. The specific
alarm registers to be compared are selected by setting
or clearing the corresponding compare enable bits
(RTCC.7–4). Any compare bit which is cleared will
result in that register being treated as a ‘Don’t Care’
when evaluating alarm conditions. Clearing all the
compare enable bits will disable the ability of the RTC to
cause an interrupt, and will immediately clear the RTC
Interrupt Flag (RTCC.1). Unlike some interrupts, the
RTC flag is not cleared by exiting the RTC interrupt ser-
vice routine and must be done in software.

The general procedure for setting the RTC alarm regis-
ters to cause a RTC interrupt is as follows:

1. Clear the RTC Interrupt Enable bit (EIE.5),

APPLICATION NOTE 79

030998 4/22

2. Clear all RTC Alarm Compare enable bits (ANL
RTCC, #0Fh),

3. Write one or more RTC Alarm registers,

4. Set the desired RTC Alarm Compare enable bits.

5. Set the RTC Interrupt Enable bit (EIE.5).

Setting the alarm to cause an interrupt for a single time
during a 24–hour period is done by setting all the alarm
registers to the desired value and enabling all compare
bits. For example, if an alarm was desired at 11:45:00
am, the following configuration would be used:

Alarm Subsecond (RTASS) 00 subseconds = 00h
Alarm Second (RTAS) 00 seconds = 00h
Alarm Minute (RTAM) 45 minutes = 2Dh
Alarm Hour (RTAH) 11 hours = 0Bh
Clock Control (RTCC) subsecond compare = F1h

second compare
minute compare
hour compare
RTC enable

A recurring alarm is enabled by disabling the compare
enable bits associated with one or more alarm registers.
In general, a recurring alarm is set using the next lower
time increment. For example, if an alarm once an hour
was desired, a compare on the RTAM Register would be
performed, because the RTCM register will match
RTAM register only once an hour. For example, if an
alarm once an hour, on the half hour was desired, the fol-
lowing configuration would be used:

Alarm Subsecond (RTASS) 00 subseconds = 00h
Alarm Second (RTAS) 00 seconds = 00h
Alarm Minute (RTAM) 30 minutes = 1Eh
Alarm Hour (RTAH) 11 hours = 00h
Clock Control (RTCC) subsecond compare = E1h

second compare
minute compare
RTC enable

In the above example, the subsecond, second, and min-
ute registers are programmed and the corresponding
compare enable bits are set, even though only a match
on the minute register is desired. This is because a don’t
care is always treated as a match for the purposes of
evaluating alarms. If the SSCE and SCE bits were
cleared to 0 (don’t care) in the above example, then a
match (and interrupt) would occur during every subse-
cond of the minute in which the RTAM register matched.
This would cause 15,360 interrupts, which is most likely

not the desired effect. In general, when specifying a
recurring alarm all the compare bits below the largest
time increment should be enabled and the correspond-
ing alarm registers loaded with 00h or a known value.

Alarms can occur synchronously when the clock rolls
over to match the alarm condition or asynchronously if
the alarm registers are set to a value that matches the
current time. Note that only one alarm may occur per
subsecond tick. This means that if a synchronous alarm
has already occurred during the current subsecond,
software cannot cause an asynchronous alarm in the
same subsecond.

While this is a relatively minor point, it can have implica-
tions if software expects to use the asynchronous capa-
bilities of the alarm. For example, assume an RTC inter-
rupt occurs as when the alarm registers match the
current time a 01:00:00:00 (1 hour, 0 minutes, 0
seconds, 0 subseconds. The RTC interrupt is relatively
short, taking much less than one subsecond tick (<4
ms), and execution returns to the main program.
Immediately upon exiting the RTC interrupt routine, an
event occurs that requires software to cause an alarm
on the hour by setting the alarm to match on 00 minutes,
00 seconds, 00 subseconds. Normally, setting this
alarm condition with the time at 01:00:00:00 would
immediately cause an RTC interrupt to occur; but
because we have already had an alarm in this subse-
conds, the condition will not be recognized. The alarm
will be missed because it will not be evaluated until the
next subsecond tick, when the time will have changed to
01:00:00:01. The designer should guard against the
possibility of using synchronous asynchronous alarms
in the same subsecond.

Because an alarm condition can occur asynchronously,
care must be exercised that a match is not accidentally
enabled while writing to the alarm registers. For exam-
ple, assume that the current time is 0B:00:00:00 and the
current alarm conditions are 00:00:00:00. Suppose that
software changes the alarm to 0B:01:00:00. If the hour,
second, minute, and subsecond compare enables are
enabled and the first instruction is MOV RTCH, #0B0H,
an alarm will occur immediately instead of at the
intended time. The best way to avoid this is to disable all
compare enables before changing the RTC alarm regis-
ters.

APPLICATION NOTE 79

030998 5/22

RTC SOFTWARE TRICKS
There are a number of simple tricks that can be used to
simplify software associated with RTC operations. The
4 machine cycle delay can be performed using a
CJNE A,A,$ instruction. Compared to using 4 NOPs,
this is a single instruction, and is 1 byte shorter.

The DS87C530 RTC allows software to dynamically
vary the alarm registers to achieve a wide range of inter-
vals. Often software will want to interrupt regularly on
half–increments of time (every 30 seconds, 30 minutes,
etc.). This can be easily done using the XRL instruction.
For example, if the RTAM register is set to 00h, the
instruction XRL RTAM, #1Eh will change the contents to
1Eh. Performing the instruction again will change it back
to 00h. Placing this instruction at the start of the RTC
interrupt routine will cause the appropriate alarm regis-
ter to be easily and quickly modified each time the inter-
rupt is called.

PROGRAM EXAMPLE: DATALOGGER
The following program illustrates a generic scheme for
operating a remote data logging station. In this example,

a DS87C530 is awoken from Stop mode every 30 min-
utes to read the temperature from a Dallas Semiconduc-
tor DS1620 Digital Thermometer and Thermostat. The
DS1620 is addressed via serial port 0, using serial mode
0. When the interrupt is called, the DS87C530 will use
the ring oscillator to perform a fast resume from Stop,
and signal the thermostat to begin a temperature con-
version. It will then reset the RTC alarm to occur again in
1 second. This will allow time for the conversion and the
crystal warm–up period to complete, after which the
device will automatically switch back to the crystal as
the clock source. The DS87C530 will read the tempera-
ture and transmit it, along with the hour and minute, back
to a host system connected to serial port 1. It will then
return to Stop mode to await the next alarm. Figure 1
shows a partial schematic for interfacing the DS87C530
and DS1620. If the DS1620 is to be separated from the
microcontroller by a long distance, filtering may be nec-
essary on the clock and data lines to reduce noise.

DS1620 INTERFACE EXAMPLE Figure 1

10 µF

VCC

DS1620

DS87C530

P3.0

P3.1

P1.0

DQ

CLK/CONV

RST

GND

VDD

TH

TL

TOOM

;Program DATALOGR.ASM
;
;This program demonstrates how to use the RTC to periodically service an
;external device. The device halts in Stop mode until awoken by an RTC interrupt
;every half hour. It then reads the temperature from a DS1620 Digital
;Thermostat and transmits it, with a time stamp, to the host via serial port 1.

;Register equate table
SP equ 81h ;Stack Pointer
PCON equ 87h ;Power Control Register
TCON equ 88h ;Timer Control Register

APPLICATION NOTE 79

030998 6/22

TMOD equ 89h ;Timer Mode Register
TH1 equ 8Dh ;Timer 1 MSB
CKCON equ 8Eh ;Clock Control Register
P1 equ 90h ;Port 1
EXIF equ 91h ;External Interrupt Flag Register
SCON0 equ 98h ;Serial Port 0 Control Register
SBUF0 equ 99h ;Serial Port 0 Data Buffer
P3 equ 0B0h ;Port 3
SCON1 equ 0C0h ;Serial Port 1 Control Register
SBUF1 equ 0C1h ;Serial Port 1 Data Buffer
TA equ 0C7h ;Timed Access Register
WDCON equ 0D8h ;Watchdog Control Register
ACC equ 0E0h ;Accumulator
RTASS equ 0F2h ;Real Time Alarm Subsecond Register
RTAS equ 0F3h ;Real Time Alarm Second Register
RTAM equ 0F4h ;Real Time Alarm Minute Register
RTCC equ 0F9h ;Real Time Clock Control
RTCM equ 0FCh ;Real Time Clock Minute Register
RTCH equ 0FDh ;Real Time Clock Hour Register

;Bit equate table
RI0 equ 098h
TI0 equ 099h
REN0 equ 09Ch
EA equ 0AFh
TI1 equ 0C1h
ERTCI equ 0EDh

DS1620_RST equ 090h ;DS1620 reset pin is tied to DS87C530 P1.0.
WR_CONFIG equ 0Ch ;DS1620 Write Configuration command.
RD_TEMP equ 0AAh ;DS1620 Read Temperature command.
START_CONV equ 0EEh ;DS1620 Start Conversion command.

 cseg at 0 ;Reset vector.
 LJMP START
 cseg at 6Bh ;Real time clock Interrupt vector.
 LJMP RTC_INT
;
 cseg at 100H ;Beginning of code segment.

START: MOV SP, #40h ;Initialize Stack pointer.
 MOV EXIF, #0Ah ;Enable ring oscillator restart from Stop mode.
 MOV P3, #03h ;Set P3.1 & P3.0 high to use serial port 0.
 MOV SCON0, #20h ;Set serial port mode 0, 4 tclk.

 MOV P1, #0Ch ;Set P1.2 & P1.3 high to use serial port 1.
 ;Clear P1.0 to reset DS1620.
 MOV SCON1, #40h ;Set serial port mode 1.
 MOV TMOD, #20h ;Configure timer 1 for 9600 baud
 MOV TH1, #0FDh ; at 11.0592 MHz.
 MOV TCON, #40h ;Start timer.

APPLICATION NOTE 79

030998 7/22

;Configure the DS1620
 SETB DS1620_RST ;Remove DS1620 reset to start operation.
 MOV A, #WR_CONFIG ;Send command to address configuration byte.
 CALL OUT_1620
 MOV A, #03h ;Set Configuration byte = CPU & 1–Shot Mode.
 CALL OUT_1620
 CLR DS1620_RST ;Assert DS1620 to end operation.

;Set up the RTC
 MOV RTAM, #00h ;Clear all alarm registers. Alarm will ring
 MOV RTAS, #00h ; on the next hour to start temperature
 MOV RTASS, #00h ; conversion.
 MOV RTCC, #081h ;Set alarms so we get a reading at start.
 SETB ERTCI ;Enable RTC interrupt.
 SETB EA ;Global interrupt enable.

MAIN: ORL PCON, #02h ;Set STOP bit to enter Stop mode.
 JMP MAIN ;End of main program loop. Program will return
 ; here after RTC interrupt is complete.

;***
;RTC_INT – This ISR reads the temp from the DS1620 and outputs the data to
; serial port 1. The routine starts the conversion, and waits for 1
; second to allow conversion to complete and crystal to stabilize.
; When the conversion is complete, the device will read the temperature
; and send the hour, minute and temperature to the host. The RTAM
; register will be modified to alarm again in 30 minutes.
;***
RTC_INT: MOV RTCC, #081h ;Clear RTCI flag and second compare enable
 ; bit to generate another alarm in 1 second.
 PUSH ACC ;Save accumulator.

 SETB DS1620_RST ;Remove DS1620 reset to start operation.
 MOV A, #START_CONV ;Initiate first temp conversion.
 CALL OUT_1620
 CLR DS1620_RST ;Assert DS1620 to end operation.

 ORL RTCC, #08h ;Enable RTC read process, and delay 4 machine
 CJNE A, ACC, $; cycles for time registers to stabilize.
 MOV R7, RTCM ;Save minute and hour so we can transmit
 MOV R6, RTCH ; them as soon as crystal has stabilized.
 ANL RTCC, #0F7h ;Reenable time register updates.

WAIT: MOV A, RTCC ;Wait for RTC interrupt flag to be set,
 JNB ACC.1, WAIT ; indicating that conversion is done. The
 ; one second delay will be sufficient for the
 ; crystal to stabilize, so switch to it now.

 XRL RTAM, #1Eh ;Change alarm to ring on next half hour.
 MOV RTCC, #0E1h ;Clear RTCI flag, and set compare bits
 ; so next alarm will be generated in 30 min.

APPLICATION NOTE 79

030998 8/22

 MOV A, #’!’ ;Transmit start character.
 CALL OUT_HOST
 MOV A, R6 ;Transmit the hour.
 CALL OUT_HOST
 MOV A, R7 ;Transmit the minute.
 CALL OUT_HOST

 SETB DS1620_RST ;Remove DS1620 reset to start operation.
 MOV A, #RD_TEMP ;Conversion is done. Send command to read temp.
 CALL OUT_1620
 CALL IN_1620 ;Read LSB of temperature and send it to host.
 CALL IN_1620 ;Read MSB of temperature and send it to host.
 CLR DS1620_RST ;Assert DS1620 to end operation.

 POP ACC ;Restore accumulator and go back to sleep.
 RETI

;**
;OUT_HOST – This routine sends data to the host system via serial port 1.
;**
OUT_HOST: MOV SBUF1, A ;Move out byte.
 JNB TI1, $;Wait until data has been transmitted.
 CLR TI1 ;Clear TI1.
 RET

;**
;OUT_1620 – This routine sends data to the DS1620 via serial port 0.
;**
OUT_1620: MOV SBUF0, A ;Move out byte.
 JNB TI0, $;Wait until data has been transmitted.
 CLR TI0 ;Clear TI1.
 RET

;**
;IN_1620 – This routine reads a byte from the DS1620 and echoes it back
; through serial port 1.
;**
IN_1620: SETB REN0 ;Enable receiver to clock in data.
 JNB RI0, $;Wait until data has been received.
 CLR REN0 ;Disable receiver to prevent reception.
 CLR RI0 ;Clear RI.

 MOV A, SBUF0 ;Echo data through serial port 1.
 CALL OUT_HOST
 RET

APPLICATION NOTE 79

030998 9/22

PROGRAM EXAMPLE: RTC INTERFACE
The following program is a general purpose interface
routine to set the RTC and display its status. The pro-
gram communicates through serial port 0, and allows

the user to set the time and date, set the alarm registers,
and indicates when an alarm has occurred. For the sake
of simplicity, the program inputs decimal values of time
and outputs hexadecimal values.

;***
;Program RTC_UTIL.ASM
;
;This program responds to commands received over the serial port to set
;and read the date, time and alarm information in the DS87C530 Real Time Clock.
;The program initializes the serial port for operation at 28800 baud with an
;11.0592 MHz clock.
;***
;Register equate table
SP equ 81h ;Stack Pointer
DPL equ 82h ;Data pointer low register
DPH equ 83h ;Data pointer high register
PCON equ 87h ;Power Control Register
TCON equ 88h ;Timer Control Register
TMOD equ 89h ;Timer Mode Register
TH1 equ 8Dh ;Timer 1 MSB
EXIF equ 91h ;External Interrupt Flag Register
SCON0 equ 98h ;Serial Port 0 Control Register
SBUF0 equ 99h ;Serial Port 0 Data Buffer
P3 equ 0B0h ;Port 3
TA equ 0C7h ;Timed Access Register
ACC equ 0E0h ;Accumulator
B equ 0F0h ;B Register
RTASS equ 0F2h ;Real Time Alarm Subsecond Register
RTAS equ 0F3h ;Real Time Alarm Second Register
RTAM equ 0F4h ;Real Time Alarm Minute Register
RTAH equ 0F5h ;Real Time Alarm Hour Register
EIP equ 0F8h ;Extended Interrupt Priority Register
RTCC equ 0F9h ;Real Time Clock Control
RTCSS equ 0FAh ;Real Time Clock Subsecond register
RTCS equ 0FBh ;Real Time Clock Second
RTCM equ 0FCh ;Real Time Clock Minute
RTCH equ 0FDh ;Real Time Clock Hour
RTCD0 equ 0FEh ;Real Time Clock Day Register 0
RTCD1 equ 0FFh ;Real Time Clock Day Register 1

;Bit equate table
RI0 equ 98h ;Serial Port 0 Receiver Interrupt Flag
TI0 equ 99h ;Serial Port 0 Transmitter Interrupt Flag
EA EQU 0AFh ;Global Interrupt Enable.
ERTCI equ 0EDh ;Real Time Clock Interrupt Enable.

;Constant equate table
CR equ 0Dh
LF equ 0Ah

APPLICATION NOTE 79

030998 10/22

 cseg at 0 ;Reset vector.
 LJMP START
 cseg at 6BH ;Real time clock Interrupt vector.
 LJMP RTC_INT

 cseg at 100H ;Beginning of code segment.
;Data & string tables.
HEX_TABLE: DB ’0123456789ABCDEF’
NEW_LINE: DB CR, LF, 0
YES: DB ’Y ’, 0
NO: DB ’N ’, 0
COMPARE: DB CR, LF, ’Compare enabled: ’, 0
COMPARE_Q: DB ’ Enable compare (Y/N)? ’, 0
ALARM_MSG: DB CR, LF, ’Alarm: ’, 0
TT_BANNER: DB CR, LF, CR, LF, ’DS87C530 RTC UTILITY’
 DB CR, LF, ’ A – Set Alarm, T –Set Time’
 DB CR, LF, ’ any other key to show registers’
 DB CR, LF, CR, LF, ’RTC registers: ’, 0
ALM_BANNER: DB CR, LF, ’Alarm register: ’, 0
NEW_BANNER: DB CR, LF, CR, LF, ’Enter new alarm register settings:’,0
SET_BANNER: DB CR, LF, ’Enter new time:’, 0
SS_BANNER: DB CR, LF, ’Subsecond: ’, 0
S_BANNER: DB CR, LF, ’Second: ’, 0
M_BANNER: DB CR, LF, ’Minute: ’, 0
H_BANNER: DB CR, LF, ’Hour: ’, 0
DW_BANNER: DB CR, LF, ’Day of Week: ’, 0
DC_BANNER: DB CR, LF, ’Day Count: ’, 0
DW_STRING: DB ’Disabled ’,0,’Sunday ’,0,’Monday ’,0,’Tuesday ’, 0
 DB ’Wednesday’,0,’Thursday ’,0,’Friday ’,0,’Saturday ’, 0

;Initialize part.
START: MOV SP, #80h ;Set up stack pointer.

 MOV P3, #0Bh ;Set RXD0, TXD0 & INT1 as inputs.
 MOV RTAM, #00h ;Initialize alarm registers to known values.
 MOV RTAS, #00h
 MOV RTASS, #00h

 MOV TA, #0AAh ;Timed access write to enable RTC.
 MOV TA, #55h
 MOV RTCC, #01h

 MOV SCON0, #050h ;Set serial port 0 for Mode 1, divide by 12.
 MOV TH1, #0FEh ;Timer 1 value for 28800 baud at 11.0592 MHz.
 MOV TMOD, #20h ;Set timer 1 to 8–bit auto reload and start it.
 MOV TCON, #40h
 ORL PCON, #80h ;Set SMOD bit to get 28800 baud.

 SETB ERTCI ;Enable RTC interrupts.
 SETB EA

APPLICATION NOTE 79

030998 11/22

 LJMP TELL_TIME ;Display the time.
;***
;This is the main program loop. It waits for a character on serial port 0,
;and then takes the appropriate action.
;***

CHAR_TEST: JNB RI0, $;Wait for incoming command character.
 CLR RI0
 MOV A, SBUF0 ;Test to see what to do.
CHECKT: CJNE A, #’T’, CHECKA ;T – set time.
 LJMP SET_TIME
CHECKA: CJNE A, #’A’, TT_JUMP ;A – set alarm.
 LJMP SET_ALARM
TT_JUMP: LJMP TELL_TIME ;else display time.

;***
;SET_TIME sets the current time.
;***
SET_TIME: MOV DPTR, #SET_BANNER ;Display set time banner.
 CALL OUT_STRING
 MOV DPTR, #H_BANNER ;Get hour & save temp copy.
 CALL OUT_STRING
 CALL IN_TIME
 ANL A, #1Fh ;Make sure day of week bits are 0.
 MOV R4, A
 MOV DPTR, #M_BANNER ;Get minute & save temp copy.
 CALL OUT_STRING
 CALL IN_TIME
 MOV R5, A
 MOV DPTR, #S_BANNER ;Get second & save temp copy.
 CALL OUT_STRING
 CALL IN_TIME
 MOV R6, A
 MOV DPTR, #DC_BANNER ;Get day count(2 bytes) & save temp copies.
 CALL OUT_STRING
 CALL IN_TIME
 MOV R2, A
 CALL IN_TIME
 MOV R3, A
 MOV DPTR, #DW_BANNER ;Get day of week value and add it on to
 CALL OUT_STRING ; the upper 3 bits of the hour register.
 CALL IN_TIME
 SWAP A
 RL A
 ANL A, #0E0h
 ORL A, R4
 XCH A, R4
 MOV DPTR, #NEW_LINE ;Add a blank line for esthetics.
 CALL OUT_STRING

APPLICATION NOTE 79

030998 12/22

 MOV TA, #0AAh ;We have all the values, now save them.
 MOV TA, #055h ;Perform a timed access to write to
 ORL RTCC, #04h ; set new time & date.
 CJNE A, ACC, $;Delay 4 machine cycles.
 MOV RTCSS, R7
 MOV RTCS, R6
 MOV RTCM, R5
 MOV RTCH, R4
 MOV RTCD0, R3
 MOV RTCD1, R2
 MOV TA, #0AAh ;Clear RTCWE bit to prevent accidental
 MOV TA, #055h ; changes to time registers.
 ANL RTCC, #0FBh

 LJMP CHAR_TEST ;Return and wait for another event.

;***
;TELL_TIME displays the current time, alarm registers, and alarm status.
;***
TELL_TIME: MOV DPTR, #TT_BANNER ;Display current time.
 CALL OUT_STRING
 CALL OUT_TIME

 MOV DPTR, #ALM_BANNER ;Display alarm registers.
 CALL OUT_STRING
 MOV R7, RTASS
 MOV R6, RTAS
 MOV R5, RTAM
 MOV R4, RTAH
 CALL DISP_TIME

 MOV DPTR, #COMPARE ;Now display the compare bits.
 CALL OUT_STRING
 MOV A, RTCC

 CALL DISP_COMP ;Display Hour compare bit.
 RR A
 CALL DISP_COMP ;Display Minute compare bit.
 RR A
 CALL DISP_COMP ;Display Second compare bit.
 RR A
 CALL DISP_COMP ;Display Subsecond compare bit.

 ORL RTCC, #08h ;Set the read bit to stop RTC update.
 CJNE A, ACC, $;Delay 4 machine cycles.
 MOV R4, RTCH ;Read the hour register.
 MOV R3, RTCD0 ;Read the day count registers.
 MOV R2, RTCD1
 ANL RTCC, #0F7h ;Clear the read bit to restart RTC.

APPLICATION NOTE 79

030998 13/22

 MOV DPTR, #DW_BANNER ;Output Day of Week banner.
 CALL OUT_STRING ; the upper 3 bits of the hour register.
 MOV A, R4 ;Day of week is stored in upper 3 bits
 SWAP A ; of hour register. Move it to bits 2–0
 RR A ; and multiply by 10 to get location
 ANL A, #07h ; within day of week table to start.
 MOV B, #0Ah
 MUL AB
 MOV DPTR, #DW_STRING ;Now add offset to starting address
 ADD A, DPL ; of data table to calculate new
 JNC NO_INC ; data pointer location.
 INC DPH
NO_INC: MOV DPL, A
 CALL OUT_STRING

 MOV DPTR, #DC_BANNER ;Output day count banner.
 CALL OUT_STRING
 MOV A, R2 ;Send both registers of day count.
 CALL OUT_DIGIT
 MOV A, R3
 CALL OUT_DIGIT
 MOV DPTR, #NEW_LINE ;Add a blank line for aesthetics.
 CALL OUT_STRING

 LJMP CHAR_TEST ;Return and wait for another event.

;This routine displays the status of the compare enable bit.
DISP_COMP: JNB ACC.4, NO_COMP ;Display the hour compare bit.
 MOV DPTR, #YES
 JMP OUT_COMP
NO_COMP: MOV DPTR, #NO
OUT_COMP: CALL OUT_STRING
 RET
;This routine outputs the current time.
OUT_TIME: ORL RTCC, #08h ;Set the read bit to stop RTC update.
 CJNE A, ACC, $;Delay 4 machine cycles.
 MOV R7, RTCSS ;Grab the current time / date and store
 MOV R6, RTCS ; them temporarily in working registers.
 MOV R5, RTCM
 MOV R4, RTCH
 ANL RTCC, #0F7h ;Clear the read bit to restart RTC.

DISP_TIME: MOV A, R4 ;Output hour.
 ANL A, #01Fh ;Mask off day of week bits.
 CALL OUT_DIGIT

 MOV A, R5 ;Output Minute.
 CALL OUT_CDIGIT

 MOV A, R6 ;Output second.
 CALL OUT_CDIGIT

APPLICATION NOTE 79

030998 14/22

 MOV A, R7 ;Output subsecond.
 CALL OUT_CDIGIT
 RET

;***
;SET_ALARM sets the alarm registers.
;***
SET_ALARM: CLR ERTCI ;Disable RTC interrupt and clear flag
 ANL RTCC, #0Fh ; during this section so that alarms will
 ; not be called while enables are changing.
 MOV DPTR, #NEW_BANNER
 CALL OUT_STRING
 MOV DPTR, #H_BANNER
 CALL OUT_STRING
 CALL IN_TIME ;Get hour & save temp copy.
 MOV R4, A
 CALL QUERY
 JNC ASK_M
 ORL RTCC, #10h ;Enable hour compare

ASK_M: MOV DPTR, #M_BANNER
 CALL OUT_STRING
 CALL IN_TIME ;Get minute & save temp copy.
 MOV R5, A
 CALL QUERY
 JNC ASK_S
 ORL RTCC, #20h ;Enable minute compare

ASK_S: MOV DPTR, #S_BANNER
 CALL OUT_STRING
 CALL IN_TIME ;Get second & save temp copy.
 MOV R6, A
 CALL QUERY
 JNC ASK_SS
 ORL RTCC, #40h ;Enable second compare

ASK_SS: MOV DPTR, #SS_BANNER
 CALL OUT_STRING
 CALL IN_TIME ;Get subsecond & save temp copy.
 MOV R7, A
 CALL QUERY
 JNC ASK_X
 ORL RTCC, #80h ;Enable subsecond compare.

ASK_X: MOV DPTR, #NEW_LINE
 CALL OUT_STRING

 MOV RTASS, R7 ;Save new alarm values.
 MOV RTAS, R6
 MOV RTAM, R5
 MOV RTAH, R4

APPLICATION NOTE 79

030998 15/22

 ANL RTCC, #0FDh ;Clear the RTCI flag in case it was
 ; accidentally set while we were
 ; manipulating compare bits.
 SETB ERTCI ;Reenable RTC interrupt.
 LJMP CHAR_TEST

QUERY: MOV DPTR, #COMPARE_Q
 CALL OUT_STRING
 JNB RI0, $
 CLR RI0
 MOV A, SBUF0
 CALL OUT_CHAR ;Echo it.
 CJNE A, #’Y’, NO_ENABLE ;If user wants compare, set flag.
 SETB C
 RET
NO_ENABLE: CLR C ;User does not want compare, clear flag.
 RET
;**
;Output routines.
;**
;This subroutine outputs an ASCII string. The starting point of the string
;is in DPTR, and the terminating character is ’0’.
OUT_STRING: PUSH ACC ;Save accumulator.
CHAR_LOOP: CLR A ;Clear accumulator for next instruction.
 MOVC A, @A + DPTR ;Get the next character from the
 JNZ NXT_CHAR ; string, and if 0, exit.
 POP ACC ;Restore accumulator.
 RET
NXT_CHAR: CALL OUT_CHAR ;Next character is valid, so transmit
 INC DPTR ; it. Increment the data pointer
 JMP CHAR_LOOP ; to the next position and loop
 ; back to send character.

;This subroutine outputs a leading colon for the minute, second, and subsecond
; when displaying the time. When done, it falls through to OUT_DIGIT.
OUT_CDIGIT: MOV SBUF0, #’:’ ;Display a colon.
 JNB TI0, $
 CLR TI0
;This subroutine outputs a hex number in ASCII format through serial port 0.
OUT_DIGIT: MOV DPTR, #HEX_TABLE
 MOV R0, A ;Make another copy of value
 SWAP A ;Do high nibble fist
 ANL A, #0Fh ;Clear unused nibble
 MOVC A, @A+DPTR ;Get character from table
 CALL OUT_CHAR ;Transmit the character.

 MOV A, R0 ;Now do low nibble.
 ANL A, #0Fh ;Clear unused nibble
 MOVC A, @A+DPTR ;Get character from table

APPLICATION NOTE 79

030998 16/22

 CALL OUT_CHAR ;Transmit the character.
 RET ;Done

OUT_CHAR: MOV SBUF0, A ;Transmit the character out the serial
 JNB TI0, $; port and wait until complete.
 CLR TI0
 RET

;**
;Input routines.
;**
;IN_TIME takes two decimal characters from the serial port, and formats them
; as a hexadecimal number.
IN_TIME: CALL IN_CHAR ;Get tens digit.
 MOV B, #0Ah ;Multiply first digit by 10 and save to
 MUL AB ; add to ones digit.
 XCH A, B
 CALL IN_CHAR ;Get ones digit and add it.
 ADD A, B ;Acc now has hex value of 2 decimal digit
 RET ; number. Exit.

IN_CHAR: JNB RI0, $;Wait for character.
 CLR RI0
 MOV A, SBUF0
 CALL OUT_CHAR ;Echo character back.
 PUSH ACC ;Save copy of A.
 ANL A, #0F0h ;If bits 7–4 are not 3h, then character
 CJNE A, #30h, IN_CHAR ; is not 0–9. Get another character.
 POP ACC ;Restore A.
 ANL A, #0Fh ;Acc now contains 0–9
 RET

;***
;RTC_INT – This ISR notifies the user that an alarm has occurred, and gives
; the time of the alarm.
;***
RTC_INT: ANL RTCC, #0FDh ;Clear RTC Interrupt flag.
 MOV DPTR, #ALARM_MSG ;Display alarm message and time of alarm.
 CALL OUT_STRING
 CALL OUT_TIME
 RETI ;Return

APPLICATION NOTE 79

030998 17/22

RTC CRYSTAL CONSIDERATIONS
The most important factor in the accuracy of the RTC (or
any oscillator) is the characteristics of the oscillator
crystal. The DS87C530 is rated for an accuracy of ±2
minutes per month over the full operating range of the
device. Even higher accuracy can be obtained by con-
trolling the temperature of the device and using the RTC
calibration procedures described later. The DS87C530
has been designed to operate with 32.768 KHz RTC
crystals with a load capacitance (CL) of 6 pF or 12.5 pF.

Unlike some crystal amplifiers, no external load capaci-
tors are needed with the RTC crystal.

Dallas Semiconductor products are compatible with
industry standard crystals. Table 2 shows a number of
common 32.768 KHz crystals. This list is by no means
exhaustive, and the inclusion or exclusion of any vendor
from this list is in no way a comment on the suitability of a
specific crystal in a customer’s application.

STANDARD 12.5 PF AND 6 PF RTC CRYSTALS Table 2

MANUFACTURER MODEL CL PACKAGE

Epson Crystal Corp. MC–306 32.768K E
MC–306 32.768K A

6.0 pF
12.5 pF

SMT
SMT

KDS America DT–26S 32.768 KHz
DT–26S 32.768 KHz
DMX–26 32.768 KHz
DMX–26 32.768 KHz

6 pF
12.5 pF

6 pF
12.5 pF

Cylinder
Cylinder

SMT
SMT

AVX/Kyocera KF–38G–12P5200
KS–309G–12P5200

12.5 pF
12.5 pF

Cylinder
SMT

SELECTING LOAD CAPACITANCE
The value of CL has the most bearing on the long–term
accuracy of the RTC. This parameter specifies the
capacitive load that the crystal needs to “see” across its
pins to oscillate at its rated frequency. Note that CL is not
the capacitance of the crystal itself, but rather the
capacitance of the oscillator circuit and any capacitors
connected to the crystal. Using a crystal that has a dif-
ferent CL than the actual load capacitance of the circuit
will affect the frequency of the oscillator. In general,
using a crystal with a CL that is larger than the load
capacitance of the oscillator circuit will cause the oscil-
lator to run faster than the specified nominal frequency
of the crystal, and vice versa.

The DS87C530 defaults to a mode which makes it com-
patible with a 12.5 pF crystal, but can be switched to 6
pF by clearing the RTC Capacitance Select bit X12/6
(TRIM.6). Although both crystal types will remain within
the specified accuracy, each has a different advantage.
The reduced loading of a 6 pF crystal will reduce the
power consumption of the RTC crystal oscillator by 25 to
50 percent, increasing the life of the backup battery. A
12.5 pF crystal, however, is less affected by noise and
will maintain a higher accuracy over an extended time.
Changing the capacitance of the RTC crystal amplifier
has no effect on the system clock crystal attached to the
X1 and X2 pins.

FINE–TUNING THE OSCILLATOR
FREQUENCY
Although the DS87C530 RTC is designed to oscillate at
exactly 32.768 KHz, variations in the device, crystal,
temperature, and board layout can produce minor tim-
ing variations. By adjusting the RTC Trim Bits located in
the RTC Trim Register (TRIM;96h), the internal capaci-
tance of the RTC circuitry can be slightly adjusted to
improve timing accuracy beyond the minimum speci-
fied. Although the trim bits do not correspond to an
absolute value of capacitance or frequency shift, they
provide a relative adjustment.

Please note that under normal circumstances, adjusting
the RTC Trim Bits is not necessary. Upon a no–battery
reset, the DS87C530 will reset its internal capacitance
to a default value which will guarantee the minimum
accuracy specified. If you do not require accuracy better
than 2 minutes per month, please skip this section.

To aid the user in determining the true frequency of the
RTC, a 4096 Hz signal derived from the 32.768 KHz
crystal is available on the P1.7 pin by setting the E4K bit
(TRIM.7). This can be measured with a frequency
counter to determine the RTC frequency. Do not attempt
to measure the frequency of the RTC at the leads of the
crystal. The capacitance of oscilloscope probes will dis-
tort the operation of the crystal and report erroneous val-

APPLICATION NOTE 79

030998 18/22

ues. The error of the RTC in minutes per month can be
calculated from the following formula:

(P1.7 Frequency – 4096.000 Hz)*(10.547) [minutes/month]

Note that this error is calculated at a specific tempera-
ture and voltage. Crystal characteristics change over
temperature, and the designer is advised to character-
ize the error over the system’s range of expected oper-
ating conditions.

The trim register features extensive protection to avoid
accidental corruption. All of the bits of the trim register
require a Timed Access procedure to modify them. In
addition, writes to the trim register must be done in com-
plementary pairs. Each of the three trim bits has a com-
plement bit which must be set simultaneously. This is to
ensure that any writes to the TRIM register are inten-
tional. If an invalid bit sequence is written to the trim bits,
the TRIM register will reset to 0x100101 binary. This is
the no–battery reset value, except that the X12/6 bit will
remain unchanged. The settings of the TRIM bits do not
correspond to an absolute value of capacitance or fre-
quency, and are only used to provide a relative adjust-
ment.

To adjust the RTC trim bits, place the device into the tar-
get system with the selected crystal and remove any

sources of loading from P1.7. Then attach a frequency
counter to P1.7 and perform the following procedure.

1. Perform a Timed Access procedure,

2. Set TRIM.7, E4K, and modify the TRMx bits, writing
their complements to the TRMx\ bits in the same
instruction. This will enable the external 4096 Hz sig-
nal. on P1.7,

3. Record the frequency,

4. Repeat steps 1–3 eight times until all combinations
of TRM0, TRM1, TRM2 have been measured.

After all the measurements have been taken, the mea-
surement closest to 4096.00 Hz is the most accurate
setting of the TRMx bits. Program this value into the
TRIM register for the maximum accuracy. An example
program is provided below.

PROGRAM EXAMPLE: RTC CALIBRATION
The following program example is provided to assist
system designers in calibrating their RTC for maximum
accuracy. It demonstrates how to set the RTC trim bits
and pause the program to allow time to read the fre-
quency output on P1.7.

;***
;Program RTC_CALB.ASM
;
;This program configures the DS87C530 so that the internal RTC frequency can
;be measured. A 4 KHz signal, derived by dividing the 32.768 KHz RTC by 8,
;will be asserted on pin P1.7. The device will step through the 8 settings of
;the RTC trim bits, displaying the current contents of the trim register on
;port 3. A delay of approximately 15 seconds (at 25 MHz) is inserted between
;each setting to allow time to record the frequency.
;
;To calibrate the RTC capacitance, connect a frequency counter to pin P1.7 and
;execute this program. Record the frequency from the counter and the trim bit
;settings as shown on port 3 as it steps through the 8 possible trim settings.
;The setting that produces a frequency closest to 4096 Hz is the most accurate
;setting of RTC capacitance.
;***

RTCC equ 0F9h ;Real Time Clock Control
TA equ 0C7h ;Timed Access Register
TRIM equ 96h ;RTC Trim Register
P3 equ 0B0h ;Port 3 Latch

APPLICATION NOTE 79

030998 19/22

;These definitions are for 6 pF crystal calibration.
TRIM0 equ 95h ;First trim bit setting (6 pF)
TRIM1 equ 96h ;Second trim bit setting (6 pF)
TRIM2 equ 99h ;Third trim bit setting (6 pF)
TRIM3 equ 9Ah ;Fourth trim bit setting (6 pF)
TRIM4 equ 0A5h ;Fifth trim bit setting (6 pF)
TRIM5 equ 0A6h ;Sixth trim bit setting (6 pF)
TRIM6 equ 0A9h ;Seventh trim bit setting (6 pF)
TRIM7 equ 0AAh ;Eighth trim bit setting (6 pF)

;These definitions are for 12.5 pF crystal calibration.
;TRIM0 equ 0D5h ;First trim bit setting (12.5 pF)
;TRIM1 equ 0D6h ;Second trim bit setting (12.5 pF)
;TRIM2 equ 0D9h ;Third trim bit setting (12.5 pF)
;TRIM3 equ 0DAh ;Fourth trim bit setting (12.5 pF)
;TRIM4 equ 0E5h ;Fifth trim bit setting (12.5 pF)
;TRIM5 equ 0E6h ;Sixth trim bit setting (12.5 pF)
;TRIM6 equ 0E9h ;Seventh trim bit setting (12.5 pF)
;TRIM7 equ 0EAh ;Eighth trim bit setting (12.5 pF)
;
cseg at 0 ;Reset vector.
 LJMP START

cseg at 100H ;Start of program

;
START: MOV P3, #0AAh ;I’m alive message.

 MOV TA, #0AAh ;Timed access.
 MOV TA, #55h
 MOV RTCC, #01h ;Start RTC and clear RTC interrupt flag.

 LCALL HALFSEC ;Delay to give RTC oscillator time to
 ; warm up.
; End of initialization. Now step through all the settings of the trim bits.
 MOV R0, #TRIM0 ;Trim setting 0
 LCALL NEXT_SETTING

 MOV R0, #TRIM1 ;Trim setting 1
 LCALL NEXT_SETTING

 MOV R0, #TRIM2 ;Trim setting 2
 LCALL NEXT_SETTING

 MOV R0, #TRIM3 ;Trim setting 3
 LCALL NEXT_SETTING

 MOV R0, #TRIM4 ;Trim setting 4
 LCALL NEXT_SETTING

APPLICATION NOTE 79

030998 20/22

 MOV R0, #TRIM5 ;Trim setting 5
 LCALL NEXT_SETTING

 MOV R0, #TRIM6 ;Trim setting 6
 LCALL NEXT_SETTING

 MOV R0, #TRIM7 ;Trim setting 7
 LCALL NEXT_SETTING

 MOV P3, #0FFh ;Turn on all port 3 pins to signal
DONE: JMP DONE ; we’re done.

;***
;NEXT_SETTING – This subroutine writes the new setting to the RTC trim register,
; displays the value of the trim register on port 3 for reference,
; and delays for a period to give time to record the data
;***
NEXT_SETTING:
 MOV TA, #0AAH ;Timed access.
 MOV TA, #55h
 MOV TRIM, R0 ;Set E4K and new trim setting.
 NOP
 MOV P3, TRIM ;Output value of trim register.

SEC30: MOV R3, #30 ;15 second delay with 25 MHz crystal.
SECLOOP: LCALL HALFSEC
 DJNZ R3,SECLOOP
 RET

;***
;HALFSEC – This subroutine generates a delay of approximately 0.5 second with
; a 25 MHz crystal.
;***
HALFSEC: MOV R0,#25
OUTER: MOV R1,#125
MIDDLE: MOV R2,#249
INNER: NOP
 DJNZ R2,INNER
 DJNZ R1,MIDDLE
 DJNZ R0,OUTER
 RET

APPLICATION NOTE 79

030998 21/22

NOISE AND CRYSTAL LAYOUT GUIDELINES
The crystal inputs of the DS87C530 RTC (RTCX1,
RTCX2) have a very high impedance. Unfortunately,
this can cause the leads to the crystal to function as
antennae, coupling high frequency signals into the RTC
circuitry from the rest of the system. This can lead to a
distortion of the crystal oscillator signal, resulting in
extra or missed clock edges. In most situations high fre-
quency noise will present the greatest problem, causing
the clock to run fast.

The following procedure can be used to determine if
noise is the cause of the inaccuracy of a RTC:

1. Power the system up and synchronize the RTC to a
known, accurate clock,

2. Remove VCC to the device (but maintain VBAT),

3. Wait for a long period of time (24 hours),

4. Apply VCC, read the RTC, and compare to the
known, accurate clock,

5. Resynchronize the RTC to the known, accurate
clock,

6. Keep system powered up and wait for the same
period of time in step 3,

7. Read RTC and compare to the known, accurate
clock.

The above procedure allows the designer to measure
the inaccuracy of the clock both when the system is
operating and when it is powered down. If the clock
appears less accurate when powered up, the most likely
culprit is system noise. If the inaccuracy remains

whether the system is on or off, then the cause is most
likely not system noise.

Because the crystal pins are highly susceptible to cou-
pling noise, care must be taken when locating the exter-
nal crystal on the PCB and when routing traces. The fol-
lowing guidelines are presented to reduce the effect of
external noise on the RTC.

1. Place the crystal as close as possible to the RTCX1
and RTCX2 pins. Short traces reduce stray capaci-
tance and noise coupling.

2. Keep the use small crystal bond pads and short
traces to the RTCX1 and RTCX2 pins. Larger pads
and longer traces are more likely to couple noise
from adjacent circuits.

3. Place a ground guard ring around the crystal. This
helps isolate the crystal from adjacent signals.

4. Avoid routing signals beneath the crystal or
RTCX1/RTCX2 traces. This helps isolate the crystal
from adjacent signals. It is especially important to
keep high frequency signals and devices as far
away from the crystal as possible.

5. Place a local ground plane directly beneath the
ground guard ring. This helps isolate the crystal from
signal layers below the crystal.

Figure 2 shows the recommended placement of the
RTC crystal, guard ring, and ground plane. The illustra-
tion shows one common orientation for a 4–pin surface
mount crystal, but pin orientations will vary between
manufacturers and package types.

APPLICATION NOTE 79

030998 22/22

EXAMPLE CRYSTAL PLACEMENT ON PCB Figure 2

GND2 RTCX2 RTCX1 VCC2

PIN 4PIN 1

PIN 3PIN 2

CRYSTAL PADS

LOCAL GROUND
PLANE (LAYER 2)

GND2 VCC2

