
Programmer’s
Reference

Manual

ii SentinelLM Programmer’s Reference Manual

Copyright 1999, Rainbow Technologies, Inc.

All rights reserved.

http://www.rainbow.com
All attempts have been made to make the information in this document complete and accurate. Rainbow
Technologies, Inc. is not responsible for any direct or indirect damages or loss of business resulting from
inaccuracies or omissions. The specifications contained in this document are subject to change without notice.

CONFIDENTIAL INFORMATION

The SentinelLM software protection system is designed to protect your software products from unauthorized use.
The less information that unauthorized people have regarding your security system, the greater your protection. It is
in your best interest to protect the information herein from access by unauthorized individuals. Please read the
Developer’s Agreement at the beginning of the developer’s guide for safeguarding requirements.

Part Number 700554-001, Revision A
Software releases 7.0 and later

RAINBOW TECHNOLOGIES, INC.
50 Technology Drive, Irvine, CA 92618
Telephone: (949) 450-7300, (800) 852-8569 Fax: (949) 450-7450

RAINBOW TECHNOLOGIES LTD.
4 The Forum, Hanworth Lane, Chertsey, Surrey KT16 9JX, United Kingdom
Telephone: (44) 1932 579200 Fax: (44) 1932 570743

RAINBOW TECHNOLOGIES
122, Avenue Charles de Gaulle, 92522 Neuilly-sur-Seine Cedex, France
Telephone: (33) 1 41 43 29 02 Fax: (33) 1 46 24 76 91

RAINBOW TECHNOLOGIES GMBH
Lise Meitner Strasse 1, 85716 Unterschleissheim, Germany
Telephone: (49) 89 32 17 98 0 Fax: (49) 89 32 17 98 50

Additional offices in the United States, Australia, China, India, the Netherlands, Russia and Taiwan.
Distributors located worldwide.

SentinelLM is a trademark of Rainbow Technologies, Inc. Novell and NetWare are trademarks of Novell, Inc. Microsoft Windows,
Microsoft Windows NT, Windows 95 and Windows 98 are trademarks of Microsoft Corporation. UNIX is a registered trademark,
exclusively licensed through X/Open Company, Ltd. All other product names referenced herein are trademarks or registered trade-
marks of their respective manufacturers.

10 9 8 7 6 5 4 3 2 1 082099

SentinelLM Programmer’s Reference Manual iii

SOFTWARE LICENSE AND DEVELOPER’S AGREEMENT
All Products (including developer’s kits, Sentinel hardware keys, diskettes or other magnetic media,
software, documentation and all future orders) are subject to the terms stated below. If you disagree with
these terms, please return the Product and the documentation to Rainbow, postage prepaid, within three
days of your receipt, and Rainbow will provide you with a refund, less freight and normal handling
charges.

1. You may not copy or reproduce all or any part of the Product, except as authorized in item 2 below.
Removal, emulation or reverse-engineering of all or any part of the Product constitutes an
unauthorized modification to the Product and is specifically prohibited. Nothing in this license
permits you to derive the source code of the software files that Rainbow has provided to you. Your
software programs must be protected or licensed using a licensed and registered copy of this
Rainbow Product. Rainbow provides no other warranty to any person, other than the Limited
Warranty provided to the original purchaser of this Product.

2.a. You may make archival copies of the software files and you may modify and merge them into your
software programs for the sole purpose of implementing the Product to protect and/or license your
programs according to the Rainbow documentation provided with the Product. All software files
remain Rainbow’s exclusive property.

b. Rainbow’s Sentinel System Driver Software and other Rainbow software files listed in the
“Licensee Redistribution Allowances” section (if it is defined in the Product’s documentation) may
be copied and distributed to your customers for the sole purpose of executing your protected or
licensed software programs according to the Rainbow documentation provided with the Product.

c. No license is granted to Licensee to sell, license, distribute, market or otherwise dispose of any
software files or other component of the Product except when embedded in your software
programs. Copies of your software programs must bear a valid copyright notice and must be
distributed such that the object code for the Product cannot be extracted.

3. Rainbow warrants the Product and the magnetic media on which the software files are provided to
be substantially free from significant defects in materials and workmanship under normal use for a
period of twelve (12) months from the date of delivery of the Product to you. In the event of a claim
under this warranty, Rainbow’s sole obligation is to replace or repair, at Rainbow’s option, any
Product free of charge. Any replaced parts shall become Rainbow’s property.

4. Warranty claims must be made in writing during the warranty period and within seven (7) days of
the observation of the defect, accompanied by evidence satisfactory to Rainbow. Prior to returning
any Product to Rainbow, you must obtain a Return Merchandise Authorization (RMA) number and

iv SentinelLM Programmer’s Reference Manual

shipping instructions from Rainbow. Products returned to Rainbow shall be shipped with freight
and insurance paid.

5. Except as stated above, there is NO OTHER WARRANTY, REPRESENTATION, OR
CONDITION REGARDING RAINBOW’S PRODUCTS, SERVICES, OR PERFORMANCE,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Rainbow is not responsible for any delays beyond its control. Rainbow’s entire liability for damages to
you or any other party for any cause whatsoever, whether in contract or in tort, including negligence,
shall not exceed the price you paid for the unit of Product that caused the damages or that are the subject
matter of, or are directly related to, the cause of action. In no event will Rainbow be liable for any
damages caused by your failure to perform your obligations, or for any loss of data, profits, savings, or
any other consequential and incidental damages, or for any claims by you based on any third-party claim.

Licensee Redistribution Allowances

SentinelLM Licensees may release the Sentinel System Driver diskette for installation with their
Sentinel-protected application and the Sentinel Client Activator and associated files. In addition, the
Licensee may distribute the following commands, files, and related documentation: ainst.exe,
commute.dat, dlt, echoid, echoid.dat, ipxecho.exe, lcommute, lcu, loadls.exe, lsapiw32.dll, lsdecode,
lserv, lserv9x.exe, lservnt, lslic, lsmail.exe, lsmon, lspool, lsrvdown, lsusage, lswhere, prsclean, rlftool,
timefix, wcommute, WlmAdmin, wrlftool, and the SentinelLM System Administrator’s Guide.

International Quality Standard Certification

European Community Directive Conformance Statement

Certificate Number FM 30128

Rainbow Technologies, Inc. Irvine CA facility has been issued the ISO
9002 Certification, the globally recognized standard for quality, by British
Standards Institution as of December 1994.

This product is in conformity with the protection requirements of EC Council
Directive 89/336/EEC. Conformity is declared to the following applicable standards
for electro-magnetic compatibility immunity and susceptibility; CISPR22 and
IEC801. This product satisfies the CLASS B limits of EN 55022.

 SentinelLM Programmer’s Reference Manual v

1Contents

Preface . xv
The SentinelLM Manuals .xv
About This Guide . xvi

Typographic Conventions . xvii
Syntax Conventions . xviii

Getting Help . xviii
Online Documentation . xviii
For Additional Help . xix

Contacting Rainbow Technical Support . xix
How to Report Problems . xxi

Chapter 1 - Introduction . 1
Using the SentinelLM Application Library . 1
Licensing on Stand-alone and Networked Computers. 3
Client API Example . 3

Example .4
Language Interfaces Supported . 5
Special Use of Win32 for Generating Tools . 5
Debugging Your Client Application . 6
Disabling Licensing . 6

Chapter 2 - Protecting Your Application with the Application Library 9
Adding APIs to Your Source Code . 9

Application Identification . 10
Automatic License Server Detection . 10
Special Licensing Cases . 12

Linking with the Correct Library .13
Windows Static Linked Libraries . 13
Windows Dynamic Linked Libraries and Import Libraries 15

vi Contents

UNIX Libraries . 15
Notes on Security . 16

Protecting Against Time Tampering . 17
Using a Custom Locking Code . 17

Step 1 - Rebuilding License Server . 17
Compiler Required . 17
Files Required . 18
Required Changes to Server Source Code . 18
Steps to Rebuilding the License Server . 19

Step 2 - Rebuilding echoid.exe . 19
Compiler Required . 20
Files Required for echoid.exe . 20
Required Changes to echoid.exe . 20
Steps to Rebuilding echoid.exe. 21

Step 3 - Modifying Client Application . 21
Overall Process of Using a Rebuilt License Server and Rebuilt echoid.exe 22

Chapter 3 - SentinelLM Client API . 23
Introduction . 23
Basic Client Licensing Functions. . 25

Quick Client Licensing Functions. 25
VLSlicense() . 26
VLSdisableLicense() . 29

Standard Client Licensing Functions . 31
VLSinitialize() . 31
LSRequest() . 32
LSRelease() . 36
VLScleanup() . 37
LSUpdate() . 38

Advanced Client Licensing Functions . 41
VLSinitialize() . 42
VLSrequestExt() . 42

Challenge-response . 45
VLSreleaseExt() . 48
VLScleanup() . 49
VLSbatchUpdate() . 49

 SentinelLM Programmer’s Reference Manual vii

Client Configuration Functions .52
VLSsetContactServer() . 53
VLSgetContactServer() . 56
VLSsetServerPort() . 57
VLSgetServerPort(). . 58
VLSinitMachineID() . 58
VLSgetMachineID() . 60
VLSmachineIDtoLockCode() . 61
VLSgetServerNameFromHandle() . 62
VLSinitServerList(). . 63
VLSgetServerList . 64
VLSinitServerInfo() . 65
VLSsetHostIdFunc() . 65
VLSsetBroadcastInterval() . 66
VLSgetBroadcastInterval() . 67
VLSsetTimeoutInterval() . 67
VLSgetTimeoutInterval(). . 68
VLSsetHoldTime() . 69
VLSsetSharedId(). . 70
VLSsetSharedIdValue() . 72

Local vs. Remote Renewal of Keys .73
VLSdisableLocalRenewal() . 74
VLSenableLocalRenewal() . 75
VLSisLocalRenewalDisabled(). . 75
VLSgetRenewalStatus() . 76
VLSsetRemoteRenewalTime() . 77
VLSdisableAutoTimer() . 78

Client Query Functions .79
VLSgetClientInfo() . 81
VLSgetHandleInfo() . 83
VLSgetLicInUseFromHandle(). . 84

Feature Query Functions . .86
VLSgetFeatureInfo() . 90
VLSgetVersions(). . 93
VLSgetFeatureFromHandle(). . 94
VLSgetVersionFromHandle() . 95

viii Contents

VLSgetTimeDriftFromHandle(). 96
VLSgetFeatureTimeLeftFromHandle() . 97
VLSgetKeyTimeLeftFromHandle() . 99

Client Utility Functions . 100
VLSdiscover() . 101
VLSaddFeature() . 104
VLSaddFeatureToFile() . 105
VLSdeleteFeature() . 107
VLSgetLibInfo() . 109
VLSshutDown() . 110
VLSwhere() . 112

Error Handling . 113
VLSerrorHandle() . 114
LSGetMessage() . 115
VLSsetErrorHandler() . 116
VLSsetUserErrorFile . 117

Tracing SentinelLM Operation . 118

Chapter 4 - License Code Generation API. 121
License Code Generation Functions . 122
Basic Functions . 126

VLScgInitialize() . 126
VLScgCleanup() . 127
VLScgReset(). . 128

Functions Which Retrieve or Print Errors . 128
VLScgGetNumErrors() . 129
VLScgGetErrorLength() . 129
VLScgGetErrorMessage() . 130
VLScgPrintError() . 131

Functions for Setting the Fields in Code Struct . 132
VLScgAllowAdditive(). . 135
VLScgSetAdditive() . 136
VLScgSetCodeLength() . 136
VLScgSetLicType() . 138
VLScgAllowHeldLic() . 139
VLScgSetHoldingCrit() . 139

 SentinelLM Programmer’s Reference Manual ix

VLScgAllowStandAloneFlag() . 140
VLScgAllowNetworkFlag() . 141
VLScgSetStandAloneFlag() . 141
VLScgAllowSharedLic() . 142
VLScgSetSharedLicType() . 142
VLScgAllowTrialLicFeature() . 144
VLScgSetTrialDaysCount() . 144
VLScgAllowLockMechanism() . 145
VLScgSetClientLockMechanism() . 145
VLScgSetServerLockMechanism1() . 146
VLScgSetServerLockMechanism2() . 147
VLScgAllowClockTamperFlag() . 148
VLScgSetClockTamperFlag() . 148
VLScgAllowOutLicType() . 150
VLScgSetOutLicType() . 150
VLScgAllowLicenseType() . 151
VLScgSetLicenseType(). 152
VLScgAllowCodegenVersion() . 153
VLScgSetCodegenVersion() . 153
VLScgAllowRedundantFlag(). 154
VLScgSetRedundantFlag() . 154
VLScgAllowMajorityRuleFlag() . 155
VLScgSetMajorityRuleFlag() . 156
VLScgAllowCommuterLicense() . 157
VLScgSetCommuterLicense(). 157
VLScgAllowLogEncryptLevel() . 159
VLScgSetLogEncryptLevel() . 159
VLScgAllowMultiKey(). 160
VLScgSetKeyType() . 160
VLScgAllowMultipleServerInfo() . 162
VLScgAllowSecrets() . 162
VLScgSetSecrets(). 163
VLScgSetNumSecrets() . 164
VLScgAllowVendorInfo(). 165
VLScgSetVendorInfo() . 165
VLScgAllowFeatureName(). 166

x Contents

VLScgSetFeatureName() . 166
VLScgAllowFeatureVersion() . 167
VLScgSetFeatureVersion() . 168
VLScgAllowLockModeQuery() . 169
VLScgSetClientServerLockMode() . 169
VLScgAllowServerLockInfo() . 170
VLScgSetServerLockInfo1() . 170
VLScgSetServerLockInfo2() . 171
VLScgAllowClientLockInfo() . 172
VLScgSetClientLockInfo() . 173
VLScgAllowKeysPerNode() . 174
VLScgSetKeysPerNode() . 174
VLScgAllowSiteLic() . 175
VLScgSetSiteLicInfo() . 175
VLScgSetNumSubnets() . 176
VLScgAllowNumFeatures() . 177
VLScgSetNumFeatures() . 177
VLScgSetNumClients() . 178
VLScgAllowNumKeys() . 179
VLScgSetNumKeys() . 179
VLScgAllowSoftLimit() . 180
VLScgSetSoftLimit() . 181
VLScgAllowKeyLifeUnits() . 182
VLScgSetKeyLifetimeUnits() . 182
VLScgAllowKeyHoldUnits() . 183
VLScgSetKeyHoldtimeUnits() . 183
VLScgAllowKeyLifetime() . 185
VLScgSetKeyLifetime() . 185
VLScgAllowKeyHoldtime() . 186
VLScgSetKeyHoldtime(). . 186
VLScgAllowLicBirth() . 187
VLScgSetLicBirthMonth() . 188
VLScgSetLicBirthDay() . 189
VLScgSetLicBirthYear() . 189
VLScgAllowLicExpiration() . 190
VLScgSetLicExpirationMonth() . 191

 SentinelLM Programmer’s Reference Manual xi

VLScgSetLicExpirationDay() . 191
VLScgSetLicExpirationYear() . 192
VLScgAllowShareLimit() . 193
VLScgSetShareLimit() . 193
VLScgSetNumericType() . 194
VLScgSetLoadSWLicFile() . 195

License Generation Functions . 196
VLScgGenerateLicense() . 196
VLScgDecodeLicense() . 197

License Meter Related Functions . 198
VLScgGetLicenseMeterUnits() . 198
VLScgGetTrialLicenseMeterUnits() . 199

Trial License Related Functions . 200
VLSgetTrialPeriodLeft() . 200

Chapter 5 - Redundancy API .201
VLSaddFeature() . 203
VLSaddFeatureExt(). 205
VLSaddFeatureToFile() . 206
VLSaddServerToPool() . 208
VLSchangeDistbCrit() . 209
VLSdelServerFromPool() . 210
VLSdiscoverExt() . 212
VLSgetDistbCrit() . 215
VLSgetDistbCritToFile() . 217
VLSgetFeatureInfoToFile() . 219
VLSgetHostName() . 220
VLSgetLeaderServerName() . 221
VLSgetHostAddress() . 223
VLSgetLicSharingServerList() . 224

Chapter 6 - License Queuing API . .227
License Queuing Example Code. . 227
License Queuing Functions . 231

VLSqueuedRequest() and VLSqueuedRequestExt() 232
VLSgetQueuedClientInfo() . 237

xii Contents

VLSremoveQueuedClient() . 238
VLSremoveQueue() . 240
VLSgetHandleStatus() . 241
VLSupdateQueuedClient() . 242
VLSgetQueuedLicense() . 245
VLSinitQueuePreference() . 247

Chapter 7 - Commuter License API . 249
Commuter License Related Functions . 249

VLSgetCommuterInfo() . 249
VLSgetAndInstallCommuterCode() . 250
VLSuninstallAndReturnCommuterCode() . 252

Chapter 8 - Usage Log Functions . 253
VLSchangeUsageLogFileName() . 253
VLSgetUsageLogFileName() . 254

Chapter 9 - Utility Functions . 255
VLSscheduleEvent() . 255
VLSdisableEvents() . 256
VLSeventSleep() . 256

Appendix A - Sample Applications . 259
Sample Program Summary . 259
Customization Samples . 260

Appendix B - Customization Features. 261
Initializing the Server . 263

VLSserverVendorInitialize() . 263
VLSeventAddHook() . 263

Protecting Against Time Clock Changes . 266
VLSconfigureTimeTamper() . 267
VLSisClockSetBack() . 268

Encrypting License Codes . 269
VLSencryptLicense() . 269
VLSdecryptLicense() . 271

Encrypting Messages . 272
VLSencryptMsg() . 273

 SentinelLM Programmer’s Reference Manual xiii

VLSdecryptMsg() . 274
Changing the Default Port Number . 276

VLSchangePortNumber() . 276
Customizing the Host ID. . 277

Creating the Custom Host ID Function . 278
Registering the Custom Host ID Function on the Server 279
Registering the Custom Host ID Function on the Client. 279
Building the Server . 280
Creating an Updated Client ID Generator . 280
Using a Customized Host ID . 280

Appendix C - Error and Result Codes for Client Functions283
Client Function Return Codes . 283

Appendix D - Error and Result Codes for License Generation Functions . .291
License Generation Function Return Codes . 291

Appendix E - Error Codes for Redundancy, Queuing and Commuter Functions
295

Return Codes. . 295

Appendix F - Error and Result Codes for SentinelLM-Shell299
SentinelLM-Shell Return Codes . 299

Appendix G - File Formats . .301
License Code File Format . 301
Configuration File Format . 302
Log File Format . 306

Index .309

xiv Contents

 SentinelLM Programmer’s Reference Manual xv

0Preface

Thank you for choosing the SentinelLMTM licensing product to license your
software. Read on for information on using the SentinelLM Application Library
to add protection to your applications.

 The SentinelLM Manuals

The SentinelLM product includes several manuals, all designed to work in
conjunction with each other:

Manual What’s in it? Who should read it?

SentinelLM
Quick Start
Guide for
Windows

A quick tour of SentinelLM for
Windows application
developers.

Anyone who is new to SentinelLM or
license management and wants a
quick overview of SentinelLM
features.

SentinelLM
Developer’s
Guide

All the steps necessary to
protect, package, and ship a
stand-alone or network
application protected with
SentinelLM-Shell or the
SentinelLM Application
Library.

Developers using SentinelLM-Shell or
the API option who are responsible
for the overall process of protecting
and shipping an application for a
stand-alone or network computer.

SentinelLM
Programmer’s
Reference
Manual

Description of the SentinelLM
Application Library.

Developers who are using the
SentinelLM Application Library to
protect their applications. This
manual assumes you are familiar with
the C programming language,
although other language interfaces
are available.

About This Guide

xvi Preface

 About This Guide

This guide gives all the steps for planning for protecting your application, as
well as for protecting, packaging, and shipping your protected application to
your customers.

SentinelLM
System
Administrator’s
Guide

Information for the end user of
your protected application,
including use of administrator
commands and configuring
and using a license server.

End users of your protected
application who are responsible for
administering the application and end
user license management and who
are familiar with system
administration tasks.

Chapter/Appendix Description

Chapter 1 - Introduction Shows how SentinelLM is put together.

Chapter 2 - Protecting Your
Application with the
Application Library

Provides instructions and information on client library
functions and compiling applications.

Chapter 3 - SentinelLM

Client API

Provides a complete reference of all client functions.

Chapter 4 - License Code
Generation API

Explains how to generate license codes.

Chapter 5 - Redundancy

API

Summarizes the redundancy functions.

Chapter 6 - License
Queuing API

Explains the license queuing functions.

Chapter 7 - Commuter
License API Codes

Summarizes the commuter license related functions.

Chapter 8 - Usage Log
Functions

Explains the usage log functions.

Chapter 9 - Utility

Functions

Summarizes functions for the UNIX platform.

Manual What’s in it? Who should read it?

About This Guide

 SentinelLM Programmer’s Reference Manual xvii

Typographic Conventions

The following typographic conventions are used throughout this guide:

Appendix A - Sample
Applications

Lists source code for the sample programs and utilities.

Appendix B - Customization
Features

Lists the features that can be customized.

Appendix C - Error and
Result Codes for Client
Functions

Lists client function return codes.

Appendix D - Error and
Result Codes for License
Generation Functions

Lists license generation function return codes.

Appendix E - Error Codes for
Redundancy, Queuing and
Commuter Functions

Lists return codes for redundancy, queuing and commuter
functions.

Appendix F - Error and Result
Codes for SentinelLM-Shell

Lists SentinelLM-Shell return codes.

Appendix G - File Formats Summarizes all the environment variables.

Convention Purpose

italic Used to signal a new term, for placeholders, variables, and
file names, or for emphasis.

bold Used for command-line options, utility, dialog box, and
checkbox names.

bold-italic Used for characters you type, such as logon.

courier This font denotes syntax, prompts, and code examples.

Chapter/Appendix Description

Getting Help

xviii Preface

Syntax Conventions

The following syntax conventions are used throughout this guide:

 Getting Help

For an introduction to the SentinelLM product, please see the Windows online
tutorial, discussed in the SentinelLM Developer’s Guide. In addition to providing
basic information on SentinelLM, the tutorial also runs demonstration programs
that illustrate licensing techniques.

The SentinelLM Quick Start Guide for Windows also gives the Windows
developer’s hands-on experience using SentinelLM.

Another way of getting familiar with SentinelLM is to use the Windows
SentinelLM-Shell, discussed in the SentinelLM Developer’s Guide.

Online Documentation

For Windows computers, refer to the Adobe Acrobat versions of the SentinelLM
manuals in the \Manuals directory in the SentinelLM directory. See the
SentinelLM Developer’s Guide for instructions on installing the Acrobat Reader
on Windows computers.

For UNIX computers, refer to the manual pages in the SentinelLM/man
directory. You may move these to the computer’s current manual-page directory

Convention Purpose

[] Square brackets enclose optional syntax.

... Ellipses indicate that a clause can be repeated.

| A pipe indicates that only one of the syntax choices it
separates may be used.

{ } Curly braces indicate that one of the options they enclose
must be used in actual syntax.

Contacting Rainbow Technical Support

 SentinelLM Programmer’s Reference Manual xix

(typically /usr/man/man3 or usr/local/man/man3) or modify the MANPATH
environment variable to include the SentinelLM/man directory. Adobe Acrobat
versions of the SentinelLM manuals are also included in the SentinelLM/man
directory. See the SentinelLM Developer’s Guide for instructions on installing
the Acrobat Reader on UNIX computers.

For Additional Help

If you have questions concerning the SentinelLM product, contact Rainbow
Technologies Technical Support. (See the next section for details.)

 Contacting Rainbow Technical Support

Rainbow Technologies is committed to supporting SentinelLM. If you encounter
a problem we want to hear about it.

To contact us, please use one of the methods listed in the following table:

Corporate Headquarters North America & South America
Rainbow Technologies North America

Internet http://www.rainbow.com

E-mail techsupport@irvine.rainbow.com

Telephone 800 959-9954 (8:00 a.m.- 5:00 p.m. PST)

Fax (949) 450-7450

Australia
Rainbow Technologies (Australia) Pty Ltd.

E-mail techsupport@au.rainbow.com

Telephone (61) 3 9820 8900

Fax (61) 3 9820 8711

Contacting Rainbow Technical Support

xx Preface

China
Rainbow Information Technologies (China) Co.

E-mail techsupport@cn.rainbow.com

Telephone (86) 108 209 0680

Fax (86) 108 209 0681

France
Rainbow Technologies

E-mail techsupport@fr.rainbow.com

Telephone (33) 1 41.43.29.02

Fax (33) 1 46.24.76.91

Germany
Rainbow Technologies, GMBH

E-mail techsupport@de.rainbow.com

Telephone (49) 89 32 17 98 0

Fax (49) 89 32 17 98 50

Taiwan
Rainbow Technologies (Taiwan) Co.

E-mail techsupport@tw.rainbow.com

Telephone (886) 2 27155522

Fax (886) 2 27138220

United Kingdom & Eire
Rainbow Technologies, Ltd.

E-mail techsupport@uk.rainbow.com

Telephone (44) 1932 579200

Fax (44) 1932 570743

Contacting Rainbow Technical Support

 SentinelLM Programmer’s Reference Manual xxi

How to Report Problems

If you are having problems with the SentinelLM software, please go the
following Web site: www.rainbow.com/tech/support.html.

Contacting Rainbow Technical Support

 SentinelLM Programmer’s Reference Manual xxii

 SentinelLM Programmer’s Reference Manual 1

1Chapter 1 - Introduction

SentinelLM is a license toolkit used by developers to add network and/or stand-
alone licensing to their applications. The main components of the license
management system are a protected application, a license file containing one or
more license codes that authorize the use of the program, and a license server to
receive and act on authorization requests. Access to the license server is made
possible by an Application Program Interface (API). API functions are
implemented in the SentinelLM Client Library which is linked with the
application. For stand-alone applications, the license server is replaced with code
that perform equivalent functions but without network access. In either case, an
application program uses the same API set. Thus, the same version of an
application can be delivered to end users that will run in either network or stand-
alone mode.

 Using the SentinelLM Application Library

The SentinelLM Client Library is used to integrate SentinelLM into your client
application. There are different integration styles that offer varying degrees of
functionality.

• The Quick-API is for use in applications that require only one license for
each instance of the program. It is the simplest of the three API sets, and
only requires the addition of two function calls. The first initializes
contact with the license server and automatically updates the license
code. This call is made during program initialization. The other is made
at the end of the program to disable licensing and return the license code.

• The Standard-API offers a full spectrum of licensing models including
the licensing of multiple features in a single application. It requires

Using the SentinelLM Application Library

2 Chapter 1 - Introduction

adding only four function calls. The program begins by initializing the
client library and requesting an authorization code. At the end of the
program, calls are made to release the license code and clean up the
client library. This method provides greater control and flexibility to the
developer.

• The Advanced-API provides all the capabilities of the Standard-API
plus additional server-side customization features. The Microsoft LSAPI
defines a family of functions together with their parameters and return
codes for use with applications running with a license server. A subset of
LSAPI is included in the Advanced-API set, and is compliant with that
standard. The additional functions that augment the Standard-API to
form the Advanced-API can be grouped into one of several categories as
follows:

• Client Configuration functions, which allow an application to retrieve
or change default values for such settings as port number, server
name, broadcast interval, timeout interval, etc.

• Client Query functions, which obtain a snapshot of the current status
of the license server and the features it licenses.

• Feature Query functions, which retrieve feature licensing information
from the license manager such as name and version.

• Client Utility functions, which provide client library capabilities such
as retrieving the host names running SentinelLM, the names of the
computers running the license server, and other facilities useful to
certain specialized applications

• Error handling functions, which make possible turning error handling
on and off, registering custom error handlers, and printing error
messages.

Licensing on Stand-alone and Networked Computers

SentinelLM Programmer’s Reference Manual 3

 Licensing on Stand-alone and Networked Computers

Typically, your customer installs your application on one or more computers or
on a file server that is connected to the network. They designate one computer on
which the license server will run (the computer need not be the file or application
server). To obtain a license authorization, the client applications communicate
with the license server over the network as soon as they start up. Only when a
valid license code is issued does the application actually run. Applications do not
have to be network-aware. SentinelLM handles all network communication with
the license server.

Stand-alone licensing is usually used with non-networked PCs running
Windows. You can ship a single copy of your software to all your customers
even if some of them have networking and some do not. By simply providing a
different type of license code, you activate your software to run in stand-alone
mode or in network mode.

 Client API Example

This section describes and gives an example of how to integrate the SentinelLM
client library functions into your application software. The example is
independent of the platform on which it is run; i.e., it will execute either under
Windows or UNIX. The purpose of the example is to illustrate the
straightforward manner in which an application can be protected using
SentinelLM.

The first call is VLSinitialize() and is made during program initialization. It has
no parameters and will return a status of LS_SUCCESS upon successful
completion. Once that has been done, you may proceed with your application.

The next function to call is LSRequest() which takes several parameters. These
include the PublisherName which identifies your company, FeatureName which
identifies your product, and Version which specifies the version number of that
product. This information is contained in the license code, and must match
before authorization to run the program can be given.

Client API Example

4 Chapter 1 - Introduction

If you intend to license your application without separate feature sets, only one
call to LSRequest() is needed. However, if you are planning to charge for
different features, each feature will require a separate license, and one
LSRequest() call will be required for each feature. The features will need
different names for identification, and a separate version number may be
associated with each one.

Note The license will be updated automatically for you at 80% of the lifetime of
the license. A call to LSUpdate() is not necessary.

Once the application knows that the user has finished using a particular feature,
it calls LSRelease() to return the license authorization to the license pool so
other programs can use it. Finally, after all licenses have been released and the
program is ready to terminate, a call is made to VLScleanup() to inform the
library that any resources that it has allocated may be released.

Example
{
 LS_HANDLE handle;

 /***** First Call, Initialize the client library *****/
 if (VLSinitialize())
 {
 printf("Unable to initialize license server library.\n");
 VLScleanup();
 };

 /***** Second Call: Request a license *****/
 if (LS_SUCCESS != LSRequest (LS_ANY, PUBLISHER_NAME,
 FEATURE_NAME, VERSION, NULL, NULL,
 NULL, &handle))

 {
 printf("Unable to obtain a license.\n");
 VLScleanup();
 };

 printf("Successfully Obtained a license.\n");

 /***** Third Call: Return the license *****/
 (void) LSRelease(handle, LS_DEFAULT_UNITS, NULL);

 /***** Last Call: Clean Up *****/

Language Interfaces Supported

SentinelLM Programmer’s Reference Manual 5

 VLScleanup();
}

 Language Interfaces Supported

Different language interfaces are supported by SentinelLM to allow you to
incorporate SentinelLM Application Library calls in applications coded in
different programming languages. Among the language interfaces supported are
Microsoft Visual C/C++, Microsoft Visual Basic, PowerBuilder, Borland C, and
Delphi. Check the \Intrface directory in the SentinelLM directory, for the latest
language interfaces.

Other interfaces are available, and will continue to become available over time.
Contact your Rainbow representative for information on new interfaces and
specific versions supported. If your application does not use one of the supported
interfaces, see the SentinelLM Developer’s Guide for information on using the
SentinelLM-Shell, which encloses your application in a protective shell without
modifying your application.

 Special Use of Win32 for Generating Tools

Persons using the license generating capability of Sentinel LM are advised that
the program to generate licenses is protected by one of Rainbow's hardware
keys. Therefore, the program must be run under Windows, even when generating
licenses to be used under UNIX. More generally, all users of the SentinelLM
system are encouraged to install the Windows version of SentinelLM first in
order to familiarize themselves with all of its features. This is recommended
even if its eventual intended use is for UNIX environments.

Debugging Your Client Application

6 Chapter 1 - Introduction

 Debugging Your Client Application

The SentinelLM Client Library has been written to intercept and log four
different levels of events. The values for the different events in increasing order
are:

VLS_TRACE_KEYS
VLS_TRACE_FUNCTIONS
VLS_TRACE_ERRORS
VLS_TRACE_ALL

Any value implicitly includes logging not only its own event class, but the event
classes associated with all lower values as well. A fifth value,
VLS_NO_TRACE, is the default, and turns off all logging activity.

A developer can activate one of these levels by inserting a call to
VLSsetTraceLevel() somewhere in the client code (see function description on
See “Tracing SentinelLM Operation” on page 118.). The trace level will not be
set until the function is called, making it possible to limit logging to certain
portions of the client code only. A developer may choose to place more than one
such call in the client code, and use different trace levels with each call in order
to generate different logging profiles based upon what code is being executed.

To activate the logging feature, the SentinelLM server must be started using two
switches as shown in the following example for Windows 95/98:

lserv9x stet -f my_trace.log

If the name of the log file is not fully qualified, the file will be created in the
directory in which the client code is executing. The log file will be overwritten
each time the client code is restarted.

 Disabling Licensing

The macro NO_LICENSE in the lserv.h file can be set to completely disable
licensing for debugging. This replaces all SentinelLM function calls with void

Disabling Licensing

SentinelLM Programmer’s Reference Manual 7

statements. Don’t forget to re-enable licensing before preparing your application
for shipment.

Disabling Licensing

8 Chapter 1 - Introduction

 SentinelLM Programmer’s Reference Manual 9

2Chapter 2 - Protecting Your
Application with the Application

Library

This chapter contains instructions and detailed information on:

• Client library functions

• Compiling your application

Using the SentinelLM Application Library to embed protection calls in your
application source code provides the maximum amount of control, and allows
you the most flexibility in using licensing models. This chapter contains
information on using the SentinelLM Application Library to protect your
application. For a full discussion of the SentinelLM Application Library calls,
refer to other chapters in this book.

 Adding APIs to Your Source Code

Once you determine which licensing model you are going to support, you can
start to implement the code. In most cases, API calls remain the same for
different licensing options. Licensing options are encoded in the license code so
your program can adapt to future changes. Let’s first take a look at how to
quickly implement a sample program.

The first call you want to make in your application during its initialization is
VLSinitialize().

Adding APIs to Your Source Code

10 Chapter 2 - Protecting Your Application with the Application Library

It has no parameters and will return a LS_SUCCESS status upon success. You
should proceed with your application after this call.

The next function you want to call is LSRequest().

This API takes several parameters. PublisherName identifies your company.
FeatureName identifies your product and version identifies the version number
for that product. This information must match what you give the license code
generator when you generate a license code for a user.

Application Identification

Each successful request returns a handle which identifies the dialog set up
between the licensed application and the license server. This handle should be
used in all dialog or connection library calls.

This architecture enables a licensed application to set up multiple connections
with the license server and request multiple licenses. The license server treats
each request independently.

If you are going to license your application without separate feature sets, you
will only need to call LSRequest() once. However, if you are planning to
license and charge based on features, you will need to call LSRequest() once
for each feature. These features will need to have a different name for
identification. Each feature can have a version associated with it.

If you choose to implement license queuing, you may want to use the
VLSqueuedRequest() call instead. Use the requestFlag parameter to control
normal and queued license requests. For details, see “Chapter 6 - License
Queuing API” on page 227.

Automatic License Server Detection

If you provide no information to SentinelLM on the location of a license server,
a SentinelLM-licensed application uses a broadcast mechanism to determine the
existence of an active SentinelLM license server on the local subnet, and
automatically establishes a dialog with the first license server with a license for
the given feature and version.

Adding APIs to Your Source Code

 SentinelLM Programmer’s Reference Manual 11

You can prevent a network broadcast and instead direct the application to
specific license servers in the following ways:

• If you set the LSFORCEHOST environment variable to a particular
license server, SentinelLM initiates contact with that license server only.
LSFORCEHOST overrides the LSHOST environment variable or the
LSHOST/lshost file.

• If no LSFORCEHOST environment variable is set, SentinelLM looks for
an LSHOST environment variable or LSHOST (or lshost) file, which
contains a list of one or more license servers. Example: LSHOST =
server1;server2;server3 where serverX can be hostname, IP or IPX
address of the license server. If SentinelLM cannot find an LSHOST
environment variable or LSHOST/lshost file, or if it cannot find the
license servers specified in that variable or file, SentinelLM uses its
broadcast mechanism to find any license server on the local subnet which
contains the desired feature/version.

When there are multiple SentinelLM license servers with different license files,
licensed applications may query the wrong license server for permission to run.
If a licensed application contacts a license server that does not have any free
licenses, the application will not receive a license and other non-redundant
license servers that have available licenses for the feature/version will not
automatically be contacted. The SentinelLM client library will return an error,
and/or the application will terminate.

This situation can be avoided by using the SentinelLM client library call,
VLSdiscover(), to locate all of the SentinelLM license servers on the local
subnet, and query each of them individually for a license. You will need to call
VLSsetContactServer() to initiate contact with each license server. Another
option is to use the LSHOST environment variable or the LSHOST/lshost file.
Using VLSdiscover() may be preferable in that it protects end users from
having to set environment variables or be concerned with additional files.

Although SentinelLM uses the broadcast mechanism, network impact is
minimal. It is used only on the first LSRequest() call and only on the local
subnet. It is optimized to use minimal bandwidth.

Adding APIs to Your Source Code

12 Chapter 2 - Protecting Your Application with the Application Library

If you are using the combined stand-alone and networked mode library (dual
mode), The LSRequest() API will first try to look for a stand-alone license. If a
stand-alone license does not exist on the client machine, it will perform a
broadcast on the network for a license server. Your application should check the
return code and continue to execute if LSRequest() returns LS_SUCCESS.
Once LSRequest() is called, the client library will automatically renew the
license acquired before it expires. This frees the application from worrying about
renewing the license on a rigid time schedule. However, it is recommend that
you call LSUpdate() periodically to make sure that the license renewal is
successful and the license server is still up and running. LSUpdate() is not
required for stand-alone licensing but there are no side effects from including it
so your application works in both stand-alone and networked mode.

Note If you choose to call LSUpdate() to manually renew the license, you must
call LSUpdate() within the lifetime of the license. Be absolutely certain to
call VLSdisableLocalRenewal() after VLSinitialize(), but before
LSRequest().

The licensing is done once these functions are called and your application can
proceed with its normal functionality.

After your application decides that a particular feature is no longer required by
the user, it can call LSRelease() to release the license back to the license pool so
other programs can use it.

When your application quits, you should cal VLSCleanup() to let the client
library take care of releasing any resources it allocates.

Special Licensing Cases

There might be cases where you want to take advantage of built-in support for
special licensing options. For example, a shared license allows more than one
application/component to share the same license. This is useful for logically
grouping similar features which you do not intend to charge the user for
separately. For more details, refer to VLSsetSharedId() and
VLSsetSharedIdValue() in “Chapter 3 - SentinelLM Client API” on page 23.

Linking with the Correct Library

 SentinelLM Programmer’s Reference Manual 13

Another example of special licensing is the held license. If your program is
short-lived, you can use VLSsetHoldTime() to set the checkout time for a
license. This allows users to reclaim a license when running a short-lived,
frequently used application, such as compilers.

You may want to manually update the license yourself. To do so, you need to
call:

• VLSInitialize()

• VLSdisableLocalRenewal()

• LSRequest()

• LSUpdate() (You will need to create your own timer to insure the
update occurs prior to the license lifetime expiring.)

• LSRelease()

• VLSCleanup()

 Linking with the Correct Library

Both dynamic linked libraries and static linked libraries are available for 32-bit
Windows applications. We recommend using the combined stand-alone and
network (dual mode) library if possible. This allows your application to request a
license either on a stand-alone computer or from a remote license server.

Windows Static Linked Libraries

In addition to using the correct static libraries, you must also link the following
libraries (which are included in your Windows development environment) into
your application: wsock32.lib, rptcrt4.lib, netapi32.lib, shell32.lib, ole32.lib,
oleaut32.lib, uuid.lib, odbc32.lib, odbccp32.lib, wsock32.lib, rpcrt4.lib, and
netapi32.lib. Please see the samples32.mak make file in the SentinelLM
\demo\MsvcDev\Samples directory for details on how to link your application
with the SentinelLM client library.

Linking with the Correct Library

14 Chapter 2 - Protecting Your Application with the Application Library

Note The libraries in the following tables are only available if you have
purchased the appropriate options (i.e., Developer option).

In the static libraries folder, you will find the following files:

Table 2-1: Windows Static Libraries

Library Description

lsapiw32.lib Dual network and stand-alone client library for Windows applications.
This library allows you either to access the stand-alone license locally or
acquire a license from a remote license server over the network.

lssrv32.lib This library is the same as lsapiw32.lib.

lsclws32.lib The network client library for Windows applications. This library allows
your application to acquire licenses via network only.

lsnnet32.lib The stand-alone client library for Windows applications. This library
allows you to acquire stand-alone licenses on a local computer only.

Linking with the Correct Library

 SentinelLM Programmer’s Reference Manual 15

Windows Dynamic Linked Libraries and Import Libraries

UNIX Libraries

You can choose one of three libraries to link with:

• libls.a—The network licensing client library, not relevant for stand-alone
licensing.

• libnonet.a—Library for stand-alone mode licensing. Does not have any
network awareness at all. Does not require a license server in order to
run.

• liblssrv.a—Integrates the functionality of libls.a and libnonet.a. At run-
time, it switches to either libls.a behavior or libnonet.a behavior,
depending upon the environment variable, LSHOST. If LSHOST is set to
NO-NET or no-net, the linked application will go into stand-alone mode,
otherwise it will stay in network mode.

Table 2-2: Windows Dynamic Libraries and Import Libraries

Library Description

lsapiw32.dll Dual network and stand-alone client library for 32-bit Windows
applications. This library allows you either to access the stand-alone
license locally or acquire a license from a remote license server over the
network.

lsapiw32.lib This library is the import library for lsapiw32.dll, (Microsoft format).

lssrv32.dll This library is the same as lsapiw32.dll.

lsclws32.dll The network client library for 32-bit Windows applications. This library
allows your application to acquire licenses via network only. If you copy
this library to lsapiw32.dll, you may use the lsapiw32.lib import library
supplied with the installation.

lsnnet32.dll The stand-alone client library for 32-bit Windows applications. This library
allows you to acquire stand-alone licenses on a local computer only. If
you copy this library to lsapiw32.dll, you may use the lsapiw32.lib import
library supplied with the installation.

Notes on Security

16 Chapter 2 - Protecting Your Application with the Application Library

libls.a and libnonet.a will result in smaller executables but are more limited and
less flexible in functionality and behavior than liblssrv.a.

To specify the library best for you, edit the Makefile in the examples directory of
the SentinelLM shipment. Change the value of the macro, LICENSE_LIBS. By
default, it specifies the library libls.a to link with, via -lls. Change it to -lnonet or
-llssrv.

Now you are ready to compile and link a licensed application. Try relinking the
sample applications and examples in the examples directory.

 Notes on Security

SentinelLM uses proprietary, advanced anti-hacking techniques to safeguard
against malicious attempts to alter its intended mode of use.

SentinelLM uses proprietary encryption and decryption algorithms for all
network communication to guard against wire tapping. All messages are time-
stamped to thwart attempts at replaying encrypted messages in response to
authorization requests. Critical licensing information required by the license
server is encrypted to the network licenses by a separate set of encryption
algorithms.

You can add an additional layer of security with your own encryption and
decryption algorithms to the network licenses.

In addition to customizing encryption algorithms you can use the challenge-
response mechanism to authenticate client-server communications. See “Chapter
3 - SentinelLM Client API” on page 45 and SentinelLM Developer’s Guide
(“License Code Generator chapter”) for details.

Finally, developers can strengthen their legal position if their license agreement
includes the following statement:

“Removal, emulation, or reverse engineering of all or any part of
this product or its protection constitutes an unauthorized
modification to the product and is specifically prohibited. Nothing
in this license statement permits you to derive the source or

Using a Custom Locking Code

 SentinelLM Programmer’s Reference Manual 17

assembly code of files provided to you in executable or object
formats.”

Such language closes major loopholes in the copyright laws of many nations.

Protecting Against Time Tampering

Software-based license protection schemes may break down if the end user
changes the system time. The SentinelLM license server is configured to detect
tampering of the system clock.

The SentinelLM license server will verify at start up and periodically thereafter,
whether the system clock has been altered. If it detects evidence of such
tampering, it discards licenses with an expiration date. You also have the option
of implementing your own functionality to detect system clock changes. Please
see “Appendix B - Customization Features” on page 261.

 Using a Custom Locking Code

A custom locking code requires the following components:

1. A rebuilt license server that uses the custom ID function. For example,
lserv9x or lservnt.

2. A rebuilt echoid.exe that uses the same custom ID function as the license
server.

3. A modified client application.

Step 1 - Rebuilding License Server

Compiler Required

A Microsoft Visual C++ 6.0 compiler is required.

Using a Custom Locking Code

18 Chapter 2 - Protecting Your Application with the Application Library

Note It is possible to use other compilers, but instructions below are for
Microsoft Visual C++ compiler. Please contact Rainbow if you are using
another compiler and require assistance.

Files Required

The following files are required in rebuilding the license server:

Note lserv95.res, lserv9x.lib, lserv9x.dsp, and lserv9x.dsw files can be slightly
different for NT version.

Required Changes to Server Source Code

A SentinelLM license server with custom locking code will differ from a default
license server because the VLSserverVendorInitialize() function is
“overloaded” so that it will call the function VLSsetHostIdFunc(). The
VLSserverVendorInitialize() function is called during server startup for both

Table 2-3: Files required to rebuild the license server

File Name Description

ServerInit.cpp C++ source file containing re-definition of
VLSserverVendorInitialize() function.

CustomHostID.cpp C++ source file containing custom locking code definition.

CustomHostID.h C++ include file containing custom locking code prototype.

lsmainwa.c C source file containing entry point to license server
application.

lserv.h SentinelLM include file installed during SentinelLM
installation.

lserv95.res Resource file for license server application.

lserv9x.lib SentinelLM static library installed during SentinelLM
installation.

lserv9x.dsp Microsoft Visual C++ 6.0 project file.

lserv9x.dsw Microsoft Visual C++ 6.0 workspace file.

Using a Custom Locking Code

 SentinelLM Programmer’s Reference Manual 19

default license servers and custom license servers, but the default version does
not call VLSsetHostIdFunc() function.

The VLSsetHostIdFunc() function accepts as a parameter the name of the
function which will return the custom locking code. This locking code must be
calculated in a consistent long value; not a random value. You are free to
implement any algorithm in order to produce the locking code, as long as the
algorithm generates a reproducible value.

The VLSserverVendorInitialize() function is automatically called during
server startup. However, for servers that initialize custom locking code,
VLSserverVendorInitialize() function is overloaded (redefined) to call
VLSsetHostIdFunc(functionName). functionName is the name of the custom
locking code function and GetCustomLockCode is the name of the custom
locking code function, both described above. GetCustomLockCode is provided
only as an example name.

Steps to Rebuilding the License Server

1. Obtain a zip file from Rainbow Technologies that contain all the
necessary files. Please see “Files Required” on page 18. Unzip the zip
file into a directory of your choice.

2. Open the workspace file corresponding to the customized license server
project. For example, if you have a 9x license server, then you will need
to open the lserv9x.dsw project file.

3. Modify the source code. See “Required Changes to Server Source Code”
on page 18.

4. Choose Rebuild All from the Build menu.

Step 2 - Rebuilding echoid.exe

In order to add a license locked to a custom criteria, a rebuilt echoid.exe is also
required. The rebuilt echoid.exe will be used to produce a fingerprint relative to
the custom locking code function. This fingerprint can then be used to generate
locked licenses that utilize the custom locking criteria.

Using a Custom Locking Code

20 Chapter 2 - Protecting Your Application with the Application Library

Compiler Required

A Microsoft Visual C++ 6.0 compiler is required.

Note It is possible to use other compilers, but instructions below are for
Microsoft Visual C++ compiler. Please contact Rainbow if you are using
another compiler and require assistance.

Files Required for echoid.exe

The following files are required in rebuilding echoid.exe:

Required Changes to echoid.exe

Rebuilding echoid.exe only requires a slight modification to the source code.
Before calling VLSgetMachineID(), call VLSsetHostIdFunc(functionName),
where functionName is the name of the custom locking code function.

Table 2-4: Files required to rebuild echoid.exe

File Name Description

CustomHostID.c C source file containing custom locking code definition.

CustomHostID.h C include file containing custom locking code prototype.

echoid.c C source file containing logic for generating fingerprints.
Notice, this file will be modified to call the custom locking
code function.

lscgen.h SentinelLM include file installed during SentinelLM
installation.

lserv.h SentinelLM include file installed during SentinelLM
installation.

lsapiw32.lib Import library for Win32 run-time DLL that is installed during
SentinelLM installation.

echoid.dsp Microsoft Visual C++ 6.0 project file

echoid.dsw Microsoft Visual C++ 6.0 workspace file

Using a Custom Locking Code

 SentinelLM Programmer’s Reference Manual 21

Again, using GetCustomLockCode as the name of the custom lock code
function, the sequence of function calls will be as follows:

• rest of echoid source

• VLSsetHostIdFunc(GetCustomLockCode)

• VLSgetMachineID()

• rest of echoid source

Steps to Rebuilding echoid.exe

1. Obtain a zip file from Rainbow Technologies that contain all the
necessary files. Please see “Files Required for echoid.exe” on page 20.
Unzip the zip file into a directory of your choice.

2. Open the workspace file corresponding to the customized license server
project.

3. Modify the source code. See “Required Changes to Server Source Code”
on page 18.

4. Choose Rebuild All from the Build menu.

Step 3 - Modifying Client Application

The client application should also make a call to VLSsetHoldIdFunc(). This
function call needs to be performed before a license request is issued. In doing
this, a developer guarantees that both the client-locked licenses and server-
locked licenses will be handled. Also, the client application will not be adversely
affected by this function call if the default license server, rather than the custom
license server, is used. Please see “Required Changes to Server Source Code” on
page 18.

Using a Custom Locking Code

22 Chapter 2 - Protecting Your Application with the Application Library

Overall Process of Using a Rebuilt License Server and Rebuilt
echoid.exe

1. Decide on an algorithm for generating custom locking code. Notice, this
locking code needs to be a reproducible long value.

2. Rebuild license server. See “Step 1 - Rebuilding License Server” on
page 17.

3. Rebuild echoid.exe. See “Step 2 - Rebuilding echoid.exe” on page 19.

4. Edit echoid.dat so that the custom locking criteria is a criteria mask. This
step may not be needed if custom locking criteria mask is the default
mask in the rebuilt echoid.exe.

5. Execute the rebuilt echoid.exe.

6. Generate server-locked licenses with the fingerprint obtained from the
rebuilt echoid.exe as the primary criteria.

7. Add licenses to the rebuilt license server via lslic or via the license server
configuration file lservrc.

8. Modify the client application and rebuild it. See “Step 3 - Modifying
Client Application” on page 21.

9. Execute the client application.

 SentinelLM Programmer’s Reference Manual 23

10Chapter 3 - SentinelLM Client
API

 Introduction

Using the SentinelLM client API, the following integration styles of varying
complexity are supported:

• The simplest style requires adding only two function calls to the
application program. During program initialization, a call is made to
VLSlicense() to initialize contact with the license server and
automatically update the license code. Then, during program termination,
a call is made to VLSdisableLicense() to disable licensing and return
the license code. Any additional communication required with the license
server is automatically handled by the client library.

• A style providing greater flexibility requires the use of four different
calls within the application program. During program initialization, calls
are made to VLSinitialize() to initialize the client library and then to
LSRequest() to request an authorization license code. VLSinitialize()
or VLSqueuedRequest() should be called only once. During program
termination, calls are made to LSRelease() to release the authorization
license code and then to VLScleanup() to clean up the client library.
VLScleanup() should be called only once.

• The full featured function interface is recommended when using
advanced licensing features. This interface is compliant with the industry
LSAPI standard. This style uses the API calls described in the
intermediate style above, but is augmented by calls to other library
functions.

24 Chapter 3 - SentinelLM Client API

This chapter describes all the function calls available in the SentinelLM
Application Program Interface (API), which includes the industry standard,
LSAPI. All function calls, return codes, and data types that begin with the LS
prefix are part of the LSAPI standard. The APIs that begin with the VLS prefix
are the SentinelLM extensions that make licensing easier and more powerful.

All function calls return the status code, LS_SUCCESS, if successful or a
specific error code indicating the reason for failure otherwise. For more
information about applicable error codes, see “Error Handling” on page 113.

On Win32 and UNIX computers, there are three sets of client libraries:

• Stand-alone: For stand-alone operation without requiring a network
license server. The functions not supported in the stand-alone client
library are actually present but do not perform any meaningful action.
You do not need to make any source code changes when moving from a
SentinelLM network client library to a stand-alone client library.

• Network: For any operation requiring a network license server.

• Integrated: For both stand-alone and networked operations. We
recommend you link with this library if you would like to support both
stand-alone and network license management. Even if you are not sure if
you need to support both, you may still consider using this library for
future expansion. Applications linked with this client library can obtain
stand-alone licenses from a local file or network licenses from a network
license server. There are special control flags enabling developers to
customize the behavior of choosing between stand-alone and network
libraries.

Multiple license codes can be requested within an application for a feature and
feature version. Each license code must be released and updated separately as
the license server treats these license codes as separate clients. A handle that
uniquely identifies the license code will be returned for each LSRequest() call
using the argument, lshandle. This handle is also used in other SentinelLM
function calls.

All of the SentinelLM client libraries are thread safe. However, license handles
may not be shared or passed from one thread to another. We recommend

 SentinelLM Programmer’s Reference Manual 25

spawning a thread (or using the main application thread) and perform all
SentinelLM functions for that single thread.

Available license code generation function calls can be separated into the
following categories:

• Basic client licensing functions

• Challenge-response

• Client configuration

• Client query

• Feature query

• Client utility

• Error handling

• Tracing SentinelLM operation

• Redundancy

• Queuing

 Basic Client Licensing Functions

Quick Client Licensing Functions

The following table summarizes the quick client functions:

Table 3-5: Quick Client Licensing Functions

Function Description

VLSlicense() Performs single-call licensing.

VLSdisableLicense() Disables single-call licensing.

VLSlicense()

26 Chapter 3 - SentinelLM Client API

VLSlicense()

Initializes contact with the license server requires authorization and
automatically updates the license.

Syntax LS_STATUS_CODE VLSlicense (
unsigned char *featureName,
unsigned char *version,
LS_HANDLE *lshandle;

Note Length limitations exist on feature name and version depending on the type
of license you want to issue to your customer. See the SentinelLM
Developer’s Guide for details.

Description This function obtains an authorization license using LSRequest() and then
automatically updates the license after 80% of the license lifetime has passed,
using the LSUpdate() function. This function uses timers (SIGALRM on
UNIX) to update a license periodically. You should not update that license
yourself using LSUpdate() or any other license renewal function. When you
wish to release the license (terminate the automatic updates), you must use the
API function VLSdisableLicense() which removes the timer, and releases the

Client Server
Static

Library
DLL

a a a

Argument Description

featureName Name of the feature for which the licensing code is
requested. May consist of any printable characters.
Limited to 24 characters.

version Version of the feature for which the licensing code is
requested. May consist of any printable characters.
Limited to 11 characters.

lshandle (out) This handle must be used to release this license code by
calling VLSdisableLicense(). Space must be allocated by
the caller.

VLSlicense()

 SentinelLM Programmer’s Reference Manual 27

license. If you release the license using LSRelease() and your application
continues to run, the timer will keep trying to renew an invalid license since it
does not know that you have released the license yourself.

On UNIX, since there is only one timer available to each running application,
there will be a conflict if your application wishes to use timers and use
VLSlicense() at the same time. To accommodate multiple simultaneous uses of
a single timer, the SentinelLM API provides a generalized version of the timer
functions.

From one instance of an application, you can call VLSlicense() only once.
VLSlicense() can automatically update only a single handle. Subsequent calls to
VLSlicense() will fail.

Note This function is available on most UNIX platforms. This function may not
be available on platforms that do not support a timer event or a time signal.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

VLS_APP_UNNAMED featureName is NULL
version is NULL

VLS_CALLING_ERROR lshandle is NULL.

Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

VLS_NO_LICENSE_GIVEN Invalid handle specified. Handle is already
released and destroyed from previous
license operations.

LS_INSUFFICIENTUNITS License server does not currently have
sufficient licensing units for requested
feature to grant a license.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature.

VLS_TRIAL_LIC_EXHAUSTED Trial license has expired.

LS_LICENSE_EXPIRED License has expired.

VLSlicense()

28 Chapter 3 - SentinelLM Client API

VLS_APP_NODE_LOCKED Requested feature is node locked, but
request was issued from an unauthorized
machine.

VLS_USER_EXCLUDED User or machine excluded from accessing
requested feature.

VLS_VENDORIDMISMATCH The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has the license.

VLS_NON_REDUNDANT_SRVR License server is non-redundant and
therefore cannot support this redundancy-
related operation.

VLS_SERVER_SYNC_IN_PROGRESS License server synchronization in process.

VLS_ELM_LIC_NOT-ENABLE The license was converted using the
license conversion utility (from a 5.x
license), but the DLT process is not
running.

VLS_FEATURE_INACTIVE Feature is inactive on specified license
server.

VLS_MAJORITY_RULE_FAILURE Majority rule failure prevents token from
being issued.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_BAD_SERVER_MESSAGE Message returned by license server could
not be understood.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE The license server has not been set and is
unable to determine which license server to
use.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

LS_NONETWORK Failed to initialize Winsock wrapper. (Only
applicable if using network-only library.)
Generic error indicating network failure.

VLSdisableLicense()

 SentinelLM Programmer’s Reference Manual 29

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

VLSdisableLicense()

This function disables single-call licensing and returns the license code.

Syntax LS_STATUS_CODE VLSdisableLicense (
LS_HANDLE *lshandle);

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

VLS_INTERNAL_ERROR Failure occurred in setting timer. (Timer is
only attempted to be set if timer is available
for platform and if license requires timer for
updates.)

Client Server
Static

Library
DLL

a a a

Argument Description

lshandle The handle which had been obtained earlier by a call to
VLSlicense().

VLS_CALLING ERROR lshandle is an ambiguous handle; it is not
exclusively active or exclusively queued.

VLS_ALL_UNITS RELEASED All units have already been released.

VLS_RETURN_FAILED Generic error indicating that the license
could not be returned.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLSdisableLicense()

30 Chapter 3 - SentinelLM Client API

For a complete list of the error codes, “Appendix C - Error and Result Codes for
Client Functions” on page 283.

VLS_NO_SERVER_RESPONSE Communication with license server timed
out.

VLS_BAD_SERVER_MESSAGE Message returned by server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license opera-
tion.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

VLS_INTERNAL_ERROR An error occurred with respect to the
serialization/customization of SentinelLM
files.

VLSinitialize()

 SentinelLM Programmer’s Reference Manual 31

Standard Client Licensing Functions

The following table summarizes the standard client functions:

VLSinitialize()

Initializes the client library.

Syntax LS_STATUS_CODE VLSinitialize (void);

This function has no arguments.

Description This call must be made before any SentinelLM function can be called.

Note Applications that call the UNIX standard-C library function, fork(),
generally follow this call with an exec() function call to re-initialize all
global values. For some applications, however, this may be undesirable. In
such cases, issue the call before the first LSRequest() call and after each
fork() call. This call is not necessary for applications that do not use

fork() or exec() after forking. Calling this function unnecessarily does not have
any negative side effects.

Table 3-6: Standard Client Licensing Functions

Function Description

VLSinitialize() Initializes the client library.

LSRequest() Requests an authorization license code.

LSRelease() Releases an authorization license code.

VLScleanup() Called when finished using the client library.

LSUpdate() Called periodically to renew the license code and inform
the license server that it is alive.

Client Server
Static

Library
DLL

a a a

LSRequest()

32 Chapter 3 - SentinelLM Client API

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, “Appendix C - Error and Result Codes for
Client Functions” on page 283.

See Also VLScleanup()

LSRequest()

Requests an authorization license code from the license server.

Syntax LS_STATUS_CODE LSRequest (
unsigned char *licenseSystem,
unsigned char *publisherName,
unsigned char *featureName,
unsigned char *version,
unsigned long *unitsReqd,
unsigned char *logComment,
LS_CHALLENGE *challenge,
LS_HANDLE *lshandle;

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

LS_NONETWORK Failed to initialize Winsock wrapper. (Only
applicable if using network-only library.)

Client Server
Static

Library
DLL

a a a

Argument Description

licenseSystem Unused. Use LS_ANY as the value of this variable.
LS_ANY is specified to indicate a match against installed
license systems.

LSRequest()

 SentinelLM Programmer’s Reference Manual 33

Description This function is used by the application to request licensing resources to allow
the product to execute. If the valid license is found, the challenge-response is
computed (if applicable) and LS_SUCCESS is returned. The challenge-response

publisherName A string giving the publisher of the product. Limited to 32
characters and cannot be NULL. Company name and
trademark may be used.

featureName Name of the feature for which the licensing code is
requested. May consist of any printable characters and
cannot be NULL. Limited to 24 characters.

version Version of the feature for which the licensing code is
requested. May consist of any printable characters. Limited
to 11 characters.

unitsReqd The number of licenses required. The license server
verifies that the requested number of units exist and may
reserve those units, but no units are actually consumed at
this time. The number of units available is returned.

If the number of licenses available with the license server
is less than the requested number, the number of available
licenses will be returned using unitsReqd. If unitsReqd is
NULL, a value of 1 unit is assumed.

logComment A string to be written by the license server to the comment
field of the usage log file. Pass a NULL value for this
argument if no log comment is desired.

challenge The challenge structure. If the challenge-response
mechanism is not being used, this pointer must be NULL.
The space for this structure must be allocated by the
calling function. The response to the challenge is provided
in the same structure, provided a license was issued, i.e.,
provided the function LSRequest() returned
LS_SUCCESS. For details of the challenge-response
mechanism and how to use it effectively, see page 45.

lshandle The handle for this request is returned in lshandle. This
handle must be used to later update and release this
license code. A client can have more than one handle
active at a time. Space for lshandle must be allocated by
the caller.

Argument Description

LSRequest()

34 Chapter 3 - SentinelLM Client API

is computed if a non-NULL value is passed for the challenge argument. At
minimum, the PublisherName, ProductName, and Version strings are used to
identify matching license(s). When the application has completed execution, it
must call LSRelease() to release the license resource.
If the number of units required is greater than the number of units available, then
LSRequest() will not grant the license.
Every client should complete this call successfully before commencing
execution of the application or the feature.

If the default error handler is not used, the client application must check the code
returned by the LSRequest() call and should continue only if LS_SUCCESS is
returned. The default error handler will exit the application on error.

Note If queuing is desired, you must use VLSqueuedRequest() instead of
LSRequest().

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR lshandle is NULL.
challenge argument is non-NULL, but
cannot be understood.
Attempted to use stand-alone mode with
network-only library, or network mode with
stand-alone library.

VLS_APP_UNNAMED featureName is NULL
version is NULL.

VLS_NO_LICENSE GIVEN unitsReqd is zero
lshandle is not a valid handle.

License is only available at license server
that does not match mode settings, e.g.
network license available when stand-alone
mode, etc.

VLS_NO_SUCH_FEATURE License server does not have license that
matches requested feature.

LS_INSUFFICIENTUNITS License server does not currently have
sufficient licensing units for requested
feature to grant license.

LSRequest()

 SentinelLM Programmer’s Reference Manual 35

LS_LICENSE_EXPIRED License is expired.

VLS_TRIAL_LIC_EXHAUSTED Trial license expired or trial license usage
exhausted.

VLS_APP_NODE_LOCKED Requested feature is node locked, but
request was issued from unauthorized
machine.

VLS_USER_EXCLUDED User or machine excluded from accessing
requested feature.

VLS_VENDORIDMISMATCH The vendor identification of requesting
application does not match the vendor
identification of the feature for which the
license server has the license.

VLS_SERVER_SYNC_IN_PROGRESS License server synchronization in process.

VLS_FEATURE_INACTIVE Feature is inactive on specified license
server.

VLS_MAJORITY_RULE_FAILURE Majority rule failure prevents token from
being issued.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER-FILE No license server has been set and unable
to determine which license server to use.

VLS_BAD_SERVER_MESSAGE Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

VLS_INTERNAL_ERROR Failure occurred in setting timer. (Timer is
only attempted to be set if timer is available
for platform and if license requires timer for
updates.)

LSRelease()

36 Chapter 3 - SentinelLM Client API

For a complete list of the error codes, “Appendix C - Error and Result Codes for
Client Functions” on page 283.

See Also “Challenge-response” on page 45, VLSsetTimeoutInterval(),
VLSqueuedRequest().

LSRelease()

Requests that the license server release licenses associated with a handle.

Syntax LS_STATUS_CODE LSRelease (
LS_HANDLE lshandle,
unsigned long *units_consumed,
unsigned char LSFAR*log-comment;

Description Releases the license(s) associated with lshandle, allowing them to be
immediately used by other requesting applications. For a shared license, all
client applications must release their licenses before the license server marks the
license as available.

VLS_ELM_LIC_NOT_ENABLE The license was converted using the
license conversion utility (from a 5.x
license), but the DLT process is not
running.

Client Server
Static

Library
DLL

a a a

Argument Description

lshandle The handle returned by the corresponding LSRequest().

units_consumed Number of units released.

log_comment A string to be written by the license server to the comment
field of the usage log file. Pass a NULL value for this
argument if no log comment is desired.

VLScleanup()

 SentinelLM Programmer’s Reference Manual 37

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, “Appendix C - Error and Result Codes for
Client Functions” on page 283.

VLScleanup()

Cleans up the client library.

Syntax LS_STATUS_CODE VLScleanup (void);

This function has no arguments.

VLS_CALLING_ERROR lshandle is an ambiguous handle; it is not
exclusively active or exclusively queued.

VLS_RETURN_FAILED Generic error indicating that the license
could not be returned.

VLS_ALL_UNITS_RELEASED All units already released.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing the license
operation requests.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_BAD_SERVER_MESSAGE Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

Client Server
Static

Library
DLL

a a a

LSUpdate()

38 Chapter 3 - SentinelLM Client API

Description After all SentinelLM calls are done and before exiting, you must call this func-
tion. This function may not be called if the application is being protected using
the Quick-API. Calling VLScleanup() after calling VLSdisableLicense() can
produce unpredictable results.

Returns The status code, LS_SUCCESS, is always returned. For a complete list of the
error codes, see “Appendix C - Error and Result Codes for Client Functions” on
page 283.

See Also VLSinitialize()

LSUpdate()

Once an authorization license has been received, the client must call
LSUpdate() periodically to renew its license and inform the license server that
it is alive, if automatic renewal is disabled.

Syntax LS_STATUS_CODE LSUpdate (
LS_HANDLE lshandle,
unsigned long *unused1,
long *unused2,
unsigned char *unused3,
LS_CHALLENGE *unused4;

Client Server
Static

Library
DLL

a a a

Argument Description

lshandle This must be the handle previously returned by the
corresponding LSRequest() call.

unused1 Unused. Use LS_DEFAULT_UNITS as the value.

unused2 Unused. Use NULL as the value.

unused3 Use NULL as the value.

unused4 Use NULL as the value.

LSUpdate()

 SentinelLM Programmer’s Reference Manual 39

Description Currently the client library defaults to automatic (local) license renewal. You do
not need to call this API unless you disable local license renewals.

If local license renewals are disabled, the client must call LSUpdate() periodi-
cally to renew its license and inform the license server of its continued need for a
license. However, you should do this only in rare cases where renewals are criti-
cal or the system load is uncertain.

If you do call LSUpdate() manually to verify the client is still attached to the
license server, you must disable local renewals before calling LSUpdate().

Local Vs. Remote License Renewal

In order to reduce network traffic and communication overhead, SentinelLM
checks whether the license lifetime is close to expiration, and contacts the
license server only if it is about to expire. Otherwise, it returns the success code.
This is called local renewal. There is no appreciable overhead in renewing a
license too frequently, and non-timer based renewal schemes can use this feature
to their advantage.

That part of the lifetime of a license which results in the renewal of the license
by the license server is called the remote renewal period. Its default value is 80%
of the license lifetime. However, for best results, the use of timers to optimally
control the frequency of renewal calls is recommended.

Note Auto timers will not work in a Win32 console application.

Timer-based renewal schemes are not required to use local renewals at all. The
period of the timer can be such that LSUpdate() calls occur only during the
remote renewal period of the license.

The SentinelLM API also provides the function, VLSdisableLocalRenewal(),
which forces all future LSUpdate() requests to go to the license server.

Local renewals Remote renewals

Lifetime of a license

LSUpdate()

40 Chapter 3 - SentinelLM Client API

VLSgetRenewalStatus() provides information on whether the last successful
update was local or remote. See page 73 for these and other related function
calls.

Note that LSUpdate() is a signal-safe function, so that it can be called from
signal handlers and can be interrupted by other signal handlers without any
known ill effects. Other functions are not guaranteed to be signal-safe.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR lshandle is a queued handle. Cannot use
LSUpdate() to update a queued handle.

challenge argument is non-NULL, but cannot
be understood.

VLS_NO_LICENSE GIVEN Generic error indicating that license was not
updated.

LS_LICENSETERMINATED Cannot update the license because the license
has already expired.

VLS_NO_SUCH_FEATURE License server does not have license that
matches requested feature.

LS_NOLICENSESAVAILABLE All licenses in use.

LS_LICENSE_EXPIRED License has expired.

VLS_TRIAL_LIC_EXHAUSTED Trial license expired or trial license usage
exhausted.

VLS_FINGERPRINT_MISMATCH Client-locked; locking criteria does not match.

VLS_APP_NODE_LOCKED Feature is node locked, but the update request
was issued from an unauthorized machine.

VLS_CLK_TAMP_FOUND License server has determined that the client’s
system clock has been modified. The license
for this feature has time-tampering protection
enabled, so the license operation is denied.

VLS_VENDORIDMISMATCH The vendor identification of requesting
application does not match the vendor
identification of the feature for which the
license server has a license.

LSUpdate()

 SentinelLM Programmer’s Reference Manual 41

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

See Also VLSbatchUpdate(), VLSsetRemoteRenewalTime(),
VLSgetRenewalStatus(), VLSdisableLocalRenewal(),
VLSenableLocalRenewal(), VLSisLocalRenewalDisabled(),
VLSsetTimeoutInterval()

Advanced Client Licensing Functions

The following table summarizes the advanced client functions:

VLS_INVALID_DOMAIN The domain of the license server is different
from that of client.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS_NO_SERVER_RESPONSE Communication with license server has timed
out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_BAD_SERVER_MESSAGE Message returned by license server could not
be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

VLS_ELM_LIC_NOT_ENABLE The license was converted using the license
conversion utility (from a 5.x license), but the
DLT process is not running.

Table 3-7: Advanced Client Licensing Functions

Function Description

VLSinitialize() Initializes the client library.

VLSrequestExt() Requests an authorization license.

VLSreleaseExt() Releases an authorization license.

VLSinitialize()

42 Chapter 3 - SentinelLM Client API

VLSinitialize()

See “VLSinitialize()” on page 31.

VLSrequestExt()

Syntax LS_STATUS_CODE VLSrequestExt (
unsigned char *licenseSystem,
unsigned char *publisherName,
unsigned char *featureName,
unsigned char *version,
unsigned long *unitsReqd,
unsigned char *logComment,
LS_CHALLENGE *challenge,
LS_HANDLE *lshandle,
VLSserverInfo *serverInfo;

VLScleanup() Called when finished using the client library.

VLSbatchUpdate() Updates several license codes at once.

Client Server
Static

Library
DLL

a a a

Argument Description

licenseSystem Unused. Use LS_ANY as the value of this variable.

publisherName A string giving the publisher of the product. Limited to 32
characters. Company name and trademark may be used.

featureName Name of the feature for which the licensing code is
requested. May consist of any printable characters.
Limited to 24 characters.

Table 3-7: Advanced Client Licensing Functions (Continued)

Function Description

VLSrequestExt()

 SentinelLM Programmer’s Reference Manual 43

Description Use VLSrequestExt() when using license server hooks. Before calling
VLSrequestExt(), you must call VLSinitServerInfo().
(See “VLSinitServerInfo()” on page 65.)

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

version Version of the feature for which the licensing code is
requested. May consist of any printable characters.
Limited to 11 characters.

unitsReqd The number of licenses required. If the number of licenses
available with the license server is less than the requested
number, the number of available licenses will be returned
using unitsReqd. If unitsReqd is NULL, a value of 1 unit is
assumed.

logComment A string to be written by the license server to the comment
field of the usage log file. Pass a NULL value for this
argument if no log comment is desired.

challenge The challenge structure. If the challenge-response
mechanism is not being used, this pointer must be NULL.
The space for this structure must be allocated by the
calling function. The response to the challenge is provided
in the same structure, provided a license code was issued,
i.e., provided the function LSRequest() returned
LS_SUCCESS. For details of the challenge-response
mechanism and how to use it effectively, see page 45.

lshandle The handle for this request is returned in lshandle. This
handle must be used to later update and release this
license. A client can have more than one handle active at a
time. Space for lshandle must be allocated by the caller.

serverInfo This information is passed to the license server for use in
server hook functions. See“VLSeventAddHook()” on
page 263.

Argument Description

VLSrequestExt()

44 Chapter 3 - SentinelLM Client API

VLS_APP_UNNAMED featureName is NULL
version is NULL

VLS_CALLING_ERROR lshandle is NULL

challenge argument is non-NULL
Attempted to use stand-alone mode with
network-only library, or network mode with
stand-alone library.

VLS_NO_LICENSE GIVEN unitsReqd is zero

lshandle is not a valid handle.

VLS_NO_SUCH_FEATURE License server does not have license that
matches requested feature.

LS_NOLICENSESAVAILABLE All licenses in use.

LS_INSUFFICIENTUNITS License server does not currently have
sufficient licensing units for requested
feature to grant license.

LS_LICENSE_EXPIRED License has expired.

VLS_TRIAL_LIC_EXHAUSTED Trial license expired or trial license usage
exhausted.

VLS_USER_EXCLUDED User or machine excluded from accessing
requested feature.

VLS_CLK_TAMP_FOUND License server has determined that the
client’s system clock has been modified.
The license for this feature has time-
tampering protection enabled, so the
license operation is denied.

VLS_VENDORIDMISMATCH The vendor identification of requesting
application does not match the vendor
identification of the feature for which the
license server has the license.

VLS_SERVER_SYNC_IN_PROGRESS License server synchronization in process.

VLS_FEATURE_INACTIVE Feature is inactive on specified license
server.

VLS_MAJORITY_RULE_FAILURE Majority rule failure prevents token from
being issued.

VLSrequestExt()

 SentinelLM Programmer’s Reference Manual 45

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

See Also “Challenge-response” below, VLSeventAddHook()

 Challenge-response

The challenge-response mechanism can be used by a licensed application to
authenticate the license server.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER-FILE No license server has been set and unable
to determine which license server to use.

VLS_BAD_SERVER_MESSAGE Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

VLS_INTERNAL_ERROR Failure occurred in setting timer. (Timer is
only attempted to be set if timer is available
for platform and if license requires timer for
updates.)

VLS_ELM_LIC_NOT_ENABLE The license was converted using the
license conversion utility (from a 5.x
license), but the DLT process is not
running.

VLSrequestExt()

46 Chapter 3 - SentinelLM Client API

Syntax typedef struct {
unsigned long ulReserved;
unsigned long ulChallengedSecret;
unsigned long ulChallengeSize;
unsigned char ChallengeData[30];

} CHALLENGE;

typedef CHALLENGE LS_CHALLENGE;

typedef struct {
unsigned long ulResponseSize;
unsigned char ResponseData[16];

} CHALLENGERESPONSE:

Description In challenge-response, the license server associates a secret with a feature,
provided by the license code. The application also contains this secret. In the
license server validation process, an application will “challenge” the license

Member Description

ulReserved LSAPI requires this to be set to 0.

ulChallengedSecret The index of the secret which the client application wishes
the license server to use in computing its response to this
challenge. This value may range from 1 to the number of
secrets provided. The actual secrets are provided to the
license server through the license code produced using the
code generator and can include characters in the range
A - Z, and 1 - 9.

ulChallengeSize Number of characters in ChallengeData. This value cannot
be 0.

ChallengeData The actual string that is used in challenging the license
server. (Mentioned as data in the explanation above.) This
is a string of at most 30 characters, each of which can have
any values, including 0.

ulResponseSize Number of characters in the response to the challenge.

ResponseData The string of characters representing the actual response.

VLSrequestExt()

 SentinelLM Programmer’s Reference Manual 47

server with a data string. The license server computes a response according to
some previously arranged algorithm using the values, data and secret, which it
returns. The client application locally computes the expected response using
data and secret, and verifies that the expected response matches the response
returned by the license server.

In order for the authentication mechanism to work correctly and securely, both
the license server and the client application must use the same algorithm to
compute the response given the values of data and secret. LSAPI requires the
use of the software, “RSA Data Security, Inc. MD4 Message Digest Algorithm”
provided by RSA Data Security, Inc. to compute the response.

In practice, to save execution time and space, the client application need not
invoke the MD4 Message Digest Algorithm at run time to calculate the response.
Challenge-response pairs can instead be maintained in a pre-computed table.

SentinelLM allows for the usage of multiple secrets, with secrets indexed
starting at 1. Client applications can challenge the license server to produce a
response for a string date using the secret[i], where i is the index of the secret
(maximum is 7).

The following structures are used by the challenge parameter in challenge-
response. challenge is an in/out parameter for the LSRequest() and
VLSrequestExt() function calls and must be properly allocated and initialized
by the calling process. Refer to the sample files, crexamp.c, chalresp.c, and
md4.c for additional details on using this mechanism.

The parameter used to pass the challenge structure is also used by the library to
return the response structure. The CHALLENGE pointer must therefore be
typecast to CHALLENGERESPONSE * to obtain the correct response after the
function call.

The response to a challenge made with any function call, for example,
LSRequest() is valid only if that function call returns LS_SUCCESS. If
LS_SUCCESS is not returned, the response to the challenge is undefined. For
more information on how to associate secrets with a features, see
“VLScgAllowSecrets()” on page 162 in Chapter 4 - License Code Generation
API, “VLScgSetNumSecrets()” on page 164 in Chapter 4 - License Code

VLSreleaseExt()

48 Chapter 3 - SentinelLM Client API

Generation API, and “VLScgSetSecrets()” on page 163 in Chapter 4 - License
Code Generation API.

VLSreleaseExt()

Syntax LS_STATUS_CODE VLSreleaseExt (
LS_HANDLE lshandle,
unsigned long *unused1,
unsigned char *logComment,
VLSserverInfo *serverInfo;

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

Client Server
Static

Library
DLL

a a a

Argument Description

lshandle The handle returned by the corresponding LSRequest().

unused1 Unused. Use the value, LS_DEFAULT_UNITS.

logComment A string to be written by the license server to the comment
field of the usage log file. Pass a NULL value for this
argument if no log comment is desired.

serverInfo This information is passed to the license server for use in
server hook functions. See See “VLSeventAddHook()” on
page 263.

VLS_CALLING_ERROR lshandle is ambiguous handle; it is not
exclusively active or exclusively queued.

VLS_RETURN_FAILED Generic message indicating that the license
could not be returned.

VLS_ALL_UNITS_RELEASED All units released.

VLScleanup()

 SentinelLM Programmer’s Reference Manual 49

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

See Also VLSeventAddHook()

VLScleanup()

See “VLScleanup()” on page 37.

VLSbatchUpdate()

Updates several licenses at once. Currently the client library defaults to
automatic license renewal. You do not need to call this API unless you disable
the automatic license renewal.

Syntax LS_STATUS_CODE VLSbatchUpdate (
int *numHandles,
LS_HANDLE *lshandle,

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_BAD_SERVER_MESSAGE Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

Client Server
Static

Library
DLL

a a a

VLSbatchUpdate()

50 Chapter 3 - SentinelLM Client API

unsigned long *unused1,
long *unused2,
unsigned char *unused3,
LS_CHALLENGE *unused4,
LS_STATUS_CODE *status;

Description API function interface for updating several licenses. It handles properly the fact
that some of the licenses may need to be updated locally, and some remotely. In
case the handles need to be updated on different license servers, use the
VLSbatchUpdate() calls interspersed with VLSsetContactServer() calls. This
function contacts only one license server for the updates. This function does not
call built-in error handlers at all. There is no limit on the number of handles
passed.

Returns If everything fails, this function will return a non-LS_SUCCESS code. For
failures in individual updates of license codes, this function will return
LS_SUCCESS, but the value of the corresponding status element will be set to
the error code. Otherwise, it will return the following error codes:

Argument Description

numHandles Specifies the number of handles.

lshandle (in) Array of numHandles handles, allocated by caller.

unused1 Currently ignored—pass in a NULL.

unused2 Currently ignored—pass in a NULL.

unused3 Use NULL as the value.

unused4 Use NULL as the value.

status (out) Array of numHandles status codes, allocated by caller.

LS_BADHANDLE Invalid handle

VLS_CALLING_ERROR challenge argument is non-NULL, but
cannot be understood.

VLS_CALLING_ERROR License server used for update is not the
same one that was used for acquiring the
license.

VLSbatchUpdate()

 SentinelLM Programmer’s Reference Manual 51

See Also “Challenge-response” on page 45, LSUpdate(),

VLS_NO_LICENSE_GIVEN Generic error indicating that the license was
not updated.

VLS_NO_SUCH_FEATURE License server does not have license that
matches requested feature.

LS_LICENSETERMINATED Cannot update license because license
already expired.

LS_NOLICENSESAVAILABLE All licenses in use.

LS_LICENSE_EXPIRED License has expired.

VLS_USER_EXCLUDED User or machine are excluded from
accessing requested feature.

VLS_APP_NODE_LOCKED Requested feature is node locked but
update request was issued from
unauthorized machine.

VLS_CLK_TAMP_FOUND License server has determined that the
client’s system clock has been modified.
The license for this feature has time-
tampering protection enabled, so the
license operation is denied.

VLS_VENDORMISMATCH The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has a license.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_BAD_SERVER_MESSAGE Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_BUFFER_TOO_SMALL An error occurred in the use of an internal
buffer.

VLSbatchUpdate()

52 Chapter 3 - SentinelLM Client API

VLSsetRemoteRenewalTime(), VLSdisableLocalRenewal(),
VLSenableLocalRenewal(), VLSisLocalRenewalDisabled(),
VLSsetTimeoutInterval()

 Client Configuration Functions

The Client Configuration Functions allow an application to retrieve or overwrite
the default setting. The following table summarizes the functions that enable
certain properties of the client library to be configured.

Table 3-8: Client Configuration Functions

Function Description

VLSsetContactServer() Defines the license server’s host name.

VLSgetContactServer() Retrieves the license server’s host name.

VLSsetServerPort() Defines the license server’s communication port.

VLSgetServerPort() Obtains the license server’s communication port.

VLSinitMachineID() Sets the fields in machineID to default values.

VLSgetMachineID() Sets machineID values for the current host.

VLSmachineIDtoLock
Code()

Computes the machineID locking code.

VLSgetServerNameFrom
Handle()

Retrieves the license server’s name based on handle_id.

VLSinitServerList() Initializes a list of default license servers to search for a
license.

VLSgetServerList() Retrieves the default license server list.

VLSinitServerInfo() Initializes the license serverInfo data structure to default
values.

VLSsetHostIdFunc() Sets the host ID function.

VLSsetBroadcastInterval() Configures broadcast behavior.

VLSgetBroadcastInterval() Retrieves broadcast behavior parameters.

VLSsetTimeoutInterval() Configures timeout behavior.

VLSsetContactServer()

 SentinelLM Programmer’s Reference Manual 53

Note There are also function calls relating to local vs. remote license renewal.
For a detailed description, see “Local vs. Remote Renewal of Keys” on
page 73.

VLSsetContactServer()

Specifies the computer the licensed application will contact for the license
server.

Syntax LS_STATUS_CODE VLSsetContactServer (char *serverName);

Description Each licensed application must be aware of the location of a SentinelLM license
server on the network. By default, on the first communication transaction each
application first checks the environment variable, LSFORCEHOST for the name
of the license server computer. If that environment variable exists, but the
license server computer it specifies is not found, SentinelLM returns an error. If
the LSFORCEHOST environment variable does not exist, the application checks
the environment variable, LSHOST, for the name of the license server computer.
If the variable is not set, it looks for a text file named LSHOST or lshost, which
should contain the name of the license server computer, usually in the current
directory. If that is also not available, the client uses a broadcast mechanism on

VLSgetTimeoutInterval() Retrieves timeout behavior parameters.

VLSsetHoldTime() Sets license hold time.

VLSsetSharedId() Redefines shared ID functions.

VLSsetSharedIdValue() Registers a customized shared ID value.

Client Server
Static

Library
DLL

a a a

Argument Description

serverName The host name of the computer running the license server.

Table 3-8: Client Configuration Functions (Continued)

Function Description

VLSsetContactServer()

54 Chapter 3 - SentinelLM Client API

the local subnet to determine the existence and location of a SentinelLM license
server. If a client makes a SentinelLM function call that involves contacting the
license server and the license server is not found, the function call returns the
error code, VLS_NO_SERVER_FOUND. Once contact has been established,
the name of the computer on which the license server is running is cached and all
future transactions (with the exception of VLSdiscover()) are directed to that
license server only. If contact with that license server is lost, the SentinelLM
client library returns an error.

After a license is successfully requested (via LSRequest() or its variants)
SentinelLM will remember the name of the license server host which was
contacted to obtain the license. In any further client-server communication
involving this handle obtained by the client, SentinelLM will always
communicate with the license server from which it obtained the license,
regardless of intervening VLSsetContactServer() calls. The license server
name set by VLSsetContactServer() will be contacted only for operations that
do not involve an already valid handle. Therefore, in case the original license
server goes down, you must request a fresh license (hence a fresh handle) from
the new license server you wish to use, instead of attempting to send license
update messages to the new license server, unless redundant license servers are
in use. When a redundant license server fails, all clients’ are automatically
reconnected to one of the other redundant license servers.

VLSsetContactServer() resets the cached host name to the value of
serverName. It overrides LSFORCEHOST and the LSHOST environment
variables and the LSHOST file. All future transactions will be directed to that
host regardless of the validity of the host name or whether a license server is
running at that host.

VLSsetContactServer() has an extra role to play in case the application is
linked with the UNIX integrated library, liblssrv.a.

VLSsetContactServer()

 SentinelLM Programmer’s Reference Manual 55

The roles are summarized in the table below:

Note In the above discussion, NO-NET, NO_NET, no_net, and no-net are
synonymous.

In general, serverName is obtained in the following order:

1. Any name supplied with VLSsetContactServer() call.

2. The LSFORCEHOST environment variable.

3. The LSHOST environment variable—Checked only at application start-
up.

4. The lshost file—Checked only at application startup.

In case of libls.a and liblssrv.a, if no serverName is specified using
VLSsetContactServer(), the LSHOST environment variable, or the LSHOST
file, a subnet broadcast is used to find a license server.

The environment variable LSFORCEHOST overrides LSHOST and the
broadcast mechanism.

Linked With serverName Meaning

libls.a Valid host name Client should communicate with the license server on
serverName.

NULL Client should determine serverName using default
mechanism.

NO-NET Calling error.

libnonet.a Valid host name Calling error.

NULL Communicate with integrated license server.

NO-NET Communicate with integrated license server.

liblssrv.a Valid host name Client should communicate with the license server on
serverName.

NULL Client should determine serverName using default
mechanism.

NO-NET Communicate with integrated license server.

VLSgetContactServer()

56 Chapter 3 - SentinelLM Client API

In case of libnonet.a, SentinelLM communicates with the stand-alone license
server with no network communication.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, “Appendix C - Error and Result Codes for
Client Functions” on page 283.

See Also VLSgetContactServer()

VLSgetContactServer()

Retrieves the license server name.

Syntax LS_STATUS_CODE VLSgetContactServer (
char *outBuf,
int outBufSz);

Description Returns the name of the license server host that will be contacted, in case the
client has already set the license server name. Otherwise this function will fail. If

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network-only library, or network mode with
stand-alone library.

VLS_NO_RESOURCES An error occurred in attempting to allocate
memory needed by function.

Client Server
Static

Library
DLL

a a a

Argument Description

outBuf (out) Contains a single license server name, space allocated by
caller.

outBufSz Size of outBuf.

VLSsetServerPort()

 SentinelLM Programmer’s Reference Manual 57

the SentinelLM library is running in stand-alone mode, it returns the string,
VLS_STANDALONE.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, “Appendix C - Error and Result Codes for
Client Functions” on page 283.

See Also VLSsetContactServer()

VLSsetServerPort()

Sets the port number.

Syntax int port_number (void);

Description Defines the license server’s communication port.

Returns Does not return anything.

VLS_CALLING_ERROR outBuf is NULL.

VLS_NO_SERVER_FILE The license server has not been set and is
unable to determine which license server to
use.

LS_BUFFER_TOO_SMALL outBuf is not large enough to store license
server’s name.

Client Server
Static

Library
DLL

a a a

VLSgetServerPort()

58 Chapter 3 - SentinelLM Client API

VLSgetServerPort()

Retrieves the port number.

Syntax int VLSgetServerPort (void);

Description Obtains the number of the port to which all network messages intended for the
license server will be sent. The default configured port number is 5093.

Returns The currently set license server port number is returned.

VLSinitMachineID()

Initializes the fields of the machineID data structure to the default values for the
current host.

Syntax LS_STATUS_CODE VLSinitMachineID (
VLSmachineID LSFAR*machineID;)

Description Sets the fields in machineID to their default values.

The license manager uses the following data structure to define the
characteristics of a machine.

Client Server
Static

Library
DLL

a a a

Client Server
Static

Library
DLL

a a a

Argument Description

machineID User allocated structure where the machine ID will be
maintained.

VLSinitMachineID()

 SentinelLM Programmer’s Reference Manual 59

typedef struct {
unsigned long id_prom;
char ip_addr[VLS_MAXLEN];
unsigned long disk_id;
char host_name[VLS_MAXLEN];
char ethernet[VLS_MAXLEN];
unsigned long nw_ipx;
unsigned long nw_serial;
char portserv_addr[VLS_MAXLEN];
unsigned long custom;
unsigned long reserved;
char cpu_id;
unsigned long unused2;

} VLSmachineID;

The structure is called the machineID, and the contents of the first nine fields are
called the fingerprint for the machine to which the contents apply. In practice, a
developer may choose to use some subset of these fields for a given machine. To
specify which fields are to be used, a flag word called a lock_selector is defined.
A lock selector is a number which sets aside one bit for each fingerprinting
element type. Each bit designates a locking criterion, and the lock selector
represents the fingerprint elements for a given machine. Note that a lock selector
does not describe the fingerprint, it only designates which fields in the machine
ID are to be used to specify the fingerprint. The masks which define each
locking criterion are given below.

#define VLS_LOCK_ID_PROM 0x1
#define VLS_LOCK_IP_ADDR 0x2
#define VLS_LOCK_DISK_ID 0x4
#define VLS_LOCK_HOSTNAME 0x8
#define VLS_LOCK_ETHERNET 0x10
#define VLS_LOCK_NW_IPX 0x20
#define VLS_LOCK_NW_SERIAL 0x40
#define VLS_LOCK_PORTABLE_SERV 0x80
#define VLS_LOCK_CUSTOM 0x100
#define VLS_LOCK_PROCESSOR_ID 0x200

The mask that defines all locking criteria is:

#define VLS_LOCK_ALL 0x1FF

VLSgetMachineID()

60 Chapter 3 - SentinelLM Client API

The machine ID and lock selector are input to the license generator and
encrypted to create a locking code which then becomes part of the license that
authorizes use of an application. When a license is requested by the application,
a fingerprint for the machine is calculated and used to create a locking code. This
must compare favorably with its counterpart in the license before execution of
the application can be authorized.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, “Appendix C - Error and Result Codes for
Client Functions” on page 283.

VLSgetMachineID()

Syntax LS_STATUS_CODE VLSgetMachineID (
unsigned long lock_selector_in,
VLSmachineID LSFAR *machineID,
unsigned long LSFAR *lock_selector_out;)

Description Sets the values of the machineID struct for the current host. The input
machineID struct should first be initialized by calling VLSinitMachineID().
Then, calling this function will attempt to read only those items indicated by the
lock_selector_in. If lock_selector_out is not NULL, *lock_selector_out will be

VLS_MACHINE_FAILURE_CODE machineID is NULL.

Client Server
Static

Library
DLL

a a a

Argument Description

lock_selector_in User provided mask specifying locking criteria to be read.

machineID User provided machine ID from which locking criteria will
be read.

lock_selector_out Mask returned specifying which locking criteria were read.

VLSmachineIDtoLockCode()

 SentinelLM Programmer’s Reference Manual 61

set to a bit mask specifying which items were actually read. To try and obtain all
possible machineID struct items, set lock_selector_in to VLS_LOCK_ALL.

Returns The status code, VLScg_SUCCESS, is always returned. For a complete list of
the error codes, see “Appendix C - Error and Result Codes for Client Functions”
on page 283.

VLSmachineIDtoLockCode()

Syntax LS_STATUS_CODE VLSmachineIDtoLockCode(
VLSmachineID LSFAR *machineID,
unsigned long lock_selector,
unsigned long LSFAR *lockCode;

Description This function computes the locking code from the machineID based on the lock
selector. Note that every bit in lock_selector is significant. For instance, if you
have a machineID that has valid information only for the IP address (lock
selector is 0x2), then you should pass 0x2 into the lock_selector parameter. If
you pass in any other lock_selector value, a different lockCode will result.

Returns The status code, VLScg_SUCCESS, is returned if successful and if
lock_selector is zero. For a complete list of the error codes, see “Appendix C -
Error and Result Codes for Client Functions” on page 283.

Client Server
Static

Library
DLL

a a a

Argument Description

machineID Machine ID used to generate lock code.

lock_selector Bit mask defining the different lock criteria to retrieve

lockCode Lock code string generated from lock selector

VLSgetServerNameFromHandle()

62 Chapter 3 - SentinelLM Client API

VLSgetServerNameFromHandle()

Syntax LS_STATUS_CODE VLSgetServerNameFromHandle(
LS_HANDLE handle_id,
char LSFAR *outBuf,
int outBufSz;

Description This function retrieves the name of license server based on handle_id. A valid
handle_id is always obtained as a product of a successful license request. This
handle is associated with the license server that was contacted for the license
request. VLSgetServerNameFromHandle() can be used to retrieve the name
of the license server which granted the license.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

Client Server
Static

Library
DLL

a a a

Argument Description

handle_id The handle returned by LSRequest() or
VLSrequestExt()

outBuf User allocated buffer to receive license server name

outBufSz Size of buffer in bytes

VLS_CALLING_ERROR outBuf is NULL.

LS_BADHANDLE Invalid handle.

LS_BUFFER_TOO_SMALL outBuf is smaller than license server’s
name that will be returned.

VLSinitServerList()

 SentinelLM Programmer’s Reference Manual 63

VLSinitServerList()

Syntax LS_STATUS_CODE VLSinitServerList (
char LSFAR *serverList,
int optionFlag;

Description This function initializes a list of default license servers to contact whenever a
call is made to get a license. serverList should be in the same format as the last
parameter of the VLSdiscover() call, and have the same syntax. See
“VLSdiscover()” on page 101 for description of optionFlag. This API should be
called prior to calling LSRequest() or VLSqueuedRequest().

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

Client Server
Static

Library
DLL

a a a

Argument Description

serverList Caller allocated array of license server names, or IP or IPX
addresses.

optionFlag A three-bit flag used to determine how license servers are
found

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

VLSgetServerList

64 Chapter 3 - SentinelLM Client API

VLSgetServerList

Syntax LS_STATUS_CODE VLSgetServerList (
char LSFAR *outBuf,
int outBufSz;

Description This function returns the default license server list that was set previously
through a call to VLSinitServerList(). If the default license server list has not
been set, an empty string is returned in outBuf.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

Client Server
Static

Library
DLL

a a a

Argument Description

outBuf User allocated buffer to receive the license server list

outBufSz Length of buffer in bytes

VLS_CALLING_ERROR outBuf is NULL.

LS_BUFFER_TOO_SMALL outBuf is smaller than license server’s
name that will be returned.

VLS_NO_SERVER_FILE License server does not have a list file.
License server has not been set and is
unable to determine which license server to
use.

VLSinitServerInfo()

 SentinelLM Programmer’s Reference Manual 65

VLSinitServerInfo()

Syntax LS_STATUS_CODE VLSinitServerInfo (
VLSserverInfo LSFAR*serverInfo;

Description Initializes the serverInfo data structure to its default values.

Note This function must be called before calling VLSrequestExt() or
VLSreleaseExt().

Returns The status code, LS_SUCCESS, is always returned. For a complete list of the
error codes, see “Appendix C - Error and Result Codes for Client Functions” on
page 283.

VLSsetHostIdFunc()

Sets the host ID function.

Syntax LS_STATUS_CODE VLSsetHostIdFunc (long (*myGetHostIdFunc) ());

Client Server
Static

Library
DLL

a a a

Argument Description

serverInfo User allocated buffer that will contain initialized
VLSserverInfo().

Client Server
Static

Library
DLL

a a a a

Argument Description

myGetHostIdFunc The address of the custom host ID function. In Windows
this must be the address returned by MakeProcInst.

VLSsetBroadcastInterval()

66 Chapter 3 - SentinelLM Client API

Description This function sets the host ID function for the client library to be the function
pointed to by myGetHostIdFunc. This enables the customization of host ID
locking.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

VLSsetBroadcastInterval()

Sets the broadcast interval.

Syntax LS_STATUS_CODE VLSsetBroadcastInterval (long interval);

Description If a licensed application performs a broadcast to establish the presence of a
license server on the subnet, it makes two broadcast attempts, where the length
of the second broadcast attempt is slightly longer than the first.

VLSsetBroadcastInterval() sets the total length of both attempts to be interval
seconds. The default value of interval is 9 seconds.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

Client Server
Static

Library
DLL

a a a

Argument Description

interval The interval between broadcasts in seconds.

VLSgetBroadcastInterval()

 SentinelLM Programmer’s Reference Manual 67

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

VLSgetBroadcastInterval()

Retrieves the broadcast interval.

Syntax long VLSgetBroadcastInterval (void);

Description If a licensed application performs a broadcast to establish the presence of a
license server on the subnet, it makes two broadcast attempts, where the length
of the second broadcast attempt is slightly longer than the first.

Returns VLSgetBroadcastInterval() returns the total length of broadcast attempts.

VLSsetTimeoutInterval()

Sets the timeout interval.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

Client Server
Static

Library
DLL

a a a

Client Server
Static

Library
DLL

a a a

VLSgetTimeoutInterval()

68 Chapter 3 - SentinelLM Client API

Syntax LS_STATUS_CODE VLSsetTimeoutInterval (long interval);

Description This call sets the time-out interval for all direct application/license server
communication to interval seconds. When a licensed application sends a request
to a license server and the license server does not respond, it resends the message
a few times. Each time, the length of the timeout interval is slightly longer than
the previous. VLSsetTimeoutInterval() sets the total length of a set of attempts
to be interval seconds. The default value of interval is 30 seconds. Note that
these timeouts are different from the broadcast timeouts.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

VLSgetTimeoutInterval()

Retrieves the timeout interval.

Syntax long VLSgetTimeoutInterval ();

Description When a licensed application sends a request to a license server and the license
server does not respond, it resends the message a few times. Each time, the
length of the timeout interval is slightly longer than the previous one.

Argument Description

interval The timeout period in seconds.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

Client Server
Static

Library
DLL

a a a

VLSsetHoldTime()

 SentinelLM Programmer’s Reference Manual 69

Returns This call retrieves the time-out interval for all direct application/license server
communication.

VLSsetHoldTime()

Sets the hold time for licenses.

Syntax LS_STATUS_CODE VLSsetHoldTime (
char *featureName,
char *version,
int timeInSecs;

Description This function sets the hold time of licenses issued to the feature to timeInSecs
seconds. This function call will only be effective if the license for the feature
specifies that the hold time should be set by the application. This function call
must be made before the first VLS_REQUEST, LSRequest(), or
VLSqueuedRequest() call for it to be applicable. Once a license is requested
using VLS_REQUEST or LSRequest(), the hold time is set for that application,
and VLSsetHoldTime() will not change it.

Client Server
Static

Library
DLL

a a a

Argument Description

featureName Name of the feature.

version Version of the feature.

timeInSecs Time in seconds. Default: 15 seconds.

VLSsetSharedId()

70 Chapter 3 - SentinelLM Client API

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

VLSsetSharedId()

Redefines the functions called to get the relevant sharing parameter of the client.
For network use only.

Syntax LS_STATUS_CODE VLSsetSharedId (
int sharedId,
int (*mySharedIdFunc) (char *);

Description This function must be used to register a customized sharedID function with the
SentinelLM client library. The value of the sharedID must be passed back by

VLS_APP_UNNAMED featureName is NULL
version is NULL

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

VLS_CALLING_ERROR An error occurred in the use of an internal
buffer.

Client Server
Static

Library
DLL

a a a

Argument Description

sharedId Must be one of the following values:

• VLS_CLIENT_HOST_NAME_ID
• VLS_USER_NAME_ID
• VLS_X_DISPLAY_NAME_ID

• VLS_VENDOR_SHARED_ID

mySharedIdFunc Pointer to a function that will return the sharedID value.

VLSsetSharedId()

 SentinelLM Programmer’s Reference Manual 71

mySharedIdFunc through the character buffer. All sharedID character buffers
will be truncated to 32 bytes. For instance, a customized function which returns
the host name can be used by the client library instead of the built-in function to
determine eligibility for sharing a license.

Note If the host name or user name are changed using this function, the change
will also be reflected in the usage file written by the license server.

One of the many flexibilities provided by LM licensing is the sharing of same
license keys, based on the following criteria:

1. User-name based sharing

2. Hostname based sharing

3. X-display based sharing

4. Application-defined sharing

This model is often used by software publishers who do not want to count every
instance of a running application. They may allow multiple instances of a
running application to share a single license token/key based on a common user
name, host name or custom sharing criteria.

When any of the sharing-options are enabled in a license, the license server
checks if the new request made by a client is coming from the same User/Host/
X-display or not. If it is so, then it checks with the sharing-limit per license-key
and then issues the same key to the new user.

Internally, VLSrequestExt() function, while sending a License Issue Request
Message to the license server, passes on the information regarding its user-name,
client-hostname, x-displayname to the license server. This information is kept by
the license server in its internal tables for future use. The next time a license is
requested for the same Feature, the saved information is used to determine
whether this new request is originating from the same user/host/x-display.

By default, SentinelLM has default functions to get these values (i.e. user name,
x-display, etc.). To use your own functions to retrieve these values, use the
VLSsetSharedId() function to override the default functions.

VLSsetSharedIdValue()

72 Chapter 3 - SentinelLM Client API

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

VLSsetSharedIdValue()

Uses the value passed in by the caller as the shared ID for licensing purposes.
For network use only.

Syntax LS_STATUS_CODE VLSsetSharedIdValue (
int sharedId,
char *sharedIdValue;

Description This function goes along with VLSsetSharedId() and can be used to register a
customized sharedId value with the SentinelLM client library. You can
explicitly provide the sharedId itself using this function. The value of the
sharedId must be passed through the character buffer. All sharedId character
buffers will be truncated to 32 bytes. If you call both VLSsetSharedId() and

VLS_CALLING_ERROR mySharedIdFunc is NULL.

VLS_UNKNOWN_SHARED_ID Invalid sharedId; is either negative or
exceeds maximum value.

Client Server
Static

Library
DLL

a a a

Argument Description

sharedId Must be one of the following values:

• VLS_CLIENT_HOST_NAME_ID
• VLS_USER_NAME_ID
• VLS_X_DISPLAY_NAME_ID

• VLS_VENDOR_SHARED_ID

sharedIdValue A character buffer which can contain up to 32 characters.

VLSsetSharedIdValue()

 SentinelLM Programmer’s Reference Manual 73

VLSsetSharedIdValue(), VLSsetSharedId() has priority and the value set by
VLSsetSharedIdValue() will be ignored.

The same concept applies to VLSsetSharedIdValue()function as
VLSsetSharedId()function. The difference between VLSsetSharedId() and
VLSsetSharedIdValue() lies in the fact that VLSsetSharedId() function will
make the VLSrequestExt() internally send different IDs as returned by the
Developer-Defined functions, whereas VLSsetSharedIdValue() will make the
VLSrequestExt() send the same ID irrespective of the fact “who is running the
client,” “from where the client is being run,” and so on.

The first priority is given to the developer defined functions as set by
VLSsetSharedId(). If no developer defined function is found then the priority
is passed to the SharedIdValue() as set by VLSsetSharedIdValue() function.
If neither the developer defined function nor the developer defined
SharedIdValue() is found, the default functions are used.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

 Local vs. Remote Renewal of Keys

The key (license token) issued by the license server to a client upon request has
to be renewed by calling LSUpdate() within the period of the license lifetime.
The APIs related to enabling/disabling of a local renewal basically changes the
time during the lifetime of the license, at which an update is sent to the license
server. Unless updates are carried out by setting auto-timers, updating the license
on the license server has to be carried out manually by the client before the
expiration of the license lifetime. For more information on this, see
“LSUpdate()” on page 38.

VLS_CALLING_ERROR An error occurred in the use of an internal
buffer.

VLSdisableLocalRenewal()

74 Chapter 3 - SentinelLM Client API

The following function calls relate to license renewal:

VLSdisableLocalRenewal()

Forces all future license renewals to go to the license server.

Syntax LS_STATUS_CODE VLSdisableLocalRenewal (void);

This function has no arguments.

Description This disables the local license renewal mechanism. Under local renewal, calls to
LSUpdate() do not result in a message being sent to the license server until the
remote renewal time is reached. On executing this function call, all future license
renewals made using LSUpdate() or VLS_UPDATE for all handles in this pro-
cess, will go to the license server for renewal.

Returns The status code, LS_SUCCESS, is always returned. For a complete list of the
error codes, see “Appendix C - Error and Result Codes for Client Functions” on
page 283.

See Also LSUpdate(), VLSenableLocalRenewal()

Table 3-9: License Renewal Functions

Function Description

VLSdisableLocalRenewal() Disables local license renewal.

VLSenableLocalRenewal() Resets local license renewal.

VLSisLocalRenewalDisabled() Informs you whether or not local updates are
enabled.

VLSgetRenewalStatus() Returns renewal status.

VLSsetRemoteRenewalTime() Sets the remote renewal period.

VLSdisableAutoTimer() Disables automatic renewal of one feature.

Client Server
Static

Library
DLL

a a a

VLSenableLocalRenewal()

 SentinelLM Programmer’s Reference Manual 75

VLSenableLocalRenewal()

Resets the license renewal mechanism to the default.

Syntax LS_STATUS_CODE VLSenableLocalRenewal (void);

This function has no arguments.

Description License server will only be contacted when a license is close to its expiration
date. Resets the license renewal for all future license renewals made using
LSUpdate() or VLS_UPDATE for all handles in this process.

Returns The status code, LS_SUCCESS, is always returned. For a complete list of the
error codes, see “Appendix C - Error and Result Codes for Client Functions” on
page 283.
Updates until remote renewal time will not go to the license server. Updates will
be returned locally. Only updates sent after the remote renewal time will be sent
to the license server.

See Also LSUpdate(), VLSdisableLocalRenewal()

VLSisLocalRenewalDisabled()

Informs you whether or not local updates are enabled.

Syntax VLS_LOC_UPD_STAT VLSisLocalRenewalDisabled (void);

This function has no arguments.

Client Server
Static

Library
DLL

a a a

Client Server
Static

Library
DLL

a a a

VLSgetRenewalStatus()

76 Chapter 3 - SentinelLM Client API

Returns Returns the following error codes:

VLSgetRenewalStatus()

Retrieves license renewal status.

Syntax LS_STATUS_CODE VLSgetRenewalStatus (void);

This function has no arguments.

Description Returns the renewal status of the last successful license renewal made using
LSUpdate() or VLS_UPDATE. If the last operation that successfully renewed a
license involved contacting the license server, this function returns
VLS_REMOTE_UPDATE. If the last operation that successfully renewed a
license did not involve contacting the license server (was done locally), this
function returns the value VLS_LOCAL_UPDATE. If an update has not
occurred, it returns VLS_NO_UPDATES_SO_FAR.

Returns Returns the following error codes:

VLS_LOCAL_UPD_ENABLE Local renewal is enabled. This is the initial
status and the status after
VLSenableLocalRenewal() is called.

VLS_LOCAL_UPD_DISABLE Local renewal is disabled. This is the status
after VLSdisableLocalRenewal() is called.

Client Server
Static

Library
DLL

a a a

VLS_NO_UPDATES_SO_FAR No updates have been made. Specifies the
initial value.

VLS_LOCAL_UPDATE During the most recent update, the license
was valid and did not need to be renewed.

VLS_REMOTE_UPDATE During the most recent update, the license
was invalid and required update from the
license server.

VLSsetRemoteRenewalTime()

 SentinelLM Programmer’s Reference Manual 77

See Also LSUpdate()

VLSsetRemoteRenewalTime()

Sets the remote renewal time period.

Syntax LS_STATUS_CODE VLSsetRemoteRenewalTime (
char *featureName,
char *version,
int timeInSecs;

Description Sets the remote renewal period of licenses issued to the feature to timeInSecs
seconds. This function call must be made before the first VLS_REQUEST or
LSRequest() call for it to be applicable. Once a license is requested using
VLS_REQUEST or LSRequest(), the remote renewal time is set for that
application, and VLSsetRemoteRenewalTime() will not change it.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

Client Server
Static

Library
DLL

a a a

Argument Description

featureName Name of the feature.

version Version of the feature.

timeInSecs Time in seconds. Default: 15 seconds.

VLS_APP_UNNAMED featureName is NULL

version is NULL

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

VLS_CALLING ERROR An error occurred in the use of an internal
buffer.

VLSdisableAutoTimer()

78 Chapter 3 - SentinelLM Client API

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

See Also LSRequest(), LSUpdate()

VLSdisableAutoTimer()

Syntax LS_STATUS_CODE VLSdisableAutoTimer (
LS_HANDLE lshandle,
int state;

Description Using the handle returned from requesting a license, a call to this function can be
used to disable automatic renewal of one feature. Calling with an argument of
zero handle disables auto renewal of all features.

Note On UNIX, call VLSdisableAutoTimer() before using sleep() or
SIGALRM, or there could be a potential conflict with the timer signal.

On Win32, call VLSdisableAutoTimer() if thread has no message loop since
the message loop is used to process the timer. If you disable the automatic timer,
you must ensure that the license key is renewed periodically (before it expires)
by calling LSUpdate().

Client Server
Static

Library
DLL

a a a

Argument Description

lshandle The handle returned by LSRequest() or

VLSrequestExt()

state VLS_ON or VLS_OFF

VLSdisableAutoTimer()

 SentinelLM Programmer’s Reference Manual 79

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

 Client Query Functions

There are three functions that return information about a client feature:

Query functions provide a snapshot of the current status of the license server and
the features it licenses. Typically, users at a site are interested in information
about how many concurrent copies (or licenses) a feature is licensed for, which
users are currently using a particular feature, how soon a licensing agreement
will expire, and so on. These functions can be used within application software,
or to build stand-alone query utilities. All functions return the status code
LS_SUCCESS on success or an appropriate error code. For a listing of error
values, see “Appendix C - Error and Result Codes for Client Functions” on page
283.

If a license server host name is not established, the client query function will
attempt to locate a license server. Information about any instance of application

VLS_CALLING_ERROR Invalid state. Needs to be either VLS_ON or
VLS_OFF

LS_BADHANDLE Invalid handle.

Table 3-10: Client Query Functions

Function Description

VLSgetClientInfo() Returns information about a client currently
licensed by the license server.

VLSgetHandleInfo() Returns information about a client given a handle.

VLSgetLicInUseFromHandle() Returns the number of licenses used for the feature
name used to obtain a given handle.

VLSdisableAutoTimer()

80 Chapter 3 - SentinelLM Client API

authorized by the SentinelLM license server is returned in the following
structure:

Syntax typedef struct client_info_struct {
char user_name[VLS_MAXLEN];
unsigned long host_id;
char group[VLS_MAXLEN];
long start_time;
long hold_time;
long end_time;
long ey_id;
char host_name[VLS_MAXLEN];
char x_display_name[VLS_MAXLEN];
char shared_id_name[VLS_MAXLEN];
int num_units;
int q_wait_time;
int is_holding;
int is_sharing intis_commuted;
} VLSclientInfo;

Member Description

MAXLEN Set to 64 characters.

user_name The login name of the user using the application. This
information can be changed using the VLSsetSharedId()
API call.

host_id The host ID of the computer on which the user is working.
This can be changed using the VLSsetHostIdFunc() call.

group Name of the reserved group to which the user belongs. If
the user does not belong to an explicitly named group,
DefaultGrp is returned.

start_time The time at which the current license code was issued by
the license server.

hold_time Specifies the hold time, in seconds, if any.

end_time The time at which the user’s current license will expire if
not renewed.

key_id The internal ID of the license currently issued to the user’s
application. After starting up, the license server issues
licenses with unique IDs until it is restarted.

VLSgetClientInfo()

 SentinelLM Programmer’s Reference Manual 81

VLSgetClientInfo()

Returns information about a client feature.

Syntax LS_STATUS_CODE VLSgetClientInfo (
char *featureName,
char *version,
int index,

host_name Name of the host/computer where the user is running the
application. This information can be changed using the
VLSsetSharedId() API call.

x_display_name Name of the X display where the user is displaying the
application. This information can be changed using the
VLSsetSharedId() API call.

shared_id_name A special vendor-defined ID that can be used for license
sharing decisions. It always has the fixed value, default-
sharing-ID, unless it is changed by registering a custom
function using the VLSsetSharedId() API call. If you plan
to use this ID, you should register your own function from
your application, and choose Application-defined sharing
while running the code generator.

num_units Number of units consumed by the client so far.

q_wait_time Unused.

is_holding Has the value, VLS_TRUE, if the user’s current license is
being held after its expiration. Otherwise, the value is
VLS_FALSE.

is_sharing Total number of clients sharing this particular license,
including the current client being queried. If sharing is
disabled, is_sharing will be 0.

is_commuted Total number of clients that have “checked out” a license
from the network.

Client Server
Static

Library
DLL

a a a

Member Description

VLSgetClientInfo()

82 Chapter 3 - SentinelLM Client API

char *unused1,
VLSclientInfo *clientInfo;

Description After this call, clientInfo contains information about all clients’ features. Since it
is possible for multiple clients of a particular feature to be active on the network,
index is used to retrieve information about a specific client. The suggested use of
this function is in a loop, where the first call is made with index 0 which retrieves
information about the first client. Subsequent calls, when made with 1, 2, 3, and
so on, will retrieve information about other clients of that feature type. So long
as the index is valid, the function returns the success code, LS_SUCCESS.
Otherwise, it returns the SentinelLM status code, VLS_NO_MORE_CLIENTS.
Memory for clientInfo should be allocated before making the call.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

featureName Name of the feature.

version Version of the feature.

index Used to specify a particular client.

unused1 Use NULL as the value.

clientInfo (out) The structure in which information will be returned. Space
allocated by caller.

VLS_APP_UNNAMED featureName is NULL
version is NULL.

VLS_CALLING_ERROR clientInfo parameter is NULL
index is negative.

Attempted to use stand-alone mode with
network-only library, or network mode with
stand-alone library.

VLS_NO_MORE_CLIENTS Finished retrieving client information for all
clients.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature.

VLSgetHandleInfo()

 SentinelLM Programmer’s Reference Manual 83

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

VLSgetHandleInfo()

Returns information about a client feature.

VLS_MULTIPLE_VENDORID_FOUND The license server has licenses for the
same feature and version from multiple
vendors. It is ambiguous which feature is
requested.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER-FILE No license server has been set and unable
to determine which license server to use.

VLS_BAD_SERVER_MESSAGE Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

Client Server
Static

Library
DLL

a a a

VLSgetLicInUseFromHandle()

84 Chapter 3 - SentinelLM Client API

Syntax LS_STATUS_CODE VLSgetHandleInfo (
LS_HANDLE lshandle,
VLSclientInfo *clientInfo;

Description This function also retrieves client information, except that lshandle replaces the
arguments (featureName, version, and index) used in VLSgetClientInfo().

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

VLSgetLicInUseFromHandle()

Returns the total number of licenses issued by the license server for the feature
name and version used to obtain this handle.

Argument Description

lshandle The handle returned by LSRequest(), VLSrequestExt(),
or VLS_REQUEST.

clientInfo (out) The structure in which information will be returned. Space
allocated by caller.

VLS_BAD_HANDLE Invalid handle. Handle may have already
been released and destroyed from previous
license operations or too many handles
have already been allocated.

Client Server
Static

Library
DLL

a a a

VLSgetLicInUseFromHandle()

 SentinelLM Programmer’s Reference Manual 85

Syntax LS_STATUS_CODE VLSgetLicInUseFromHandle (
LS_HANDLE lshandle,
int *totalKeysIssued;

Description Given a valid handle returned by an LSRequest() call or its variants, it returns
the total number of licenses issued by the license server for the feature name and
version used to obtain this handle. Note that the information returned by this
function will be correct only immediately after acquiring the handle. The
information in the handle is not updated subsequently. For more current
information, use VLSgetFeatureInfo().

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

See Also VLSgetFeatureInfo()

Argument Description

lshandle The handle returned by any Request API call.

totalKeysIssued (out) The number of licenses issued by the license server.
Space should be allocated by the caller.

LS_BADHANDLE Invalid handle. Handle has already been
released and destroyed from previous
license versions or too many handles have
been allocated.

LS_BUFFER_TOO_SMALL in_use_ p parameter is NULL.

VLSgetLicInUseFromHandle()

86 Chapter 3 - SentinelLM Client API

 Feature Query Functions

The following table summarizes the feature query functions:

Information about specific features licensed by the SentinelLM license server is
returned in the following structure.

Syntax /* Feature Information structure */

typedef struct feature_info_struct {
long structSz char
feature_name[VLS_MAXFEALEN];
char version[VLS_MAXFEALEN];
int lic_type; inttrial_days_count;

 longbirth_day
 long death_day;
int num_licenses;
int total_resv;
int lic_from_resv;
int qlic_from_resv; int

Table 3-11: Feature Query Functions

Function Description

VLSgetFeatureInfo() Retrieves feature licensing information from the license
server.

VLSgetVersions() Retrieves licensed version information for a feature.

VLSgetFeatureFromHandle() Returns the feature name corresponding to the handle.

VLSgetVersionFromHandle() Returns the version corresponding to the handle.

VLSgetTimeDriftFrom
Handle()

Returns the difference in seconds between the
estimated current time on the license server and the
estimated time on the client.

VLSgetFeatureTimeLeft-
FromHandle()

Returns the difference in seconds between the
estimated current time on the license server and the
estimated feature expiration time on the license server.

VLSgetKeyTimeLeftFrom-
Handle()

Returns the difference in seconds between the
estimated current time on the license server and the
estimated license expiration time on the license server.

VLSgetLicInUseFromHandle()

 SentinelLM Programmer’s Reference Manual 87

lic_from_free_pool; int
qlic_from_free_pool
int is_node_locked;
int concurrency;
int sharing_crit;
int locking_crit;
int holding_crit;
int num_subnets;
char site_license_info [VLS_SITEINFOLEN];
long hold_time;
int meter_value;
char vendor_info [VLS_VENINFOLEN + 1];
char cl_lock_info[VLS_MAXCLLOCKLEN];
long key_life_time;
int sharing_limit;
int soft_num_licenses;
int is_standalone;
int check_time_tamper;
int is_additive; intisRedundant;
 intmajority_rule;
 int num_servers; int
isCommuter; intlog_encrypt_level;
 intelan_key_flag;
 longconversion_time;
 longavg_queue_time;
 long queue_length ; inttot_lic_reqd
 intisELMEnabled
 int commuted_keys int
commuter_keys_left;

} VLSfeatureInfo;

Member Description

structSz Calling of the structure.

feature_name Name of the feature whose information is retrieved.
Maximum 64 characters.

version Feature version.

lic_type Type of license either trial or normal.

trial_days_count Number of trial days.

VLSgetLicInUseFromHandle()

88 Chapter 3 - SentinelLM Client API

birth_day Day of the license start date.

death_day The time when the feature expires. The constant,
VLS_NO_EXPIRATION, is returned if the license does not
have any expiration date.

num_licenses The total number of licenses the license server is
authorized to issue.

total_resv Number of licenses reserved using group reservations.

lic_from_resv Number of reserved licenses issued to clients.

lic_from_free_pool Number of unreserved licenses issued to clients.

qlic_from_free_pool Number of reserved licenses issued to clients.

is_node_locked Depending on the locking scheme of the feature, this
returns one of the following constants:

• VLS_NODE_LOCKED (client locked to license
server)

• VLS_CLIENT_NODE_LOCKED (client locked)

• VLS_FLOATING (license server locked)
• VLS_DEMO_MODE (unlocked)

concurrency Unused.

sharing_crit Returns the license sharing criteria, which can be one of
the following constants:

• VLS_NO_SHARING
• VLS_USER_NAME_ID

• VLS_CLIENT_HOST_NAME_ID
• VLS_X_DISPLAY_NAME_ID
• VLS_VENDOR_SHARED_ID

Member Description

VLSgetLicInUseFromHandle()

 SentinelLM Programmer’s Reference Manual 89

locking_crit The license server locking criteria, which can be one of the
following constants:

• VLS_LOCK_ID_PROM

• VLS_LOCK_IP_ADDR
• VLS_LOCK_DISK_ID
• VLS_LOCK_HOSTNAME

• VLS_LOCK_ETHERNET
• VLS_LOCK_NW_IPX
• VLS_LOCK_NW_SERIAL

• VLS_LOCK_PORTABLE_SERV
• VLS_LOCK_CUSTOM
• VLS_LOCK_CPU

holding_crit The license holding criteria, which can be one of the follow-
ing constants:

• VLS_HOLD_NONE (no held licenses).

• VLS_HOLD_VENDOR (the client specifies the hold
time through the function, VLSsetHoldTime()).

• VLS_HOLD_CODE (the license code specifies the
hold time).

hold_time The hold time specified for licenses issued for this feature.

num_subnets The number of subnet specifications provided for the site.

site_license_info A space-separated list of subnet wildcard specifications.

meter_value Unused.

vendor_info The vendor-defined information string.

cl_lock_info Locking information about clients in a space-separated
string of host IDs and/or IP addresses.
If licenses-per-node restrictions have been specified, they
are also returned in parentheses with each host ID/IP
address. For instance, cl_lock_info could be:
0x8ef38b91(20#) 0xa4c7188d 0x51f8c94a(10#).

key_life_time The license lifetime for this feature (in seconds).

sharing_limit The limit on how many copies of the licensed application
can share the same license.

Member Description

VLSgetFeatureInfo()

90 Chapter 3 - SentinelLM Client API

VLSgetFeatureInfo()

Retrieves licensing information about a feature using the structure, feature_info.

soft_num_licenses The soft limit (for alerts) on the number of concurrent users
of this feature.

is_standalone Returns VLS_TRUE if this is a stand-alone license or
VLS_FALSE if this is a network license.

check_time_tamper Returns VLS_TRUE if this feature is time tamper proof or
VLS_FALSE if not time tamper proof.

is_additive Returns VLS_TRUE if this is an additive license or
VLS_FALSE if this is an exclusive license.

isRedundant Validates if the license is actually redundant.

majority_rule Checks whether majority rule is on or off.

num_servers Number of redundant license servers.

isCommuter Commuter licenses.

log_encrypt_level Encryption level in the network license for the license
server’s usage log file.

elan_key_flag Validates if the Élan license is converted.

conversion_time Time when the Élan license code is converted into
SentinelLM license code.

avg_queue_time Average time the past or present clients are in the queue.
(Not implemented.)

queue_length Length of the queue.

tot_lic_reqd Required number of licenses for all queued clients.

isELMEnabled Query to Elan licenses.

commuted_keys Number of commuter keys that have been checked out.

commuter_keys_left Number of computer keys left.

Client Server
Static

Library
DLL

a a a

Member Description

VLSgetFeatureInfo()

 SentinelLM Programmer’s Reference Manual 91

Syntax LS_STATUS_CODE VLSgetFeatureInfo(
char *name,
char *version,
int index,
char *unused1,
VLSfeatureInfo *featureInfo;

Description Returns information on all features. You will need to initialize the structSz field
of VLSfeatureInfo() structure being passed to this API before actually calling
this API.

If name is not NULL, information about the feature indicated by name and
version is returned.

If information about all licensed features is desired, name should be NULL, and
index should be used in a loop as described for the function call,
VLSgetClientInfo(). Refer to the source code of the lsmon.c utility for
additional information.

VLSgetFeatureInfo() returns the status code, VLS_NO_MORE_FEATURES,
when it runs out of features to describe. If an error occurs, for example, the
feature is unknown to the SentinelLM license server, an appropriate error code is
returned. For a complete list of error codes, see “Appendix C - Error and Result
Codes for Client Functions” on page 283.

Argument Description

name Name of the feature.

version Version of the feature.

index Used to specify a particular client.

unused1 Use NULL as the value.

featureInfo (out) The structure in which information will be returned. Space
must be allocated by caller.

VLSgetFeatureInfo()

92 Chapter 3 - SentinelLM Client API

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

VLS_CALLING_ERROR featureInfo is NULL
index is negative
Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

VLS_APP_UNNAMED version is NULL when name is non_NULL

VLS_NO_MORE_FEATURES Finished retrieving feature information for
all features on license server.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER-FILE No license server has been set and unable
to determine which license server to use.

VLS_BAD_SERVER_MESSAGE Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

VLSgetVersions()

 SentinelLM Programmer’s Reference Manual 93

VLSgetVersions()

Returns the list of versions licensed by the license server for a given feature.

Syntax LS_STATUS_CODE VLSgetVersions (
char *featureName,
int bufferSize,
char *versionList,
char *unused1;

Description This function returns a list of versions separated by spaces in the array,
versionList. Space for this array must be allocated prior to the call, and the size
of the array must be provided using bufferSize. This function is useful in
situations where you could have licenses for several versions of your software
and you wish to implement version-based licensing schemes.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

Client Server
Static

Library
DLL

a a a

Argument Description

featureName Name of the feature.

bufferSize Specifies the size of versionList.

versionList (out) An array containing the version list. Space should be
allocated by the caller.

unused1 Use NULL as the value.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches the requested feature.

VLS_APP_UNNAMED featureName is NULL.

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

VLSgetFeatureFromHandle()

94 Chapter 3 - SentinelLM Client API

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

VLSgetFeatureFromHandle()

Returns the feature name corresponding to handle.

Syntax LS_STATUS_CODE VLSgetFeatureFromHandle (
LS_HANDLE handle,
char *buffer,
int bufferSize;

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE No license server has been set and unable
to determine which license server to use.

VLS_BAD_SERVER_MESSAGE Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_BUFFER_TOO_SMALL An error occurred in the use of an internal
buffer.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

Client Server
Static

Library
DLL

a a a

Argument Description

handle Handle returned by license request API.

VLSgetVersionFromHandle()

 SentinelLM Programmer’s Reference Manual 95

Description The feature name is returned in buffer which must be allocated by the calling
program. The size of buffer is passed in the argument bufferSize.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

VLSgetVersionFromHandle()

Returns the version corresponding to handle.

Syntax LS_STATUS_CODE VLSgetVersionFromHandle (
LS_HANDLE handle,
char *buffer,
int bufferSize;

buffer (out) Buffer to hold the feature name. Space allocated by caller.

bufferSize Size of the buffer.

LS_BADHANDLE Invalid handle.

LS_BUFFER_TOO_SMALL buffer parameter is NULL.

Size of feature information exceeds
bufferSize parameter.

Client Server
Static

Library
DLL

a a a

Argument Description

handle Handle returned by LSRequest(), VLSrequestExt(), or
VLS_REQUEST.

buffer Buffer to hold the feature version. Space allocated by
caller.

Argument Description

VLSgetTimeDriftFromHandle()

96 Chapter 3 - SentinelLM Client API

Description The feature version is returned in buffer which must be allocated by the calling
program. The size of buffer is passed in the argument, bufferSize.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

VLSgetTimeDriftFromHandle()

Syntax LS_STATUS_CODE VLSgetTimeDriftFromHandle (
LS_HANDLE lshandle,
long *secondsServerAheadOfClient (*out*);

Description The function is used when the time properties of the client and server may not be
in sync. It returns the difference in seconds between the estimated current time

bufferSize Size of the buffer.

LS_BADHANDLE Invalid handle.

LS_BUFFER_TOO_SMALL buffer parameter is NULL.

Size of feature information exceeds
bufferSize parameter.

Client Server
Static

Library
DLL

a a a

Argument Description

lshandle Handle returned by LSRequest(), VLSrequestExt(), or
VLS_REQUEST or VLSqueuedRequest().

secondsServerAheadOf
Client

Caller allocates memory for *out* data. Function returns
the difference between system clocks.

Argument Description

VLSgetFeatureTimeLeftFromHandle()

 SentinelLM Programmer’s Reference Manual 97

on the license server and the estimated time on the client. The estimation error is
usually the network latency time.

Note The information returned by this function will be correct only immediately
after acquiring the handle. The information in the handle is not updated
subsequently.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

VLSgetFeatureTimeLeftFromHandle()

Syntax LS_STATUS_CODE VLSgetFeatureTimeLeftFromHandle (
LS_HANDLE lshandle,
unsigned long *secondsUntilTheFeatureExpires (*out*);

Description The function is used when the time properties of the client and server may not be
in sync. It returns the difference in seconds between the estimated current time

LS_BADHANDLE Invalid handle.

LS_BUFFER_TOO_SMALL secondsServerAheadOfClient parameter is
NULL.

Client Server
Static

Library
DLL

a a a

Argument Description

lshandle Handle returned by LSRequest(), VLSrequestExt(), or
VLS_REQUEST.

secondsUntilTheFeature
Expires

Caller allocates memory for *out* data. Function returns
the number of seconds until the expiration of the license for
this feature.

VLSgetFeatureTimeLeftFromHandle()

98 Chapter 3 - SentinelLM Client API

on the license server and the estimated feature expiration time on the license
server.

Note The information returned by this function will be correct only immediately
after acquiring the handle. The information in the handle is not updated
subsequently.

VLSgetFeatureTimeLeftFromHandle() provides the difference between the
License Expiration Time and the Current System Time at the license server end.
For example, if the license expiration date is 20th Aug 1998 (12:00PM) and the
current time is 16th June 1998 (12:00AM), then this call will return the
difference between these two times, in seconds. This is common to all the clients
and is based on the license code for the feature.

Note VLSgetFeatureTimeLeftFromHandle() does not return the number of
trial days left in a trial license.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

LS_BADHANDLE Invalid handle.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches the requested feature.

LS_BUFFER_TOO_SMALL secondsUntilTheFeatureExpires is NULL.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing the license
operation requests.

VLS_NO_SERVER_RESPONSE Communication with the license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE The license server has not been set and
cannot determine which license server to
use.

VLS_BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

VLSgetKeyTimeLeftFromHandle()

 SentinelLM Programmer’s Reference Manual 99

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

VLSgetKeyTimeLeftFromHandle()

Syntax LS_STATUS_CODE VLSgetKeyTimeLeftFromHandle (
LS_HANDLE lshandle,
unsigned long *secondsUntilTheKeyExpires;

Description The function is used when the time properties of the client and server may not be
in sync. It returns the difference in seconds between the estimated current time
on the license server and the estimated license expiration time on the license
server.

Note The information returned by this function will be correct only immediately
after acquiring the handle. The information in the handle is not updated
subsequently.

VLSgetkeyTimeLeftFromHandle() returns the difference between the time
when the License Key (as issued by the license server to the client) expires (i.e.
before this client must do an LSupdate()) and the current time. Since the
information in the handle is not updated at regular intervals, the value returned
by this call is in very close proximity to the key lifetime mentioned in the
license. For example, if the key lifetime mentioned in the license is 2 minutes,

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

Client Server
Static

Library
DLL

a a a

Argument Description

lshandle Handle returned by LSRequest(), VLSrequestExt(), or
VLS_REQUEST().

secondsUntilTheKey
Expires

Caller allocates memory for *out* data. Function returns
the number of seconds for the run-time license to expire.

VLSgetKeyTimeLeftFromHandle()

100 Chapter 3 - SentinelLM Client API

the value returned by this call will be approximately 120. Naturally, this value
varies with each client.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

 Client Utility Functions

The following table lists functions that provide client library capabilities useful
to certain specialized applications:

LS_BADHANDLE Invalid handle.

LS_BUFFER_TOO_SMALL secondsUntilTheKeyExpires parameter is
NULL.

Table 3-12: Client Utility Functions

Function Description

VLSdiscover() Retrieves the names of the computers on the local subnet
(or beyond) running the SentinelLM license server which
are authorized to service requests from an application.

VLSaddFeature() Adds licensing information to the license server’s internal
tables.

VLSaddFeatureToFile() Adds licensing information about a feature to the license
server’s internal tables.

VLSdeleteFeature() Removes licensing information from the license server’s
internal tables.

VLSgetLibInfo() Retrieves SentinelLM client library information.

VLSshutDown() Shuts down the license server.

VLSwhere() Locates and returns information about the server.

VLSdiscover()

 SentinelLM Programmer’s Reference Manual 101

VLSdiscover()

Retrieves the names of the computers on the local subnet (or beyond) running
the SentinelLM license server which are authorized to service requests from an
application.

Syntax LS_STATUS_CODE VLSdiscover(
unsigned char *feature_name,
unsigned char *version,
unsigned char *reserved1,
int server_list_len,
char *server_list,
int optionFlag,
char *query_list;

Description feature_name, must be licensed by the same vendor as the library issuing the
VLSdiscover() call. If version is NULL, it is treated as a wildcard and all
license servers that are authorized to service requests for feature_name will
respond regardless of version. If feature_name is NULL, version will be ignored
and all SentinelLM license servers on the local subnet will respond. The space-

Client Server
Static

Library
DLL

a a a

Argument Description IN/OUT

feature_name Name of the feature. IN

version Version of the feature. IN

reserved1 Use any value. IN

server_list_len Specifies the size of server_list. IN

server_list Space separated list of license server names. OUT

optionFlag A three bit flag which guides the behavior of
VLSdiscover() in finding the license servers. Details
are discussed later.

IN

query_list A colon separated list of hostNames to be queried
during the search for license servers.

IN

VLSdiscover()

102 Chapter 3 - SentinelLM Client API

separated name list of the responding SentinelLM license servers are returned in
server_list. The buffer must be allocated prior to the call and its size provided
using server_list_len.

query_list is a colon-separated list of host names and/or IP-addresses which are
queried during the search for license servers.

optionFlag is a three-bit flag which can have any of the following values or a
combination of them:

• VLS_DISC_NO_USERLIST—Does not check the host list specified by
the user. By default, it first checks the LSFORCEHOST environment
variable. If LSFORCEHOST doesn’t exist, it reads the list specified by
the user in the environment variable, LSHOST, and the file, LSHOST/
lshost. (The content of these lists are joined together and appended to the
contents of query_list) append them together and then append to the
query_list. Finally, all the hosts on this combined list are queried during
search for license servers.

• VLS_DISC_RET_ON_FIRST—If the combined query list is NULL, this
function returns as soon as it contacts a license server and returns the
name of this license server in server_list. Otherwise, it returns when it
hears from a license server whose name is listed in the combined query
list. In this case, it returns, in server_list, that particular license server
name along with all other license servers which are not on the list, but
responded by that time. If this option is not specified, this function,
VLSdiscover(), obtains all the names of all the license servers which
responded.

• VLS_DISC_PRIORITIZED_LIST—Treats the combined query list as a
prioritized one, the leftmost being the highest priority host. After
execution, server_list contains license servers sorted by this priority. If
this option is not specified, the combined query list is treated as a random
one.

• VLS_DISC_DEFAULT_OPTIONS—This flag is a combination of the
aforementioned flags. It should be used if you are undecided which
options you need.

VLSdiscover()

 SentinelLM Programmer’s Reference Manual 103

• If you want to specify no flags, use the value
VLS_DISC_NO_OPTIONS.

Returns The status code, LS_SUCCESS, is returned if stand-alone library is used.
Otherwise, it will return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

Examples To get a list of all the SentinelLM license servers running on the subnet, the call
can be made as:

char server_list[MAX_BUF];
VLSdiscover(NULL, NULL, NULL, MAX_BUF, server_list, VLS_DISC_NO_OPTIONS,

NULL);

To get one license server having feature for all versions of application, dots:

char server_list[MAX_BUF];
VLSdiscover("DOTS", NULL, NULL, MAX_BUF, server_list,

VLS_DISC_RET_ON_FIRST,NULL);

where “DOTS” is the feature name for the application, dots.

To find out license servers for dots version 1.0 running on the local subnet as
well as on computers 'troilus.soft.net' and '123.23.234.1', and get the results in
prioritized order:

char query_list[100];
char server_list[MAX_BUF];
strcpy(query_list, "troilus.soft.net:123.23.234.1");
VLSdiscover("DOTS", "1.0", NULL, MAX_BUF, server_list,

VLS_DISC_PRIORITIZED_LIST, query_list);

VLS_NO_RESPONSE_TO_
BROADCAST

No license servers have responded.

LS_NO_SUCCESS Failed to retrieve computer names on local
subnet.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLSaddFeature()

104 Chapter 3 - SentinelLM Client API

See Also VLSsetBroadcastInterval()

VLSaddFeature()

Adds licensing information about a feature.

Syntax LS_STATUS_CODE VLSaddFeature (
unsigned char *licenseString,
unsigned char *unused1,
LS_CHALLENGE *unused2;

Description Dynamically adds the license code, licenseString, to the license server’s internal
tables. If licensing information for this feature and version already exists in the
license server’s tables, it may be overwritten with the new information.

Notice, feature is not permanently added to the license server, therefore the fea-
ture will not be on the license server when the license server is shutdown and
restarted.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

Client Server
Static

Library
DLL

a a a

Argument Description

licenseString String containing licensing information.

unused1 Use NULL as the value.

unused2 Use NULL as the value.

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

LS_NO_SUCCESS licenseString is NULL

VLSaddFeatureToFile()

 SentinelLM Programmer’s Reference Manual 105

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

See Also VLSdeleteFeature()

VLSaddFeatureToFile()

Adds licensing information about a feature.

VLS_ADD_LIC_FAILED Generic error indicating the feature has not
been added.

VLS_BAD_DISTB_CRIT Invalid distribution criteria.

VLS_CLK_TAMP_FOUND License server has determined that the
client’s system clock has been modified.
The license for this feature has time-
tampering protection enabled, so the
license operation is denied.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing the license
operation requests.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE The license server has not been set and is
unable to determine which license server to
use.

VLS_BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

Client Server
Static

Library
DLL

a a a

VLSaddFeatureToFile()

106 Chapter 3 - SentinelLM Client API

Syntax LS_STATUS_CODE VLSaddFeatureToFile (
unsigned char *licenseString,
unsigned char *unused1,
unsigned char *unused2,
LS_CHALLENGE *unused3;

Description Dynamically adds licensing information about a feature to the license server’s
internal tables. If licensing information for this feature already exists in the
license server’s tables, it may be overwritten with the new information.
Notice, feature is permanently added to the license server, therefore the feature
will be on the license server when the license server is shutdown and restarted.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

licenseString String containing licensing information.

unused1 Use NULL as the value.

unused2 Use NULL as the value.

unused3 Use NULL as the value.

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

LS_NO_SUCCESS licenseString is NULL.

VLS_ADD_LIC_FAILIED Generic error indicating the feature has not
been added.

VLS_BAD_DISTB_CRIT Invalid distribution criteria.

VLS_CLK_TAMP_FOUND License server has determined that the
client’s system clock has been modified.
The license for this feature has time-
tampering protection enabled, so the
license operation is denied.

VLSdeleteFeature()

 SentinelLM Programmer’s Reference Manual 107

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

See Also VLSdeleteFeature()

VLSdeleteFeature()

Deletes licensing information about a feature.

Syntax LS_STATUS_CODE VLSdeleteFeature (
unsigned char *featureName,
unsigned char *version,

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing the license
operation requests.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_NO_SERVER_FILE The license server has not been set and is
unable to determine which license server to
use.

VLS_BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

Client Server
Static

Library
DLL

a a a

VLSdeleteFeature()

108 Chapter 3 - SentinelLM Client API

unsigned char *unused1,
LS_CHALLENGE *unused2;

Description Deletes licensing information from the license server’s internal tables, for the
given featureName and version. This API does not delete licenses from the
license file.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

featureName Name of the feature.

version Version of the feature.

unused1 Unused.

unused2 Unused.

VLS_APP_UNNAMED featureName is NULL
version is NULL.

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature.

VLS_DELETE_LIC_FAILED Generic error indicating the feature has not
been deleted.

VLS_VENDORIDMISMATCH The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has a license.

VLS_MULTIPLE_VENDORID_FOUND The license server has licenses for the
same feature and version from multiple
vendors. It is ambiguous which feature is
requested.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing the license
operation requests.

VLSgetLibInfo()

 SentinelLM Programmer’s Reference Manual 109

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

See Also VLSaddFeature()

VLSgetLibInfo()

Returns information about the SentinelLM client library currently being used in
the structure pointed to by pInfo.

Syntax LS_STATUS_CODE VLSgetLibInfo(LS_LIBVERSION *pInfo)

typedef struct {
unsigned long ulInfoCode;
char szVersion [VERSTRLEN];
char szProtocol [VERSTRLEN];
char szPlatform [VERSTRLEN];
char szUnused1 [VERSTRLEN];
char szUnused2 [VERSTRLEN];

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_NO_SERVER_FILE The license server has not been set and is
unable to determine which license server to
use.

VLS_BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

Client Server
Static

Library
DLL

a a a

VLSshutDown()

110 Chapter 3 - SentinelLM Client API

} LS_LIBVERSION;

Description Space for pInfo must be allocated by the caller.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

VLSshutDown()

Shuts down license server at specified hostname.

Syntax LS_STATUS_CODE VLSshutDown (
char *hostname;

Member Description

ulInfoCode Unused.

szVersion The version of the SentinelLM client library.

szProtocol The communication protocol being used for application/
license server communication.

szPlatform Platform of the client application.

szUnused1 Unused.

szUnused2 Unused.

LS_NORESOURCES pInfo is NULL.

Client Server
Static

Library
DLL

a a a

Argument Description

hostname The host name of the computer running the license server.

VLSshutDown()

 SentinelLM Programmer’s Reference Manual 111

Description A client can send this message to the license server in order to shut the license
server down. Once shut down, there is no automatic way of restarting the license
server through any client message. Any applications that may be running at that
time could stop running after a while, as the license renewal messages will fail
once the license server goes down. The license server does not check for running
applications prior to shutting down.

The following permissions tests must succeed in order for this call to be
successful:

• The client and license server must be running on the same network
domain name.

• User identification of the license server process should match the client,
or client must be run by superuser (root) as shown in the following table:

Server

Client

Win 95/98 WinNT (Admin)
UNIX
(non-root)

UNIX (root)

UNIX
(non-root)

Same
UserName

— Same
UserName or
UserId

—

Win 95/98
(non-Admin)

Same
UserName or
SameHost

— Same
UserName

—

WinNT
(non-Admin)

Same
UserName

— Same
UserName

—

Win 95/98
(Admin)

yes yes yes yes

WinNT (Admin) yes yes yes yes

UNIX (root) yes yes yes yes

VLSwhere()

112 Chapter 3 - SentinelLM Client API

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

VLSwhere()

Retrieves the names of the computers on the local subnet (beyond running) the
SentinelLM license server which are authorized to service requests from an
application.

Syntax LS_STATUS_CODE VLSwhere(
unsigned char *feature_name,
unsigned char *version,
unsigned char *unused1,
int bufferSize,

VLS_CALLING_ERROR hostName parameter is NULL.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing the license
operation requests.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

Client Server
Static

Library
DLL

a a a

VLSwhere()

 SentinelLM Programmer’s Reference Manual 113

char *server_names,
int broadcastFlag;

Description Locates and returns information about the license servers.

Returns The status code, LS_SUCCESS, is returned if stand-alone library is used. Other-
wise, it will return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

 Error Handling

The following table summarizes the three error-handling functions:

Argument Description IN/OUT

feature_name Name of the feature. IN

version Version of the feature. IN

unused1 Use any value. IN

bufferSize Specifies the size of the buffer. IN

server_names Space separated list of license server names. OUT

broadcastFlag A three bit flag which guides the behavior of
VLSwhere() in finding the license servers.

IN

VLS_NO_RESPONSE_TO_
BROADCAST

Failed to retrieve computers names on local
subnet.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

Table 3-13: Error-handling Functions

Function Description

VLSerrorHandle() Toggles default error handling on or off.

LSGetMessage() Prints error messages corresponding to specified error
code.

VLSerrorHandle()

114 Chapter 3 - SentinelLM Client API

SentinelLM has built-in responses to most error conditions expected to be
encountered in the field. For a list of types of error conditions detected by
SentinelLM, their descriptions, and the default built-in actions, see “Appendix C
- Error and Result Codes for Client Functions” on page 283. The SentinelLM
client library has a built-in error handler for each type of error listed.

An error handler is a simple function that tries to correct whatever situation
caused the error condition to occur. In most cases, the conditions are difficult to
correct, and the handlers perform some clean-up tasks and display error
messages.

If an error occurs while processing a function call and the default error handlers
are unable to correct the situation, the API functions return an error code after
displaying an appropriate error message. If the built-in error handlers are able to
correct the error-causing condition, the function call returns the success code,
LS_SUCCESS, as if the error never occurred.

VLSerrorHandle()

Turns default error handling on or off.

Syntax LS_STATUS_CODE VLSerrorHandle (int flag);

VLSsetErrorHandler() Registers custom error handlers.

VLSsetUserErrorFile() Configures the display of error messages.

Client Server
Static

Library
DLL

a a a

Argument Description

flag To turn on error handling, use VLS_ON. To turn off error
handling, use VLS_OFF. Default: VLS_ON.

Table 3-13: Error-handling Functions

Function Description

LSGetMessage()

 SentinelLM Programmer’s Reference Manual 115

Description If the value of flag is the constant, VLS_ON, error handling is enabled. If flag is
VLS_OFF, error handling is disabled. When error handlers are not being used,
the client function call returns the status code of the latest error condition. The
caller of the function should therefore check the value returned by the function
before proceeding.

Returns The status code, LS_SUCCESS, is always returned. For a complete list of the
error codes, see “Appendix C - Error and Result Codes for Client Functions” on
page 283.

LSGetMessage()

Prints error messages corresponding to specified error code.

Syntax LS_STATUS_CODE LSGetMessage (
LS_HANDLE lshandle,
LS_STATUS_CODE value,
unsigned char *buffer,
unsigned long bufferSize;

Description Returns in the buffer a text description of the error condition indicated by error
code value, for the feature associated with lshandle. The buffer must be allocated
by the calling function with its size indicated by bufferSize.

Client Server
Static

Library
DLL

a a a

Argument Description

lshandle Handle returned by LSRequest(), VLSrequestExt(), or
VLS_REQUEST.

value Error code.

buffer (out) Buffer to store message.

bufferSize Size of the buffer.

VLSsetErrorHandler()

116 Chapter 3 - SentinelLM Client API

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

VLSsetErrorHandler()

Enables registration of custom error handlers.

Syntax LS_STATUS_CODE VLSsetErrorHandler (
LS_STATUS_CODE (*myErrorHandler)(LS_STATUS_CODE, char *),
LS_STATUS_CODE LSErrorType;

Description In some situations, the default responses may not be suitable. Therefore,
SentinelLM allows custom error handling routines to replace the default
routines. Customized routines should perform actions that are functionally
similar to the defaults.

myErrorHandler must point to the error handling function and adhere to the
prototype outlined below. LSErrorType must indicate the type of the error to be
handled. The SentinelLM default routines continue to handle other errors. The
customized function should accept as input the error code of the condition that
caused it to be called and the name of the feature. The same error-handling
function can be used to handle all error conditions for all features of an

LS_NO_MSG_TEXT buffer is NULL
bufferSize is zero or negative.

Client Server
Static

Library
DLL

a a a

Argument Description

myErrorHandler Pointer to the error-handling function.

LSErrorType Error code to be handled.

VLSsetUserErrorFile

 SentinelLM Programmer’s Reference Manual 117

application, using internal conditional statements. The special target error code,
VLS_EH_SET_ALL, can be used to set up the provided error handler to handle
all errors.

Customized error handlers must adhere to the following prototype:

LS_STATUS_CODE myErrorHandler (
LS_STATUS_CODE errorCode,
char *featureName;

If customized error handlers are used, a client function call will return the value
returned by the error handler if it was the last error handler to be called.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

VLSsetUserErrorFile

Configures the manner in which error messages are displayed.

Syntax typedef enum {
VLS_STDOUT, VLS_STDERR
} VLS_ERR_FILE;

Argument Description

errorCode The error code to be handled.

featureName The name of the feature involved in the error.

VLS_CALLING_ERROR myErrorHandler parameter is NULL
LSErrorType() is an invalid error type.

Client Server
Static

Library
DLL

a a a

VLSsetUserErrorFile

118 Chapter 3 - SentinelLM Client API

LS_STATUS_CODE VLSsetUserErrorFile(
VLS_ERR_FILE msgFile,
char LSFAR *filePath;

Description This function configures the displaying of error messages to the user through the
default error handlers. If you disable the default error handlers, you do not need
to use this function.

Note The default handling of error messages is as follows:

Windows Pop up a Message Box.
UNIX Write to stderr.

You can alter this behavior by providing either a FILE* or a file path, while
keeping the other parameter NULL. If you provide both parameters, preference
will be given to the FILE*.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix C - Error and Result Codes
for Client Functions” on page 283.

 Tracing SentinelLM Operation

Enables tracing of the internal operation of the SentinelLM client library.

Argument Description

msgFile The file to which error messages will be directed.

filePath Full path name of desired error file

VLS_CALLING_ERROR Could not open msgFile.

Client Server
Static

Library
DLL

a a a

VLSsetUserErrorFile

 SentinelLM Programmer’s Reference Manual 119

Syntax LS_STATUS_CODE VLSsetTraceLevel (int traceLevel);

Argument Description

traceLevel The default value of traceLevel is VLS_NO_TRACE. Other
valid values are:

• VLS_TRACE_KEYS

• VLS_TRACE_FUNCTIONS
• VSL_TRACE_ERRORS
• VLS_TRACE_ALL

VLSsetUserErrorFile

 SentinelLM Programmer’s Reference Manual 120

 SentinelLM Programmer’s Reference Manual 121

4Chapter 4 - License Code
Generation API

The License Code Generation Application Programming Interface (API) makes
it possible to generate license codes to authorize use of an application program.
The functions are prototyped in lscgen.h and the implementation is contained in
lscgen32.lib. Use of these files enables you to write your own utility program to
generate license codes. Such programs must be written to run under Win95/98 or
Windows NT.

Programs that do license generation must first allocate an integer handle and a
data structure of type codeT. The handle is used with all other License
Generation functions, and must be initialized before any of those functions can
be called. The codeT data structure is used to pass arguments back and forth
between the program and the different library functions.

A typical sequence of operations to generate a license would look like the
following:

• Be sure that a handle and a codeT data structure have been allocated.

• Call VLScgInitialize() to initialize the handle. This will ensure that the
number of handles has not exceeded the limit, allocate space for internal
data structures, and initialize the error list and error count.

• Call VLScgReset() to install default values into the codeT data
structure. This must be done before setting the values of any of the fields
in the data structure.

• Obtain input from the user that is to be used to define the license code.
The order of input is important since some values will depend on others.
The order of input refers to the Allow and Set functions of code struct.

122 Chapter 4 - License Code Generation API

We suggest you use the Allow function first to check the differential
integrity of the field value, before using the Set function. Please refer to
Table 4-3, “Functions of the Code Struct,” on page 132.

• Call the appropriate VLScgAllowXXX() function for each input to
ensure that its value can be properly included into the license code.

• If the input can be accepted, call the corresponding VLScgSetXXX()
function. This will lock the codeT data structure, install the value in the
designated field, and then unlock the structure.

• If the set function causes an error, call VLScgPrintError() function to
copy the error structure to a specified file.

• After all inputs have been received, call VLScgGenerateLicense() to
create the license string.

• Call VLScgCleanup() to release the handle.

 License Code Generation Functions

Available function calls fall into these categories:

• Basic functions

• Functions which retrieve or print errors

• Functions which set flags and data fields of code struct

• License generation functions

• License meter related functions

 SentinelLM Programmer’s Reference Manual 123

Example:

/**/
/* */
/* Copyright (C) 1999 Rainbow Technologies, Inc. */
/* All Rights Reserved */
/* */
/* This Module contains Proprietary Information of */
/* Rainbow Technologies, Inc and should be treated as *//* Confidential * /
/**/

#include <stdio.h> /* For scanf(), sprintf() etc.*/

#include "lscgen.h" /* For the code generator API.*/

/* The fixed feature name of licenses generated by this example
 * program.
 */
#define VLS_CGENXMPL_FEATURE_NAME "CGENXMPL"

/* Mnemonic used for setting code structure for long codes. */
#define VLS_LONG_CODE_TYPE_STR "1"

/*
 * Utility function to print code generator API errors to
 * stderr.
 * It also calls the code generator library cleanup function on
 * the handle if necessary.
 */
static int VLSPrintErrors (VLScg_HANDLE *iHandle, int retCode)
{
 if (*iHandle != VLScg_INVALID_HANDLE) {
 (void) VLScgPrintError(*iHandle, stderr);
 (void) VLScgCleanup(iHandle);
 }
 return retCode;
} /* VLSPrintErrors() */

/*
 * A simple example to illustrate the use of the code
 * generation API to generate license strings.
 * This is a command line utility that generates license codes

* for a fixed feature name, "CGENXMPL".

124 Chapter 4 - License Code Generation API

 * It prompts the user for the expiration date and then calls
 * the code generator API functions to generate an appropriate
 * license for CGENXMPL.
 * To build this example, compile and then link with the
 * appropriate code generator API library.
 */
int main ()
{
 /* Code generator library handle. */
 VLScg_HANDLE iHandle;

/* Code generator APIs license code structure. */
 codeT licCode;

/* Expiration date information: acquired from user. */
 int expMonthInt, expDayInt, expYearInt;
/* String versions of above for calling code generator API functions.*/
 char expMonth[10], expDay[10], expYear[10];

/* For license string to be returned by code generator API. */
 char *licStr = (char *) NULL;

/* For return codes from code generator API functions. */
 int retCode;

/* Initialize the code generator library. */
 if ((retCode = VLScgInitialize(&iHandle)) != VLScg_SUCCESS) {
 (void) VLSPrintErrors(&iHandle, retCode);
 fprintf(stderr, "\nERROR: Code generator library initialization failed.\n");
 return retCode;
 } /* if (!VLScgInitialize()) */

/* Initialize the license code structure. */
 if ((retCode = VLScgReset(iHandle, &licCode)) !=

VLScg_SUCCESS)
 return VLSPrintErrors(&iHandle, retCode);

/* Specify that we want to generate a long code. */
 if ((retCode = VLScgSetCodeLength(iHandle, &licCode,
 VLS_LONG_CODE_TYPE_STR))
 != VLScg_SUCCESS)
 return VLSPrintErrors(&iHandle, retCode);

/* Set the feature name. */

 SentinelLM Programmer’s Reference Manual 125

 if (VLScgAllowFeatureName(iHandle, &licCode) == 0)
 return VLSPrintErrors(&iHandle, VLScg_FAIL);

if ((retCode = VLScgSetFeatureName(iHandle, &licCode,
 VLS_CGENXMPL_FEATURE_NAME))
 != VLScg_SUCCESS)
 return VLSPrintErrors(&iHandle, retCode);

/*
 * Prompt for and acquire the expiration date from the user.
 */
 printf("License Expiration Month [1-12] : ");
 scanf("%d", &expMonthInt);
 printf("License Expiration Day [1-31] : ");
 scanf("%d", &expDayInt);
 printf("License Expiration Year : ");
 scanf("%d", &expYearInt);
 /* Convert expiration date information to strings. */
 sprintf(expMonth, "%d", expMonthInt);
 sprintf(expDay, "%d", expDayInt);
 sprintf(expYear, "%d", expYearInt);

/* Set the expiration date. */
 if (VLScgAllowLicExpiration(iHandle, &licCode) == 0)
 return VLSPrintErrors(&iHandle, VLScg_FAIL);

if (((retCode = VLScgSetLicExpirationMonth(iHandle, &licCode,
 expMonth))

 != VLScg_SUCCESS) ||
 ((retCode = VLScgSetLicExpirationDay(iHandle, &licCode,

 expDay))
 != VLScg_SUCCESS) ||
 ((retCode = VLScgSetLicExpirationYear(iHandle, &licCode,

 expYear))
 != VLScg_SUCCESS))
 return VLSPrintErrors(&iHandle, retCode);

/* Generate the license: memory for license string is allocated
 * by library. */
 if ((retCode = VLScgGenerateLicense(iHandle, &licCode,

 &licStr))
 != VLScg_SUCCESS)
 return VLSPrintErrors(&iHandle, retCode);

VLScgInitialize()

126 Chapter 4 - License Code Generation API

/* Print out the license string. */
 (void) fprintf(stdout, "%s\n", licStr);

/* Free the license string, which was allocated by VLScgGenerateLicense() */
 free(licStr);

/* Terminate use of code generation library cleanly. */
 (void) VLScgCleanup(&iHandle);

return 0;

} /* main() */

 Basic Functions

The following table summarizes the basic functions for this library:

VLScgInitialize()

Syntax int VLScgInitialize(
VLScg_HANDLE *iHandleP)

Description Required library initialization call. Every API call requires a valid handle. This
function allocates resources required for generating licenses. This function must
be called before using any other VLScgXXX() function.

Table 4-1: Basic Functions

Function Description

VLScgInitialize() Initializes the handle.

VLScgCleanup() Destroys the created handle.

VLScgReset() Resets the structure with default values.

Argument Description

iHandleP The pointer to the instance handle for this library. Provides
access to the internal data structure.

VLScgCleanup()

 SentinelLM Programmer’s Reference Manual 127

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

See Also VLScgCleanup()

VLScgCleanup()

Syntax int VLScgCleanup(
VLScg_HANDLE *iHandleP)

Description This function destroys the handle and its associated resources created by
VLScgInitialize().

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, a
specific error code is returned indicating the reason for failure. For a complete
list of the error codes, see “Appendix D - Error and Result Codes for License
Generation Functions” on page 291.

VLScg_MAX_LIMIT_CROSSED No more handles left.

VLScg_INVALID_HANDLE Call VLScgCleanup() to free the resources
associated with invalid handle.

Argument Description

iHandleP The pointer to the instance handle for this library.

VLScgReset()

128 Chapter 4 - License Code Generation API

VLScgReset()

Syntax int VLScgReset(
VLScg_HANDLE iHandle,
codeT *codeP)

Description This function resets the codeP structure by filling in default values. It must be
called before calling VLScgSetXXX() functions.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, a
specific error code is returned indicating the reason for failure. For a complete
list of the error codes, see “Appendix D - Error and Result Codes for License
Generation Functions” on page 291.

 Functions Which Retrieve or Print Errors

When errors are encountered during execution of License Generation functions,
they are queued to the handle that controls access to the library in use. These
errors may be printed immediately, or allowed to accumulate and flushed at a
later time. The following table summarizes the functions used to retrieve or print
errors:

Argument Description

iHandle The instance handle for this library.

codeP Name of the structure.

Table 4-2: Functions Which Retrieve and Print Errors

Function Description

VLScgGetNumErrors() Retrieves number of error messages recorded.

VLScgGetErrorLength() Retrieves the length of a error message.

VLScgGetErrorMessage() Retrieves the earliest error from the handle.

VLScgPrintError() Spills the error struct to a file.

VLScgGetNumErrors()

 SentinelLM Programmer’s Reference Manual 129

VLScgGetNumErrors()

Syntax int VLScgGetNumErrors(
VLScg_HANDLE *iHandleP,
int numMsgsP)

Description This function retrieves the number of messages queued to the handle and returns
it in numMsgsP.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgGetErrorLength()

Syntax int VLScgGetErrorLength(
VLScg_HANDLE iHandle,
int msgNum,
int errLenP)

Argument Description

iHandleP The pointer to the instance handle for this library.

numMsgsP The number of messages queued to the handle.

VLScg_NO_RESOURCES If no resources are available.

VLScg_FAIL If operation failed.

Argument Description

iHandle The instance handle for this library.

msgNum The number of the message whose length is to be queried.

errLenP The length of the message identified by msgNum.

VLScgGetErrorMessage()

130 Chapter 4 - License Code Generation API

Description This function retrieves the length of message # msgNum recorded in the handle.
It includes the space required for NULL termination.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgGetErrorMessage()

Syntax int VLScgGetErrorMessage(
VLScg_HANDLE iHandle,
char *msgBuf,
int bufLen)

Description This function retrieves the oldest error queued to the handle, and copies a
maximum of bufLen bytes to msgBuf as a null-terminated string. msgBuf is a
user allocated buffer and must be bufLen bytes in length. Upon successful
completion of this function, the message retrieved will have been removed from
the queue.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

VLScg_NO_RESOURCES If no resources are available.

VLScg_FAIL If operation failed.

Argument Description

iHandle The instance handle for this library.

msgBuf A user allocated buffer into which the reference message
will be copied.

bufLen The byte length of the message copied into msgBuf.

VLScg_NO_RESOURCES If no resources are available.

VLScgPrintError()

 SentinelLM Programmer’s Reference Manual 131

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgPrintError()

Syntax int VLScgPrintError(
VLScg_HANDLE iHandle,
FILE *file)

Description This function writes the accumulated errors to the specified file.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScg_FAIL If operation failed.

Argument Description

iHandle The instance handle for this library.

file File pointer.

VLScg_NO_RESOURCES If no resources are available.

VLScg_FAIL If operation failed.

VLScgPrintError()

132 Chapter 4 - License Code Generation API

 Functions for Setting the Fields in Code Struct

The following table summarizes the functions used to set flags and data fields of
the code struct.

Note The sequence of input is very important for the VLScgAllow functions and
VLScgSet functions. You need to use the Allow function first to check the
differential integrity and syntax of the field value, before using the Set
function. The Set function will put it in the correct structure and format.

Table 4-3: Functions of the Code Struct

Function Description

VLScgAllowAdditive()
VLScgSetAdditive()

Sets the license to exclusion or additive.

VLScgSetCodeLength() Sets the license code length.

VLScgSetLicType() Sets the license type.

VLScgAllowHeldLic()
VLScgSetHoldingCrit()

Enables/disables license hold time and
determines where that hold time is specified.

VLScgAllowNetworkFlag()
VLScgAllowStandAloneFlag()
VLScgSetStandAloneFlag()

Sets whether license will be for stand-alone or
network computer.

VLScgAllowSharedLic()
VLScgSetSharedLicType()

Enables shared licenses and sets sharing
criteria.

VLScgAllowTrialLicFeature()
VLScgSetTrialDaysCount()

Sets the number of trial days.

VLScgAllowLockMechanism()
VLScgSetClientLockMechanism()

Sets client’s fingerprint criteria.

VLScgSetServerLock
Mechanism1()

Sets license server primary fingerprint criteria.
Installs license server's fingerprint criteria in
primary lock.

VLScgSetServerLock
Mechanism2()

Sets license server secondary fingerprint criteria.
Installs license server's fingerprint criteria in
secondary lock.

VLScgPrintError()

 SentinelLM Programmer’s Reference Manual 133

VLScgAllowClockTamperFlag()
VLScgSetClockTamperFlag()

Controls action on detection of clock being set
back on the machine.

VLScgAllowOutLicType()
VLScgSetOutLicType()

Sets the license output format.

VLScgAllowLicenseType()
VLScgSetLicenseType()

Controls the license type.

VLScgAllowCodegenVersion()
VLScgSetCodegenVersion()

Sets the version of license codes to generate.
Checks if the current license code setting allows
multiple features.

VLScgAllowRedundantFlag()
VLScgSetRedundantFlag()

Controls whether the license will be used with
redundant license servers.

VLScgAllowMajorityRuleFlag()
VLScgSetMajorityRuleFlag()

Controls whether the majority of redundant
license servers must be running.

VLScgAllowCommuterLicense()
VLScgSetCommuterLicense()

Enables commuter licenses to be checked out.

VLScgAllowLogEncryptLevel()
VLScgSetLogEncryptLevel()

Controls the network license encryption level for
the license server’s usage log file.

VLScgAllowMultiKey()
VLScgSetKeyType()

Controls whether a license will be single or multi-
feature.

VLScgAllowMultipleServerInfo()
VLScgSetNumServers()

Fields for information on various license servers.

VLScgAllowSecrets()
VLScgSetSecrets()
VLScgSetNumSecrets()

Sets the value of the specified challenge-
response secrets.

Sets the total number of secrets for the
challenge-response.

VLScgAllowVendorInfo()
VLScgSetVendorInfo()

Sets vendor-defined information in the license.

VLScgAllowFeatureName()
VLScgSetFeatureName()

Sets the name of the feature to be licensed.

VLScgAllowFeatureVersion()
VLScgSetFeatureVersion()

Sets the version number to be licensed.

Table 4-3: Functions of the Code Struct (Continued)

Function Description

VLScgPrintError()

134 Chapter 4 - License Code Generation API

VLScgAllowLockModeQuery()
VLScgSetClientServerLockMode()

Sets locking mode for the license server
computer. Installs client server lock mode in
codeP.

VLScgAllowServerLockInfo()
VLScgSetServerLockInfo1()

Sets license server primary locking code. Installs
license server lock code in primary lock.

VLScgSetServerLockInfo2() Sets license server secondary locking code.
Installs server lock code in secondary lock.

VLScgAllowClientLockInfo()
VLScgSetClientLockInfo()

Sets the client locking code.

VLScgAllowKeysPerNode()
VLScgSetKeysPerNode()

Sets the number of license tokens per node for
the specified number of clients.

VLScgAllowSiteLic()
VLScgSetSiteLicInfo()

Sets address of subnets licensed application will
be restricted to.

VLScgSetNumSubnets() Sets the number of subnets the licensed
application is restricted to.

VLScgAllowNumFeatures()
VLScgSetNumFeatures()

Sets the number of features.

VLScgSetNumClients() Sets the number of client locking codes to be
specified.

VLScgAllowNumKeys()
VLScgSetNumKeys()

Sets the number of concurrent licenses allowed.

VLScgAllowSoftLimit()
VLScgSetSoftLimit()

Sets soft limit number.

VLScgAllowKeyLifeUnits()
VLScgSetKeyLifetimeUnits()

Sets unit of time used to specify time between
license renewals.

VLScgAllowKeyHoldUnits()
VLScgSetKeyHoldtimeUnits()

Sets units of time to be used to specify license
hold time.

VLScgAllowKeyLifetime()
VLScgSetKeyLifetime()

Sets time between license renewals.

VLScgAllowKeyHoldtime()
VLScgSetKeyHoldtime()

Sets the time a license will be held.

Table 4-3: Functions of the Code Struct (Continued)

Function Description

VLScgAllowAdditive()

 SentinelLM Programmer’s Reference Manual 135

VLScgAllowAdditive()

Syntax int VLScgAllowAdditive(
VLScg_HANDLE iHandle,
codeT *codeP),

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgAllowLicBirth()
VLScgSetLicBirthMonth()

Sets the month of the license start date.

VLScgSetLicBirthDay() Sets the day of the license start date.

VLScgSetLicBirthYear() Sets the year of the license start date.

VLScgAllowLicExpiration()
VLScgSetLicExpirationMonth()

Sets month license expires.

VLScgSetLicExpirationDay() Sets day month the license expires.

VLScgSetLicExpirationYear() Sets the year the license expires.

VLScgAllowShareLimit()
VLScgSetShareLimit()

Sets the number of users that can share a
license.

VLScgSetNumericType() Sets the value of numeric type.

VLScgSetLoadSWLicFile Sets and loads the software license file
(lscgen.lic).

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Table 4-3: Functions of the Code Struct (Continued)

Function Description

VLScgSetAdditive()

136 Chapter 4 - License Code Generation API

VLScgSetAdditive()

Syntax int VLScgSetAdditive(
VLScg_HANDLE iHandle,
codeT *codeP,
char *flag)

Description This function determines how this license will interact with a license already
installed for this feature and version. If a license is defined as exclusive, it will
override an existing license for the same feature and version. If a license is
additive, its number of users licensed for the feature and version is added to an
existing installed license.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgSetCodeLength()

Syntax int VLScgSetCodeLength(
VLScg_HANDLE iHandle,

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag The value of flag indicates whether the license to be
generated is additive/exclusive. The legal values are:

• VLScg_ADDITIVE = “0”
• VLScg_EXCLUSIVE = “1”

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds VLScg_EXCLUSIVE.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than VLScg_ADDITIVE.

VLScgSetCodeLength()

 SentinelLM Programmer’s Reference Manual 137

codeT *codeP,
char *flag)

Description Sets the license code length to short or long.
License codes are 10 characters or longer uppercase alphanumeric or all-numeric
strings. The code generator will generate long, short or short, numeric license
codes.

• Short codes contain less information than the long code and cannot
support certain licensing option. However, they have the advantage of
being easier to generate and easier to communicate to end users.

• Long codes contain as many characters as needed.

• Short, numeric codes generate numeric strings only and requires minimal
information from the user. This code contains the least information.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Flag values are used to set the code_type member of
codeT struct. Legal values are:

• VLScg_SHORT_CODE_STRING = “0”
• VLScg_LONG_CODE_STRING = “1”

• VLScg_SHORT_NUMERIC_CODE = “2”

VLScg_INVALID_INPUT If either codeP or flag are NULL.

VLScg_INVALID _INT_TYPE Value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_SHORT_CODE_STRING.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than
VLScg_LONG_CODE_STRING.

VLScgSetLicType()

138 Chapter 4 - License Code Generation API

VLScgSetLicType()

Syntax int VLScgSetLicType(
VLScg_HANDLE iHandle,
codeT *codeP,
char *lictype)

Description Sets the type of license to either trial or normal.
Trial licenses are relative time-limited licenses that use a trial period of 1 to 120
days. Notice, trial licenses do not start until the first time the application is
executed (as opposed to the time that the application is installed).

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

lictype Set the type of license.
• VLScg_TRIAL_LIC_STRING = “1”

• VLScg_NORMAL_LIC_STRING = “0”

VLScg_INVALID _LIC_TYPE If license type is not valid.

VLScgAllowHeldLic()

 SentinelLM Programmer’s Reference Manual 139

VLScgAllowHeldLic()

Syntax int VLScgAllowHeldLic(
VLScg_HANDLE iHandle,
codeT *codeP)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetHoldingCrit()

Syntax int VLScgSetHoldingCrit(
VLScg_HANDLE iHandle,
codeT *codeP,
char *flag)

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag The flag is used to set the criteria for held licenses.
Values are:

• VLScg_HOLD_NONE_STRING = “0” - Held licenses
not allowed.

• VLScg_HOLD_VENDOR_STRING = “1” - Client API
specifies hold time.

• VLScg_HOLD_CODE_STRING = “2” - License code
specifies hold time.

VLScgAllowStandAloneFlag()

140 Chapter 4 - License Code Generation API

Description This defines the criteria for determining the hold time for a license, and controls
whether or not held licenses are allowed for this feature. Hold time provides a
grace period after the license is released during which only the original license
requestor will be granted the license. Validates and installs the value of the flag
in the license code structure.

Returns The status code, VLScg_SUCCESS, is returned if successful Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowStandAloneFlag()

Syntax int VLScgAllowStandAloneFlag(
VLScg_HANDLE iHandle,
codeT *codeP)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_HOLD_CODE_STRING.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than
VLScg_HOLD_NONE_STRING.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

VLScgAllowNetworkFlag()

 SentinelLM Programmer’s Reference Manual 141

VLScgAllowNetworkFlag()

Syntax int VLScgAllowNetworkFlag(VLScg_HANDLE
iHandle,
codeT *codeP)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetStandAloneFlag()

Syntax int VLScgSetStandAloneFlag(
VLScg_HANDLE iHandle,
codeT *codeP,
char *flag)

Description Sets whether license will be for stand-alone or network computer.
Stand-alone and network applications cannot be used interchangeably.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Flag values are used to set the standalone_flag of codeT
struct. Legal values are:

• VLScg_NETWORK_STRING = “0”
• VLScg_STANDALONE_STRING = “1”

VLScgAllowSharedLic()

142 Chapter 4 - License Code Generation API

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowSharedLic()

Syntax int VLScgAllowSharedLic(
VLScg_HANDLE iHandle,
codeT *codeP)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetSharedLicType()

Syntax int VLScgSetSharedLicType(
VLScg_HANDLE iHandle,

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_STANDALONE_STRING.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than
VLScg_NETWORK_STRING.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

VLScgSetSharedLicType()

 SentinelLM Programmer’s Reference Manual 143

codeT *codeP,
char *flag)

Description The concept of shared license is only applicable to network licenses. If sharing is
enabled a user can use multiple instances of a protected application without
consuming more than one license. Call this function enables sharing and also
sets which criteria to use to determine eligibility of the user to share a license
already granted to an existing user: user name, x-display ID, host name, or
vendor-defined.

Sharing allows multiple copies of your application to run at the same time
without using more than one license.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag This flag enables shared licenses and specifies the sharing
criteria. Legal values are:

• VLScg_NO_SHARING_STRING = “0”
• VLScg_USER_SHARING_STRING = “1”

• VLScg_HOSTNAME_SHARING_STRING = “2”
• VLScg_XDISPLAY_SHARING_STRING = “3”
• VLScg_VENDOR_SHARING_STRING = “4” -

Vendor defined / customized. Need to customize the
client library for this.

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_VENDOR_SHARING_STRING.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than
VLScg_NO_SHARING_STRING.

VLScgAllowTrialLicFeature()

144 Chapter 4 - License Code Generation API

VLScgAllowTrialLicFeature()

Syntax int VLScgAllowTrialLicFeature(
VLScg_HANDLE iHandle,
codeT *codeP)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetTrialDaysCount()

Syntax int VLScgSetTrialDaysCount(
VLScg_HANDLE iHandle,
codeT *codeP, char*daysStr

Description Sets the number of trial days to the count specified by the daysStr parameter.
The count string defines a window of time during which the application can run
after the first time the license is requested.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, a
specific error code is returned indicating the reason for failure. For a complete

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

daysStr String representing the number of days to use in a trial
period.

VLScgAllowLockMechanism()

 SentinelLM Programmer’s Reference Manual 145

list of the error codes, see “Appendix D - Error and Result Codes for License
Generation Functions” on page 291.

VLScgAllowLockMechanism()

Syntax int VLScgAllowLockMechanism(
VLScg_HANDLE iHandle,
codeT *codeP)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetClientLockMechanism()

Syntax int VLScgSetClientLockMechanism(
VLScg_HANDLE iHandle,
codeT *codeP,
char *criterion,
int client_num)

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

criterion Mask defining which fields of machineID are to be used for
locking. Value should be in hex format.

client_num Number identifying the client for whom the lock is to be set.

VLScgSetServerLockMechanism1()

146 Chapter 4 - License Code Generation API

Description Installs a client’s fingerprint criteria in the code structure. A fingerprint is
computed by selecting operating characteristics of the host system and forming a
mask with bits set corresponding to those characteristics. The different
fingerprinting elements are defined in the VLScg_LOCK_ section of lscgen.h,
and includes criteria such as ID Prom, IP address, disk ID, etc.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgSetServerLockMechanism1()

Syntax int VLScgSetServerLockMechanism1(
VLScg_HANDLE iHandle,
codeT *codeP,
char *criterion,
int server)

Description This function sets the criteria for the primary license server. Installs a license
server’s primary fingerprint criteria in the code structure. A fingerprint is
computed by selecting operating characteristics of the host system and forming a
mask with bits set corresponding to those characteristics. The different
fingerprinting elements are defined in the VLScg_LOCK_ section of lscgen.h,

VLScg_INVALID_HEX_TYPE If value is not in hexadecimal format.

VLScg_EXCEEDS_MAX_VALUE If value is too large.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than minimum.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

criterion The lock code to install. Value should be in hex format.

server Number of license servers.

VLScgSetServerLockMechanism2()

 SentinelLM Programmer’s Reference Manual 147

and includes criteria such as ID Prom, IP address, disk ID, etc. A license server
can be locked to either of two groups of fingerprints. The second group will be
tried if the first licensed fingerprint group fails to match the license server’s
fingerprint at the end-user site.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgSetServerLockMechanism2()

Syntax int VLScgSetServerLockMechanism2(
VLScg_HANDLE iHandle,
codeT *codeP,
char *criterion
int server)

Description This function sets the criteria for the secondary license server. Installs a license
server’s secondary fingerprint criteria in the code structure. A fingerprint is
computed by selecting operating characteristics of the host system and forming a
mask with bits set corresponding to those characteristics. The different
fingerprinting elements are defined in the VLScg_LOCK_ section of lscgen.h,
and includes criteria such as ID Prom, IP address, disk ID, etc. A license server

VLScg_INVALID_HEX_TYPE if criterion is not in hexadecimal format.

VLScg_EXCEEDS_MAX_VALUE if client_num is too large.

VLScg_LESS_THAN_MIN_VALUE if the client_num is lower than minimum.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

criterion The lock code to install (in hex).

server Number of license servers.

VLScgAllowClockTamperFlag()

148 Chapter 4 - License Code Generation API

can be locked to either of two groups of fingerprints. The second group will be
tried if the first licensed fingerprint group fails to match the license server’s
fingerprint at the end-user site.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowClockTamperFlag()

Syntax int VLScgAllowClockTamperFlag(
VLScg_HANDLE iHandle,
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetClockTamperFlag()

Syntax int VLScgSetClockTamperFlag(
VLScg_HANDLE iHandle,

VLScg_INVALID_HEX_TYPE If criterion is not in hexadecimal format.

VLScg_EXCEEDS_MAX_VALUE If server is too large.

VLScg_LESS_THAN_MIN_VALUE If the server is lower than minimum.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

VLScgSetClockTamperFlag()

 SentinelLM Programmer’s Reference Manual 149

codeT *codeP,
char *flag,)

Description Controls action on detection of clock being set back on the machine.
Clock tamper check will only be done when the license server starts up, but the
license server will not exit on detection of tampering. Only those license strings
that specify they want the check will be denied if tampering is detected. Other
features will continue to be served by the license server. Even if someone sets
the clock back after starting the license server, and then dynamically adds a
tamper-sensitive license string, the license server will detect it and throw the
license string out. When the license server accepts a license string at start-up but
detects later that the clock has been set back, it does not grant a license for the
feature until the clock is reset to its correct value.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Valid values are:
• VLScg_NO_CHECK_TAMPER_STRING - Do not

check clock tamper = “0”
• VLScg_CHECK_TAMPER_STRING - Check clock

tamper = “1”

VLScg_INVALID_INT_TYPE If value is not a decimal number.

VLScg_INVALID_RANGE If value is not in the range allowed.

VLScgAllowOutLicType()

150 Chapter 4 - License Code Generation API

VLScgAllowOutLicType()

Syntax int VLScgAllowOutLicType(
VLScg_HANDLE iHandle,
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetOutLicType()

Syntax int VLScgSetOutLicType(
VLScg_HANDLE iHandle,
codeT *codeP,
char *flag,)

Description Controls the type of license string generated. License output formats can be:
encrypted, expanded readable, and concise readable.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Valid values are:
• VLScg_ENCRYPTED_STRING = “0”

• VLScg_EXPANDED_READABLE_STRING = “1”
• VLScg_CONCISE_READABLE_STRING = “2”

VLScgAllowLicenseType()

 SentinelLM Programmer’s Reference Manual 151

The license code contains all of the information that defines the license
agreement between you and your customer: how many users can run the
application at a time, whether the license will expire after a specific number of
days, whether the application can only run on a specific computer, and so on.
Encrypted license strings contain this information about the license agreement,
but cannot be read by your customers.

Concise readable license codes store information about the provisions of a
licensing agreement in readable form, such as plain text with white spaces so
that it is easily read (and understood) by the user.

The expanded readable license string, a string is appended to the numeric values
to specify what that numeric value stands for, e.g., 60_MINS implies that 60
specifies the time in minutes. These strings do not appear in the concise format,
only a 60 appears in the concise readable license string, as opposed to 60_MINS
in the expandable readable format.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowLicenseType()

Syntax int VLScgAllowLicenseType(VLScg_HANDLE
iHandle,
codeT *codeP,)

VLScg_INVALID_INT_TYPE If value is not a decimal number.

VLScg_INVALID_RANGE If value is not in the range allowed.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

VLScgSetLicenseType()

152 Chapter 4 - License Code Generation API

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetLicenseType()

Syntax int VLScgSetLicenseType(VLScg_HANDLE
iHandle,
codeT *codeP, char *flag,)

Description Controls the license type for non-trial and trial licenses.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Flag is used to set the code_type member of codeT struct.
The values are:

• VLScg_NORMAL_LIC_STRING - Non-trial license =
“0”

• VLScg_TRIAL_LIC_STRING - Trial license = “1”

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_TRIAL_LIC_STRING.

VLScg_LESS_THAN_MIN_VALUE If value is lower than
VLScg_NORMAL_LIC_STRING.

VLScgAllowCodegenVersion()

 SentinelLM Programmer’s Reference Manual 153

VLScgAllowCodegenVersion()

Syntax int VLScgAllowCodegenVersion(VLScg_HANDLE
iHandle,
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetCodegenVersion()

Syntax int VLScgSetCodegenVersion(VLScg_HANDLE
iHandle,
codeT *codeP, char*flag

Description Sets the version of license codes to generate. Checks if the current license code
setting allow multiple features.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Sets the possible values for version_num flag.

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScgAllowRedundantFlag()

154 Chapter 4 - License Code Generation API

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowRedundantFlag()

Syntax int VLScgAllowRedundantFlag(VLScg_HANDLE
iHandle,
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetRedundantFlag()

Syntax int VLScgSetRedundantFlag(VLScg_HANDLE
iHandle,
codeT *codeP, char *flag,)

VLScg_EXCEEDS_MAX_VALUE If value exceeds
MAX_CODEGEN_VERSION.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

VLScgAllowMajorityRuleFlag()

 SentinelLM Programmer’s Reference Manual 155

Description Controls whether the license will be used with redundant license servers.
Redundancy allows the total number of licenses to remain available to the
enterprise even if one or more license servers fail. License balancing allows the
developer’s end user to set up an initial distribution of license tokens among
different sites. The SentinelLM license servers will automatically adjust the
distribution of the licenses to match the actual usage pattern of the license tokens
across the enterprise.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowMajorityRuleFlag()

Syntax int VLScgAllowMajorityRuleFlag(VLScg_HANDLE
iHandle,
codeT *codeP,)

flag Valid values are:

• VLScg_NON_REDUNDANT_CODE_STRING -
Non-redundant license = “0”

• VLScg_REDUNDANT_CODE_STRING -
Redundant license = “1”

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_REDUNDANT_CODE_STRING.

VLScg_LESS_THAN_MIN_VALUE If value is less than
VLScg_NON_REDUNDANT_CODE_

STRING.

Argument Description

iHandle The instance handle for this library.

Argument Description

VLScgSetMajorityRuleFlag()

156 Chapter 4 - License Code Generation API

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetMajorityRuleFlag()

Syntax int VLScgSetMajorityRuleFlag(VLScg_HANDLE
iHandle,
codeT *codeP, char *flag,)

Description Controls whether the majority of redundant license servers must be running.
If the number of redundant license servers running is less than half of the number
of license servers specified in the license file, then all servers will stop servicing
all old and new clients. For example, if 7 redundant license servers are specified,
at least 4 of them must be running to satisfy the majority rule.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Valid values are:
• VLScg_MAJORITY_RULE_FOLLOWS_STRING -

Sets the majority_rule_flag = “1”
• VLScg_MAJORITY_RULE_NOT_FOLLOWS_

STRING - Unset the majority_rule_flag = “0”

VLScg_INVALID_INT_TYPE If value is not numeric.

Argument Description

VLScgAllowCommuterLicense()

 SentinelLM Programmer’s Reference Manual 157

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowCommuterLicense()

Syntax int VLScgAllowCommuterLicense(VLScg_HANDLE
iHandle,
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetCommuterLicense()

Syntax int VLScgSetCommuterLicense(VLScg_HANDLE
iHandle,
codeT *codeP, char *flag,)

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_MAJORITY_RULE_FOLLOWS_
STRING.

VLScg_LESS_THAN_MIN_VALUE If value is lower than
VLScg_MAJORITY_RULE_NOT_FOLLOW
S_STRING.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

VLScgAllowLogEncryptLevel()

158 Chapter 4 - License Code Generation API

Description Enables commuter licenses.

This function is used to generate keys for traveling clients. Commuter licensing
allows end users to “check out” a license from a network served license group
and “check it in” when they are done using the license.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowLogEncryptLevel()

Syntax int VLScgAllowLogEncryptLevel(VLScg_HANDLE
iHandle,
codeT *codeP,)

flag Valid values are:

• VLScg_NOT_ISSUE_COMMUTER_CODES_
STRING = “0”

• VLScg_ISSUE_COMMUTER_LICENSE_CODE_

STRING = “1”

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_ISSUE_COMMUTER_CODES_
STRING.

VLScg_LESS_THAN_MIN_VALUE If value is lower than
VLScg_NOT_ISSUE_COMMUTER_
CODES_STRING.

Argument Description

iHandle The instance handle for this library.

Argument Description

VLScgSetLogEncryptLevel()

 SentinelLM Programmer’s Reference Manual 159

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetLogEncryptLevel()

Syntax int VLScgSetLogEncryptLevel(VLScg_HANDLE
iHandle,
codeT *codeP, char *flag,)

Description Controls the encryption level to the network licenses for the license server’s
usage log file.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Allowed value are:
• “0”
• “1”

• “2”
• “3”
• “4”

VLScg_INVALID_INT_TYPE if value is not a decimal number.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_MAX_ENCRYPTION_LEVEL.

Argument Description

VLScgAllowMultiKey()

160 Chapter 4 - License Code Generation API

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowMultiKey()

Syntax int VLScgAllowMultiKey(VLScg_HANDLE
iHandle,T
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetKeyType()

Syntax int VLScgSetKeyType(VLScg_HANDLE
iHandle,
codeT *codeP, char *flag,)

VLScg_LESS_THAN_MIN_VALUE If value is lower than
VLScg_NO_ENCRYPTION.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Flag used to set the code_type member of codeT struct.
The values are:

• VLScg_SINGLE_KEY_STRING = “0”
• VLScg_MULTI_KEY_STRING = “1”

VLScgAllowMultipleServerInfo()

 SentinelLM Programmer’s Reference Manual 161

Description Controls whether a license will be single or multi-feature license code types.

Single Feature: Predefined short, numeric license codes where the license code
is for a single feature. Notice, if you select Predefined-Single Feature, the
Feature name must be no more than 2 numeric digits. Most of the attributes are
already defined for you and cannot be modified.

Multi Feature: Predefined, short numeric license types where multiple features
(value between 2 - 11) can be placed into a single license code. Notice, if you
select Predefined-Multi Feature, the Feature name must be no more than 2
numeric digits. Most of the attributes are already defined for you and cannot be
modified.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowMultipleServerInfo()

Syntax int VLScgAllowMultipleServerInfo(VLScg_HANDLE
iHandle,
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the

VLScg_INVALID_INT_TYPE If value is not a decimal number.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_MULTI_KEY_STRING.

VLScg_LESS_THAN_MIN_VALUE If value is lower than
VLScg_SINGLE_KEY_STRING.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

VLScgAllowSecrets()

162 Chapter 4 - License Code Generation API

corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgAllowSecrets()

Syntax int VLScgAllowSecrets(
VLScg_HANDLE iHandle,
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetSecrets()

Syntax int VLScgSetSecrets(
VLScg_HANDLE iHandle,
codeT *codeP,
char *valu,
int num,

Description Sets the value of the specified challenge-response secrets.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

valu Any printable ASCII text.

num Number of secrets: should be from 0 to num_secrets -1.

VLScgSetNumSecrets()

 SentinelLM Programmer’s Reference Manual 163

Both the application and the license contain data known as secrets. When an
application wishes to challenge, it generates a random text string, which is
passed as the challenge value to the license server. In response to this challenge
value, the license server examines the software license to determine the secret
and computes the corresponding answer. The result is then passed back to the
client application as the response to the challenge.

The purpose of the challenge is to verify that there is a valid license present.
Even a tampered license server cannot respond correctly to the challenge.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgSetNumSecrets()

Syntax int VLScgSetNumSecrets(
VLScg_HANDLE iHandle,
codeT *codeP,
char *valu,)

Description Sets the total number of secrets for the challenge-response mechanism.
Up to seven secret text strings can be specified, each up to twelve characters
long. The secrets are encrypted within the license itself, with only the license

VLScg_INVALID_CHARACTERS If string is not valid.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than minimum.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

valu This value sets the number of secrets.

VLScgAllowVendorInfo()

164 Chapter 4 - License Code Generation API

server knowing how to decrypt the secrets. The license server will then compute
an authentication response when challenged by a client to confirm its identity.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowVendorInfo()

Syntax int VLScgAllowVendorInfo
VLScg_HANDLE iHandle,
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetVendorInfo()

Syntax int VLScgSetVendorInfo(
VLScg_HANDLE iHandle,

VLScg_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_MAX_NUM_SECRETS.

VLScg_LESS_THAN_MIN_VALUE If value is lower than 0.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

VLScgAllowFeatureName()

 SentinelLM Programmer’s Reference Manual 165

codeT *codeP,
char *info,)

Description Sets vendor-defined information in the license. Supported only for long license
codes.

Any piece of information can be encoded into a license code. The information
can be retrieved later through a client library function call. This capability is
useful for keeping track of distributors or implementing a variety of licensing
schemes.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowFeatureName()

Syntax int VLScgAllowFeatureName(
VLScg_HANDLE iHandle,
codeT *codeP,)

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Any printable ASCII text except #. Maximum of 98
characters.

VLScg_INVALID_CHARS If string is not valid.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than minimum.

Argument Description

iHandle The instance handle for this library.

VLScgSetFeatureName()

166 Chapter 4 - License Code Generation API

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetFeatureName()

Syntax int VLScgSetFeatureName(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info,)

Description A feature name can represent a single executable file, multiple executable files,
or a portion (a function) of an executable file. A feature name may be a
maximum of 11 ASCII characters for short license codes and a maximum of 24
for long license codes and two for short, numeric license codes and multi-feature
license codes.

Notice, all applications must have a name by which they will be identified.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Any printable ASCII text except #.

VLScg_NO_FEATURE_NAME If the name is NULL.

VLScg_RESERV_STR_ERROR If the string is a reserved string.

VLScg_INVALID_CHARS If the string characters are not printable.

Argument Description

VLScgAllowFeatureVersion()

 SentinelLM Programmer’s Reference Manual 167

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowFeatureVersion()

Syntax int VLScgAllowFeatureVersion
VLScg_HANDLE iHandle,
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetFeatureVersion()

Syntax int VLScgSetFeatureVersion(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info,)

Description Version number is optional. Not supported for short license codes.

VLScg_EXCEEDS_MAX_VALUE If value exceeds 21.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Any printable ASCII text except #. Maximum of 11
characters.

VLScgAllowLockModeQuery()

168 Chapter 4 - License Code Generation API

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowLockModeQuery()

Syntax int VLScgAllowLockModeQuery(
VLScg_HANDLE iHandle,
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetClientServerLockMode()

Syntax int VLScgSetClientServerLockMode(
VLScg_HANDLE iHandle,

VLScg_RESERV_STR_ERROR If the string is a reserved string.

VLScg_INVALID_CHARS If the string characters are not printable.

VLScg_EXCEEDS_MAX_VALUE If string exceeds maximum number of
characters.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

VLScgSetClientServerLockMode()

 SentinelLM Programmer’s Reference Manual 169

codeT *codeP,
char *flag,)

Description Sets whether license server is locked, clients and license server are both locked,
only clients are locked, or neither license server nor clients are locked. Validates
the value of flag and installs it in the license code structure.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag The flag values are:
• VLScg_FLOATING_STRING - License server is

locked = “0”
• VLScg_BOTH_NODE_LOCKED_STRING - Clients

and license server are locked = “1”
• VLScg_DEMO_MODE_STRING - Trial license (no

locking) = “2”
• VLScg_CLIENT_NODE_LOCKED_STRING - Only

clients are locked = “3”

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than minimum.

VLScgAllowServerLockInfo()

170 Chapter 4 - License Code Generation API

VLScgAllowServerLockInfo()

Syntax int VLScgAllowServerLockInfo(
VLScg_HANDLE iHandle,
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetServerLockInfo1()

Syntax int VLScgSetServerLockInfo1(
VLScg_HANDLE iHandle,
codeT *codeP,
char *lockCode,
int num,),

Description Installs the value of lockCode in the code structure field server_lock_info1[num]
to set the primary locking code.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

lockCode The lock code to be checked and set. Lock code should be
an 8-character hex string (32-bit numeric locking code),
optionally preceded by “0x.”

num Position in server_lock_info1 where lockCode is stored
starting from codeP to num_server_1.

VLScgSetServerLockInfo2()

 SentinelLM Programmer’s Reference Manual 171

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgSetServerLockInfo2()

Syntax int VLScgSetServerLockInfo2(
VLScg_HANDLE iHandle,
codeT *codeP,
char *lockCode,
int num,),

Description Installs the value of lockCode in the code structure field server_lock_info2[num]
to set the secondary locking code.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_HEX_TYPE If value is not in hexadecimal format.

VLScg_EXCEEDS_MAX_VALUE If value exceeds the maximum number of
license servers.

VLScg_LESS_THAN_MIN_VALUE If the value is less than minimum number of
license servers.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

lockCode The lock code to be checked and set. Lock code should be
an 8-character hex string (32-bit numeric locking code),
optionally preceded by “0x.”

num Position in server_lock_info2 where lockCode is stored
starting from codeP to num_server_1.

VLScg_INVALID_HEX_TYPE If value is not in hexadecimal format.

VLScgAllowClientLockInfo()

172 Chapter 4 - License Code Generation API

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowClientLockInfo()

Syntax int VLScgAllowClientLockInfo(
VLScg_HANDLE iHandle,
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetClientLockInfo()

Syntax int VLScgSetClientLockInfo(
VLScg_HANDLE iHandle,
codeT *codeP,
char *lockCode,
int num,)

VLScg_EXCEEDS_MAX_VALUE If value is too large.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than minimum.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

lockCode This buffer is used to set the lock code information for
clients.

VLScgAllowKeysPerNode()

 SentinelLM Programmer’s Reference Manual 173

Description Sets the client locking code.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowKeysPerNode()

Syntax int VLScgAllowKeysPerNode(
VLScg_HANDLE iHandle,
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

num Number of clients: should be from 0 to maximum number
of clients specified -1.

VLScg_INVALID_HEX_TYPE If value is not in hexadecimal format.

VLScg_EXCEEDS_MAX_VALUE If number is greater than num_nl_clients -1.
Number of node locked clients.

VLScg_LESS_THAN_MIN_VALUE If number is less than 0.

VLScg_INVALID_IP_TYPE If value is not in dot format.

VLScg_UNKNOWN_LOCK If the locking criteria is unknown.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

VLScgSetKeysPerNode()

174 Chapter 4 - License Code Generation API

VLScgSetKeysPerNode()

Syntax int VLScgSetKeysPerNode(
VLScg_HANDLE iHandle,
codeT *codeP,
char *keys,
int num,)

Description This function sets the number of keys per node for the specified number of
clients.

For each client locked and client&server locked node, the number of copies
running on each computer is controlled. This is an extra per-host restriction in
addition to the overall number of licenses.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

keys Used to set the number of keys per node. Give any
decimal value. Should be from 0. Give NOLIMITSTR for no
limit.

num Number of clients: should be from 0 to the maximum
number of clients -1.

VLScg_INVALID_INT_TYPE If number is not a non-negative integer.

VLScg_EXCEEDS_MAX_VALUE If number exceeds num_nl_clients -1.

VLScg_LESS_THAN_MIN_VALUE If number is less than 0.

VLScgAllowSiteLic()

 SentinelLM Programmer’s Reference Manual 175

VLScgAllowSiteLic()

Syntax int VLScgAllowSiteLic(
VLScg_HANDLE iHandle,
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetSiteLicInfo()

Syntax int VLScgSetSiteLicInfo(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info,
int num,)

Description Sets subnet address. See VLScgSetNumSubnets().
Specifies the number of subnets used for site licensing.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Set the subnet address. You can use wildcards (e.g.,
.123..28) to specify a range.

num Subnet number, from 0 to codeP to num_subnet_1.

VLScgSetNumSubnets()

176 Chapter 4 - License Code Generation API

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgSetNumSubnets()

Syntax int VLScgSetNumSubnets(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info,)

Description Sets the number of subnets the licensed application can run on. To set actual site
addresses, use VLScgSetSiteLicInfo*().

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScg_INVALID_RANGE If value is not in the range allowed and if
value is not a valid character.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Sets the number of subnets: should be from 1 to
VLScg_MAX_NUM_SUBNETS 0 is a special value which
means no site licensing.

VLScg_INVALID_INT_TYPE If input is not a non-negative integer.

VLScg_EXCEEDS_MAX_VALUE If num is greater than codeP to
num_subnets.

VLScg_LESS_THAN_MIN_VALUE If num is less than 0.

VLScgAllowNumFeatures()

 SentinelLM Programmer’s Reference Manual 177

VLScgAllowNumFeatures()

Syntax int VLScgAllowNumFeatures(
VLScg_HANDLE iHandle,
codeT *codeP,) ,

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetNumFeatures()

Syntax int VLScgSetNumFeatures(
VLScg_HANDLE iHandle,
codeT *codeP,
char *flag,)

Description Sets the number of features.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

flag Sets the flag for number of features in case of multi-
feature.

VLScg_INVALID_INT_TYPE If input is not a decimal number.

VLScgSetNumClients()

178 Chapter 4 - License Code Generation API

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgSetNumClients()

Syntax int VLScgSetNumClients(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info,)

Description Applications can be locked to specific client computers using locking codes that
uniquely identify those computers.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_MAX_NUM_FEATURES.

VLScg_LESS_THAN_MIN_VALUE If value is lower than
VLScg_MIN_NUM_FEATURES.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Number of client locking codes to be specified.

VLScg_INVALID_INT_TYPE If input is not a non-negative integer.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum number of
clients.

VLScg_LESS_THAN_MIN_VALUE If value is less than 1.

VLScgAllowNumKeys()

 SentinelLM Programmer’s Reference Manual 179

VLScgAllowNumKeys()

Syntax int VLScgAllowNumKeys(
VLScg_HANDLE iHandle,
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetNumKeys()

Syntax int VLScgSetNumKeys(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info, intnum,)

Description Sets the number of concurrent licenses allowed. (Network license only.)

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Sets the number of concurrent licenses: should be from 0
to NOLIMITSTR for no limit.

num Should be 0 in case of single feature and from 0 to
"no_of_features -1" in case of multi-feature.

VLScgAllowSoftLimit()

180 Chapter 4 - License Code Generation API

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowSoftLimit()

Syntax int VLScgAllowSoftLimit(
VLScg_HANDLE iHandle,
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetSoftLimit()

Syntax int VLScgSetSoftLimit(
VLScg_HANDLE iHandle,

VLScg_INVALID_INT_TYPE If value is not a non-negative integer.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum number of keys
allowed. Maximum value for long codes is
32767 and maximum value for short codes
is 255.

VLScg_LESS_THAN_MIN_VALUE If value is less than 0.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

VLScgAllowKeyLifeUnits()

 SentinelLM Programmer’s Reference Manual 181

codeT *codeP,
char *info,)

Description The soft limit number defines a threshold at which a warning can be issued that
the maximum number of licenses is being approached. Must be less than the
maximum number of users (the hard limit).

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowKeyLifeUnits()

Syntax int VLScgAllowKeyLifeUnits(
VLScg_HANDLE iHandle,
codeT *codeP,)

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Sets soft limit: should be from 0 to NOLIMITSTR for no
limit. NOLIMSTR is not allowed if the license is a commuter
license.

VLScg_INVALID_INT_TYPE If information is not a non-negative integer.

VLScg_EXCEEDS_MAX_VALUE If information exceeds maximum number of
keys allowed. Maximum value for long
codes is 32767 and maximum value for
short codes is 255.

VLScg_LESS_THAN_MIN_VALUE If information is less than 0 nor num is less
than 0.

Argument Description

iHandle The instance handle for this library.

VLScgSetKeyLifetimeUnits()

182 Chapter 4 - License Code Generation API

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetKeyLifetimeUnits()

Syntax int VLScgSetKeyLifetimeUnits(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info,)

Description This function specifies the units of time used to specify the time between
renewals. A license must be renewed by the application on a regular schedule or
the license will be reclaimed. See VLScgSetKeyLifetime().

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Lifetime specification units of keys: from 0 to 3. The values
are:

• “0” - Multiple of 1 minute(s), maximum 15 minutes.

• “1” - Multiple of 10 minute(s), maximum 150
minutes.

• “2” - Multiple of 30 minute(s), maximum 450
minutes.

• “3” - Multiple of 60 minute(s), maximum 900
minutes.

Argument Description

VLScgAllowKeyHoldUnits()

 SentinelLM Programmer’s Reference Manual 183

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowKeyHoldUnits()

Syntax int VLScgAllowKeyHoldUnits(
VLScg_HANDLE iHandle,
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetKeyHoldtimeUnits()

Syntax int VLScgSetKeyHoldtimeUnits(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info,)

VLScg_INVALID_INT_TYPE If information is a non-negative integer.

VLScg_EXCEEDS_MAX_VALUE If value exceeds 3.

VLScg_LESS_THAN_MIN_VALUE If value is less than 0.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

VLScgAllowKeyLifetime()

184 Chapter 4 - License Code Generation API

Description Network licenses may be held for a time when released by a specific user.
During that time only the original requestor of the license can be granted the
license again. This function sets the units of time used to specify the hold time.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowKeyLifetime()

Syntax int VLScgAllowKeyLifetime(
VLScg_HANDLE iHandle,
codeT *codeP,)

codeP The pointer to the codeT struct.

info Hold time specification units of keys: from 0 to 3. The
values are:

• “0” - Multiple of 1 minute(s), maximum 15 minutes

• “1” - Multiple of 10 minute(s), maximum 150
minutes.

• “2” - Multiple of 30 minute(s), maximum 450
minutes.

• “3” - Multiple of 60 minute(s), maximum 900
minutes.

VLScg_INVALID_INT_TYPE If value is not a non-negative integer.

VLScg_EXCEEDS_MAX_VALUE If value exceeds 3.

VLScg_LESS_THAN_MIN_VALUE If value is less than 0.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

VLScgSetKeyLifetime()

 SentinelLM Programmer’s Reference Manual 185

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetKeyLifetime()

Syntax int VLScgSetKeyLifetime(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info,)

Description A license must be renewed by the application on a regular schedule or the license
will be reclaimed. This function specifies the number of minutes between
renewals. Maximum and granularity depends on
VLScgSetKeyLifetimeUnits().

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Absolute value in minutes of license lifetime. Maximum
depends on lifetime units set by
VLScgSetKeyLifetimeUnits().

VLScg_INVALID_INT_TYPE If value is not a non-negative integer.

VLScg_NOT_MULTIPLE If value is not a correct multiple.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum key lifetime.

VLScg_LESS_THAN_MIN_VALUE If value is less than 1.

VLScgAllowKeyHoldtime()

186 Chapter 4 - License Code Generation API

VLScgAllowKeyHoldtime()

Syntax int VLScgAllowKeyHoldtime(
VLScg_HANDLE iHandle,
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetKeyHoldtime()

Syntax int VLScgSetKeyHoldtime(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info,)

Description Network licenses may be held for a time when released by a specific user.
During that time only that user can reclaim the license. This function specifies
the hold time. This function sets the value codeP->key_holdtime to the value of
info and performs small checks to validate user input.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Absolute values in minutes. Maximum depends on units
set by VLScgSetKeyHoldtimeUnits(). NOLIMITSTR for
infinite hold time.

VLScgAllowLicBirth()

 SentinelLM Programmer’s Reference Manual 187

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowLicBirth()

Syntax int VLScgAllowLicBirth(
VLScg_HANDLE iHandle,
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetLicBirthMonth()

Syntax int VLScgSetLicBirthMonth(
VLScg_HANDLE iHandle,

VLScg_INVALID_INT_TYPE If value is not a non-negative integer.

VLScg_NOT_MULTIPLE If value is not a correct multiple.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum allowed hold
time.

VLScg_LESS_THAN_MIN_VALUE If value is less than 0.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

VLScgSetLicBirthDay()

188 Chapter 4 - License Code Generation API

codeT *codeP,
char *info,)

Description Sets the month of the license start date. Not applicable if year is infinite.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgSetLicBirthDay()

Sets the day of the license start date.

Syntax int VLScgSetLicBirthDay(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info,)

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Sets the month of year to 1-12 or Jan-Dec.

VLScg_INVALID_CHARACTERS If not a valid string.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum allowed month
(exceeds 12).

VLScg_LESS_THAN_MIN_VALUE If value is less than 1.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Sets the day of the month (1-31).

VLScgSetLicBirthYear()

 SentinelLM Programmer’s Reference Manual 189

Description Sets the day of the license start date. Not applicable if year has been set to
infinite.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgSetLicBirthYear()

Syntax int VLScgSetLicBirthYear(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info,)

Description Sets the year of the license start date. Not applicable if year is infinite.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not a non-negative integer.

VLScg_INVALID_DATE If value is not valid for the month.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum allowed day.

VLScg_LESS_THAN_MIN_VALUE If value is less than 1.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Enter year in 4 digits (e.g., 1999) to avoid year 2000
problem.

VLScg_INVALID_INT_TYPE If value is not a non-negative integer.

VLScg_INVALID_YEAR If year is invalid.

VLScg_INVALID_BIRTH_YEAR If year is too early.

VLScgAllowLicExpiration()

190 Chapter 4 - License Code Generation API

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgAllowLicExpiration()

Syntax int VLScgAllowLicExpiration(
VLScg_HANDLE iHandle,
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetLicExpirationMonth()

Syntax int VLScgSetLicExpirationMonth(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info,)

Description Sets month of date license expires. Not applicable if year is infinite.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum allowed year.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Sets the month of year: 1-12 or Jan-Dec.

VLScgSetLicExpirationDay()

 SentinelLM Programmer’s Reference Manual 191

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgSetLicExpirationDay()

Syntax int VLScgSetLicExpirationDay(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info,)

Description Sets the day of the month of the date on which the license expires. No need to set
if the year is infinite.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_CHARACTERS If not a valid string.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum allowed month
(exceeds 12).

VLScg_LESS_THAN_MIN_VALUE If value is less than 1.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Sets the day of the month: 1-31.

VLScg_INVALID_INT_TYPE If value is not a non-negative integer.

VLScg_INVALID_DATE If value is not valid for the month.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum allowed day.

VLScg_LESS_THAN_MIN_VALUE If value is less than 1.

VLScgSetLicExpirationYear()

192 Chapter 4 - License Code Generation API

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgSetLicExpirationYear()

Syntax int VLScgSetLicExpirationYear(
VLScg_HANDLE iHandle,
codeT *codeP,
char *info,)

Description Sets the year of the date that the license expires.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

info Enter year in 4 digits (e.g., 1999) to avoid year 2000
problem. NEVERSTRING for infinite.

VLScg_INVALID_INT_TYPE If value is not a non-negative integer.

VLScg_INVALID_YEAR If year is invalid.

VLScg_INVALID_DEATH_YEAR If year is too early.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum allowed year.

VLScgAllowShareLimit()

 SentinelLM Programmer’s Reference Manual 193

VLScgAllowShareLimit()

Syntax int VLScgAllowShareLimit(
VLScg_HANDLE iHandle,
codeT *codeP,)

Returns The VLScgSetXXX() function tests whether the corresponding
VLScgSetXXX() should be called. If VLScgAllowXXX() returns 1 then the
corresponding VLScgSetXXX() function can be called. Otherwise, it will return
0 as false.

VLScgSetShareLimit()

Syntax int VLScgSetShareLimit(
VLScg_HANDLE iHandle,
codeT *codeP,
char *decimalNUM,)

Description If sharing is set, multiple users or a single user using multiple instances of your
application, can share a license.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

decimalNUM Controls the number of users/clients who can share a
single license. Use a decimal numeric value setting to
control the number of users that can share a license.
NOLIMITSTR for unlimited.

VLScgSetNumericType()

194 Chapter 4 - License Code Generation API

This function restricts the number of clients who can share a license. The
decimalNUM limit forces the issue of a new license, when the sharing limit has
been reached for a particular license.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgSetNumericType()

Syntax int VlScgSetNumericType(
VLScg_HANDLE iHandle,
codeT *codeP, intnum,)

Description Sets the value of numeric type.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than minimum.

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

num Numeric type values are:

• VLScg_NUMERIC_UNKNOWN = “0”
• VLScg_NOT_NUMERIC = “1”
• VLScg_MISC_SHORT_NUMERIC = “2”

• VLScg_MISC_NUMERIC = “3”

VLScg_EXCEEDS _MAX_VALUE Value exceeds the maximum value of 3.

VLScgSetLoadSWLicFile()

 SentinelLM Programmer’s Reference Manual 195

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgSetLoadSWLicFile()

Syntax int VLScgSetLoadSWLicFile(
VLScg_HANDLE iHandle,
char *filename,

Description Sets and loads the sofware license file (lscgen.lic).

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, a
specific error codes is returned indicating the reason for failure. For a complete
list of the error codes, see “Appendix D - Error and Result Codes for License
Generation Functions” on page 291.

 License Generation Functions

The following table summarizes the license generation functions:

VLScg_LESS_THAN_MIN_VALUE If value is less than 0.

VLScg_INVALID_INT_TYPE If the value is not a non-negative integer.

Argument Description

iHandle The instance handle for this library.

filename Complete name and path of sw license file.

Table 4-4: License Generation Functions

VLScgGenerateLicense() Generates the license string.

VLScgDecodeLicense() Decodes the license string.

VLScgGenerateLicense()

196 Chapter 4 - License Code Generation API

VLScgGenerateLicense()

Syntax int VLScgGenerateLicense(
VLScg_HANDLE iHandle,
codeT *codeP,
char *result,)

Description This function generates the license string for the given codeT struct. It should be
called after all the VLScgSet() functions are called. Memory allocation and free
for codeT are the responsibilities of the caller of function.

Memory allocation for the license string is handled by this function. Its address
is to be passed by the caller of this function in the second argument.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

VLScgDecodeLicense()

Syntax int VLScgDecodeLicense(
VLScg_HANDLE iHandle,
char *AnyLicenseString,
char *lic_string,

Argument Description

iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

result Address of pointer pointing to generated license string.

VLScg_INVALID_VENDOR_CODE If vendor identification is illegal.

VLScg_VENDOR_ENCRYPTION_FAIL If vendor-customized encryption fails.

VLScgDecodeLicense()

 SentinelLM Programmer’s Reference Manual 197

int lic_string_length,
codeT *codeP,)

Description This function decodes the license string AnyLicenseString and puts the
corresponding codeT struct in the last argument. Pointer to codeT struct is to be
passed as the last argument. This pointer will contain the codeT corresponding to
AnyString. This function takes care of all memory allocations it uses.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

 License Meter Related Functions

The following table summarizes the license meter related functions:

Argument Description

iHandle The instance handle for this library.

AnyLicenseString User provided license string to be decoded.

lic_string User allocated buffer to receive decoded license string.

lic_string_length Length of decoded license string returned.

codeP Pointing to codeT containing input license string.

VLScg_INVALID_VENDOR_CODE If vendor identification is illegal.

VLScg_VENDOR_ENCRYPTION_FAIL If vendor-customized encryption fails.

Table 4-5: License Meter Related Functions

VLScgGetLicenseMeterUnits() Returns the number of license generation units.

VLScgGetTrialLicenseMeter
Units()

Returns the number of trial license generation
units.

VLScgGetLicenseMeterUnits()

198 Chapter 4 - License Code Generation API

VLScgGetLicenseMeterUnits()

Syntax int VLScgGetLicenseMeterUnits(
VLScg_HANDLE iHandle,
long *initialUnitsP,
long *unitsLeftP) intcodegen_version,)

Description Returns the number of license generation units available in the attached license
meter key.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions” on page 291.

On platforms that do not support hardware keys, the function returns V_FAIL.

Argument Description

iHandle The instance handle for this library.

initialUnitsP The number of units that were initially available.

unitsLeftP The number of units remaining.

codegen_version Version of the code generator (7 for SentinelLM 7.x).

VLScg_LICMETER_EXCEPTION Unknown value in accessing the license
meter.

VLScg_LICMETER_ACCESS_ERROR Error accessing the license meter.

VLScg_LICMETER_CORRUPT License meter is corrupted.

VLScg_LICMETER_VERSION_

MISMATCH

License meter has an invalid version.

VLScgGetTrialLicenseMeterUnits()

 SentinelLM Programmer’s Reference Manual 199

VLScgGetTrialLicenseMeterUnits()

Syntax int VLScgGetTrialLicenseMeterUnits(
VLScg_HANDLE iHandle,
int units, intcodegen_version)

Description Returns the number of trial license generation units available in the attached
license meter.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, a
specific error code is returned indicating the reason for failure. For a complete
list of the error codes, see “Appendix D - Error and Result Codes for License
Generation Functions” on page 291.

 Trial License Related Functions

The following table summarizes the trial license related functions:

VLSgetTrialPeriodLeft()

Syntax int VLSgetTrialPeriodLeft(
unsigned char *feature_name,
unsigned char *version unsigned long

Argument Description

iHandle The instance handle for this library.

units The number of licenses available.

codegen_version Version of the code generator (7 for SentinelLM 7.x).

Table 4-6: Trial License Related Functions

VLSgetTrialPeriodLeft() Returns the remaining time left in a trial
license.

VLSgetTrialPeriodLeft()

200 Chapter 4 - License Code Generation API

*trialperiod unsigned char
LSFAR *unused1,)

Description Returns the remaining time left in a trial license. The usage period for trial
licenses does not begin until the application is first executed, i.e., not when the
application is installed.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, a
specific error code is returned indicating the reason for failure. For a complete
list of the error codes, see “Appendix D - Error and Result Codes for License
Generation Functions” on page 291.

Argument Description

feature_name Name of the feature.

version Version of the feature. Must be unique.

trialperiod Number of seconds left in the trial license. Points to integer
in the trialperiod parameter.

unused1 Uses NULL as the value.

 SentinelLM Programmer’s Reference Manual 201

5Chapter 5 - Redundancy API

Redundancy allows the total number of licenses to remain available to the
enterprise even if one or more license servers fail. For example, if an end user
has a 100-user license (100 tokens), the administrator can disperse the license
load to three license servers in different segments (these could be across the
world). License Server One will have 30, License Server Two will have 30, and
License Server Three will have 40. If any license server fails, the license tokens
it is serving will be taken over by the remaining license servers. With this type of
architecture, a single network segment will not have to handle the load of the
entire network traffic.

For information on setting up and using redundant license servers, please see the
SentinelLM Developer’s Guide.

The following table summarizes the redundancy functions:

Table 5-1: Redundancy Functions

Function Description

VLSaddFeature() Dynamically adds licensing information about a
feature into the license server’s internal tables. If
licensing information for this feature and version
already exists in the license server’s tables, it
may be overwritten with the new information.
Feature is not permanently added to the license
server when the license server is shutdown and
restarted.

VLSaddFeatureExt() Adds a license dynamically.

VLSaddFeatureToFile() Dynamically adds licensing information to the
license server’s internal tables and normal or
redundant license file.

VLSaddFeatureToFileExt() Writes a license dynamically.

202 Chapter 5 - Redundancy API

VLSaddServerToPool() Sends a request to add a new license server into
the pool. This API will actually modify the license
structure in order to add the given license server
to the pool.

VLSchangeDistbCrit() Changes license token distribution criteria on
license servers in the redundant license server
pool.

VLSdelServerFromPool() Requests to remove a license server’s name
from the pool. This API will actually modify the
license redundant file in order to delete the given
license server from the pool.

VLSdiscoverExt() Returns the license server characteristic
information, which has the keys for a particular
specified feature and version. The client can
decide a license server preference on some
criteria

VLSgetDistbCrit() Returns the current token distribution status for
the given license feature and version.

VLSgetDistbCritToFile() Requests the license server to provide current
token distribution status for the given license
feature and version or for all features or version
(wild card characters are acceptable). Writes the
distribution to a file.

VLSgetHostName() Takes the IP address as input and tries to
resolve it into the hostName, if possible.

VLSgetHostAddress() Accepts hostName as input and tries to resolve it
into IP or IPX address, if possible.

VLSgetFeatureInfoToFile() Requests the license server to provide
information for the given license feature and
version.

VLSgetLeaderServerName() Returns the current leader license server’s name
by contacting any license server. The license
server to be contacted is selected by
VLSgetServerName() call. So a license
server’s name must be set before a call is made
to this function.

Table 5-1: Redundancy Functions

Function Description

VLSaddFeature()

 SentinelLM Programmer’s Reference Manual 203

VLSaddFeature()

Syntax int VLSaddFeature (
unsigned char LSFAR *licenseStr,
unsigned char LSFAR *unused1,
LS_CHALLENGE LSFAR *unused2

Description Dynamically adds licensing information about a feature into the license server
and adds the license code to the license server’s internal tables. If licensing
information for this feature and version already exists in the license server’s
tables, it may be overwritten with the new information contained in licenseStr.
Notice, feature is not permanently added to the license server when the license
server is shutdown and restarted.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

VLSgetLicSharingServerList() Returns the license server’s names, which are
sharing tokens for a given feature name and
version. The server_name_list will contain
license server names (hostNames or IPX
addresses).

Argument Description

licenseStr The license string that will be added.

unused1 Should be NULL.

unused2 Should be NULL.

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

LS_NO_SUCCESS licenseString is NULL

Table 5-1: Redundancy Functions

Function Description

VLSaddFeatureExt()

204 Chapter 5 - Redundancy API

For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

VLSaddFeatureExt()

Syntax int VLSaddFeatureExt (
unsigned char LSFAR *licenseString,
unsigned char LSFAR *DistCritString unsigned char

VLS_ADD_LIC_FAILED Generic error indicating the feature has not
been added.

VLS_BAD_DISTB_CRIT Invalid distribution criteria.

VLS_CLK_TAMP_FOUND License server has determined that the
client’s system clock has been modified.
The license for this feature has time-
tampering protection enabled, so the
license operation is denied.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing the license
operation requests.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE License server has not been set and is
unable to determine which license server to
use.

VLS_BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLSaddFeatureExt()

 SentinelLM Programmer’s Reference Manual 205

LSFAR *unused1
LS_CHALLENGE LSFAR *unused2

Description Adds a license dynamically to the license server.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

licenseString The license string that will be added.

DistCritString Distribution criteria string. The string will allocate the
license to another license server, if the main license server
is locked.

unused1 Should be NULL.

unused2 Should be NULL>

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

LS_NO_SUCCESS licenseString is NULL

VLS_ADD_LIC_FAILED Generic error indicating the feature has not
been added.

VLS_BAD_DISTB_CRIT Invalid distribution criteria.

VLS_CLK_TAMP_FOUND License server has determined that the
client’s system clock has been modified.
The license for this feature has time-
tampering protection enabled, so the
license operation is denied.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing the license
operation requests.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLSaddFeatureToFile()

206 Chapter 5 - Redundancy API

For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

VLSaddFeatureToFile()

Syntax int VLSaddFeatureToFile (
unsigned char LSFAR *licenseString, unsigned char
LSFAR *unused1 unsigned charLSFAR *unused3
unsigned char LSFAR *unused3

Description Writes a license dynamically to either the redundant license file or normal
license file. Notice, feature is permanently added to the license server when the
license server is shutdown and restarted.

VLS_NO_SERVER_FILE License server has not been set and is
unable to determine which license server to
use.

VLS_BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

Argument Description

licenseString The license_string character.

unused1 Should be NULL.

unused2 Should be NULL.

unused3 Should be NULL.

VLSaddFeatureToFile()

 SentinelLM Programmer’s Reference Manual 207

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

LS_NO_SUCCESS licenseString is NULL.

VLS_ADD_LIC_FAILED Generic error indicating that the feature has
not been added.

VLS_BAD_DISTB_CRIT Invalid distribution criteria.

VLS_CLK_TAMP_FOUND License server has determined that the
client’s system clock has been modified.
The license for this feature has time-
tampering protection enabled, so the
license operation is denied.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing the license
operation requests.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_NO_SERVER_FILE License server has not been set and is
unable to determine which license server to
use.

VLS_BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLSaddServerToPool()

208 Chapter 5 - Redundancy API

VLSaddServerToPool()

Syntax int VLSaddServerToPool (
char LSFAR *server_name, char LSFAR
*server_addr,

Description Will send a request to add a new license server into the pool. This API will
actually modify the license server redundant license file in order to add the given
license server to the pool.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

server_name Name of the license server to add to the pool.

server_addr IP or IPX address of the license server.

VLS_CALLING_ERROR server_name is NULL

server_address is NULL
challenge argument is non-NULL, but
cannot be understood.
Using stand-alone library. This function
cannot be used with stand-alone library.

LS_NO_SUCCESS Generic error indicating that the license
server could not be added to the pool.

VLS_ADD_LIC_FAILED Generic error indicating the feature has not
been added.

VLS_NON_REDUNDANT_SRVR License server is non-redundant and
therefore cannot support this redundancy-
related operation.

VLS_SERVER_ALREADY_PRESENT Attempted to add a license server that is
already in the pool.

VLS_POOL_FULL Pool already has maximum number of
license servers. No more license servers
can be added.

VLSchangeDistbCrit()

 SentinelLM Programmer’s Reference Manual 209

For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

VLSchangeDistbCrit()

Syntax int VLSchangeDistbCrit (
char LSFAR *feature_name, charLSFAR
*version charLSFAR
*dist_crit

Description Requests to change the distribution criteria for the given license feature and
version.

VLS_BAD_HOSTNAME hostName is not valid.

VLS_NOT_AUTHORIZED Invalid user.

VLS_SERVER_SYNC_IN_PROGRESS License server synchronization in process.

VLS_CONF_FILE_ERROR Error in configuration file.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing the license
operation requests.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

Argument Description

feature_name Name of the feature.

version Version of the feature. Must be unique.

dist_crit Dist_crit consists of the names of license server, which will
have licenses for the given feature_name and version. The
dist_crit string must be null-terminated.

VLSdelServerFromPool()

210 Chapter 5 - Redundancy API

Returns The status code, LS_SUCCESS, is returned if successful.Otherwise, it will
return the following error codes:

For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

VLSdelServerFromPool()

Syntax int VLSdelServerFromPool(
char LSFAR *server_name, char LSFAR
*server_name,

Description Will request to remove a license server’s name from the pool of redundant
license servers. This API will actually modify the redundant license file in order
to delete the given license server from the pool.

LS_BAD_DIST_CRIT Change dist_crit and allocate some keys to
the deleted license server.

LS_NON_REDUNDANT_SERVER_
CONTACTED

LSHOST is set to a non-redundant license
server.

LS_BAD_PARAMETER License server’s name is NULL or an empty
string.

LS_NO_AUTHORIZATION License server does not recognize this
feature name.

LS_NO_SUCH_FEATURE Feature_version is non-existent.

LS_UNRESOLVED_SERVER_NAME License server’s name cannot be resolved.

LS_MSG_TO_LEADER The request has been sent to the leader
license server.

Argument Description

server_name Name of the license server to delete from the pool.

server_addr IP or IPX address of license server.

VLSdelServerFromPool()

 SentinelLM Programmer’s Reference Manual 211

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR server_name is NULL
server_address is NULL
challenge argument in non-NULL, but
cannot be understood.
Using stand-alone library. This function
cannot be used with stand-alone library.

LS_NO_SUCCESS Generic error indicating that the license
server could not be deleted from the pool

VLS_NON_REDUNDANT_SRVR License server is non-redundant and
therefore cannot support this redundancy-
related operation.

VLS_SERVER_NOT_PRESENT Attempted to delete a license server that is
not in the pool.

VLS_ONLY_SERVER Cannot remove the last license server from
the pool.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing the license
operation requests.

VLS_BAD_HOSTNAME hostName is not valid.

VLS_NOT_AUTHORIZED Invalid user,

VLS_SERVER_SYNC_IN_PROGRESS License server synchronization in process.

VLS_CONF_FILE_ERROR Error in configuration file.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLSdiscoverExt()

212 Chapter 5 - Redundancy API

For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

VLSdiscoverExt()

Syntax int VLSdiscoverExt(
unsigned char LSFAR *feature name,
unsigned char LSFAR *version
unsigned char LSFAR *unused1 int
*num_servers VLSdiscoverInfo*discoverInfo
int *option_Flag int
*sharing_crit char LSFAR *vendor_list

Argument Description

feature_name Name of the feature.

version Version of the feature. Must be unique.

unused1 Should be NULL.

num_servers Number of license servers for which discoverInfo array is
allocated.

discoverInfo The core function that receives the broadcast message,
splits and puts the license server’s name in array format.
VLSdiscoverInfo() struct that will contain requested
information.

VLSdiscoverExt()

 SentinelLM Programmer’s Reference Manual 213

option_Flag The option flag is allowed to be logically ORed with other
flags. However, this flag will have first priority.
Valid flags are:

• LS_BAD_PARAMETER - License server’s name is
NULL or an empty string.

• LS_SERVER_DOES_NOT_EXIST - Named license
server does not exist.

• LS_LEADER_NOT_KNOWN - Leader name is not
known.

• LS_NON_REDUNDANT_SERVER_CONTACTED -
Sets LSHOST to non-redundant license server.

• LS_UNRESOLVED_SERVER_NAME - License
server’s name is not resolvable.

• VLS_CALLING_ERROR - License server’s name is
NULL or an empty string.

• VLS_SERVER_ALREADY_PRESENT - License
server’s name already exists in the redundant
license server pool.

• VLS_LEADER_NOT_PRESENT - Leader name is
not known.

• VLS_NON_REDUNDANT_SRVER - Sets LSHOST
to non-redundant license server.

• VLS_ONLY_SERVER - Only one server remained in
the pool.

sharing_crit The license server will match client’s internal information
with the keys it is already granted. Values are:

• VLScg_NO_SHARING
• VLScg_USER_SHARING

• VLScg_HOSTNAME_SHARING
• VLScg_XDISPLAY_SHARING
• VLScg_VENDOR_SHARING

vendor_list Consists of server names. These license serves will be
contacted. The names of all the license servers that have
licenses for specified feature_name and version will be
returned in vendor_list in the same order as in the original
(before the call) vendor_list.

Argument Description

VLSdiscoverExt()

214 Chapter 5 - Redundancy API

Description Returns the license server characteristic information of the license server which
has the license tokens for a specified feature and version. The client can specify
a license server preference based on some criteria.

Each license server that is contacted will determine if it has a license that
matches the requested feature name and version. If found, the license server will
then notify the client with the following information:

• Protocol supported

• Total number of clients connected to the license server

• Server IP address

• Number of units/tokens available

• Whether this client has already been granted a license for the feature and
version (based on sharing_crit)

Returns The status code, LS_SUCCESS, is returned if stand-alone library is used.
Otherwise, it will return the following error codes:

VLS_CALLING_ERROR num_servers is less than or equal to zero.

VLS_NO_RESPONSE_TO_
BROADCAST

License servers have not responded.

LS_NO_SUCCESS Generic error indicating the license server’s
characteristic information could not be
retrieved.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLS_DISC_NO_USERLIST Do not check the host list specified by the
user. By default, it first records
LSFORCEHOST environment variable. If
LSFORCEHOST does not exist, it reads the
file LSHOST/lshost.

VLSgetDistbCrit()

 SentinelLM Programmer’s Reference Manual 215

For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

VLSgetDistbCrit()

Syntax int VLSgetDistbCrit (
char *feature_name, char
*feature_version char *dist_crit
int distcrit_buflen

VLS_DISC_RET_ON_FIRST If the combined query list is NULL, it returns
as soon as it is contacted by the license
server and returns the license servers’
name in server_list. Otherwise, it returns
when it is contacted by the license server
the names listed in the combined query list.
In this case, it returns, in server_list, that
particular default, if this option is not
specified. VLSdiscover() returns all the
license servers which responded.

VLS_DSC_PRIORITIZER_LIST Treat the combined query list as a
prioritized one, left most being the highest
priority host. It returns, in server_list, license
servers sorted in the order of priority host. It
returns, in server_list, license servers
sorted in the order of priority. If this option is
not specified, the combined query list is
treated as random.

VLS_DISC_REDUNDANT_ONLY Expecting reply only from redundant license
servers. All non-redundant license servers
will ignore the message.

VLS_DISC_DEFAULT_OPTIONS This flag is a combination of the
aforementioned flag. Use it if you are not
sure which flag you want to specify.

Argument Description

feature_name Name of the feature.

feature_version Version of the feature. Must be unique.

VLSgetDistbCrit()

 SentinelLM Programmer’s Reference Manual 216

Description Returns the current token distribution status for the given license feature and
version.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

dist_crit Dist_crit consists of the names of license server, which
have licenses for the given feature_name and version. The
dist_crit string must be null-terminated.

distcrit_buflen Size of memory allocated for dist_crit.

VLS_CALLING_ERROR feature_name is NULL
version is NULL

dist_crit is NULL
dist_crit_len is zero or negative
challenge argument is non-NULL, but
cannot be understood.
Using stand-alone library. This function
cannot be used with stand-alone library.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature.

LS_BUFFER_TOO_SMALL dist_crit buffer not large enough to store
information.

VLS_NON_REDUNDANT_SRVR License server is non-redundant and
therefore cannot support this redundancy-
related operation.

VLS_FEATURE_INACTIVE Feature is inactive on specified license
server.

VLS_SERVER_SYNC_IN_PROGRESS License server synchronization in process.

VLS_NON_REDUNDANT_FEATURE Feature is non-redundant and thus cannot
be used in this redundancy-related
operation.

VLS_DIFF_LIB_VER Version mismatch between license server
API and client API.

Argument Description

VLSgetDistbCritToFile()

 SentinelLM Programmer’s Reference Manual 217

For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

VLSgetDistbCritToFile()

Syntax int VLSgetDistbCritToFile (
char LSFAR *feature_name,
char LSFAR *feature_version char
LSFAR *file_name

Description Requests the license server to provide current token distribution status for the
given license feature and version, or for all features, or for all versions, or for all
features and all versions (wild card characters are acceptable).

VLS_VENDORIDMISMATCH The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has a license.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing the license
operation requests.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

Argument Description

feature_name Name of the feature.

feature_version Version of the feature.

file_name License server will write distribution criteria for the
specified feature or version to the file.

VLSgetDistbCritToFile()

 SentinelLM Programmer’s Reference Manual 218

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR feature_name is NULL
file_name is NULL.
Using stand-alone library. This function
cannot be used with stand-alone library.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature.

VLS_FILE_OPEN_ERROR An error occurred opening the file.

VLS_NON_REDUNDANT_SRVR License server is non-redundant and
therefore cannot support this redundancy-
related operation.

VLS_NON_REDUNDANT_FEATURE Feature is non-redundant and thus cannot
be used in this redundancy-related
operation.

VLS_DIFF_LIB_VER Version mismatch between license server
API and client API.

VLS_SERVER_SYNC_IN_PROGRESS License server synchronization process.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_BAD_SERVER_MESSAGE Message returned by license server could
not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

LS_BAD_PARAMETER License server’s name is NULL or an empty
string.

LS_BUFFER_TOO_SMALL Buffer provided is too small.

LS_NO_SUCH_FEATURE feature_version is non-existent.

LS_NON_REDUNDANT_SERVER_
CONTACTED

LSHOST is set to non-redundant license
server.

VLSgetFeatureInfoToFile()

 SentinelLM Programmer’s Reference Manual 219

For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

VLSgetFeatureInfoToFile()

Syntax int VLSgetFeatureInfoToFile (
unsigned char LSFAR *feature_name,
unsigned char LSFAR *version char
LSFAR *file_name

Description Requests the license server to provide all feature information for the given
license to file_name. Wild cards are acceptable.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR License server’s name is NULL or an empty
string.

VLS_SERVER_ALREADY_PRESENT License server’s name already exists in the
redundant license server pool.

VLS_LEADER_NOT_PRESENT Leader name is not known.

VLS_NON_REDUNDANT_SRVR Sets LSHOST to non-redundant license
server.

Argument Description

feature_name Name of the feature.

version Version of the feature. Must be unique.

file_name License server will write distribution criteria for the
specified feature or version to the file.

VLS_CALLING_ERROR file_name is NULL
feature_name is NULL.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature.

VLSgetHostName()

220 Chapter 5 - Redundancy API

For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

VLSgetHostName()

Syntax int VLSgetHostName (
char LSFAR *IP_address,
char LSFAR *hostname int
HostNameBufLen

Description Will take the IP address as input and try to resolve it into the hostName, if
possible.

VLS_NON_REDUNDANT_SRVR License server is non-redundant and
therefore cannot support this redundancy-
related operation.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing the license
operation requests.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

Argument Description

IP_address IP addresses to be converted to hostname

hostname IP address to be converted to hostname

HostNameBufLen The length of the message copied into hostname.

VLSgetLeaderServerName()

 SentinelLM Programmer’s Reference Manual 221

Returns The status code, LS_SUCCESS, is returned if successful.Otherwise, it will
return the following error codes:

For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

VLSgetLeaderServerName()

Syntax int VLSgetLeaderServerName (
char LSFAR *leader_name,)

Description Returns the current lead license server’s name by contacting any license server.
The license server to be contacted is selected by VLSgetServerName() call. So
a license server’s name must be set before a call is made to this function.

VLS_CALLING_ERROR IP_address is NULL
hostName is NULL
hostNameBufLen is NULL

Using stand-alone library. This function
cannot be used with stand-alone library.

VLS_INVALID_IP_ADDRESS IP_address is not valid.

VLS_UNRESOLVED_IP_ADDRESS IP_address is valid, but could not be
resolved.

LS_BUFFER_TOO_SMALL Length of hostName returned exceeds
hostNameBufLen.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

Argument Description

leader_name Current lead license server’s name.

Return types:
• 0 = Success. Found leader license server name.
• 1 = Contact license server is not a redundant license

server.
• 2 = Other error.

VLSgetLeaderServerName()

222 Chapter 5 - Redundancy API

Returns The status code, LS_SUCCESS, is returned if successful.Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR leader_name is NULL
leadername_len is NULL.

LS_BUFFER_TOO_SMALL leadername_len is smaller than the license
server name that will be returned.

VLS_NON_REDUNDANT_SRVR License server is non-redundant and
therefore cannot support this redundancy-
related operation.

VLS_LEADER_NOT_PRESENT Unknown leader.

VLS_SERVER_SYNC_IN_PROGRESS License server synchronization in process.

VLS_NON_REDUNDANT_FEATURE Feature is non-redundant and thus cannot
be used in this redundancy-related
operation.

VLS_DIFF_LIB_VER Version mismatch between license server
API and client API.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing the license
operation requests.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing license operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

LS_UNRESOLVED_IP_ADDRESS IP address given is not correct.

LS_BAD_PARAMETER License server’s name is NULL or an empty
string.

LS_BUFFER_TOO_SMALL Buffer provided is too small.

VLS_CALLING_ERROR License server’s name is NULL or an empty
string.

VLS_SERVER_ALREADY_PRESENT License server’s name already exists in the
redundant license server pool.

VLSgetHostAddress()

 SentinelLM Programmer’s Reference Manual 223

For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

VLSgetHostAddress()

Syntax int VLSgetHostAddress (
char LSFAR *hostname, charLSFAR
*IP_AddressBuf intIPAddrBufLen

Description Will take hostName as input and tries to resolve it into IP address, if possible.

Returns The status code, LS_SUCCESS, is returned if successful.Otherwise, it will
return the following error codes:

For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

VLS_LEADER_NOT_PRESENT Leader name is not known.

VLS_NON_REDUNDANT_SRVR Sets LSHOST to non-redundant license
server.

Argument Description

hostname The host name of the computer containing the license
server that is using the log file.

IP_AddressBuf Pointer to the IP address buffer.

IPAddrBufLen The length of the message copied into IP_AddressBuff.

VLS_CALLING_ERROR IPaddressBuf is NULL
IPAddrBufLen is NULL.
Using stand-alone library. This function
cannot be used with stand-alone library.

VLS_UNRESOLVED_HOSTNAME IP_address is valid, but could not be
resolved.
IPX protocol is current.

VLSgetLicSharingServerList()

224 Chapter 5 - Redundancy API

VLSgetLicSharingServerList()

Syntax int VLSgetLicSharingServerList (
char LSFAR *feature_name,
char LSFAR *feature_version
SHR_SRVR_TYPE *server_list
int LSFAR *server_list_len int*num_servers

Description Returns the license server names which are sharing tokens for a given feature
name and version. The server_name_list will contain license server names
(hostNames or IPX addresses).

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

feature_name Name of the feature.

feature_version Version of the feature.

server_list A list that contains the license server’s names (hostNames
or IPX addresses).

server_list_len License server will retrieve all the license servers names. If
the list is larger than the specified limit, it will be truncated.

num_servers Identifies the number of license servers.

VLS_CALLING_ERROR feature_name is NULL
feature_version is NULL

server_list is NULL
server_list_len is zero.

LS_BUFFER_TOO_SMALL server_list_len is smaller than license
server name that will be returned.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches the requested feature.

VLS_FEATURE_INACTIVE Feature is inactive on specified license
server.

VLS_SERVER_SYNC_IN_PROGRESS License server synchronization in process.

VLSgetLicSharingServerList()

 SentinelLM Programmer’s Reference Manual 225

For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

VLS_NON_REDUNDANT_FEATURE Feature is non-redundant and thus cannot
be used in this redundancy-related
operation.

VLS_DIFF_LIB_VER Version mismatch between license server
API and client API.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing the license
operation requests.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing license operation.

LS_UNRESOLVED_HOSTNAME Host name given is not correct.

LS_BAD_PARAMETER License server’s name is NULL or an empty
string.

LS_BUFFER_TOO_SMALL Buffer provided is too small.

VLS_CALLING_ERROR License server’s name is NULL or an empty
string.

VLS_SERVER_ALREADY_PRESENT License server’s name already exists in the
redundant license server pool.

VLS_LEADER_NOT_PRESENT Leader name is not known.

VLS_NON_REDUNDANT_SRVR Sets LSHOST to non-redundant license
server.

VLSgetLicSharingServerList()

226 Chapter 5 - Redundancy API

 SentinelLM Programmer’s Reference Manual 227

4Chapter 6 - License Queuing
API

License queuing is the ability of our license servers to take a license request for a
feature and place it in reserve until a license is available. Once the license is
available, the license server will then notify the requesting application that the
license is now ready for use.

 License Queuing Example Code

The following sample is for illustration purposes only. For a working sample
application, please refer to qbounce.c in the samples directory.

/**/
/* */
/* Copyright (C) 1999 Rainbow Technologies, Inc. */
/* All Rights Reserved */
/* */
/* This Module contains Proprietary Information of */
/* Rainbow Technologies, Inc and should be treated as *//* Confidential
*/
/**/

#include "lserv.h"

Static LS_Handle ls_handle;

/* Prototype of timer handler function */
void TimerHandler ();

int main(argc, argv)

228 Chapter 6 - License Queuing API

int argc;
char **argv;

{
char feature_name [] = "My Application";
char version_name [] = "1.0";
LS_STATUS_CODE returnCode = 0;
int number_of_units_requested = 1;
VLSqueuePreference queue_preference;
int request_flag

if (VLS_INITIALIZE()) { /* Initialize the LS API */
return (1);

}

request_flag = VLS_REQ_GET | VLS_REQ_QUEUE;

/* Stay in queue at most 30 minutes */
queue_preference.wait_time = 1800;

/* Once license available for this client, reserve it
for 5 minutes */

queue_preference.hold_time = 600;

queue_preference.priority_num = 1; */ Not used */

/* Don’t queue me if there are 5 or more entries
on the queue */

queue_preference.absPosition = 5;

/* Don’t queue me if there are 2 or more entries from my
reservation group on the queue */

queue_preference.grpPosition = 2;

/* Request key from SentinelLM license manager */
returnCode =

VLSqueuedRequest
(LS_ANY,

(unsigned char LSFAR *) "SentinelLM User",
(unsigned char LSFAR *) feature_name,
(unsigned char LSFAR *) version_name,
&number_of_units_requested,

 SentinelLM Programmer’s Reference Manual 229

(unsigned char LSFAR *) NULL,
(LS_CHALLENGE LSFAR *) NULL,
&ls_handle,
&queue_preference,

&request_flag);

if (returnCode == LS_SUCCESS)
{

if (request_flag & VLS_REQ_GET)
{

/* License was available, run the application! */

}
else if (request_flag & VLS_REQ_QUEUE)
{

/* Was placed on the queue */

/* TODO: Start timer for sending periodic queue updates
(every 50 secs is recommended). Assume function
TimerHandler () will be called when the timer expires
(see below). */

}
}
else

{
/* Queued request was not successful, clean up and exit. */
VLScleanup ();
return (1);

} /* End if success */

} /* end main () */

void TimerHandler ()
{

/* Called periodically in order to check the queue status.*/

long expiration_time
LS_STATUS_CODE returnCode

returnCode = VLSupdateQueuedClient (

230 Chapter 6 - License Queuing API

ls_handle,
&expiration_time
(unsigned char LSFAR *) NULL
(LS_CHALLENGE LSFAR *) NULL;

/* Is the queued license available

if (returnCode == LS_SUCCESS &&
expiration_time > 0)

{
if ((returnCode =

VLSgetQueuedLicense
(ls_handle,

 (unsigned char LSFAR *) NULL
 (LS_CHALLENGE LSFAR *) NULL)) == LS_SUCCESS)

{
/* Disable the application’s timer and run the

application! */

/* Enable automatic heartbeats to the server */
VLSdisableAutoTimer (ls_handle, VLS_ON);

}
else
{

/* Error getting the license, clean up and quit. */
VLScleanup ();

/* Terminate the process */
}

}
}

 SentinelLM Programmer’s Reference Manual 231

 License Queuing Functions

The following table summarizes the license queuing functions:

Table 6-1: License Queuing
Function Description

VLSqueuedRequest()
VLSqueuedRequestExt()

An integrated request for an authorized license
code from the license server. Use this API to:

• Request a license, with option to queue
(requestFlag = VLS_REQ_GET |
VLS_REQ_QUEUE).

• Request a license without queuing
(requestFlag = VLS_REQ_GET). This
option has the same effect as calling an
non-queuing API request (LSRequest(),
VLSrequestExt(), etc.).

• Request to be placed on the queue, even
if the license server has available licenses
(requestFlag = VLS_REQ_QUEUE).

VLSgetQueuedClientInfo() Retrieves the current information of a queued
client, such as the number of requested
licenses, feature_name, version, and index.

VLSremoveQueuedClient() Removes a queued client from the queue.

VLSremoveQueue() Deletes the entire queue.

VLSgetHandleStatus() Reports the current status of the handle.

VLSupdateQueuedClient() Once the client has been put in the queue, it
must call this API periodically to inquire its
current status with the license server. Moreover,
calling this function has the effect of informing
the license server that the client is alive and is
still seeking the license.

VLSgetQueuedLicense() Obtains license, once it has been granted. This
function is called only after a call to
VLSupdateQueuedClient() reveals that a
license has been granted to a queued client.

VLSinitQueuePreference() Initializes provided queue preference structure
to default values.

VLSqueuedRequest() and VLSqueuedRequestExt()

232 Chapter 6 - License Queuing API

VLSqueuedRequest() and VLSqueuedRequestExt()

Syntax int VLSqueuedRequest(
unsigned char LSFAR,*license_system
unsigned char LSFAR *publisher_name,
unsigned char LSFAR *product_name unsigned char) LSFAR *version
unsigned long LSFAR *units_reqd unsigned charLSFAR
*log_comment LS_CHALLENGELSFAR *challenge
LS_HANDLE LSFAR *lshandle VLSqueuePreference
LSFAR *qPreference intLSFAR requestFlag;

int VLSqueuedRequestExt(
unsigned char LSFAR,*license_system
unsigned char LSFAR *publisher_name,
unsigned char LSFAR *product_name unsigned char) LSFAR *version
unsigned long LSFAR *units_reqd unsigned charLSFAR
*log_comment LS_CHALLENGELSFAR *challenge
LS_HANDLE LSFAR *lshandle VLSqueuePreference
LSFAR *qPreference intLSFAR requestFlag
VLSserverInfo LSFAR server_info;

Argument Description

license_system A license requested in the system. Pointer to the string
which uniquely identifies a particular license system.

publisher_name Refers to the name of the publisher (manufacturer) of the
product. Cannot be NULL and must be unique. It is
recommended that a company name and trademark be
used.

product_name Feature name. The name of the product requesting
licensing resources. Cannot be NULL and must be unique.

version Version for which licenses are requested. Must be unique
for the associated feature.

units_reqd Number of units requested to run the license. The license
system verifies that the requested number of units exist
and is possible to reserve those units, but no units are
actually consumed at that time. The default is 1, and this
value is used if NULL value is passed.

VLSqueuedRequest() and VLSqueuedRequestExt()

 SentinelLM Programmer’s Reference Manual 233

Description The API provides the mechanism to the calling application to ask the license
server to grant a license, if available. If no license is available, the client will be
queued. The client can call VLSupdateQueuedClient() to inquire if a license is
available. Once a license is available, the client can call
VLSgetQueuedLicense() to obtain the license.

In response, the license server will either issue the key when (and if) the license
is available, put the client in the queue when the license is not available, or issue

log_comment A string that is written by the license manager to the
comment field of the usage log file.

challenge Pointer to a challenge structure. The challenge-response
will also be returned.

lshandle Handle to the license for which the user has requested. If
the user has successfully received the license, the status
of the handle is VLS_ACTIVE_HANDLE. Otherwise, the
client is put in the queue and the status of the handle is
VLS_QUEUED_HANDLE.

qPreference Pointer to the VLSqueuePreference() structure, which is
used to specify the client’s preference for how it wishes to
be placed in the queue. After the call is made, the structure
contains the values assigned by the license server when it
has placed the client in the queue.

requestFlag Valid values are:
• VLS_REQ_GET - specifies a non-queuing request

(without queuing the client). If license is not
available, client will not be queued.

• VLS_REQ_QUEUE - specifies to queue the client
(without returning with the license). Even if license is
available, client will be queued.

If both are specified the client informs the license server to
give the license, if available, otherwise queue the client.
Upon return from this API, this parameter will be set to
either VLS_REQ_GET (specifying the license has been
granted) or, VLS_REQ_QUEUE (specifying that the client
has been queued).

server_info Information about the server.

Argument Description

VLSqueuedRequest() and VLSqueuedRequestExt()

234 Chapter 6 - License Queuing API

an appropriate error message, which describes the cause for not being able to
service the request.

The client will pass the following information to the license server:

• Time in seconds for the client to wait in the queue for the license.

• Time in seconds for the server to hold the license once it becomes
available.

• Priority relative to other clients.

• The maximum position within the queue before which the client can
be queued.

• The maximum position within the group queue, before which the
client can be queued.

Notice that the LS_MAX_QLEN environment variable can override the
qPreference structure. The end-user can put a limit on the maximum size of the
queue by defining the LS_MAX_QLEN environment variable. This variable
depends upon the availability of memory resources. The different values of
LS_MAX_QLEN are:

• LS_MAX_QLEN not set. Client preference is applied.

• LS_MAX_QLEN = -1. Client preference is ignored and the client is
always queued.

• LS_MAX_QLEN = 0. Queue is disabled and no clients will be put in
the queue.

• LS_MAX_QLEN > 0. Overrides the client’s preference.

Similarly variable LS_MAX_GRP_QLEN will override the setting of the max
group wait time in the qPreference structure.

Variables LS_MAX_WAIT_SEC and LS_MAX_HOLD_SEC override the max
wit time and max hold time elements of the qPreference structure.

VLSqueuedRequest() and VLSqueuedRequestExt()

 SentinelLM Programmer’s Reference Manual 235

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR request_flag specifies queuing but
qPreference is NULL.

lshandle is NULL.
challenge argument is non-NULL, but
cannot be understood.

VLS_APP_UNNAMED product_name is NULL
version is NULL

VLS_NO_LICENSE_GIVEN units_reqd is zero.
Invalid handle specified.

Generic error indicating that the license is
not granted.

LS_NOLICENSESAVAILABLE All licenses in use.

LS_INSUFFICIENTUNITS License server does not currently have
sufficient licensing units for the requested
feature to grant a license.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature.

LS_LICENSE_EXPIRED License has expired.

VLS_NOMORE_QUEUE_

RESOURCES

Queue is full.

VLS_APP_NODE_LOCKED Requested feature is node locked, but
request was issued from an unauthorized
machine.

VLS_USER_EXCLUDED User or machine excluded from accessing
requested feature.

VLS_CLK_TAMP_FOUND License server has determined that the
client’s system clock has been modified.
The license for this feature has time-
tampering protection enabled, so the
license operation is denied.

VLSqueuedRequest() and VLSqueuedRequestExt()

236 Chapter 6 - License Queuing API

 For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

VLS_VENDORIDMISMATCH The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has the license.

VLS_TRIAL_LIC_EXHAUSTED Trial license has expired.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName is specified.

VLS_NO_SERVER_FILE The license server has not been set and is
unable to determine which license server to
use.

VLS_BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

VLS_NON_REDUNDANT_SRVR License server is non-redundant and
therefore cannot support this redundancy-
related operation.

VLS_SERVER_SYNC_IN_PROGRESS License server synchronization in process.

VLS_FEATURE_INACTIVE Feature is inactive on specified license
server.

VLS_MAJORITY_RULE_FAILURE Majority rule failure prevents token from
being issued.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLS_ELM_LIC_NOT_ENABLE The license was converted using the
license conversion utility. (From a 5.x
license), but the DLT process is not
running.

VLSgetQueuedClientInfo()

 SentinelLM Programmer’s Reference Manual 237

VLSgetQueuedClientInfo()

Syntax int VLSgetQueuedClientInfo
unsigned char LSFAR, *feature name
unsigned char LSFAR *version
int index
VLSqueuedClientInfoLSFAR *client_info ;

Description Fills the structure pointed by client_info to a structure containing the current
information of a queued client identified by specified feature_name, version, and
index.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

feature_name Feature name of the client for which we are requesting
information.

version Version for which licenses are requested. Must be unique.
for the associated feature.

index Index of the client with the license server, for a particular
feature.

client_info The structure in which information will be returned. Pointer
to the VLSqueuedClientInfo() structure, which specifies
the client information.

VLS_CALLING_ERROR client_info parameter is NULL.
index is negative.

Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

VLS_APP_UNNAMED feature_name is NULL
version is NULL

VLS_NO_LICENSE_GIVEN Finished retrieving client information for all
the clients.

VLSremoveQueuedClient()

238 Chapter 6 - License Queuing API

 For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

VLSremoveQueuedClient()

Syntax int VLSremoveQueuedClient
unsigned char LSFAR, *feature name
unsigned char LSFAR *version
int qkey_id ;

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature.

VLS_MULTIPLE_VENDORID_FOUND The license server has licenses for the
same feature and version from multiple
vendors. It is ambiguous which feature is
requested.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE The license server has not been set and is
unable to determine which license server to
use.

VLS_BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

Argument Description

feature_name Feature name of the client for which we are requesting
information.

VLSremoveQueuedClient()

 SentinelLM Programmer’s Reference Manual 239

Description This API provides an administrative mechanism to remove a queued client.
VLSremoveQueuedClient() will be available to:

• The user who started the license server, which actually signifies when
the client was put in the queue.

• The root/administrator account.

• The user-account that originally goes to the queue placement.

Internally, this API will send a message to signal the license server that a
specified client in the queue for a specified feature should be removed.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

version Version for which licenses are requested. Must be unique.

qkey_id Identifier of the client queue, which needs to be removed.

VLS_CALLING_ERROR q_key_id parameter cannot be negative.
Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

VLS_APP_UNNAMED feature_name is NULL

version is NULL

VLS_NO_SUCH_CLIENT License server does not have the specified
client

VLS_CLIENT_NOT_AUTHORIZED Client is not authorized to make the
specified request.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_HOST_UNKNOWN Invalid hostName was specified.

Argument Description

VLSremoveQueue()

240 Chapter 6 - License Queuing API

For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

VLSremoveQueue()

Syntax int VLSremoveQueue unsigned char
LSFAR,*feature name
unsigned char LSFAR *version ;

Description This API will provide a mechanism to delete the complete queue for a specified
license.

VLSremoveQueue() will be available to:

• The user-account who started the license server, which actually
signifies when the client was put in the queue.

• the root/administrator account.

VLS_NO_SERVER_FILE The license server has not been set and is
unable to determine which license server to
use.

VLS_BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

Argument Description

feature_name Identifies the license whose queue needs to be removed.

version Version for which licenses are requested. Must be unique.

VLSgetHandleStatus()

 SentinelLM Programmer’s Reference Manual 241

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

VLSgetHandleStatus()

Syntax int VLSgetHandleStatus
LS_Handle lshandle ;

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

VLS_APP_UNNAMED feature_name is NULL
version is NULL

VLS_CLIENT_NOT_AUTHORIZED Client not authorized to remove queue.

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE The license server has not been set and is
unable to determine which license server to
use.

VLS_BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

Argument Description

lshandle Identifies the handle previously returned by
VLSqueuedRequest().

VLSupdateQueuedClient()

242 Chapter 6 - License Queuing API

Description Reports the current status of the handle.

Returns Returns the following error codes:

For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

VLSupdateQueuedClient()

Syntax int VLSupdateQueuedClient
LS_HANDLE lshandle longLSFAR
*absExpiryTime unsigned charLSFAR *unused1
LS_CHALLENGE LSFAR *unused2 ;

LS_BADHANDLE Invalid handle. Handle is already released
and destroyed from previous license
operations.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLS_AMBIGUOUS_HANDLE lshandle is an ambiguous handle; it is not
exclusively active or exclusively queued.

VLS_ACTIVE_HANDLE lshandle is an active handle.

VLS_QUEUED_HANDLE lshandle is a queued handle.

Argument Description

lshandle The handle previously returned by VLSqueuedRequest().
The status of the handle must be
VLS_QUEUED_HANDLE or an error will occur.

VLSupdateQueuedClient()

 SentinelLM Programmer’s Reference Manual 243

Description The client calls this API, requesting the license server to put him in the queue.
Once the client has been put in the queue, it must call this API periodically to
inquire its current status with the license server. Moreover, it also informs the
license server that, he is alive and is seeking the license.

Notice, the client will be needs to make at least one queue update, within 5
minutes of the previous queue-update or the request to queue itself. This is
imperative so as to make the license server aware of the active clients. If the
license server does not receive an update request from a client within 5 minutes
of the last queue-update, it will then assume the client to be inactive and remove
the client from the queue.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

absExpiryTime Once the license is available with the license server, the
next call to this API returns in this parameter, the absolute
expiry time before which the client should get the license
using VLSgetQueuedLicense(). If any call to
VLSupdateQueuedClient() returns a non-negative value
in this parameter, then the license has been granted and
set aside for the client. There is no need to continue its
periodic call to this function. The next step is to obtain the
license by calling VLSgetQueuedLicense().
Possible values for absExpiryTime are:

• Zero = license is not available.

• Non-zero = license is available and will stop calling
the API.

unused1

unused2

Uses NULL as the value.

VLS_CALLING_ERROR absExpiryTime is NULL.
Handle cannot be active.
challenge argument is non-NULL, but
cannot be understood.

LS_BADHANDLE Invalid handle.

Argument Description

VLSupdateQueuedClient()

244 Chapter 6 - License Queuing API

For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

LS_LICENSETERMINATED Cannot update license because license has
already expired.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature.

LS_NOLICENSESAVAILABLE All licenses are in use.

LS_LICENSE_EXPIRED License has expired.

VLS_TRIAL_LIC_EXHAUSTED Trial license has expired.

VLS_USER_EXCLUDED User or machine excluded from accessing
requested feature.

VLS_FINGERPRINT_MISMATCH User or machine excluded from accessing
the requested feature.

VLS_APP_NODE_LOCKED Feature is node locked, but update request
was issued from an unauthorized machine.

VLS_CLK_TAMP_FOUND License server has determined that the
client’s system clock has been modified.
The license for this feature has time-
tampering protection enabled, so the
license operation is denied.

VLS_VENDORIDMISMATCH The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has the license.

VLS_INVALID_DOMAIN The domain of the license server is different
from that of the client.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLSgetQueuedLicense()

 SentinelLM Programmer’s Reference Manual 245

VLSgetQueuedLicense()

Syntax int VLSgetQueuedLicense
LS_HANDLE lshandle unsigned charLSFAR
*log_comment LS_CHALLENGE
LSFAR *challenge ;

Description Once the queued client identifies that the required licenses are made available
with the license server, it calls this API to fetch the license.
This API will be passed from the client library handle only and, internally, it will
send all the memorized information to the license server. On return it will
provide a valid client-handle value that will be used in later API calls.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

Argument Description

lshandle The handle previously returned by VLSqueuedRequest().
The status of the handle must be
VLS_QUEUED_HANDLE and the last call to
VLSupdateQueuedClient() must have reported that the
licenses have been made available with the license server.

log_comment A string that is written by the license manager to the
comment field of the usage log file. Pointer to a challenge
structure. The challenge-response will also be returned.

challenge The challenge-response for this operation.

VLS_CALLING_ERROR challenge argument is non-NULL, but
cannot be understood.

LS_BADHANDLE Invalid handle.

LS_BUFFER_TOO_SMALL An error occurred in the use of an internal
buffer.

VLS_NO_LICENSE_GIVEN Generic error indicating that the license is
not granted.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature.

VLSgetQueuedLicense()

246 Chapter 6 - License Queuing API

 For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

LS_LICENSE_EXPIRED License has expired.

VLS_TRIAL_LIC_EXHAUSTED Trial license has expired.

LS_NOLICENSESAVAILABLE All licenses are in use.

VLS_USER_EXCLUDED User or machine excluded from accessing
requested feature.

VLS_FINGERPRINT_MISMATCH Client-locked. Locking criteria does not
match.

VLS_APP_NODE_LOCKED Requested feature is node locked, but
request was issued from unauthorized
machine.

VLS_CLK_TAMP_FOUND License server has determined that the
client’s system clock has been modified.
The license for this feature has time-
tampering protection enabled, so the
license operation is denied.

VLS_VENDORIDMISMATCH The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has the license.

VLS_INVALID_DOMAIN The domain of the license server is different
from that of client.

VLS_NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS_BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLS_ELM_LIC_NOT_ENABLE The license was converted using the
license conversion utility. (From a 5.x
license), but the DLT process is not
running.

VLSinitQueuePreference()

 SentinelLM Programmer’s Reference Manual 247

VLSinitQueuePreference()

Syntax int VLSinitQueuePreference
VLSqueuePreference * qPreference ;

Description Initializes the VLSqueuePreference() structure to default values.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

Argument Description

qPreference Pointer to the VLSqueuePreference() structure, which
specifies the client preference for getting into the queue.
After the call is made, the structure signifies the actual
values, which the license server allocates to the client
while putting him in the queue.

VLS_CALLING_ERROR qPreference is NULL.

VLSinitQueuePreference()

248 Chapter 6 - License Queuing API

 SentinelLM Programmer’s Reference Manual 249

4Chapter 7 - Commuter License
API

Commuter licensing is the capability to temporarily check out an authorization
to use a protected application from a SentinelLM license server to a portable
computer. The most common use of this feature is to allow use of a protected
application on a laptop computer that will be disconnected from the network.

 Commuter License Related Functions

The following table summarizes the commuter license related functions:

VLSgetCommuterInfo()

Syntax int VLSgetCommuterInfo
unsigned char *feature_name,

Table 7-1: Commuter License Related Functions

VLSgetCommuterInfo() Returns the commuter license information.

VLSgetAndInstallCommuter-
Code()

Obtains the commuter code from the license
server and issues the commuter authorization to
the client side persistence database

VLSuninstallAndReturnCommuter-
Code()

Removes the commuter authorization from the
client side persistence database and returns the
token to the license server.

VLSgetAndInstallCommuterCode()

250 Chapter 7 - Commuter License API

unsigned char *version intindex
VLScommuterInfo *commuter_info,

Description Returns the commuter license information.
VLSgetCommuterInfo() can be used two ways:
1. Specify feature_name and version as non-NULL and API will return
information about this feature. API will ignore the index argument.
2, If feature_name is NULL, then API will return information about the index
feature in the persistence database. API will ignore the version argument.
API will be called until it return VLS_NO_MORE_FEATURES by
incrementing the index every time.

Returns The status code, VLScg_SUCCESS, is returned if successful. For a complete list
of the error codes, “Appendix E - Error Codes for Redundancy, Queuing and
Commuter Functions” on page 295.

VLSgetAndInstallCommuterCode()

Syntax int VLSgetAndInstallCommuterCode
unsigned char *feature_name,
unsigned char *feature_version long*units_reqd
 int*duration int
*lock_mask insigned char
*log_comment LS_CHALLENGE
*challenge,

Argument Description

feature_name Name of the feature.

version Version of the feature.

index Used to specify a particular client.

commuter_info Displays the number of clients for commuter licenses.

Argument Description

feature_name Name of the feature.

feature_version Version of the feature.

VLSuninstallAndReturnCommuterCode()

 SentinelLM Programmer’s Reference Manual 251

Description Obtains the commuter code from the license server and installs the stand-alone
commuter authorization at the client.

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

 For a complete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

VLSuninstallAndReturnCommuterCode()

Syntax int VLSuninstallAndReturnCommuterCode
unsigned char *feature_name,

units_reqd Number of units required to run the license. The license
system verifies that the requested number of units exist
and may reserve those units, but no units are actually
consumed at that time.

duration Displays the number of clients for commuter licenses.

lock_mask Mask defining which fields are to be used for locking.

On entry, lock_mask specifies the locking-criteria that
should be used for looking the commuter-code. If a zero is
given, the API will lock the code to Disk ID (windows),
otherwise it will lock to host name. Notice, the API will
replace the zero with lock_mask for Disk ID or host name
before sending this value to the license server.

log_comment A string to be written by the license server to the comment
field of the usage log file. Pass a NULL value for this
argument if no log comment is desired.

challenge The challenge-response for this operation. Pointer to a
challenge structure. The challenge-response will also be
returned in this structure.

VLS_CALLING_ERROR duration is NULL
lock_mask is NULL.

Argument Description

VLSuninstallAndReturnCommuterCode()

252 Chapter 7 - Commuter License API

unsigned char *feature_version unsigned char
*log_comment

Description Uninstalls the commuter authorization from the client and returns the commuter
authorization to the license server.

Returns The status code, VLScg_SUCCESS, is returned if successful. For a complete list
of the error codes, “Appendix E - Error Codes for Redundancy, Queuing and
Commuter Functions” on page 295.

Argument Description

feature_name Name of the feature.

feature_version Version of the feature.

log_comment A string to be written by the license server to the comment
field of the usage log file. Pass a NULL value for this
argument if no log comment is desired.

 SentinelLM Programmer’s Reference Manual 253

4Chapter 8 - Usage Log Functions

The Usage log functions provide capability of controlling and manipulating the
usage log file.

The following table summarizes the usage log functions:

VLSchangeUsageLogFileName()

Syntax int VLSchangeUsageLogFileName
char *hostName, char
*newFileName

Description Changes the name of the existing usage log file. This change can be done while
the file is being used.

Table 8-1: Usage log functions

Function Description

VLSchangeUsageLogFileName() This API changes the name of the existing
usage log file. This change can be done while
the file is being used.

VLSgetUsageLogFileName() API determines the name of the existing usage
log file.

Argument Description

hostName The host name of the computer containing the license
server that is using the log file.

newFileName The new name you want to use for the log file.

VLSgetUsageLogFileName()

254 Chapter 8 - Usage Log Functions

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, a specific
error code is returned indicating the reason for failure. For a complete list of the
error codes, see see “Appendix D - Error and Result Codes for License
Generation Functions” on page 291.

VLSgetUsageLogFileName()

Syntax int VLSgetUsageLogFileName (
char *hostName, char*fileName

Description Determines the name of the existing usage log file.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, a specific
error code is returned indicating the reason for failure. For a complete list of the
error codes, see see “Appendix D - Error and Result Codes for License
Generation Functions” on page 291.

Argument Description

hostName The host name of the computer containing the license
server that is using the log file.

fileName The name of the existing usage log file is returned in this
argument.

 SentinelLM Programmer’s Reference Manual 255

4Chapter 9 - Utility Functions

The utility functions are only available on UNIX platforms.:

VLSscheduleEvent()

Syntax int VLSscheduleEvent (
unsigned long *seconds, void*eventHandler
 long *repeat_event

Description This function is called for scheduling eventHandler to be awakened after so
many seconds. Handles only SIGALRM signal.

Table 9-1: Utility Functions

Function Description

VLSscheduleEvent() Schedules eventhandler to be awakened after
so many seconds. It handles only SIGALRM
signal.

VLSdisableEvents() Disables the events scheduled. To disable a
particular event pass the event handler function
name as the argument. To disable all the events
pass NULL as argument.

VLSeventSleep() Disables the feature for an allotted time.

Argument Description

seconds Time interval in seconds.

eventHandler Signal handler.

repeat_event Number of event repetitions.

VLSdisableEvents()

256 Chapter 9 - Utility Functions

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, a specific
error code is returned indicating the reason for failure. For a complete list of the
error codes, see “Appendix D - Error and Result Codes for License Generation
Functions” on page 291.

VLSdisableEvents()

Syntax int VLSdisableEvents (
void *eventHandler ,

Description This function is called for disabling the events scheduled. To disable a particular
event pass the event handler function name as the argument. To disable all the
events pass NULL as argument.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, a specific
error code is returned indicating the reason for failure. For a complete list of the
error codes, see “Appendix D - Error and Result Codes for License Generation
Functions” on page 291.

VLSeventSleep()

Syntax int VLSeventSleep (
void VLSeventSleep (unsigned int seconds)

Description This function is called for disabling the license operations for an allotted time
and interferes with the system alarms.
VLSeventSleep() must be used in conjunction with VLSdisableAutoTimer().

Argument Description

eventHandler Signal handler.

Argument Description

seconds Time in seconds to sleep.

VLSeventSleep()

 SentinelLM Programmer’s Reference Manual 257

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, a specific
error code is returned indicating the reason for failure. For a complete list of the
error codes, see “Appendix D - Error and Result Codes for License Generation
Functions” on page 291.

VLSeventSleep()

258 Chapter 9 - Utility Functions

 SentinelLM Programmer’s Reference Manual 259

5Appendix A - Sample
Applications

Each platform has an examples directory. For UNIX platforms this includes a
file called Makefile. Makefile can be used to build the sample programs, utilities,
and to customize parts of SentinelLM. For Windows platforms, the file is called
samples32.mak.

When you run sample32.mak, use the following commands:

nmake /f sample32.mak sample-program

This appendix lists the available sample programs, utilities, and SentinelLM
components.

 Sample Program Summary

The following table lists the sample programs, the features illustrated in each,
and on which platforms the programs are available:

Table A-1: Sample Programs, Features, and Platforms

Program Features Platforms

bounce Simple function macros Windows NT, Windows 95/98

dots1 Simple function macros UNIX

qbounce Queueing API Windows NT, Windows 95/98

timer Simple function macros and
using timer signals

UNIX

tutor1 Simple function macros UNIX

Customization Samples

260 Appendix A - Sample Applications

Note Programs ending in “1” also have “0” versions without licensing.

 Customization Samples

On the UNIX platforms the following components/files are available:

single Single-call licensing UNIX

stars1 LSAPI function calls and error
handlers

UNIX

Table A-2: Customization Sample Files

Component File(s)

linking Makefile

converting license codes rdctoenc.o, enctordc.o

the license manager server.o

lsdecode lsde.o

lslic lslic.c

lsmon lsmon.c

lswhere lswhere.c

distcgen distcgen.o

the code
generator

lscgen.o

enctordc enctordc.o

rdctoenc rdctoenc.0

Challenge-response crexamp.c, chalresp.[c h], md4.[c h]

Table A-1: Sample Programs, Features, and Platforms

Program Features Platforms

 SentinelLM Programmer’s Reference Manual 261

6Appendix B - Customization
Features

The SentinelLM package is optionally shipped with a number of precompiled
object modules to enable you to re-link the license manager and the code
generator executables, and override certain predefined SentinelLM
characteristics.

There are compatibility issues for object files generated by different versions of
compilers on Microsoft Windows platforms. Therefore, server.o and lscgen.o
files are not included in the Windows distribution. Please contact Technical
Support (see page xix) for information about customization tools availability for
your version of Windows developer platforms.

The following table summarizes the customizing functions:

Table B-1: Customizing Functions

VLSserverVendorInitialize()

VLSeventAddHook()

VLSconfigureTimeTamper()

VLSisClockSetBack()

VLSencryptLicense()

VLSdecryptLicense()

VLSencryptMsg()

VLSdecryptMsg()

VLSchangePortNumber()

getCustomHostId()

262 Appendix B - Customization Features

Note On the UNIX platform, creating customized executables requires the use of
the Makefile in the examples directory and various object files provided in
the lib directory of the shipped software. If you customize your license
server, ship it under a different name from the original and change the port
number on which it receives network messages so that your customized
server does not interfere with other vendors’ license servers that may be
running at a customer's site.

All customized encryption and decryption functions for the network licenses
must adhere to the following rules:

1. No malloc() or free() calls are allowed in the functions.

2. No signal-unsafe calls are allowed.

3. All strings must be NULL-terminated.

4. All functions must return 0 on success.

5. Buffers are guaranteed to be at least 500 characters long. Lengths of
output strings need not be the same as the input strings.

To build your customized functions, copy your source files to c:\Program
Files\Rainbow Technologies\sentLM\MsvcDev\custom. In this directory you will
find the Makefile custom32.mak. Make a copy of this file and name it
MAKEFILE. Edit this file. Add your customized object files in the following
section:

For now, use the default functions from the SentinelLM library:
ENCRYPT_LIC_OBJS =
DECRYPT_LIC_OBJS =
ENCRYPT_MSG_OBJS =
DECRYPT_MSG_OBJS =
CHANGE_PORT_OBJS =
CHANGE_HOSTID_OBJS =
TIME_TAMPER_OBJS =
SERVER_HOOK_OBJS =

Go to the DOS prompt and run make.

Initializing the Server

 SentinelLM Programmer’s Reference Manual 263

 Initializing the Server

These functions are called by the server during server initialization. This is
where calls to VLSeventAddHook() should be placed in order to configure the
server to consult vendor event handler functions.

VLSserverVendorInitialize()

Initializes the server.

Syntax LSERV_STATUS VLSserverVendorInitialize (void);

This function has no arguments.

VLSeventAddHook()

Registers an event handler with the server.

Syntax LSERV_STATUS VLSeventAddHook (
int eventName,
int (*handlerFuncPtr)(VLShandlerStruct *, char *, char *, int),
char *identifier,);

Client Server
Static

Library
DLL

a a

Client Server
Static

Library
DLL

a a

Initializing the Server

264 Appendix B - Customization Features

Description Hooks are based on events. For each event, there is a pre-event hook and a post-
event hook.

Currently the only events with hooks are license request and license release. So
you can have a hook function BEFORE a license request is processed by the
server or AFTER a request is processed. In the “pre” hook, you can decide on the
licensing action such as looking up external information before granting a
request. In the post hook, you cannot change the license decision but can provide
custom information to be passed to the client.

Note You can use only one hook and do not have to use all the hook functions.

The file below for this example can be found in srhkdemo.c. The entire sample
hook project can be found in the following files: reqprhk1.c, reqpshk1.c,
relprhk1.c, relpshk1.c, relpshk1.c, reqprhk2.c, reqpshk2.c, and relprhk2.c. The
client portion of the project can be found in hookdemo.c.

Argument Description

eventName Specifies the type of event.
Handler function will be called LS_REQ_PRE right before
the license request is processed by the server.
Handler function will be passed LS_REQ_POST right after
the license request is processed by the server.
Handler function will be called LS_REL_PRE right before
the license release is processed by the server.
Handler function will be passed LS_REL_PODY right after
the license release is processed by the server.

(*handlerFuncPtr)
(VLShandlerStruct *, char*,
char *, int)

The function pointer.

identifier The client identifier to match.

Initializing the Server

 SentinelLM Programmer’s Reference Manual 265

/***/
/* */
/* Copyright (C) 1999 Rainbow Technolgies, Inc. */
/* All Rights Reserved */
/* */
/***/
#include "lservcst.h"
extern int LSReqPreHook1(VLShandlerStruct *handleStruct, char *inBuf, char
*outBuf, int outBufSz);
extern int LSReqPostHook1(VLShandlerStruct *handleStruct, char *inBuf, char
*outBuf, int outBufSz);
extern int LSRelPreHook1(VLShandlerStruct *handleStruct, char *inBuf, char
*outBuf, int outBufSz);
extern int LSRelPostHook1(VLShandlerStruct *handleStruct, char *inBuf, char
*outBuf, int outBufSz);
extern int LSReqPreHook2(VLShandlerStruct *handleStruct, char *inBuf, char
*outBuf, int outBufSz);
extern int LSReqPostHook2(VLShandlerStruct *handleStruct, char *inBuf, char
*outBuf, int outBufSz);
extern int LSRelPreHook2(VLShandlerStruct *handleStruct, char *inBuf, char
*outBuf, int outBufSz);
extern int LSRelPostHook2(VLShandlerStruct *handleStruct, char *inBuf, char
*outBuf, int outBufSz);
LSERV_STATUS VLSserverVendorInitialize(void) {
#ifndef _VWIN31X_
 VLSeventAddHook(LS_REQ_PRE,
 LSReqPreHook1,
 "Hook1");
 VLSeventAddHook(LS_REQ_POST,
 LSReqPostHook1,
 "Hook1");
 VLSeventAddHook(LS_REL_PRE,
 LSRelPreHook1,
 "Hook1");
 VLSeventAddHook(LS_REL_POST,
 LSRelPostHook1,
 "Hook1");
 VLSeventAddHook(LS_REQ_PRE,
 LSReqPreHook2,
 "Hook2");
 VLSeventAddHook(LS_REQ_POST,
 LSReqPostHook2,
 "Hook2");
 VLSeventAddHook(LS_REL_PRE,
 LSRelPreHook2,
 "Hook2");
 VLSeventAddHook(LS_REL_POST,

Protecting Against Time Clock Changes

266 Appendix B - Customization Features

 LSRelPostHook2,
 "Hook2");
#endif
 return(LSERV_STATUS_SUCCESS);
}

 Protecting Against Time Clock Changes

Software-based license protection schemes may break down if the end user
changes the system time. The SentinelLM license server can be configured to
detect tampering of the system clock.

SentinelLM checks about 500 system files (in strictly read-only mode) to
determine if the system clock of the machine it is running on has been set back in
order to use an expired license. It does this on startup, and periodically
thereafter. Checking takes about 10 to 20 seconds.

SentinelLM calls the function VLSconfigureTimeTamper() before performing
any time tamper checks. This configuration function can be used to modify the
default behavior of SentinelLM regarding time tamper checking. You need to
perform the following steps:

1. Write your own VLSconfigureTimeTamper() function which takes the
following arguments, and writes valid values into all of the arguments.

2. If you plan to use your own clock tamper checking function, you should
write another function VLSisClockSetBack() which returns 0 if the
system clock has not been set back, and 1 otherwise.

3. In the Makefile in the examples directory [UNIX], modify the
TIME_TAMPER_OBJ macro so that its value is the name of the object
file containing your new function(s).

4. Relink the license server (or your application if in stand-alone mode).

Protecting Against Time Clock Changes

 SentinelLM Programmer’s Reference Manual 267

VLSconfigureTimeTamper()

Syntax void VLSconfigureTimeTamper (
VLSactionOnTmTamper *actionOnTmTamper,
VLStmTamperMethod *tmTamperMethod,
int *gracePeriod,
int *percentViolations,
int *numViolationsForError
);

int VLSisClockSetBack();

Types VLSactionOnTmTamper() and VLStmTamperMethod() are defined
in lserv.h:

typedef enum {VLS_CONT_AFTER_TM_TAMPER, VLS_EXIT_AFTER_TM_TAMPER}
VLSactionOnTmTamper;

typedef enum {VLS_ENABLE_DEFAULT_TM_TAMPER,
VLS_DISABLE_DEFAULT_TM_TAMPER}
VLStmTamperMethod;

In the table below, default values are indicated in brackets ([]).

Client Server
Static

Library
DLL

a a

Argument Description

actionOnTmTamper Whether to exit from the license manager (or your
application if in stand-alone mode) once time clock
tampering is detected.
[VLS_CONT_AFTER_TM_TAMPER]

tmTamperMethod Whether to use the SentinelLM built-in system clock
tamper checking function, or use one provided by you.
[VLS_ENABLE_DEFAULT_TM_TAMPER]

Protecting Against Time Clock Changes

268 Appendix B - Customization Features

The default algorithm uses a grace period of 86,400 seconds (1 day) and allows
1% of the files to violate the grace period.

Note Out of percentViolations and numViolationsForError, the lower evaluated
value will be used.

VLSisClockSetBack()

Notifies the license server to check whether the clock has been set back.

Syntax int VLSisClockSetBack();

This function has no arguments.

Description This function is called only in case the VLSconfigureTimeTamper() function
returns tmTamperMethod to be VLS_DISABLE_DEFAULT_TM_TAMPER.

Returns Returns 0 if the clock has not been set back.

gracePeriod Useful only in case tmTamperMethod is
VLS_ENABLE_DEFAULT_TM_TAMPER. If SentinelLM
finds the system clock has been set back by less than
gracePeriod seconds, it will not count the offending system
file as a violation.

percentViolations Percentage of system files that must be found in violation
of the grace period before concluding that the system clock
has been set back. Pass the value of 0 for this argument ot
ignore the functionality..

numViolationsForError Number of system files that must be found in violation of
the grace period before concluding that the system clock
has been set back. [5] 0 to ignore this.

Client Server
Static

Library
DLL

a a

Argument Description

Encrypting License Codes

 SentinelLM Programmer’s Reference Manual 269

 Encrypting License Codes

License code encryption can be modified to add an additional layer of
encryption/decryption security. License encryption and decryption is used by the
license server, the code generator, and the SentinelLM utility, lsdecode. All
three programs must be re-linked. Licensed applications do not encrypt or
decrypt license codes. Client applications need not be re-linked.

Note Encryption is not available for stand-alone licenses.

VLSencryptLicense()

Encrypts license codes.

Syntax int VLSencryptLicense ()
char *origText;
char *encryptedTextBuffer;
int buffSize;

Description VLSencryptLicense() will always receive any of the ASCII character set in its
input text string. Since the output of this function will be written directly to the
code generator’s output file as an encrypted license code, this function must not
generate any unprintable or special characters.

Client Server
Static

Library
DLL

a a

Argument Description

origText The original license code.

encryptedTextBuffer The encrypted license code to be returned.

buffSize Size of the encrypted text buffer.

Encrypting License Codes

270 Appendix B - Customization Features

The function may generate any printable ASCII characters other than:

In fact, by generating a larger character set than the input, the encryption
algorithm can generate shorter license codes. To add another layer of encryption
and decryption follow these steps:

1. Write custom VLSencryptLicense() and VLSdecryptLicense()
functions in separate source files.

2. In the examples directory of the distribution tree, the example Makefile
can be used to re-link the license server, the code generator, and
lsdecode directly. In the example Makefile, set the variable,
ENCRYPT_LIC_OBJ, to the object file containing
VLSencryptLicense(), and DECRYPT_LIC_OBJ to the object file
containing VLSdecryptLicense().

3. Issue the make commands for the license server, the code generator,
lsdecode, and the distributor’s code generator (optional).

Returns 0 if successful; other value on failure.
Example file:

/***/
/* */
/* Copyright (C) 1999 Rainbow Technologies, Inc. */
/* All Rights Reserved */
/* */
/***/
/* Usage of VLSencryptLicense() */
#include <stdio.h>

Character Hex Value Description

0x23 Pound sign or number sign or hash mark.

\n 0x0A Backslash-n.

\t 0x09 Backslash-t.

(0x28 Opening parenthesis.

) 0x29 Closing parenthesis.

- 0x2D Hyphen or dash or minus sign.

, 0x2C Comma.

Encrypting License Codes

 SentinelLM Programmer’s Reference Manual 271

#include <string.h>
#include "lstest.h"
int VLSencryptLicense(outputString,inputString,size)
char outputString[MAX_LIC_SIZE];
char inputString[MAX_LIC_SIZE];
int size;
{
 int j=0;
 fprintf(stdout,"ENCRYPTING LICENSE\n");
 while ((outputString[j]!='\0') &&(outputString[j+1]!='\0') && (outputString[j]!='\n')
&&(outputString[j+1]!='\n') && (j<size)) {
 inputString[j]=outputString[j+1];
 inputString[j+1]=outputString[j];
 j=j+2;
 }
 inputString[j]=outputString[j];
 j++;
 if (outputString[j]=='\0') {inputString[j]=outputString[j]; j++;}
 if (outputString[j]=='\n') {inputString[j]=outputString[j]; j++;}
 return(0);
}

VLSdecryptLicense()

Decrypts license codes.

Syntax int VLSdecryptLicense ()
char *origText;
char *decryptedTextBuffer;
int buffSize;

Client Server
Static

Library
DLL

a a

Argument Description

origText The original license code.

decryptedTextBuffer The decrypted license code to be returned.

buffSize Size of the decrypted text buffer.

Encrypting Messages

272 Appendix B - Customization Features

Description See VLSencryptLicense() above.
Example file:

/***/
/* */
/* Copyright (C) 1999 Rainbow Technologies, Inc. */
/* All Rights Reserved */
/* */
/***/
/* Usage of VLSdecryptLicense() */
#include <stdio.h>
#include <string.h>
#include "lstest.h"
int VLSdecryptLicense(outputString,inputString,size)
char outputString[MAX_LIC_SIZE];
char inputString[MAX_LIC_SIZE];
int size;
{
 int j=0;
 fprintf(stdout,"DECRYPTING LICENSE\n");
 while ((outputString[j]!='\0') &&(outputString[j+1]!='\0') && (outputString[j]!='\n')
&&(outputString[j+1]!='\n') && (j<size)) {
 inputString[j]=outputString[j+1];
 inputString[j+1]=outputString[j];
 j=j+2;
 }
 inputString[j]=outputString[j];
 j++;
 if (outputString[j]=='\0') {inputString[j]=outputString[j]; j++;}
 if (outputString[j]=='\n') {inputString[j]=outputString[j]; j++;}
 return(0);
}

 Encrypting Messages

All SentinelLM network communication is encrypted. However, for added
security an additional layer of encryption and decryption can be added.
Customizing involves changes to both the license server and the client
application.

Encrypting Messages

 SentinelLM Programmer’s Reference Manual 273

VLSencryptMsg()

Encrypts messages.

Syntax int VLSencryptMsg ()
char *origText;
char *encryptedTextBuffer;
int buffSize;

Description VLSencryptMsg() can receive any ASCII characters as its input text string.
The function can produce any ASCII characters other than \0 (0x0). To add
another layer of encryption and decryption follow these steps:

1. Write custom VLSencryptMsg() and VLSdecryptMsg() functions in
separate source files.

2. In the examples directory of the distribution tree, the example Makefile
can be used to re-link the license server directly and edited to link with
the application to be licensed using the new message encryption. In the
example Makefile, set the variable, ENCRYPT_MSG_OBJ, to the object
file containing VLSencryptMsg(), and DECRYPT_MSG_OBJ to the
object file containing VLSdecryptMsg().

3. Issue the make commands for the license server and the application. The
client application must be incrementally linked with the new object files
before linking with the SentinelLM client library.

Returns 0 if successful; other value on failure.

Client Server
Static

Library
DLL

a a a

Argument Description

origText The original message text.

encryptedTextBuffer The encrypted message text.

buffSize Size of the encrypted text buffer.

Encrypting Messages

274 Appendix B - Customization Features

Example file:

/***/
/* */
/* Copyright (C) 1999 Rainbow Technologies, Inc. */
/* All Rights Reserved */
/* */
/***/
/* Usage of VLSencryptMsg() */
#include <stdio.h>
#include <string.h>
#include "lstest.h"
int VLSencryptMsg(outputString,inputString,size)
char outputString[MAX_MSG_SIZE];
char inputString[MAX_MSG_SIZE];
int size;
{
 int j=0;
 fprintf(stdout,"encrypting MESSAGE\n");
 while ((outputString[j]!='\0') &&(outputString[j+1]!='\0') && (outputString[j]!='\n')
&&(outputString[j+1]!='\n') && (j<size)) {
 inputString[j]=outputString[j+1];
 inputString[j+1]=outputString[j];
 j=j+2;
 }
 inputString[j]=outputString[j];
 j++;
 if (outputString[j]=='\0') {inputString[j]=outputString[j]; j++;}
 if (outputString[j]=='\n') {inputString[j]=outputString[j]; j++;}
 return(0);
}

VLSdecryptMsg()

Decrypts messages.

Syntax int VLSdecryptMsg ()
char *origText;

Client Server
Static

Library
DLL

a a a

Encrypting Messages

 SentinelLM Programmer’s Reference Manual 275

char *decryptedTextBuffer;
int buffSize;

Description See VLSencryptMsg() on the previous page.
Example file:

/***/
/* */
/* Copyright (C) 1999 Rainbow Technologies, Inc. */
/* All Rights Reserved */
/* */
/***/
/* Usage of VLSdecryptMsg() */
#include <stdio.h>
#include <string.h>
#include "lstest.h"
int VLSdecryptMsg(outputString,inputString,size)
char outputString[MAX_MSG_SIZE];
char inputString[MAX_MSG_SIZE];
int size;
{
 int j=0;
 fprintf(stdout,"decrypting MESSAGE \n");
 while ((outputString[j]!='\0') &&(outputString[j+1]!='\0') && (j<size)) {
 inputString[j]=outputString[j+1];
 inputString[j+1]=outputString[j];
 j=j+2;
 }
 inputString[j]=outputString[j];
 j++;
 if (outputString[j]=='\0') {inputString[j]=outputString[j];}
 return(0);
}

Argument Description

origText The original message text.

decryptedTextBuffer The decrypted message text.

buffSize Size of the decrypted text buffer.

Changing the Default Port Number

276 Appendix B - Customization Features

 Changing the Default Port Number

This requires separate changes to the license server and the licensed application.

VLSchangePortNumber()

Changes the port number.

Syntax int VLSchangePortNumber ()
int currentPort;

Description Sets port number to newPort.This function is called only once, at license server
start-up time.

To customize the license server:

1. Write a custom VLSchangePortNumber() function in a separate source
file.

2. In the examples directory of the distribution tree, the example Makefile
can be used to re-link the license server directly. In the example
Makefile, set the variable, CHANGE_PORT_OBJ, to the object file
containing VLSchangePortNumber().

3. Issue the make commands for the license server.

The licensed application can obtain or reset its port number through the client
library function calls, VLSgetServerPort() and VLSsetServerPort(). These
set-up functions must be called before making a request.

Client Server
Static

Library
DLL

a a

Argument Description

currentPort Current port number.

Customizing the Host ID

 SentinelLM Programmer’s Reference Manual 277

Returns 0 if successful; other value on failure.

Note Optionally, you may change the port number by using the port switch when
starting the license server.

Example file:

/***/
/* */
/* Copyright (C) 1999 Rainbow Technologies, Inc. */
/* All Rights Reserved */
/* */
/***/
#include "lservcst.h"
#include "lserv.h"
#include <stdio.h>
#ifdef __STDC__
int VLSchangePortNumber(int newPort)
#else
int VLSchangePortNumber(newPort)
int newPort;
#endif
{

newPort=6000;
return(newPort);

}

 Customizing the Host ID

SentinelLM provides a developer with the capability to have a client send a cus-
tomized fingerprint along with standard fingerprints as determined by the client
library.

In making a request for a key for a particular feature/version, the client sends the
information about the fingerprints (IP Address, host name, PROM ID etc.) of its
host machine. This fingerprint information is then compared against the
fingerprint information available with the server, through the license string for
that feature/version.

Customizing a host ID consists of performing the following steps:

• Create the custom host ID function

Customizing the Host ID

278 Appendix B - Customization Features

• Register the custom host ID function on the server

• Register the custom host ID function on the client

• Build the server

• Create an updated client ID generator

Creating the Custom Host ID Function

The first step to implement the customized fingerprint is to write a custom host
ID (basically a customized fingerprint) function. This function must return a
“long” value, based on the customized logic that is unique for each host. The
following is an example of generating a custom host ID. In this example, the
custom host ID is being generated by converting each of the standard machine
fingerprints to integer values, and then adding them all together.

long getCustomHostId()
{

VLSmachineID LSFAR machineID;
unsigned long LSFAR lock_selector_out,temp1, temp2;
long temp;

VLSinitMachineID(&machineID); /*Set default values.*/

/*Get the locking information for all available locking mechanisms*/

VLSgetMachineID(VLS_LOCK_ID_PROM|VLS_LOCK_IP_ADDR|VLS_LOCK_DISK_ID|
VLS_LOCK_HOSTNAME|VLS_LOCK_ETHERNET|VLS_LOCK_NW_IPX|
VLS_LOCK_NW_SERIAL|VLS_LOCK_PORTABLE_SERV,&machineID,&lock_selector_out);

temp2 = machineID.id_prom;
temp1 = 0;

/*Check to see if we were able to generate locking info for each criteria. If so, convert that info to an
unsigned long and add it to the sum */

if ((machineID.ip_addr != NULL) && (machineID.ip_addr[0] != '\0'))/*checking for presence*/
temp1 = strtoul(machineID.ip_addr, (char **)NULL, 10);

temp2 += temp1 + machineID.disk_id;
if ((machineID.host_name != NULL) && (machineID.host_name[0] != '\0'))
temp1 = strtoul(machineID.host_name,(char **)NULL,10);
temp2 += temp1;
if ((machineID.ethernet != NULL) && (machineID.ethernet[0] != '\0'))
temp1 = strtoul(machineID.ethernet, (char **)NULL, 10);

Customizing the Host ID

 SentinelLM Programmer’s Reference Manual 279

temp2 += temp1 + machineID.nw_ipx + machineID.nw_serial;
if ((machineID.portserv_addr != NULL) && (machineID.portserv_addr[0] != '\0'))
temp1 = strtoul(machineID.portserv_addr,(char **)NULL,10) ;
temp2 += temp1;
temp2=temp2 / 200; /*just to customise hostid */

temp=temp2 + 10;

return temp; /*return long */
}

Registering the Custom Host ID Function on the Server

The function used to register the function with the server is
VLSsetHostIdFunc(), which we call from within
VLSserverVendorInitialize(). VLSserverVendorInitialize() is called when
the server first starts to run. Here you inform the server of the name of the
function which it can use to return the custom host ID by calling
VLSsetHostIdFunc(). Below is an example using a custom host ID function
named “getCustomHostID()”. This code should be put into a separate “c” file.

extern long getCustomHostId();

LSERV_STATUS VLSserverVendorInitialize(void)
{

VLSsetHostIdFunc(&getCustomHostId);
return(LSERV_STATUS_SUCCESS);

}

Registering the Custom Host ID Function on the Client

Here you need to call VLSsetHostIdFunc() in the client application. in the
same manner as was done in VLSserverVendorInitialize() above.

main(int argc,char ** argv){
VLSinitialize();
VLSsetHostIdFunc();
VLSrequest();

}

Customizing the Host ID

280 Appendix B - Customization Features

Building the Server

Build the new customized lserv by linking it to files that contain code for
getCustomHostId() and VLSserverVendorInitialize() using Custom32.mak.

In this step the object files for the “c” files generated in the first two steps need to
be linked with the server library.

Creating an Updated Client ID Generator

You will need to create an updated client ID generator (echoid.exe). The file,
myechoid.c, takes the host ID from the getCustomHostId() function and prints
it in hex. Sample code is shown below:

extern long getCustomHostId();

long main(int argc,char ** argv){
long customid;
customid=getCustomHostId();
printf("0x%lX",customid);
}

Using a Customized Host ID

The sequence of events for an application using a custom ID is as follows:

1. Generate client node lock and/or server node locked licenses with the
custom host ID as returned by myechoid.exe.

2. Rebuild and execute the customized lserv.

3. In the client application set the host ID function to getCustomHostId().

Now the client side host ID has been changed.

4. Add the client node lock license to the server.

When an application tries to request a key for a client node-locked
license, the server then verifies the client host ID as sent in the request
message and compares it with the host ID in the license.

Customizing the Host ID

 SentinelLM Programmer’s Reference Manual 281

5. In the case of server locking to a customized host ID, when a server-
locked license is added to the server, it executes the
VLSserverVendorInitialize() function and gets the host ID for the
server then checks it against the host ID in the license.

282 Appendix B - Customization Features

 SentinelLM Programmer’s Reference Manual 283

6Appendix C - Error and Result
Codes for Client Functions

 Client Function Return Codes

The following tables list LSAPI and SentinelLM client function return codes and
their default actions:

Client Function Return Codes

284 Appendix C - Error and Result Codes for Client Functions

Table C-1: LSAPI Client Function Return Codes

SentinelLM
Error Number

Shell
Error

Number
Return Code

Default
Message

Description

0xC800100B 056 LS_BAD_INDEX Bad index Invalid index specified in
LSEnumProviders() or any query
functions.

0xC8001001 046 LS_BADHANDLE Bad handle Handle given to function
represents an invalid licensing
system context.

0xC800100E 059 LS_BUFFER_TOO_SMALL Input buffer too
small, string
truncated.

Input buffer provided to function is
not largeenough to store the
license server’s name. Need to
input a larger buffer.

0xC8001002 047 LS_INSUFFICIENTUNITS Could not locate
enough licensing
resources.

Not enough sufficient resources to
satisfy LSRequest().

0xC800100D 058 LS_LICENSE_EXPIRED Feature cannot
run due to time
restriction on it.
Contact your
software vendor.

Licensing agreement for this
feature has expired.

0xC8001003 048 LS_LICENSESYSNOTAVAILABLE Licensing
System not
available.

Licensing system itself is
unavailable.

0xC8001004 049 LS_LICENSETERMINATED License
terminated
because
renewal time
expired.

LSupdate() failed. License
expired due to time-out.

0xC800100C 057 LS_NO_MORE_UNITS No additional
units are
available.

Additional licenses/units requested
are unavailable.

Client Function Return Codes

 SentinelLM Programmer’s Reference Manual 285

0xC80010009 034 LS_NO_MSG_TEXT The specified
filename can not
be found on
license server.

LSGetMessage() unable to
retrieve message text.

0xC8001008 053 LS_NO_NETWORK Unable to talk to
the host
specified. Verify
client/server
communication.

Network communication problems
encountered.

0xC800100F 060 LS_NO_SUCCESS No success in
achieving the
target.

No success in achieving the target.

0xC8001005 044 LS_NOAUTHORIZATIONAVAILABLE Could not find
the specified
client for the
feature.

License server does not recognize
this feature name.

0xC8001006 051 LS_NOLICENSESAVAILABLE All licensing
keys are
currently in use.

License server has no more license
codes available for this request. All
licenses are in use.

0xC8001007 047 LS_NORESOURCES Could not locate
enough licensing
resources.

Insufficient resources (such as
memory) are available to complete
the request. An error occurred in
attempting to allocate memory
needed by function.

0x0 00 LS_SUCCESS Successful completion of function
call.

0xC800100A 055 LS_UNKNOWN_STATUS Unknown error
code, cannot
provide error
message.

Unknown or unrecognized status
code was passed to

LSGetMessage().

Table C-1: LSAPI Client Function Return Codes

SentinelLM
Error Number

Shell
Error

Number
Return Code

Default
Message

Description

Client Function Return Codes

286 Appendix C - Error and Result Codes for Client Functions

Table C-2: SentinelLM Client Function Return Codes

SentinelLM
Error Number

Shell
Error

Number
Return Code Default Message Description

19 019 VLS_ADD_LIC_FAILED Failed to add
license string to the
license server.

Dynamic license addition failed.
Default: Display error message,
return error code.

39 039 VLS_ALL_UNITS_RELEASED All the keys issued
to the feature have
been returned.

The client asked VLSreleaseExt()
API to return a specific number of
units, it returned all the issued units.

42 042 VLS_AMBIGUOUS_HANDLE The status of the
handle is
ambiguous.

The status of LS_HANDLE is
ambiguous. It is not exclusively active
or exclusively queued.

6 006 VLS_APP_NODE_LOCKED Feature not
licensed to run on
this machine.

Server-locked feature cannot be
issued a floating license code.
Default: Display error message,
return error code.

2 002 VLS_APP_UNNAMED Feature name or
version cannot be
NULL.

No feature name provided with
function call. Default: Display error
message, return error code.

25 025 VLS_BAD_SERVER_MESSAGE Could not
understand
message received
from the license
server. Verify
Client and License
server versions
match.

An error has occurred in decrypting
(or decoding) a network message at
the client end. Probably an
incompatible or unknown license
server, or a version mismatch.

11 011 VLS_CALLING_ERROR Error in calling the
function. Check the
calling parameters.

Error in calling a SentinelLM function.
Default: Display error message,
return error code.

45 045 VLS_CLIENT_NOT_AUTHORIZED Client is not
authorized for the
specified action.

Client not authorized to make the
specified request.

Client Function Return Codes

 SentinelLM Programmer’s Reference Manual 287

26 026 VLS_CLK_TAMP_FOUND Request denied
due to clock
tamper detection.

The license server has found
evidence of tampering of the system
clock, and it cannot service the
request since the license for this
feature has been set to be time-
tamper proof.

20 020 VLS_DELETE_LIC_FAILED Failed to delete
feature from the
license server.

Dynamic license deletion failed.
Default: Display error message,
return error code.

36 036 VLS_FINGERPRINT_MISMATCH Machine’s
fingerprint
mismatched.

The fingerprint identification of
requesting computer does not match
with the system.

3 003 VLS_HOST_UNKNOWN Unknown license
server host.

License server host does not seem to
be on the network. Invalid host name
specified. Default: Display error
message, return error code.

12 012 VLS_INTERNAL_ERROR Internal error in
licensing or
accessing feature.

SentinelLM internal error. Failure
occurred in setting timer. (Timer is
only attempted to be set if timer is
available for platform and if license
requires timer for updates.) Default:
Display error message, return error
code.

28 028 VLS_INVALID_DOMAIN Cannot perform
this operation on
the domain name
specified.

The domain of license server is
different from that of client.

21 021 VLS_LOCAL_UPDATE The last update
was done locally.

The last update was done locally.

35 035 VLS_LOG_FILE_NAME_NOT_

CHANGED

Cannot change
specified log
filename on license
server.

Log file name was not changed.

34 034 VLS_LOG_FILE_NAME_NOT_ FOUND The specified log
filename can not
be found on license
server.

Log file name not recognized by
license server.

Table C-2: SentinelLM Client Function Return Codes

SentinelLM
Error Number

Shell
Error

Number
Return Code Default Message Description

Client Function Return Codes

288 Appendix C - Error and Result Codes for Client Functions

24 024 VLS_MULTIPLE_VENDORID_FOUND Feature licensed
by multiple
vendors.

The license system has licenses for
the same feature, version, and it is
not clear from the requested
operation which license the requestor
is interested in.

7 007 VLS_NO_KEY_TO_RETURN Attempt to return a
non-existent key
for feature.

LSrelease() was called before the
license code was issued. Default:
Display error message.

1 001 VLS_NO_LICENSE_GIVEN Unable to obtain
licensing key.

Other internal error not listed above.
Default: Display error message,
return error code.

9 009 VLS_NO_MORE_CLIENTS No more clients to
report.

VLSgetClientInfo() has no more
clients to report. Default: No action.

10 010 VLS_NO_MORE_FEATURES No more features
to report.

LSgetFeatureInfo() has no more
features to report. Default: No action.

17 017 VLS_NO_RESPONSE_TO_

BROADCAST

Probably no
license servers
running on this
subnet.

No license servers responded to the
VLSdiscover() call. Default: Display
error message, return error code.

4 004 VLS_NO_SERVER_FILE License server
hostname not
specified. Set
environment
variable LSHOST
to name the license
server.

Client not initialized with the name of
the license server host. No license
server has been set and unable to
determine which license server to
use. Default: Get the host name
interactively from the user.

14 014 VLS_NO_SERVER_RESPONSE License server not
responding.

The license server is not responding
due to communication has timed out.
Default: Display error message,
return error code.

5 005 VLS_NO_SERVER_RUNNING Cannot talk to the
license server.
Verify license
server is running.

No license server seems to be
running on the remote host. License
server on specified host is not
available for processing the license
operation requests. Default: Display
error message, return error code.

Table C-2: SentinelLM Client Function Return Codes

SentinelLM
Error Number

Shell
Error

Number
Return Code Default Message Description

Client Function Return Codes

 SentinelLM Programmer’s Reference Manual 289

44 044 VLS_NO_SUCH_CLIENT Could not find the
specified client for
the feature.

The client specified is not found on
the license server.

18 018 VLS_NO_SUCH_FEATURE No license string is
available.

The license server does not
recognize the given feature. Default:
Display error message, return error
code.

38 038 VLS_NO_UPDATES_SO_FAR The updates for the
specified feature
have not been
made so far.

No updates have been made so far.

43 043 VLS_NOMORE_QUEUE_ RESOURCES Could not locate
enough resources
to queue for
license feature.

Could not queue the client because
the queue is full.

27 027 VLS_NOT_AUTHORIZED Unauthorized
operation
requested.

The specified operation is not
permitted - authorization failed.

40 040 VLS_QUEUED_HANDLE The specified
handle is a queued
handle.

The LS_HANDLE is a queued handle.

22 022 VLS_REMOTE_UPDATE The last update
was done remotely.

The last update was performed by
contacting the SentinelLM license
server.

8 008 VLS_RETURN_FAILED Cannot return key
for feature.

LSrelease() failed to return the
issued license code. Default: Display
error message, return error code.

13 013 VLS_SEVERE_INTERNAL_ERROR Severe internal
error in licensing or
accessing feature.

SentinelLM severe internal error. An
error occurred while attempting to
retrieve system time. Default: Display
error message, return error code.

37 037 VLS_TRIAL_LIC_EXHAUSTED Duration or usage
of a trial license is
exhausted.

Trial license usage exhausted or trial
license has expired.

16 016 VLS_UNKNOWN_SHARED_ID Unknown shared id
specified.

The supplied sharing criteria is
unknown. Default: Display error
message, return error code.

Table C-2: SentinelLM Client Function Return Codes

SentinelLM
Error Number

Shell
Error

Number
Return Code Default Message Description

Client Function Return Codes

290 Appendix C - Error and Result Codes for Client Functions

15 015 VLS_USER_EXCLUDED User/machine
excluded from
running the given
feature.

The user/computer is excluded by
group reservations. Default: Display
error message, return error code.

23 023 VLS_VENDORIDMISMATCH Feature licensed
by a different
vendor.

The license system has those
resources that could satisfy the
request, but the vendor code of
requested application does not match
with that of the application licensed by
the license server.

Table C-2: SentinelLM Client Function Return Codes

SentinelLM
Error Number

Shell
Error

Number
Return Code Default Message Description

 SentinelLM Programmer’s Reference Manual 291

7Appendix D - Error and Result
Codes for License Generation

Functions

 License Generation Function Return Codes

The following table lists SentinelLM license generation function return codes
and their default actions (where applicable):

Table D-1: License Generation Function Return Codes

Return Code Description

VLScg_BAD_HANDLE Bad file handle.

VLScg_DECRYPT_FAIL Decryption failed for license string.

VLScg_DYNAMIC_DECRYPT_FAILURE Decryption failed for dynamically added
license string.

VLScg_EXCEEDS_MAX_STRLEN Length of <value> is greater than <value>.

VLScg_EXCEEDS_MAX_VALUE Value entered (<value>) exceeds the
maximum allowed value. The maximum
value can be <value>.

VLScg_EXPIRED_LICENSE Your SW license file has expired.

VLScg_FAIL Operation failed.

VLScg_FIXED_STR_ERROR Default fixed string error.

VLScg_INTERNAL_ERROR Internal error.

VLScg_INVALID_BIRTH_YEAR Start year cannot be less than <value>.

VLScg_INVALID_CHARS Invalid characters - \”<value>\.

License Generation Function Return Codes

292 Appendix D - Error and Result Codes for License Generation Functions

VLScg_INVALID_CHKSUM Checksum validation failed for license string.
Please verify the license string.

VLScg_INVALID_DATE <value> is not valid in <value>, <value>.

VLScg_INVALID_DEATH_YEAR Expiration year cannot be less than <value>.

VLScg_INVALID_EXP_DATE Expiration Date must be greater than Start
Date.

VLScg_INVALID_EXP_MONTH License Expiration Month must be greater
than Start Month.

VLScg_INVALID_EXP_YEAR License Expiration Year must be greater than
Start Year.

VLScg_INVALID_HANDLE Invalid handle entered.

VLScg_INVALID_HEX_TYPE Wrong value entered - \”<value>\. Should be
hexadecimal.

VLScg_INVALID_INPUT Invalid input - \”<value>\.

VLScg_INVALID_INT_TYPE Expected an integer value, found \”<value>\”.

VLScg_INVALID_IP_TYPE Wrong value entered - \”<value>\. IP address
should be specified in dot form.

VLScg_INVALID_LICTYPE Invalid License Type.

VLScg_INVALID_RANGE Value \”<value>\” violates the valid range of
input.

VLScg_INVALID_TRIAL_COUNT Invalid Trial License Count.

VLScg_INVALID_TRIALDAYS Invalid Trial Days.

VLScg_INVALID_VENDOR_CODE Invalid Vendor Code. Please contact your
SentinelLM distributor.

VLScg_INVALID_YEAR Invalid year entered - \”<value>\.

VLScg_LESS_THAN_MIN_VALUE Value entered (<value>) is less than the
minimum supported value. The minimum
value is <value>.

VLScg_LICMETER_ACCESS_ERROR Error accessing SentinelLM license meter(s).
Please make sure the Sentinel System Driver
is properly installed and a license meter is
attached to the parallel port.

Table D-1: License Generation Function Return Codes (Continued)

Return Code Description

License Generation Function Return Codes

 SentinelLM Programmer’s Reference Manual 293

VLScg_LICMETER_CORRUPT Your SentinelLM license meter(s) are
corrupted.

VLScg_LICMETER_COUNTER_
TOOLOW

Too few units (Normal License
Count=<value>/ Trial License Count=
<value>) left in your SentinelLM license
meter(s) to generate requested license.
<value> units required.

VLScg_LICMETER_DECREMENT_OK Your SentinelLM license meter(s) have been
decremented by <value> units. You now
have <value> units left out of an initial count
of <value> units.

VLScg_LICMETER_EMPTY All <value> units of your SentinelLM license
meter(s) have been used up. License
generation will fail.

VLScg_LICMETER_EXCEPTION Unknown exception (<value>) in accessing
SentinelLM license meter(s).

VLScg_LICMETER_VERSION_
MISMATCH

Your SentinelLM license meter has an invalid
version (<value>.<value>). Expected
<value>.<value>.

VLScg_MALLOC_FAILURE Out of heap memory.

VLScg_MAX_LIMIT_CROSSED Maximum limit crossed.

VLScg_NO_ENABLE_FEATURE Enable feature not specified.

VLScg_NO_FEATURE_NAME Feature Name must be specified. It cannot
be empty.

VLScg_NO_NETWORK_
AUTHORIZATION

Server does not recognize this network.

VLScg_NO_RESOURCES No resources left.

VLScg_NOT_MULTIPLE Value of <value> should be a multiple of
<value>.

VLScg_PORTSERV_ACCESS_ERROR Error accessing SentinelLM license server(s)
for a commuter license.

VLScg_PORTSERV_CORRUPT Your SentinelLM license server(s) for
commuter licensing is corrupted.

Table D-1: License Generation Function Return Codes (Continued)

Return Code Description

License Generation Function Return Codes

294 Appendix D - Error and Result Codes for License Generation Functions

VLScg_PORTSERV_EXCEPTION Unknown exception (<value>) in accessing
SentinelLM license server(s) for commuter
licenses.

VLScg_PORTSERV_VERSION_
MISMATCH

Your SentinelLM license server has an
invalid version (<value>.<value>) for
commuter licenses. Expected
<value>.<value>.

VLScg_PREMATURE_TERM Premature termination of license string.
Please check.

VLScg_REMAP_DEFAULT Failed to remap default strings from
configuration file for license \”<value>\”.

VLScg_RESERV_STR_ERR \”<value>\” is a reserved string.

VLScg_SECRET_DECRYPT_FAILURE Decryption failed for secrets. Verify the
configuration file for readable licenses.

VLScg_SHORT_STRING License string \”<value>\” too small to parse.

VLScg_SIMPLE_ERROR Error in license string. Please check.

VLScg_SUCCESS Successful completion of function call.

VLScg_TRIAL_SUCCESS Your SentinelLM Trial license meter(s) have
been decremented by <value> units. You
now have <value> units left.

VLScg_TRIALMETER_EMPTY All <value> units of your SentinelLM Trial
license meter(s) have been used up.

VLScg_UNKNOWN_LOCK Unknown lock mechanism - \”<value>\”

VLScg_VALUE_LARGE Value \”<value>\” : too large.

VLScg_VENDOR_ENCRYPTION_FAIL Vendor-customized encryption failed.

Table D-1: License Generation Function Return Codes (Continued)

Return Code Description

 SentinelLM Programmer’s Reference Manual 295

8Appendix E - Error Codes for
Redundancy, Queuing and

Commuter Functions

 Return Codes

The following tables list SentinelLM redundancy, queuing, and commuter return
codes and their descriptions:

Table E-1: Redundancy, Queuing, and Commuter Return Codes

Return Code Description

LS_BAD_PARAMETER License server’s name is NULL or an empty
string.

LS_BADHANDLE Invalid handle.

LS_BUFFER_TOO_SMALL Buffer is not large enough to store license
server’s name.

LS_INSUFFICIENTUNITS License server does not currently have
sufficient licensing units for requested feature
to grant a license.

LS_LICENSE_EXPIRED License has expired.

LS_LICENSETERMINATED Cannot update the license because the
license has already expired.

LS_NO_AUTHORIZATION License server does not recognize this
feature name.

Return Codes

296 Appendix E - Error Codes for Redundancy, Queuing and Commuter Functions

LS_NO_SUCCESS Failed to retrieve computer names on local
subnet.

LS_NO_SUCH_FEATURE feature_version is non-existent.

LS_NOLICENSESAVAILABLE All licenses in use.

LS_NON_REDUNDANT_SERVER_
CONTACTED

Sets LSHOST to a non-redundant license
server.

LS_NONETWORK Generic error indicating network failure.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLS_ACTIVE_HANDLE lshandle is an active handle.

VLS_ADD_LIC_FAILED Generic error indicating the feature has not
been added.

VLS_AMBIGUOUS_HANDLE lshandle is an ambiguous handle; it is not
exclusively active or exclusively queued.

VLS_APP_NODE_LOCKED Requested feature is node locked, but
request was issued from an unauthorized
machine.

VLS_APP_UNNAMED Specified feature is NULL.

VLS_BAD_DISTB_CRIT Invalid distribution criteria.

VLS_BAD_HOSTNAME hostName is not valid.

VLS_BAD_SERVER_MESSAGE Message returned by license server could not
be understood.

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

VLS_CLIENT_NOT_AUTHORIZED Client not authorized to remove queue.

VLS_CLK_TAMP_FOUND License server has determined that the
client’s system clock has been modified. The
license for this feature has time-tampering
protection enabled, so the license operation
is denied.

VLS_CONF_FILE_ERROR Error in configuration file.

Table E-1: Redundancy, Queuing, and Commuter Return Codes

Return Code Description

Return Codes

 SentinelLM Programmer’s Reference Manual 297

VLS_DIFF_LIB_VER Version mismatch between license server
API and client API.

VLS_FEATURE_INACTIVE Feature is inactive on specified license
server.

VLS_FINGERPRINT_MISMATCH Client-locked; locking criteria does not match.

VLS_HOST_UNKNOWN Invalid hostName was specified.

VLS_INVALID_DOMAIN The domain of the license server is different
from that of the client.

VLS_INVALID_IP_ADDRESS IP_address is not valid.

VLS_LEADER_NOT_PRESENT Unknown leader.

VLS_MAJORITY_RULE_FAILURE Majority rule failure prevents token from
being issued.

VLS_MULTIPLE_VENDORID_FOUND The license server has licenses for the same
feature and version from multiple vendors. It
is ambiguous which feature is requested.

VLS_NO_LICENSE_GIVEN Invalid handle specified.

VLS_NO_RESPONSE_TO_

BROADCAST

No license servers have responded.

VLS_NO_SERVER_FILE The license The license server has not been
set and is unable to determine which license
server to use.

VLS_NO_SERVER_RESPONSE Communication with license server has timed
out

VLS_NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches request feature.

VLS_NOMORE_QUEUE_RESOURCES Queue is full.

VLS_NON_REDUNDANT_FEATURE Feature is non-redundant and thus cannot be
used in this redundancy-related operation.

Table E-1: Redundancy, Queuing, and Commuter Return Codes

Return Code Description

Return Codes

298 Appendix E - Error Codes for Redundancy, Queuing and Commuter Functions

VLS_NON_REDUNDANT_SRVR License server is non-redundant and
therefore cannot support this redundancy-
related operation.

VLS_NOT_AUTHORIZED Invalid user.

VLS_ONLY_SERVER Pool will not exist if this license server is
removed.

VLS_POOL_FULL Pool already has maximum number of
license servers. No more license servers can
be added.

VLS_QUEUED_HANDLE lshandle is a queued handle.

VLS_SERVER_ALREADY_PRESENT Attempted to add a license server that is
already in the pool.

VLS_SERVER_NOT_PRESENT Attempted to delete a license server that is
not in the pool.

VLS_SERVER_SYNC_IN_PROGRESS License server synchronization in process.

VLS_TRIAL_LIC_EXHAUSTED Trial license has expired.

VLS_UNRESOLVED_HOSTNAME IP_address is valid, but could not be
resolved.

VLS_UNRESOLVED_IP_ADDRESS IP_address is valid, but could not be
resolved.

VLS_USER_EXCLUDED User or machine excluded from accessing
requested feature.

VLS_VENDORIDMISMATCH The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has the license.

Table E-1: Redundancy, Queuing, and Commuter Return Codes

Return Code Description

 SentinelLM Programmer’s Reference Manual 299

9Appendix F - Error and Result
Codes for SentinelLM-Shell

SentinelLM-Shell Return Codes
The following table list SentinelLM-Shell return codes and their default actions:

SentinelLM-Shell Return Codes

300 Appendix F - Error and Result Codes for SentinelLM-Shell

Table F-1: SentinelLM-Shell Return Codes

Shell
Error

Number
Return Code Default Message Description

009 ACTIVATOR_ERROR Could not launch the Client
Activator.

Unknown error occurred when launching the
Client Activator.

003 ERROR_LOADING Error loading program. The protected application was not loaded into
memory prior to execution.

007 HEARTBEAT_FAIL Heartbeat failed. Failed to receive a response to a periodic query
from the license server.

006 IMPORT_FUNC_ERROR Error importing library function. Error importing library function.

005 IMPORT_LIB_ERROR Error loading import library. Error loading import library.

001 INIT_ERROR Initialization error. A problem occurred when initializing the license
manager library.

008 LIC_RENEWAL_FAIL License renewal failed. Failed to renew license or portable hardware
key removed.

004 MEMORY_ACCESS_ERR Memory access error. Error accessing memory at run-time.

012 METER_ACCESS Meter key access error. Error accessing the key which meters the
SentinelLM-Shell.

010 METER_INIT License meter driver
initialization error.

License meter key driver initialization error.

011 METER_VERSION License meter version
mismatch.

License meter key version mismatch.

002 NO_LICENSE Could not get a license. No license was found.

 SentinelLM Programmer’s Reference Manual 301

10Appendix G - File Formats

This appendix contains the formats for the following files:

• License code

• Configuration

• Log

• Group reservation

The license server looks for these files under the directory specified by the
environment variable, LSDEFAULTDIR. If this environment variable is not set,
it looks in the directory where the executable resides.

 License Code File Format

The license code file contains the encrypted license codes that provides the
license server details of licensing agreements with software vendors. There is
one license code for each feature licensed by the license server.

All SentinelLM utilities that read or write license codes use the following
conventions:

• No more than one license code can be specified on one line of a file.

• A single license code cannot be split across lines.

• A license code must be terminated either by a new line or a pound sign
(#).

Configuration File Format

302 Appendix G - File Formats

• If a pound sign (#) is present on a line, all characters following it (until a
new line) will be treated as a comment and ignored. Comments may
appear anywhere in a license file.

 Configuration File Format

A configuration file can be used for specifying alert actions as well as
customizing the “fixed” or predefined strings found in a readable license string.

The fixed strings or keywords that can be remapped are:

SHORT # code_type
LONG
ADD # additive
EXCL
NO_SHR # sharing_crit
USER_SHR
HOST_SHR
XDISP_SHR
APP_SHR
NO_HLD # holding_crit
APP_HLD
LIC_HLD
FLOAT # client_server_lock_mode
ND_LCK
DEMO
CL_ND_LCK
_KEYS # num_keys suffix
_MINS # key_holdtime, key_lifetime suffix
comment character
, # subfield delimiter1
: # subfield delimiter2

The strings above are used as the default strings to generate the readable license
codes unless they are mapped to other strings and specified in the configuration
file.

The format of the configuration file is as follows:

Configuration File Format

 SentinelLM Programmer’s Reference Manual 303

[feature_name1 feature_version1]
default_string = new_string # comments. This is a remap statement.
. . .

[feature_name2 feature_version2]
default_string = new_string # comments. This is another remap statement.
. . .

[feature_name feature_version] marks the beginning of a new section. All
subsequent remap statements apply to readable licenses with this feature and
version, until another [feature_name feature_version] section is encountered.

In the configuration file comments can be written after the pound sign/hash mark
(#) character.

To remap the comment character and the two subfield delimiters used in a
readable license, the following format must be used in the corresponding section
of the map file:

These characters are allowed to be remapped just in case you wish to use one or
more of these characters in your license code generator data (e.g., in vendor
info), which could interfere with parsing of the subfields of a readable license.
This remapping should be done when you run the license code generator.
Perform the following steps:

1. Write the configuration file.

2. Make sure the license code generator finds the configuration file, and
that the appropriate feature and version section exists.

3. The license code generator will generate the remapped license string.

4. Ship the configuration file as well as the readable license to the end user.

Item Description

COMMENT = $ The comment character used in the readable license string is #
now changed to ‘$’.

SUBF_DELIM1 = ; The subfield delimiter used in the readable license # string is ‘;’
not ‘,’.

SUBF_DELIM2 = / The other subfield delimiter used in the readable license # string
is ‘/’ not ‘:’.

Configuration File Format

304 Appendix G - File Formats

5. The end user should make sure that lsdecode and/or the license server
able to read the configuration file. If either of these are not able to read
the configuration file, the license string may not be parsed correctly.

Steps 3 and 5 apply to any remap statement, whether it is the comment character
or LONG that is being remapped.

In the configuration file the feature_name and feature_version can be specified
in the following three formats to control the range of applicability of the section:

1. [feature_name feature_version] ==>

Subsequent remap statements apply only to feature_name and
feature_version.

For example:

[DOTS 1.0] ==> remapping for version 1.0 of DOTS.

2. [feature_name *] ==> remapping for all versions of feature_name.

For example:

[DOTS *] ==> remapping for all versions of DOTS.

3. [] or [* *] ==> remapping for all license codes in the license file.

If a particular feature name and version corresponds to more than one
[feature_name feature_version] section, then the section which describes the
feature most accurately is selected and the remap statements under that section
are used for remapping.

For example:

If [] , [DOTS 2], and [DOTS *] are all specified in the map file, then:

• For DOTS version 2 statements specified below [DOTS 2] will be used.

• For DOTS version 1.0 statements specified below [DOTS *] will be
used.

• For TUTOR version 0 statements specified below [] will be used.

Configuration File Format

 SentinelLM Programmer’s Reference Manual 305

[] or [] are invalid and should be written as [] (no space between the two square
brackets).

[**] is invalid and should be written as [* *] in the configuration file.

Furthermore, for statements associated with a particular feature and version, only
the statements within the applicable section will be used. If some statements are
missing from [DOTS *] but are given in [* *], the ones in [* *] will not be used
for DOTS 1.0.

An example configuration file is shown below:

[] # all features
SHORT = SH # short code
COMMENT = # # comment char remains the same
LONG = Ln
_KEYS = _keys
_MINS = _minutes
[DOTS *] # mapping for all versions of DOTS
SHORT = short
_KEYS = _number_of_keys
LONG = long_code
_MINS = _minutes
[DOTS 1] # mapping for version 1 of DOTS
SHORT=SHORT_CODE
LONG = LONG_CODE
FLOAT = FLOATING
_KEYS=_NUM_LICENSES
SUBF_DELIM1= ; # comma remapped to a semi-colon
[STARS 2] # stars version 2
_MINS = _MINUTES
LONG=LONG_CODE
SHORT=SHORT_CODE
_KEYS=_LICENSE
SUBF_DELIM2 = / # colon remapped to '/'
COMMENT = @ # comment delimiter

For parsing errors in readable license strings, the license server gives the line
number of the string, the file name, and the cause of error.

The environment variable, LSERVRCCNF, can specify the path to the
configuration file. The path for <licenseFile>.cnf, is constructed from the
license file path the user is using. licenseFile can be specified using existing
methods such as the -s option, or the LSERVRC environment variable. It is not

Log File Format

306 Appendix G - File Formats

an error for the configuration file to be missing. The configuration file can
contain information other than remap statements. For instance, alert
specifications are also given in this file, so it is a general-purpose configuration
file associated with a particular license file.

 Log File Format

The license server generates a usage file that logs all license codes issued or
denied. License code updates are not recorded. Usage reports can be generated
using the SentinelLM utility, lsusage. Reports for encrypted log files can be
generated by developers only using the vusage utility. See the SentinelLM
Developer’s Guide for information on lsusage and vusage.

Various levels of encryption can be set for the log file entries. You set the
encryption level for a particular license code when you generate it, and any log
file entry created for that license code will be encrypted at that level. A
developer-specified non-zero encryption level overrides any encryption level set
by a customer. See the SentinelLM Developer’s Guide and the SentinelLM
Administrator’s Guide for details.

License codes with an LFE level of 0 will be encrypted using the level specified
in the -lfe license server switch.

Information is recorded in the log file one entry per line in the following format:

Table G-1: Log Entry Format

Server-
LFE

License-
LFE

Date Time-
stamp

Feature Ver Trans Numkeys Keylife User Host LSver Currency Comment

Table G-2: Elements of a Log File

Element Description

Server-LFE Customer-defined log file encryption level as specified by the license
server -lfe startup option.

License-LFE Developer-defined log file encryption level as specified during license
code generation. If this is non-zero, it overrides the Server-LFE.

Log File Format

 SentinelLM Programmer’s Reference Manual 307

A typical entry might appear as:

3 3 xxxx Tue Jul 06 11:46:27 1999 931286887 99 v1 2 MQ == 632 jsmith engr1 7.00 1 ----- xx xxxx
xxxxxx

This entry indicates that Tuesday, July 06, 1999, at 11:46:27, the user, jsmith
finished using an application with the feature 99 and version 1. The license was
returned after using the application for 632 seconds on computer engr1. Because
this is encrypted to level 3, the number of license tokens remaining after the
license was returned is encrypted. The license server version is 7.00, and 1
license token was used by the application.

If the maximum size of the log file has been specified using the -z option,
SentinelLM automatically trims the log file so that it will not grow indefinitely.
The trimming mechanism ensures that the log file always will have less than
2,000 lines of ASCII text (each line requiring less than 100 bytes).

Date The date the entry was made, in the format:

Day-of-week Month Day Time (hh:mm:ss) Year

Time-stamp The time stamp of the entry, according to the format set by the mktime()
C library call.

Feature Name of the feature.

Ver Version of the feature.

Trans The transaction type. 0 indicates an issue, 1 a denial, and 2 a return.

Numkeys The number of licenses in use after the current request/release.

Keylife The time, in seconds, that the license was issued.

User The user name of the application associated with the entry.

Host The host name of the application associated with the entry.

LSver The version of the SentinelLM license server.

Currency The number of licenses handled during the transaction.

Comment The text associated with the log_comment string passed in by
LSRequest() or LSRelease().

Table G-2: Elements of a Log File (Continued)

Element Description

308 Appendix G - File Formats

 SentinelLM Programmer’s Reference Manual 309

4 Index
A

adding
APIs 9
feature licensing information 104, 106
security 266–268, 269, 272

advanced client functions 41
Advanced-API 2
APIs

adding 9
advanced 2
client 23–119
client example 3
commuter 249
license code generation 121
queuing 231
quick 1
redundancy 201
standard 1

applications
sample 259–260

authenticating the license manager 45–48

B
basic client licensing functions 25–30
basic license code generation functions 126
broadcast intervals

retrieving 67
setting 66

C
CHALLENGE structure, defined 46
challenge-response mechanism 45–48
CHALLENGERESPONSE structure,

defined 46
CHANGE_PORT_OBJ Makefile

variable 276
changing

port number default 276–277
system time 266–268

client API 23–119
example 3

client configuration functions 2, 52
client feature information, retrieving 81, 83
client function return codes 283
client libraries 24
client library

initializing 31
retrieving information 109
tracing calls 119

client query functions 2, 79
client utility functions 2, 100–112
clock, detecting changes 17, 266–268
code struct field setting functions 132–151
codeT 121
Commuter Licensing 249
commuter licensing 249
configuration files

format of 302–306
contacting Rainbow xix
conventions

syntax xviii
typographic xvii

custom host IDs, creating 277–281
customizing functions 261
customizing SentinelLM

changing port numbers 276–277
creating a custom host ID 277–281
detecting time tampering 266–268
error handling 116
license code encryption 269–272
message encryption 272–275

D
DECRYPT_LIC_OBJ Makefile variable 270

310 Index

DECRYPT_MSG_OBJ Makefile
variable 273

decrypting
license codes 269–272
messages 272–275

deleting
feature licensing information 107

destroying the handle for lscgen.h 127
disable auto timer 78
displaying error messages 115, 117

E
ENCRYPT_LIC_OBJ Makefile variable 270
ENCRYPT_MSG_OBJ Makefile

variable 273
encrypting

license codes 269–272
messages 272–275

environment variables
LS_MAX_GRP_QLEN 234
LS_MAX_HOLD_SEC 235
LS_MAX_QLEN 234
LS_MAX_WAIT_SEC 235
LSDEFAULTDIR 301
LSERVRC 305
LSERVRCCNF 305
LSFORCEHOST 11
LSHOST 15, 53

error codes
client functions 283
license generation functions 291
redundancy, queuing and commuter

functions 295
SentinelLM-Shell functions 299

error handling 113–118
customizing 116
setting 116

error handling functions 2
error message display 117

error messages, displaying 115
errors, retrieving 128–131
event handlers, registering with the

server 263
example files 264

F
feature licensing information

adding 104, 106
deleting 107
retrieving 91

feature names, retrieving 94
feature query functions 2, 86–100
feature time left information

retrieving 97
FeatureName parameter 3, 10
file formats 301–307

configuration 302–306
license codes 301
log 306–307

files
lservrc 301
lshost 53

functions
basic client 25–30
client configuration 2, 52
client query 2, 79
client utility 2, 100–112
customizing 261
error handling 2
feature query 2, 86–100
redundancy 201

H
help

getting xviii
hold time

setting 69
host ID

 SentinelLM Programmer’s Reference Manual 311

customizing 277–281
setting 66

host names
retrieving 56
setting 53

I
initializing fields of the machineID 58
initializing the client library 31
initializing the server 263
initializing the server info 65

K
key time left information

retrieving 99
keys

renewing 38

L
libraries

client 24
integrated 24
network 24
stand-alone 24
UNIX 15

license code generation API 121
license codes

encrypting and decrypting 269–272
file format 301

license generation function return codes 291
license manager

authenticating 45–48
usage logging 306–307

license server
APIs

license code generation 121
locating 101

LICENSE_LIBS macro 16
licenses

lifetime of 39
local vs. remote renewal of 74
releasing 36, 48
renewing 38
requesting 32, 42
single-call licensing 26

disabling 29
lifetime of a license 39
local license renewal 75
locating the license server 101
log file format 306–307
LS_LIBVERSION structure, defined 110
LS_MAX_QLEN 234
LSAPI client function return codes 284
lscgen.h handle

destroying 127
LSDEFAULTDIR environment variable 301
LSERVRC environment variable 305
lservrc file 301
LSFORCEHOST environment variable 11
LSGetMessage 115
LSHOST environment variable 15, 53
lshost file 53
LSRelease 36
LSRequest 32
LSUpdate 38
lsusage utility 306

M
machine names, retrieving 101
macros

LICENSE_LIBS 16
NO_LICENSE 6

Makefile 16, 259, 262
Makefile variables

CHANGE_PORT_OBJ 276
DECRYPT_LIC_OBJ 270
DECRYPT_MSG_OBJ 273
ENCRYPT_LIC_OBJ 270

312 Index

ENCRYPT_MSG_OBJ 273
messages, encrypting and decrypting 272–

275

P
port numbers

changing the default 276–277
retrieving 58

printing errors 128–131
problems

reporting xxi
programs, sample 259–260
PublisherName parameter 3, 10

Q
quick client functions 25
Quick-API 1

R
redundancy 295
redundant license server 201
registering an event handler 263
releasing licenses 36, 48
remote renewal period 39
remote renewal time, setting 77
renewing license keys 38
reporting problems xxi
requesting licenses 32, 42
retrieving

broadcast intervals 67
client feature information 81, 83
client library information 109
errors 128–131
feature licensing information 91
feature names 94
feature time left information 97
license time left information 99
machine names 101
server host names 56

server port numbers 58
time drift information 96
time-out intervals 68
version information 93, 95

Returns 37

S
sample applications 259–260
sample programs 259
samples.mak 259
security

adding 16, 266–268, 269, 272
SentinelLM

APIs
client 23–119
license code generation 121

architecture 1–2
customizing

changing port numbers 276–277
creating a custom host ID 277–281
detecting time tampering 266–268
error handling 116
license code encryption 269–272
message encryption 272–275

license generation function return
codes 291

security 16
adding 266–268, 269, 272

servers
detecting 10
initializing 263
retrieving host names 56
retrieving port numbers 58
setting

host names 53
setting

broadcast intervals 66
code struct fields 132–151
error handling 116

 SentinelLM Programmer’s Reference Manual 313

hold time 69
host ID 66
remote renewal time 77
server names 53
time-out intervals 68

shared IDs 70, 72
shutting down lserv 110
single-call licensing 26

disabling 29
standard client functions 31
Standard-API 1
structure definitions

CHALLENGE 46
CHALLENGERESPONSE 46
LS_LIBVERSION 110
VLSclientInfo 80
VLSfeatureInfo 87

syntax conventions xviii
system time, detecting changes 17, 266–268

T
time clock, detecting changes 17, 266–268
time drift information

retrieving 96
time-out intervals

retrieving 68
setting 68

tracing client-library calls 119
tracing SentinelLM operation 118
typographic conventions xvii

U
UNIX

libraries 15
Makefile 16, 259

updating 49
updating licenses 49
usage logging 306–307
using the SentinelLM client API 23

utilities
lsusage 306

V
variable 305
variables

environment
LSDEFAULTDIR 301
LSERVRC 305
LSFORCEHOST 11
LSHOST 15, 53

Makefile
CHANGE_PORT_OBJ 276
DECRYPT_LIC_OBJ 270
DECRYPT_MSG_OBJ 273
ENCRYPT_LIC_OBJ 270
ENCRYPT_MSG_OBJ 273

version information
retrieving 93, 95

Version parameter 3, 10
VLSaddFeature 104, 203
VLSaddFeatureExt 205
VLSaddFeatureToFile 106, 206
VLSaddServerToPool 208
VLSbatchUpdate 49
VLScgAllowAdditive 135
VLScgAllowClientLockInfo 172
VLScgAllowClockTamperFlag 148
VLScgAllowCodegenVersion 153
VLScgAllowCommuterLicense 157
VLScgAllowFeatureName 166
VLScgAllowFeatureVersion 167
VLScgAllowHeldLic 139
VLScgAllowKeyHoldtime 186
VLScgAllowKeyHoldUnits 183
VLScgAllowKeyLifetime 185
VLScgAllowKeyLifeUnits 182
VLScgAllowKeysPerNode 174
VLScgAllowLicBirth 187

314 Index

VLScgAllowLicenseType 151
VLScgAllowLicExpiration 190
VLScgAllowLockMechanism 145
VLScgAllowLockModeQuery 169
VLScgAllowLogEncryptLevel 159
VLScgAllowMajorityRuleFlag 155
VLScgAllowMultiKey 160
VLScgAllowMultipleServerInfo 162
VLScgAllowNetworkFlag 141
VLScgAllowNumFeatures 177
VLScgAllowNumKeys 179
VLScgAllowOutLicType 150
VLScgAllowRedundantFlag 154
VLScgAllowSecrets 162
VLScgAllowServerLockInfo 170
VLScgAllowSharedLic 142
VLScgAllowShareLimit 193
VLScgAllowSiteLic 175
VLScgAllowSoftLimit 180
VLScgAllowStandAloneFlag 140
VLScgAllowTrialLicFeature 144
VLScgAllowVendorInfo 165
VLScgCleanup 127
VLScgDecodeLicense 197
VLScgGenerateLicense 196
VLScgGetErrorLength 129
VLScgGetErrorMessage 130
VLScgGetLicenseMeterUnits 198
VLScgGetNumErrors 129
VLScgGetTrialLicenseMeterUnits 199
VLScgInitialize 126
VLScgPrintError 131
VLScgReset 128
VLScgSetAdditive 136
VLScgSetClientLockInfo 173
VLScgSetClientLockMechanism 145
VLScgSetClientServerLockMode 169
VLScgSetClockTamperFlag 148
VLScgSetCodegenVersion 153

VLScgSetCodeLength 136
VLScgSetCommuterLicense 157
VLScgSetFeatureName 166
VLScgSetFeatureVersion 168
VLScgSetHoldingCrit 139
VLScgSetKeyHoldtime 186
VLScgSetKeyHoldtimeUnits 183
VLScgSetKeyLifetime 185
VLScgSetKeyLifetimeUnits 182
VLScgSetKeysPerNode 174
VLScgSetKeyType 160
VLScgSetLicBirthDay 189
VLScgSetLicBirthMonth 188
VLScgSetLicBirthYear 189
VLScgSetLicenseType 152
VLScgSetLicExpirationDay 191
VLScgSetLicExpirationMonth 191
VLScgSetLicExpirationYear 192
VLScgSetLicType 138
VLScgSetLoadSWLicFile 195
VLScgSetLogEncryptLevel 159
VLScgSetMajorityRuleFlag 156
VLScgSetNumClients 178
VlScgSetNumericType 194
VLScgSetNumFeatures 177
VLScgSetNumKeys 179
VLScgSetNumSecrets 164
VLScgSetNumSubnets 176
VLScgSetOutLicType 150
VLScgSetRedundantFlag 154
VLScgSetSecrets 163
VLScgSetServerLockInfo1 170
VLScgSetServerLockInfo2 171
VLScgSetServerLockMechanism1 146
VLScgSetServerLockMechanism2 147
VLScgSetSharedLicType 142
VLScgSetShareLimit 193
VLScgSetSiteLicInfo 175
VLScgSetSoftLimit 181

 SentinelLM Programmer’s Reference Manual 315

VLScgSetStandAloneFlag 141
VLScgSetTrialDaysCount 144
VLScgSetVendorInfo 165
VLSchangeDistbCrit 209
VLSchangePortNumber 276
VLSchangeUsageLogFileName 253
VLSCleanup 37
VLScleanup 49
VLSclientInfo 80
VLSconfigureTimeTamper 266, 267
VLSdecryptLicense 271
VLSdecryptMsg 274
VLSdeleteFeature 107
VLSdelServerFromPool 210
VLSdisableAutoTimer 78
VLSdisableEvents 256
VLSdisableLicense 29
VLSdiscover 11, 101
VLSdiscoverExt 212
VLSenableLocalRenewal 75
VLSencryptLicense 269
VLSencryptMsg 273
VLSerrorHandle 114
VLSeventAddHook 263
VLSeventSleep 256
VLSfeatureInfo 87
VLSgetAndInstallCommuterCode 250
VLSgetBroadcastInterval 67
VLSgetClientInfo 82
VLSgetCommuterInfo 249
VLSgetContactServer 56
VLSgetDistbCrit 215
VLSgetDistbCritToFile 217
VLSgetFeatureFromHandle 94
VLSgetFeatureInfo 91
VLSgetFeatureInfoToFile 219
VLSgetFeatureTimeLeftFromHandle 97
VLSgetHandleInfo 84
VLSgetHandleStatus 241

VLSgetHostAddress 223
VLSgetHostName 220
VLSgetKeyTimeLeftFromHandle 99
VLSgetLeaderServerName 221
VLSgetLibInfo 109
VLSgetLicInUseFromHandle 85
VLSgetLicSharingServerList 224
VLSgetMachineID 60
VLSgetQueuedClientInfo 237
VLSgetQueuedLicense 245
VLSgetServerList 64
VLSgetServerNameFromHandle 62
VLSgetServerPort 58, 276
VLSgetTimeDriftFromHandle 96
VLSgetTimeoutInterval 68
VLSgetTrialPeriodLeft 200
VLSgetUsageLogFileName 254
VLSgetVersionFromHandle 95
VLSgetVersions 93
VLSinitialize 31
VLSinitMachineID 58
VLSinitQueuePreference 247
VLSinitServerInfo 65
VLSinitServerList 63
VLSisClockSetBack 268
VLSisLocalRenewalDisabled 75
VLSlicense 26
VLSmachineIDtoLockCode 61
VLSqueuedRequest 232
VLSqueuedRequestExt 232
VLSreleaseExt 48
VLSremoveQueue 240
VLSremoveQueuedClient 238
VLSrequestExt 42
VLSscheduleEvent 255
VLSserverVendorInitialize 263
VLSsetBroadcastInterval 66
VLSsetContactServer 53
VLSsetErrorHandler 116

316 Index

VLSsetHoldTime 13, 69
VLSsetRemoteRenewalTime 77
VLSsetServerPort 276
VLSsetSharedId 70
VLSsetSharedIdValue 72
VLSsetTimeoutInterval 68
VLSsetTraceLevel 119
VLSsetUserErrorFile 117
VLSshutDown 110
VLSuninstallAndReturnCommuterCode 252
VLSupdateQueuedClient 242
VLSwhere 112

	SentinelLM Programmer's Reference Manual
	Contents
	Preface
	The SentinelLM Manuals
	About This Guide
	Typographic Conventions
	Syntax Conventions

	Getting Help
	Online Documentation
	For Additional Help

	Contacting Rainbow Technical Support
	How to Report Problems

	Chapter 1 - Introduction
	Using the SentinelLM Application Library
	Licensing on Stand-alone and Networked Computers
	Client API Example
	Example

	Language Interfaces Supported
	Special Use of Win32 for Generating Tools
	Debugging Your Client Application
	Disabling Licensing

	Chapter 2 - Protecting Your Application with the Application Library
	Adding APIs to Your Source Code
	Application Identification
	Automatic License Server Detection
	Special Licensing Cases

	Linking with the Correct Library
	Windows Static Linked Libraries
	Windows Dynamic Linked Libraries and Import Libraries
	UNIX Libraries

	Notes on Security
	Protecting Against Time Tampering

	Using a Custom Locking Code
	Step 1 - Rebuilding License Server
	Compiler Required
	Files Required
	Required Changes to Server Source Code
	Steps to Rebuilding the License Server

	Step 2 - Rebuilding echoid.exe
	Compiler Required
	Files Required for echoid.exe
	Required Changes to echoid.exe
	Steps to Rebuilding echoid.exe

	Step 3 - Modifying Client Application
	Overall Process of Using a Rebuilt License Server and Rebuilt

	Chapter 3 - SentinelLM Client API
	Introduction
	Basic Client Licensing Functions
	Quick Client Licensing Functions
	Standard Client Licensing Functions
	Advanced Client Licensing Functions

	Challenge-response
	Client Configuration Functions
	Local vs. Remote Renewal of Keys
	Client Query Functions
	Feature Query Functions
	Client Utility Functions
	Error Handling
	Tracing SentinelLM Operation

	Chapter 4 - License Code Generation API
	License Code Generation Functions
	Basic Functions
	Functions Which Retrieve or Print Errors
	Functions for Setting the Fields in Code Struct
	License Generation Functions
	License Meter Related Functions
	Trial License Related Functions

	Chapter 5 - Redundancy API
	Chapter 6 - License Queuing API
	License Queuing Example Code
	License Queuing Functions

	Chapter 7 - Commuter License API
	Commuter License Related Functions

	Chapter 8 - Usage Log Functions
	Chapter 9 - Utility Functions
	Appendix A - Sample Applications
	Sample Program Summary
	Customization Samples

	Appendix B - Customization Features
	Initializing the Server
	Protecting Against Time Clock Changes
	Encrypting License Codes
	Encrypting Messages
	Changing the Default Port Number
	Customizing the Host ID

	Appendix C - Error and Result Codes for Client Functions
	Client Function Return Codes

	Appendix D - Error and Result Codes for License Generation Functions
	License Generation Function Return Codes

	Appendix E - Error Codes for Redundancy, Queuing and Commuter Functions
	Return Codes

	Appendix F - Error and Result Codes for SentinelLM-Shell
	SentinelLM-Shell Return Codes

	Appendix G - File Formats
	License Code File Format
	Configuration File Format
	Log File Format

	Index

