Programmer’s
Reference
Manual

SENTINEL [\

LICENSE VMIANAGER

RAINBOW

TECHNOLUOGITES

Copyright 1999, Rainbow Technologies, Inc.
All rights reserved.

http://www.rainbow.com

All attempts have been made to make the information in this document complete and accurate. Rainbow
Technologies, Inc. is not responsible for any direct or indirect damages or loss of business resulting from
inaccuracies or omissions. The specifications contained in this document are subject to change without notice.

CONFIDENTIAL INFORMATION

The SentinelLM software protection system is designed to protect your software products from unauthorized use.
The less information that unauthorized people have regarding your security system, the greater your protection. It is
in your best interest to protect the information herein from access by unauthorized individuas. Please read the
Developer’s Agreement at the beginning of the developer’s guide for safeguarding requirements.

Part Number 700554-001, Revision A
Software releases 7.0 and later

RAINBOW TECHNOLOGIES, INC.
50 Technology Drive, Irvine, CA 92618
Telephone: (949) 450-7300, (800) 852-8569 Fax: (949) 450-7450

RAINBOW TECHNOLOGIES LTD.
4 The Forum, Hanworth Lane, Chertsey, Surrey KT16 9JX, United Kingdom
Telephone: (44) 1932 579200 Fax: (44) 1932 570743

RAINBOW TECHNOLOGIES
122, Avenue Charles de Gaulle, 92522 Neuilly-sur-Seine Cedex, France
Telephone: (33) 1 41 43 29 02 Fax: (33) 146 24 76 91

RAINBOW TECHNOLOGIES GMBH
Lise Meitner Strasse 1, 85716 Unterschleissheim, Germany
Telephone: (49) 89321798 0 Fax: (49) 89 32 17 98 50

Additional offices in the United States, Australia, China, India, the Netherlands, Russia and Taiwan.
Distributors located worldwide.

SentinelLM isatrademark of Rainbow Technologies, Inc. Novell and NetWare are trademarks of Novell, Inc. Microsoft Windows,
Microsoft Windows NT, Windows 95 and Windows 98 are trademarks of Microsoft Corporation. UNIX isaregistered trademark,
exclusively licensed through X/Open Company, Ltd. All other product names referenced herein are trademarks or registered trade-
marks of their respective manufacturers.

10987654321 082099

ii SentinelLM Programmer’s Reference Manual

RAINBOW

TEI}HN

SOFTWARE LICENSE AND DEVELOPER’SAGREEMENT

All Products (including developer’s kits, Sentinel hardware keys, diskettes or other magnetic media,
software, documentation and all future orders) are subject to the terms stated below. If you disagree with
these terms, please return the Product and the documentation to Rainbow, postage prepaid, within three
days of your receipt, and Rainbow will provide you with a refund, less freight and normal handling
charges.

1

2a

Y ou may not copy or reproduce al or any part of the Product, except as authorized initem 2 below.
Removal, emulation or reverse-engineering of all or any part of the Product constitutes an
unauthorized modification to the Product and is specifically prohibited. Nothing in this license
permits you to derive the source code of the software files that Rainbow has provided to you. Y our
software programs must be protected or licensed using a licensed and registered copy of this
Rainbow Product. Rainbow provides no other warranty to any person, other than the Limited
Warranty provided to the origina purchaser of this Product.

Y ou may make archival copies of the software files and you may modify and merge them into your
software programs for the sole purpose of implementing the Product to protect and/or license your
programs according to the Rainbow documentation provided with the Product. All software files
remain Rainbow’s exclusive property.

Rainbow’s Sentinel System Driver Software and other Rainbow software files listed in the
“Licensee Redistribution Allowances’ section (if it is defined in the Product’ s documentation) may
be copied and distributed to your customers for the sole purpose of executing your protected or
licensed software programs according to the Rainbow documentation provided with the Product.

No license is granted to Licensee to sell, license, distribute, market or otherwise dispose of any
software files or other component of the Product except when embedded in your software
programs. Copies of your software programs must bear a valid copyright notice and must be
distributed such that the object code for the Product cannot be extracted.

Rainbow warrants the Product and the magnetic media on which the software files are provided to
be substantially free from significant defects in materials and workmanship under normal use for a
period of twelve (12) months from the date of delivery of the Product to you. In the event of aclaim
under this warranty, Rainbow’s sole obligation is to replace or repair, at Rainbow’s option, any
Product free of charge. Any replaced parts shall become Rainbow’s property.

Warranty claims must be made in writing during the warranty period and within seven (7) days of
the observation of the defect, accompanied by evidence satisfactory to Rainbow. Prior to returning
any Product to Rainbow, you must obtain a Return Merchandise Authorization (RMA) number and

SentinelLM Programmer’s Reference Manual iii

shipping instructions from Rainbow. Products returned to Rainbow shall be shipped with freight
and insurance paid.

Except as stated above, there is NO OTHER WARRANTY, REPRESENTATION, OR
CONDITION REGARDING RAINBOW’'S PRODUCTS, SERVICES, OR PERFORMANCE,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Rainbow is not responsible for any delays beyond its control. Rainbow’s entire liability for damages to
you or any other party for any cause whatsoever, whether in contract or in tort, including negligence,
shall not exceed the price you paid for the unit of Product that caused the damages or that are the subject
matter of, or are directly related to, the cause of action. In no event will Rainbow be liable for any
damages caused by your failure to perform your obligations, or for any loss of data, profits, savings, or
any other consequential and incidental damages, or for any claims by you based on any third-party claim.

Licensee Redistribution Allowances

SentinelLM Licensees may release the Sentind System Driver diskette for installation with their
Sentinel-protected application and the Sentinel Client Activator and associated files. In addition, the
Licensee may distribute the following commands, files, and related documentation: ainst.exe,
commute.dat, dlt, echoid, echoid.dat, ipxecho.exe, lcommute, Icu, loadls.exe, Isapiw32.dll, Isdecode,
Iserv, IservOx.exe, Iservnt, Idlic, Ismail.exe, Ismon, Ispool, Isrvdown, Isusage, |swhere, prsclean, riftool,
timefix, wcommute, WImAdmin, wrlftool, and the Sentinel LM System Administrator’s Guide.

International Quality Standard Certification

s @ Rainbow Technologies, Inc. Irvine CA facility has been issued the ISO

6 9002 Certification, the globally recognized standard for quality, by British

— Standards I nstitution as of December 1994.

Certificate Number FM 30128

European Community Directive Conformance Statement

This product is in conformity with the protection requirements of EC Council

C € Directive 89/336/EEC. Conformity is declared to the following applicable standards
for electro-magnetic compatibility immunity and susceptibility; CISPR22 and
IEC801. This product satisfies the CLASS B limits of EN 55022.

SentinelLM Programmer’s Reference Manual

Contents

Preface XV
TheSentinelLM Manuals e XV
About ThisGuide e XVi

TypographicConventions e XVii
Syntax Conventions e XViii
GettingHelp XViii
OnlineDocumentation Xviii
For Additional Help XiX
Contacting Rainbow Technical Support. XiX
HowtoReportProblems. XXi

Chapter 1 -Introduction e 1
Using the SentinelLM Application Library 1
Licensing on Stand-alone and Networked Computers. 3
Client APIExample 3

Example e 4
Language InterfacesSupported 5
Special Use of Win32 for Generating Tools., 5
Debugging Your Client Application. 6
DisablingLicensing e e e 6

Chapter 2 - Protecting Your Application with the Application Library 9

Adding APIsto Your SourceCode e 9
Application Identification 10
Automatic License Server Detection. L 10
Special LicensingCases 12

LinkingwiththeCorrect Library, 13
Windows Static Linked Libraries 13
Windows Dynamic Linked Librariesand Import Libraries 15

SentinelLM Programmer’s Reference Manual \Y

UNIX Libraries e e e e e 15

NOtESON SECUNtY o e e 16
Protecting Against Time Tampering 17
UsingaCustomLockingCode. i 17
Step 1- Rebuilding LicenseServer 17
Compiler Required. e 17
FilesRequired 18
Required Changesto Server SourceCode 18
Stepsto Rebuilding theLicenseServer 19

Step 2 - Rebuildingechoid.exe 19
CompilerRequiredo 20
FilesRequired forechoidexe 20
Required Changestoechoidexe. 20
Stepsto Rebuildingechoid.exe., 21

Step 3 - Modifying Client Application 21
Overall Process of Using a Rebuilt License Server and Rebuilt echoid.exe 22
Chapter 3 - SentinelLM Client API 23
Introduction. e 23
Basic Client Licensing Functions. 25
Quick Client Licensing Functions., 25
VLScense(). o o e e e 26
VLSdisablelicense() e 29
Standard Client Licensing Functions 31
VLSnitidize(). e 31
LSRequest() o o o 32
LSRel@ase() o o o e 36
VLScleanup() 37
LSUpdate() o o e 38
Advanced Client Licensing Functions 41
VLSnitidize(). o e 42
VLSIEQUESIEXE(). « o o v v e e e e e e e e 42
Chalengeresponse. o e 45
VLSreleaseEXt() o o o e 48
VLScleanup() o e e 49
VL0LSbhatchUpdate(). 49

vi Contents

Client Configuration Functions 52

V0LSsetContactServer(). o o i 53
VLSgetContactServer(). o o e e 56
VLSsatServerPort(). e 57
VLSgetServerPort(). o e e 58
VLSinitMachinelD() e 58
VLSgetMachinelD() 60
VLSmachinelDtoLockCode() 61
V0LSgetServerNameFromHandle() L. 62
VLSinitServerList(). e 63
VLSgetServerList 64
VLSinitServerlnfo() e 65
VLSsetHostldFunc() e 65
VL0LSsetBroadcastinterval() e 66
V0LSgetBroadcastinterval(). e 67
VLSsetTimeoutinterval (). o e 67
VLSgetTimeoutinterval(). e 68
VLSsatHoldTime() o 69
VLSsetSharedld(). o 70
VLSsetSharedidValue() 72
Local vs. RemoteRenewal of Keys 73
V0LSdisableLocaRenewal() e 74
V0LSenableLocalRenewal (). e 75
VLSisLocaRenewalDisabled(). 75
V0LSgetRenewalStatus() 76
V0LSsetRemoteRenewa Time(). 77
V0LSdisableAutoTimer() o o e 78
ClientQuery FUNCtions e e e e e e 79
VLSgetClientinfo(). e 81
VLSgetHandlelnfo() 83
VL0LSgetLiclnUseFromHandle(). 84
Feature Query FUNCLions. e 86
V0LSgetFeaturelnfo() 90
VLSgetVersions(). o o v o e e e e e e 93
VL0LSgetFeatureFromHandle(). 9
V0LSgetVersionFromHandle() 95

SentinelLM Programmer’s Reference Manual vii

VLSgetTimeDriftFromHandle(). 96

VL0LSgetFeatureTimeLeftFromHandle() 97
V0LSgetKeyTimeLeftFromHandle(). 99
Client Utility Functions. e e s 100
VLSdiscover() o v e e e e e e e 101
V0LSaddFeature() e 104
V0LSaddFeatureToFile() 105
VLSdeleteFeature() 107
VLSgetLibinfo(). e 109
VLSshutDown() e 110
VLSWhere() o o 112
ErrorHandling e 113
V0LSerrorHandle() e 114
LSGetMessage(). « « « v v v 115
VLSsetErrorHandler(). e 116
VLSsetUserErrorFile. 117
Tracing SentinelLM Operation. 118
Chapter 4 - License Code Generation APL. 121
License Code Generation Functions 122
BasicFunctions. 126
VLScglnitialize(). o e e 126
VLScgCleanup() . - o o e 127
VLSCORESEL(). « « « o v v o e e e e 128
Functions Which Retrieveor PrintErrors 128
VLSCgGEtNUMETOrs(). o o o o e e e e e e e e e 129
VLScgGetErrorLength() e 129
VLScgGetErrorMessage() o o o e 130
VLScgPrintError() 131
Functions for Setting the FieldsinCode Struct 132
VLScgAllowAdditive(). 135
VLScgSetAdditive() o e 136
VLScgSetCodeLength() o e 136
VLScgSetLicType() o o o 138
VLScgAllowHeldLic() 139
V0LScgSetHoldingCrit() e 139

Viii Contents

VLScgAllowStandAloneFlag() 140

VLScgAllowNetworkFlag(). 141
VLScgSetStandAloneFlag(). 141
VLScgAllowSharedLic() e 142
V0LScgSetSharedLicType() o o 142
VLScgAllowTrialLicFeature() 144
V0LScgSetTrialDaysCount(). o o e e 144
VLScgAllowLockMechanism(). 145
VLScgSetClientLockMechanism() 145
VLScgSetServerLockMechanism1() 146
VLScgSetServerLockMechanism2() o 147
VLScgAllowClockTamperFlag() 148
V0LScgSetClockTamperFlag(). o 148
VLScgAllowOutLicType() o o 150
VLScgSetOutLicType() o o e 150
VLScgAllowLicenseType() o o o o o 151
V0LScgSetLicenseType(). o o e 152
VLScgAllowCodegenVersion(). o i i 153
V0LScgSetCodegenVersion() i i e 153
VLScgAllowRedundantFlag(). 154
V0LScgSetRedundantFlag() e 154
VLScgAllowMajorityRuleFlag() e 155
VLScgSetMajorityRuleFlag() 156
VLScgAllowCommuterLicense() o 157
V0LScgSetCommuterLicense(). 157
VLScgAllowLogEncryptLevel() 159
V0LScgSetLogEncryptLevel() L 159
VLScgAllowMultiKey(). o e 160
VLScgSetKeyType() . . - o o o o 160
VLScgAllowMultipleServerinfo() 162
VLScgAllowSecrets() o e 162
VLSCOSatSecrets(). o o 163
VLScgSetNumSecrets() o e e 164
VLScgAllowVendorIinfo(). e 165
V0LScgSetVendorinfo() e 165
VLScgAllowFeatureName(). 166

SentinelLM Programmer’s Reference Manual ¢

V0LScgSetFeatureName(). e 166

VLScgAllowFeatureVersion() 167
VLScgSetFeatureVersion(). o o e e 168
VLScgAllowLockModeQuery() o . o o i i e e e 169
VLScgSetClientServerLockMode() e 169
VLScgAllowServerLockinfo(). 170
V0LScgSetServerLockinfol(). 170
V0LScgSetServerLockinfo2(). 171
VLScgAllowClientLockinfo() 172
VLScgSetClientLockinfo(). e 173
VLScgAllowKeysPerNode(). 174
VLScgSetKeysPerNode() o 174
VLScgAllowSitelic() e 175
VLScgSetSiteLiclnfo(). 175
VLScgSetNumSubnets() e 176
VLScgAllowNumFeatures() o e 177
VLScgSetNumFeatures(). o o e e e e 177
VLScgSetNumClients() o e 178
VLScgAllowNumKeys(). e 179
VLScgSetNumKeys() o e 179
VLScgAllowSoftLimit() o o 180
VLScgSetSoftLimit(). 181
VLScgAllowKeyLifeUnits() 182
V0LScgSetKeyLifetimeUnits() 182
VLScgAllowKeyHoldUnits() 183
V0LScgSetKeyHoldtimeUnits(). 183
VLScgAllowKeyLifetime() e 185
VLScgSetKeyLifetime() o o o 185
VLScgAllowKeyHoldtime() 186
V0LScgSetKeyHoldtime(). 186
VLScgAllowLicBirth(). 187
VLScgSetLicBirthMonth(). 188
VLScgSetLicBirthDay() o o oo 189
VLScgSetLicBirthYear(). o e 189
VLScgAllowLicExpiration(). e 190
VL0LScgSetLicExpirationMonth() 191

Contents

V0LScgSetLicExpirationDay(). 191

V0LScgSetLicExpirationYear() e 192
VLScgAllowShareLimit(). e 193
VLScgSetShareLimit() e 193
VLScgSetNumericType() - . o o o o 194
VLScgSetLoadSWLICFile(). o o o o 195
LicenseGeneration Functions. 196
V0LScgGeneratelicense() e 196
VLScgDecodelicense() e 197
License Meter Related Functions 198
VLScgGetLicenseMeterUnits() o e 198
V0LScgGetTrialLicenseMeterUnits() 199
Trial License Related Functions. 200
VLSgetTrialPeriodLeft() 200
Chapter 5 - Redundancy APl 201
V0LSaddFeature() e 203
V0LSaddFeatureEXt(). 205
V0LSaddFeatureToFile() 206
V0LSaddServerToPool() o e 208
VLSchangeDistbCrit(). e 209
VLSdelServerFromPool() e 210
VLSdiscoverExt() e 212
VLSgetDistbCrit(). 215
VLSgetDistbCritToFile() o o 217
VLSgetFeaturelnfoToFile() 219
VLSgetHostName() e 220
V0LSgetLeaderServerName() e 221
VLSgetHOStAdAress() o o o e 223
VLSgetLicSharingServerList() 224
Chapter 6 - License Queuing APIl. 227
LicenseQueuing ExampleCode. o 227
LicenseQueuing Functions 231
VL SqueuedRequest() and VLSqueuedRequestExt() 232
VLSgetQueuedClientinfo() e 237

SentinelLM Programmer’s Reference Manual Xi

VLSremoveQueuedClient() 238

VLSremoveQueue() e 240
V0LSgetHandleStatus() e 241
V0LSupdateQueuedClient() 242
V0LSgetQueuedLicense() e 245
VLSinitQueuePreference() 247
Chapter 7 - Commuter License APl 249
Commuter License Related Functions 249
VLSgetCommuterinfo() e 249
V0LSgetAndinstallCommuterCode() 250
VLSuninstallAndReturnCommuterCode(). 252
Chapter 8 - Usage Log Functions 253
VLSchangeUsageLogFileName(), 253
V0LSgetUsageLogFileName() 254
Chapter 9 - Utility Functions 255
VLSscheduleEvent() e 255
V0LSdisableEvents() o e 256
VLSeventSleep() o o o e 256
Appendix A - Sample Applications 259
Sample Program Summary 259
Customization Samples. 260
Appendix B - Customization Features., 261
Initidlizingthe Server. e 263
VLSserverVendorlnitialize() e 263
V0LSeventAddHook(). e 263
Protecting Against TimeClock Changes. 266
VLSconfigureTimeTamper(). i 267
VLSISClockSetBack() v v o o o e 268
Encrypting LicenseCodes 269
VLSencryptlicense(). 269
VLSdecryptlicense(). e 271
EncryptingMessages. e 272
VLSencryptMsg() 273

Xii Contents

VLSdecryptMsg() o o o e 274

Changingthe Default Port Number 276
VLSchangePortNumber() e 276
CustomizingtheHost ID. e 277
Creating the CustomHost ID Function 278
Registering the Custom Host ID FunctionontheServer 279
Registering the Custom Host ID FunctionontheClient. 279
BuildingtheServer. 280
Creating an Updated Client ID Generator 280
UsingaCustomizedHostID. 280
Appendix C - Error and Result Codes for Client Functions 283
Client FunctionReturnCodes i 283

Appendix D - Error and Result Codes for License Generation Functions . .291
License Generation FunctionReturnCodes. 291

Appendix E - Error Codes for Redundancy, Queuing and Commuter Functions
295

ReturnCodes. e 295
Appendix F - Error and Result Codes for SentinelLM-Shell. 299
SentinelLM-Shell ReturnCodes. 299
Appendix G-FileFormats. e 301
LicenseCodeFileFormat 301
Configuration FileFormat 302
LogFileFormat e 306
Index 309

SentinelLM Programmer’s Reference Manual Xiii

Xiv Contents

Preface

Thank you for choosing the SentinelLM ™ licensing product to license your
software. Read on for information on using the Sentinel LM Application Library
to add protection to your applications.

The SentinelLM Manuals

The SentinelLM product includes several manuals, al designed to work in
conjunction with each other:

Manual What's in it? Who should read it?
SentinelLM A quick tour of SentinelLM for Anyone who is new to SentinelLM or
Quick Start Windows application license management and wants a
Guide for developers. quick overview of SentinelLM
Windows features.
SentinelLM All the steps necessary to Developers using SentinelLM-Shell or
Developer’'s protect, package, and ship a the API option who are responsible
Guide stand-alone or network for the overall process of protecting
application protected with and shipping an application for a
SentinelLM-Shell or the stand-alone or network computer.
SentinelLM Application
Library.
SentinelLM Description of the SentinelLM Developers who are using the
Programmer’'s Application Library. SentinelLM Application Library to
Reference protect their applications. This
Manual manual assumes you are familiar with

the C programming language,
although other language interfaces
are available.

SentinelLM Programmer’s Reference Manual XV

About This Guide

Manual What's in it? Who should read it?

SentinelLM Information for the end user of End users of your protected

System your protected application, application who are responsible for

Administrator’'s including use of administrator administering the application and end

Guide commands and configuring user license management and who
and using a license server. are familiar with system

administration tasks.

About This Guide

This guide gives all the steps for planning for protecting your application, as
well as for protecting, packaging, and shipping your protected application to
your customers.

Chapter/Appendix Description

Chapter 1 - Introduction Shows how SentinelLM is put together.

Chapter 2 - Protecting Your Provides instructions and information on client library
Application with the functions and compiling applications.
Application Library

Chapter 3 - SentinelLM Provides a complete reference of all client functions.
Client API

Chapter 4 - License Code Explains how to generate license codes.
Generation API

Chapter 5 - Redundancy Summarizes the redundancy functions.

API

Chapter 6 - License Explains the license queuing functions.

Queuing API

Chapter 7 - Commuter Summarizes the commuter license related functions.
License API Codes

Chapter 8 - Usage Log Explains the usage log functions.

Functions

Chapter 9 - Utility Summarizes functions for the UNIX platform.
Functions

XVi Preface

About This Guide

Chapter/Appendix Description

Appendix A - Sample Lists source code for the sample programs and utilities.
Applications

Appendix B - Customization Lists the features that can be customized.

Features

Appendix C - Error and Lists client function return codes.

Result Codes for Client

Functions

Appendix D - Error and Lists license generation function return codes.

Result Codes for License
Generation Functions

Appendix E - Error Codes for Lists return codes for redundancy, queuing and commuter
Redundancy, Queuing and functions.
Commuter Functions

Appendix F - Error and Result Lists SentinelLM-Shell return codes.
Codes for SentinelLM-Shell

Appendix G - File Formats Summarizes all the environment variables.

Typographic Conventions

The following typographic conventions are used throughout this guide:

Convention Purpose

italic Used to signal a new term, for placeholders, variables, and
file names, or for emphasis.

bold Used for command-line options, utility, dialog box, and
checkbox names.

bold-italic Used for characters you type, such as logon.

courier This font denotes syntax, prompts, and code examples.

SentinelLM Programmer’s Reference Manual Xvii

Getting Help

Syntax Conventions

The following syntax conventions are used throughout this guide:

Convention Purpose

[] Square brackets enclose optional syntax.
Ellipses indicate that a clause can be repeated.

| A pipe indicates that only one of the syntax choices it
separates may be used.

{} Curly braces indicate that one of the options they enclose
must be used in actual syntax.

Getting Help

For an introduction to the Sentinel LM product, please see the Windows online
tutorial, discussed in the Sentinel LM Developer’ s Guide. In addition to providing
basic information on Sentinel LM, the tutorial also runs demonstration programs
that illustrate licensing techniques.

The Sentinel LM Quick Sart Guide for Windows also gives the Windows
developer’ s hands-on experience using Sentinel LM.

Another way of getting familiar with Sentinel LM isto use the Windows
Sentinel LM-Shell, discussed in the Sentinel LM Developer’s Guide.

XViii

Online Documentation

For Windows computers, refer to the Adobe Acrobat versions of the Sentinel LM
manuals in the \Manuals directory in the SentinelLM directory. See the

Sentinel LM Developer’ s Guide for instructions on installing the Acrobat Reader
on Windows computers.

For UNIX computers, refer to the manual pages in the Sentinel LM/man
directory. Y ou may move these to the computer’ s current manual -page directory

Preface

Contacting Rainbow Technical Support

(typically /usr/man/man3 or usr/local/man/man3) or modify the MANPATH
environment variable to include the Sentinel LM/man directory. Adobe Acrobat
versions of the SentinelLM manuals are also included in the SentinelLM/man
directory. See the Sentinel LM Developer’s Guide for instructions on installing
the Acrobat Reader on UNIX computers.

For Additional Help

If you have gquestions concerning the Sentinel LM product, contact Rainbow
Technologies Technical Support. (See the next section for details.)

Contacting Rainbow Technical Support

Rainbow Technologiesis committed to supporting Sentinel LM. If you encounter
a problem we want to hear about it.

To contact us, please use one of the methods listed in the following table:

Corporate Headquarters North America & South America
Rainbow Technologies North America

Internet http://www.rainbow.com
E-mail techsupport@irvine.rainbow.com
Telephone 800 959-9954 (8:00 a.m.- 5:00 p.m. PST)
Fax (949) 450-7450
Australia

Rainbow Technologies (Australia) Pty Ltd.
E-mail techsupport@au.rainbow.com
Telephone (61) 3 9820 8900
Fax (61) 39820 8711

SentinelLM Programmer’s Reference Manual XiX

Contacting Rainbow Technical Support

China

E-mail
Telephone

Fax

France

E-mail
Telephone

Fax
Germany

E-mail
Telephone
Fax
Taiwan

E-mail
Telephone
Fax

Rainbow Information Technologies (China) Co.
techsupport@cn.rainbow.com

(86) 108 209 0680

(86) 108 209 0681

Rainbow Technologies
techsupport@fr.rainbow.com
(33) 141.43.29.02

(33) 146.24.76.91

Rainbow Technologies, GMBH
techsupport@de.rainbow.com
(49)893217980

(49) 89 32 17 98 50

Rainbow Technologies (Taiwan) Co.
techsupport@tw.rainbow.com

(886) 2 27155522

(886) 2 27138220

United Kingdom & Eire

E-mail
Telephone
Fax

Rainbow Technologies, Ltd.
techsupport@uk.rainbow.com
(44) 1932 579200

(44) 1932 570743

XX

Preface

Contacting Rainbow Technical Support

How to Report Problems

If you are having problems with the Sentinel LM software, please go the
following Web site: www.rainbow.com/tech/support.html.

SentinelLM Programmer’s Reference Manual XXi

Contacting Rainbow Technical Support

SentinelLM Programmer’s Reference Manual XXii

Chapter 1 - Introduction

SentinelLM isalicense toolkit used by developers to add network and/or stand-
alone licensing to their applications. The main components of the license
management system are a protected application, alicense file containing one or
more license codes that authorize the use of the program, and alicense server to
receive and act on authorization requests. Access to the license server is made
possible by an Application Program Interface (API). APl functions are
implemented in the SentinelLM Client Library which is linked with the
application. For stand-alone applications, the license server isreplaced with code
that perform equivalent functions but without network access. In either case, an
application program uses the same API set. Thus, the same version of an
application can be delivered to end users that will run in either network or stand-
alone mode.

Using the SentinelLM Application Library

The SentinelLM Client Library is used to integrate SentinelLM into your client
application. There are different integration styles that offer varying degrees of
functionality.

» TheQuick-API isfor usein applicationsthat require only onelicense for
each instance of the program. It is the ssmplest of the three API sets, and
only requires the addition of two function calls. The first initializes
contact with the license server and automatically updates the license
code. Thiscall is made during program initialization. The other is made
at the end of the program to disable licensing and return the license code.

e The Standard-API offersafull spectrum of licensing models including
the licensing of multiple featuresin a single application. It requires

SentinelLM Programmer’s Reference Manual 1

Using the SentinelLM Application Library

adding only four function calls. The program begins by initializing the
client library and requesting an authorization code. At the end of the
program, calls are made to release the license code and clean up the
client library. This method provides greater control and flexibility to the
developer.

» TheAdvanced-API provides all the capabilities of the Standard-API
plus additional server-side customization features. The Microsoft LSAPI
defines afamily of functions together with their parameters and return
codes for use with applications running with alicense server. A subset of
LSAPI isincluded in the Advanced-API set, and is compliant with that
standard. The additional functions that augment the Standard-API to
form the Advanced-API can be grouped into one of several categories as
follows:

» Client Configuration functions, which allow an application to retrieve
or change default values for such settings as port number, server
name, broadcast interval, timeout interval, etc.

« Client Query functions, which obtain a snapshot of the current status
of the license server and the features it licenses.

« Feature Query functions, which retrieve feature licensing information
from the license manager such as name and version.

» Client Utility functions, which provide client library capabilities such
as retrieving the host names running Sentinel LM, the names of the
computers running the license server, and other facilities useful to
certain specialized applications

» Error handling functions, which make possible turning error handling
on and off, registering custom error handlers, and printing error

messages.

2 Chapter 1 - Introduction

Licensing on Stand-alone and Networked Computers

Licensing on Stand-alone and Networked Computers

Typically, your customer installs your application on one or more computers or
on afile server that is connected to the network. They designate one computer on
which thelicense server will run (the computer need not be the file or application
server). To obtain alicense authorization, the client applications communicate
with the license server over the network as soon as they start up. Only when a
valid license code isissued does the application actually run. Applications do not
have to be network-aware. SentinelLM handles all network communication with
the license server.

Stand-alone licensing is usually used with non-networked PCs running
Windows. Y ou can ship asingle copy of your software to all your customers
even if some of them have networking and some do not. By simply providing a
different type of license code, you activate your software to run in stand-alone
mode or in network mode.

Client APl Example

This section describes and gives an example of how to integrate the SentinelLM
client library functions into your application software. The exampleis
independent of the platform on whichitisrun;i.e., it will execute either under
Windows or UNIX. The purpose of the exampleisto illustrate the
straightforward manner in which an application can be protected using
SentinelLM.

Thefirst call isVL Sinitialize() and is made during program initialization. It has
no parameters and will return a status of LS _SUCCESS upon successful
completion. Once that has been done, you may proceed with your application.

The next function to call is L SRequest() which takes several parameters. These
include the PublisherName which identifies your company, FeatureName which
identifies your product, and Version which specifies the version number of that
product. Thisinformation is contained in the license code, and must match
before authorization to run the program can be given.

SentinelLM Programmer’s Reference Manual 3

Client API Example

Note

If you intend to license your application without separate feature sets, only one
call to L SRequest() is needed. However, if you are planning to charge for
different features, each feature will require a separate license, and one

L SRequest() call will be required for each feature. The features will need
different names for identification, and a separate version number may be
associated with each one.

The license will be updated automatically for you at 80% of the lifetime of
the license. A call to L SUpdate() is not necessary.

Once the application knows that the user has finished using a particular feature,
it calls L SRelease() to return the license authorization to the license pool so
other programs can useit. Finally, after al licenses have been released and the
program is ready to terminate, acall is made to VL Scleanup() to inform the
library that any resources that it has allocated may be rel eased.

Example

{
LS HANDLE handle;

[e**** Eirst Call, Initidlize the client library *****/
if (VLSinitialize())
{
printf("Unable to initialize license server library.\n");
VL Scleanup();

h

[¥**** Second Call: Request alicense *****/

if (LS_SUCCESS!=LSRequest (LS ANY, PUBLISHER_NAME,
FEATURE_NAME, VERSION, NULL, NULL,
NULL, &handle))

{
printf("Unable to obtain alicense\n");
VL Scleanup();

b
printf(" Successfully Obtained alicense\n");

[***** Third Call: Return the license *****/
(void) L SRelease(handle, LS DEFAULT_UNITS, NULL);

[¥**xx | ast Call: Clean Up *****/

Chapter 1 - Introduction

Language Interfaces Supported

VL Scleanup();
}

Language Interfaces Supported

Different language interfaces are supported by SentinelLM to alow you to
incorporate Sentinel LM Application Library callsin applications coded in
different programming languages. Among the language interfaces supported are
Microsoft Visual C/C++, Microsoft Visual Basic, PowerBuilder, Borland C, and
Delphi. Check the \Intrface directory in the SentinelLM directory, for the latest
language interfaces.

Other interfaces are available, and will continue to become available over time.
Contact your Rainbow representative for information on new interfaces and
specific versions supported. If your application does not use one of the supported
interfaces, see the Sentinel LM Developer’ s Guide for information on using the
Sentinel LM-Shell, which encloses your application in a protective shell without
modifying your application.

Special Use of Win32 for Generating Tools

Persons using the license generating capability of Sentinel LM are advised that
the program to generate licenses is protected by one of Rainbow's hardware
keys. Therefore, the program must be run under Windows, even when generating
licenses to be used under UNIX. More generally, all users of the Sentinel LM
system are encouraged to install the Windows version of SentinelLM first in
order to familiarize themselves with all of its features. Thisis recommended
even if its eventual intended use isfor UNIX environments.

SentinelLM Programmer’s Reference Manual 5

Debugging Your Client Application

Debugging Your Client Application

The SentinelLM Client Library has been written to intercept and log four
different levels of events. The values for the different eventsin increasing order
are:

VLS TRACE_KEYS

VLS TRACE_FUNCTIONS
VLS TRACE_ERRORS
VLS TRACE_ALL

Any valueimplicitly includes logging not only its own event class, but the event
classes associated with all lower values aswell. A fifth value,
VLS NO_TRACE, isthe default, and turns off all logging activity.

A developer can activate one of these levels by inserting acall to

VL SsetTracel evel() somewherein the client code (see function description on
See “Tracing SentinelLM Operation” on page 118.). The trace level will not be
set until the function is called, making it possible to limit logging to certain
portions of the client code only. A developer may choose to place more than one
such call in the client code, and use different trace levels with each call in order
to generate different logging profiles based upon what code is being executed.

To activate the logging feature, the Sentinel LM server must be started using two
switches as shown in the following example for Windows 95/98:

Iservox stet -f my_trace.log

If the name of the log fileis not fully qualified, the file will be created in the
directory in which the client code is executing. The log file will be overwritten
each time the client code is restarted.

Disabling Licensing

The macro NO_LICENSE in the Iserv.h file can be set to completely disable
licensing for debugging. This replaces all SentinelLM function calls with void

6 Chapter 1 - Introduction

Disabling Licensing

statements. Don’t forget to re-enable licensing before preparing your application
for shipment.

SentinelLM Programmer’s Reference Manual 7

Disabling Licensing

8 Chapter 1 - Introduction

Chapter 2 - Protecting Your
Application with the Application
Library

This chapter contains instructions and detailed information on:
e Client library functions
» Compiling your application

Using the SentinelLM Application Library to embed protection callsin your
application source code provides the maximum amount of control, and allows
you the most flexibility in using licensing models. This chapter contains
information on using the SentinelLM Application Library to protect your
application. For afull discussion of the SentinelLM Application Library cals,
refer to other chaptersin this book.

Adding APIs to Your Source Code

Once you determine which licensing model you are going to support, you can
start to implement the code. In most cases, API calls remain the same for
different licensing options. Licensing options are encoded in the license code so
your program can adapt to future changes. Let’ sfirst take alook at how to
quickly implement a sample program.

Thefirst call you want to make in your application during itsinitiaization is
VL Sinitialize().

SentinelLM Programmer’s Reference Manual 9

Adding APIs to Your Source Code

10

It has no parameters and will return aLS_SUCCESS status upon success. Y ou
should proceed with your application after this call.

The next function you want to call is L SRequest().

This API takes severa parameters. PublisherName identifies your company.
FeatureName identifies your product and version identifies the version number
for that product. Thisinformation must match what you give the license code
generator when you generate a license code for a user.

Application Identification

Each successful request returns a handle which identifies the dialog set up
between the licensed application and the license server. This handle should be
used in al dialog or connection library calls.

This architecture enables a licensed application to set up multiple connections
with the license server and request multiple licenses. The license server treats
each request independently.

If you are going to license your application without separate feature sets, you
will only need to call L SRequest() once. However, if you are planning to
license and charge based on features, you will need to call L SRequest() once
for each feature. These features will need to have a different name for
identification. Each feature can have a version associated with it.

If you choose to implement license queuing, you may want to use the

VL SqueuedRequest() call instead. Use the requestFlag parameter to control
normal and queued license requests. For details, see “ Chapter 6 - License
Queuing API” on page 227.

Automatic License Server Detection

If you provide no information to SentinelLM on the location of alicense server,
a Sentinel LM-licensed application uses a broadcast mechanism to determine the
existence of an active Sentinel LM license server on the local subnet, and
automatically establishes adialog with the first license server with alicense for
the given feature and version.

Chapter 2 - Protecting Your Application with the Application Library

Adding APIs to Your Source Code

Y ou can prevent a network broadcast and instead direct the application to
specific license serversin the following ways:

* If you set the LSFORCEHOST environment variable to a particular
license server, Sentinel LM initiates contact with that license server only.
L SFORCEHOST overrides the LSHOST environment variable or the
LSHOST/Ishost file.

e |f no LSFORCEHOST environment variableis set, Sentinel LM looksfor
an LSHOST environment variable or LSHOST (or Ishost) file, which
contains alist of one or more license servers. Example: LSHOST =
serverl;server2;server3 where serverX can be hostname, |P or |PX
address of the license server. If Sentinel LM cannot find an LSHOST
environment variable or LSHOST/Ishost file, or if it cannot find the
license servers specified in that variable or file, SentinelLM usesits
broadcast mechanism to find any license server on thelocal subnet which
contains the desired feature/version.

When there are multiple SentinelLM license servers with different license files,
licensed applications may query the wrong license server for permission to run.
If alicensed application contacts alicense server that does not have any free
licenses, the application will not receive alicense and other non-redundant
license servers that have available licenses for the feature/version will not
automatically be contacted. The SentinelLM client library will return an error,
and/or the application will terminate.

This situation can be avoided by using the SentinelLM client library call,

VL Sdiscover (), to locate al of the SentinelLM license servers on the local
subnet, and query each of them individually for alicense. Y ou will need to call
VL SsetContactSer ver () to initiate contact with each license server. Another
option is to use the LSHOST environment variable or the LSHOST/Ishost file.
Using VL Sdiscover () may be preferablein that it protects end users from
having to set environment variables or be concerned with additional files.

Although Sentinel LM uses the broadcast mechanism, network impact is
minimal. It is used only on the first L SRequest() call and only on the local
subnet. It is optimized to use minimal bandwidth.

SentinelLM Programmer’s Reference Manual 11

Adding APIs to Your Source Code

12

Note

If you are using the combined stand-alone and networked mode library (dual
mode), The L SRequest() API will first try to look for astand-alonelicense. If a
stand-alone license does not exist on the client machine, it will perform a
broadcast on the network for alicense server. Y our application should check the
return code and continue to execute if L SRequest() returnsLS_SUCCESS.
Once L SRequest() is called, the client library will automatically renew the
license acquired before it expires. Thisfreesthe application from worrying about
renewing the license on arigid time schedule. However, it is recommend that
you call L SUpdate() periodically to make sure that the license renewal is
successful and the license server is still up and running. L SUpdate() is not
required for stand-alone licensing but there are no side effects from including it
so your application works in both stand-alone and networked mode.

If you chooseto call L SUpdate() to manually renew the license, you must
call L SUpdate() within the lifetime of the license. Be absolutely certain to
call VL Sdisablel ocalRenewal() after VL Sinitialize(), but before

L SRequest().

The licensing is done once these functions are called and your application can
proceed with its normal functionality.

After your application decides that a particular feature is no longer required by
the user, it can call L SRelease() to release the license back to the license pool so
other programs can use it.

When your application quits, you should cal VL SCleanup() to let the client
library take care of releasing any resources it allocates.

Special Licensing Cases

There might be cases where you want to take advantage of built-in support for
special licensing options. For example, a shared license allows more than one
application/component to share the same license. Thisis useful for logically
grouping similar features which you do not intend to charge the user for
separately. For more details, refer to VL SsetSharedld() and

VL SsetSharedldValug() in “Chapter 3 - SentinelLM Client API” on page 23.

Chapter 2 - Protecting Your Application with the Application Library

Linking with the Correct Library

Another example of special licensing isthe held license. If your programis
short-lived, you can use VL SsetHoldTime() to set the checkout time for a
license. This allows usersto reclaim alicense when running a short-lived,
frequently used application, such as compilers.

Y ou may want to manually update the license yourself. To do so, you need to
cal:

* VLSInitialize()
e VL Sdisablel ocalRenewal()
e LSRequest()

e LSUpdate() (You will need to create your own timer to insure the
update occurs prior to the license lifetime expiring.)

* LSRelease()
e VLSCleanup()

Linking with the Correct Library

Both dynamic linked libraries and static linked libraries are available for 32-bit
Windows applications. We recommend using the combined stand-al one and
network (dual mode) library if possible. Thisallowsyour application to request a
license either on a stand-alone computer or from a remote license server.

Windows Static Linked Libraries

In addition to using the correct static libraries, you must also link the following
libraries (which are included in your Windows devel opment environment) into
your application: wsock32.1ib, rptcrt4.lib, netapi32.1ib, shell32.lib, ole32.lib,
oleaut32.lib, uuid.lib, odbc32.lib, odbcep32.lib, wsock32.1ib, rpert4.lib, and
netapi32.lib. Please see the samples32.mak make file in the Sentinel LM
\demo\MsvecDeSamples directory for details on how to link your application
with the SentinelLM client library.

SentinelLM Programmer’s Reference Manual 13

Linking with the Correct Library

14

Note

The librariesin the following tables are only available if you have
purchased the appropriate options (i.e., Developer option).

In the static libraries folder, you will find the following files:

Table 2-1: Windows Static Libraries

Library Description

Isapiw32.lib Dual network and stand-alone client library for Windows applications.
This library allows you either to access the stand-alone license locally or
acquire a license from a remote license server over the network.

Issrv32.lib This library is the same as Isapiw32.lib.

Isclws32.lib The network client library for Windows applications. This library allows
your application to acquire licenses via network only.

Isnnet32.lib The stand-alone client library for Windows applications. This library
allows you to acquire stand-alone licenses on a local computer only.

Chapter 2 - Protecting Your Application with the Application Library

Linking with the Correct Library

Windows Dynamic Linked Libraries and Import Libraries

Table 2-2:

Windows Dynamic Libraries and Import Libraries

Library

Description

Isapiw32.dll

Isapiw32.lib
Issrv32.dll
Isclws32.dll

Isnnet32.dll

Dual network and stand-alone client library for 32-bit Windows
applications. This library allows you either to access the stand-alone
license locally or acquire a license from a remote license server over the
network.

This library is the import library for Isapiw32.dll, (Microsoft format).
This library is the same as Isapiw32.dIl.

The network client library for 32-bit Windows applications. This library
allows your application to acquire licenses via network only. If you copy
this library to Isapiw32.dll, you may use the Isapiw32.lib import library
supplied with the installation.

The stand-alone client library for 32-bit Windows applications. This library
allows you to acquire stand-alone licenses on a local computer only. If
you copy this library to Isapiw32.dll, you may use the Isapiw32.lib import
library supplied with the installation.

UNIX Libraries

Y ou can choose one of three libraries to link with:

» libls.a—The network licensing client library, not relevant for stand-alone

licensing.

» libnonet.a—L.ibrary for stand-alone mode licensing. Does not have any
network awareness at all. Does not require alicense server in order to

run.

 liblssrv.a—Integrates the functionality of libls.a and libnonet.a. At run-
time, it switchesto either libls.a behavior or libnonet.a behavior,
depending upon the environment variable, LSHOST. If LSHOST isset to
NO-NET or no-net, the linked application will go into stand-al one mode,
otherwise it will stay in network mode.

SentinelLM Programmer’s Reference Manual 15

Notes on Security

libls.a and libnonet.a will result in smaller executables but are more limited and
less flexible in functionality and behavior than liblssrv.a.

To specify thelibrary best for you, edit the Makefile in the examples directory of
the Sentinel LM shipment. Change the value of the macro, LICENSE_LIBS. By
default, it specifiesthelibrary libls.ato link with, via-lls. Changeit to -Inonet or
-llssrv.

Now you are ready to compile and link alicensed application. Try relinking the
sample applications and examples in the examples directory.

Notes on Security

16

Sentinel LM uses proprietary, advanced anti-hacking techniques to safeguard
against malicious attempts to alter its intended mode of use.

Sentinel LM uses proprietary encryption and decryption algorithms for al
network communication to guard against wire tapping. All messages are time-
stamped to thwart attempts at replaying encrypted messages in response to
authorization requests. Critical licensing information required by the license
server is encrypted to the network licenses by a separate set of encryption
algorithms.

Y ou can add an additional layer of security with your own encryption and
decryption algorithms to the network licenses.

In addition to customizing encryption algorithms you can use the challenge-
response mechanism to authenticate client-server communications. See “ Chapter
3 - SentinelLM Client API” on page 45 and Sentinel LM Developer’s Guide
(“License Code Generator chapter”) for details.

Finally, developers can strengthen their legal position if their license agreement
includes the following statement:

“Removal, emulation, or reverse engineering of all or any part of
this product or its protection constitutes an unauthorized
modification to the product and is specifically prohibited. Nothing
in this license statement permits you to derive the source or

Chapter 2 - Protecting Your Application with the Application Library

Using a Custom Locking Code

assembly code of files provided to you in executable or object
formats.”

Such language closes major loopholes in the copyright laws of many nations.

Protecting Against Time Tampering

Software-based license protection schemes may break down if the end user
changes the system time. The Sentinel LM license server is configured to detect
tampering of the system clock.

The SentinelLM license server will verify at start up and periodically thereafter,
whether the system clock has been atered. If it detects evidence of such
tampering, it discards licenses with an expiration date. Y ou also have the option
of implementing your own functionality to detect system clock changes. Please
see “Appendix B - Customization Features’ on page 261.

Using a Custom Locking Code

A custom locking code requires the following components:

1. A rebuilt license server that uses the custom ID function. For example,
|servOx or Iservnt.

2. A rebuilt echoid.exe that uses the same custom ID function as the license
server.

3. A modified client application.

Step 1 - Rebuilding License Server

Compiler Required

A Microsoft Visual C++ 6.0 compiler is required.

SentinelLM Programmer’s Reference Manual 17

Using a Custom Locking Code

Note Itispossibleto use other compilers, but instructions below are for
Microsoft Visual C++ compiler. Please contact Rainbow if you are using
another compiler and require assistance.

Files Required

The following files are required in rebuilding the license server:

Table 2-3: Files required to rebuild the license server

File Name Description

Serverlnit.cpp C++ source file containing re-definition of
VLSserverVendorlnitialize() function.

CustomHostID.cpp C++ source file containing custom locking code definition.

CustomHostID.h C++ include file containing custom locking code prototype.

Ismainwa.c C source file containing entry point to license server
application.

Iserv.h SentinelLM include file installed during SentinelLM
installation.

Iserv95.res Resource file for license server application.

Iservox.lib SentinelLM static library installed during SentinelLM
installation.

Iservox.dsp Microsoft Visual C++ 6.0 project file.

Iservox.dsw Microsoft Visual C++ 6.0 workspace file.

Note Iservob.res, Iservox.lib, IservOx.dsp, and Iservox.dsw files can be dightly
different for NT version.

Required Changes to Server Source Code

A SentinelLM license server with custom locking code will differ from a default
license server because the VL SserverVendor I nitialize() function is
“overloaded” so that it will call the function VL SsetHostldFunc(). The

VL SserverVendor Initialize() function is called during server startup for both

18 Chapter 2 - Protecting Your Application with the Application Library

Using a Custom Locking Code

default license servers and custom license servers, but the default version does
not call VL SsetHostl dFunc() function.

The VL SsetHostl dFunc() function accepts as a parameter the name of the
function which will return the custom locking code. Thislocking code must be
calculated in a consistent long value; not arandom value. You are freeto
implement any algorithm in order to produce the locking code, as long as the
algorithm generates a reproducible value.

The VL SserverVendorl nitialize() function is automatically called during
server startup. However, for servers that initialize custom locking code,

VL SserverVendor | nitialize() function is overloaded (redefined) to call

VL SsetHostl dFunc(functionName). functionName is the name of the custom
locking code function and GetCustomLockCode is the name of the custom
locking code function, both described above. GetCustomLockCode is provided
only as an example name.

Steps to Rebuilding the License Server

1. Obtain azip file from Rainbow Technologies that contain all the
necessary files. Please see “Files Required” on page 18. Unzip the zip
fileinto adirectory of your choice.

2. Open the workspace file corresponding to the customized license server
project. For example, if you have a 9x license server, then you will need
to open the IservOx.dsw project file.

3. Modify the source code. See“ Required Changesto Server Source Code”
on page 18.

4, Choose Rebuild All from the Build menu.

Step 2 - Rebuilding echoid.exe

In order to add alicense locked to a custom criteria, arebuilt echoid.exeis also
required. The rebuilt echoid.exe will be used to produce a fingerprint relative to
the custom locking code function. This fingerprint can then be used to generate
locked licenses that utilize the custom locking criteria.

SentinelLM Programmer’s Reference Manual 19

Using a Custom Locking Code

20

Note

Compiler Required
A Microsoft Visual C++ 6.0 compiler is required.

It is possible to use other compilers, but instructions below are for
Microsoft Visual C++ compiler. Please contact Rainbow if you are using
another compiler and require assistance.

Files Required for echoid.exe

The following files are required in rebuilding echoid.exe:

Table 2-4: Files required to rebuild echoid.exe

File Name Description

CustomHostID.c C source file containing custom locking code definition.
CustomHostID.h C include file containing custom locking code prototype.
echoid.c C source file containing logic for generating fingerprints.

Notice, this file will be modified to call the custom locking
code function.

Iscgen.h SentinelLM include file installed during SentinelLM
installation.

Iserv.h SentinelLM include file installed during SentinelLM
installation.

Isapiw32.lib Import library for Win32 run-time DLL that is installed during
SentinelLM installation.

echoid.dsp Microsoft Visual C++ 6.0 project file

echoid.dsw Microsoft Visual C++ 6.0 workspace file

Required Changes to echoid.exe

Rebuilding echoid.exe only requires a slight modification to the source code.
Before calling VL SgetM achinel D(), call VL SsetHostl dFunc(functionName),
where functionName is the name of the custom locking code function.

Chapter 2 - Protecting Your Application with the Application Library

Using a Custom Locking Code

Again, using GetCustomLockCade as the name of the custom lock code
function, the sequence of function callswill be as follows:

* rest of echoid source
* VL SsetHostl dFunc(GetCustomLockCode)
* VLSgetMachinel D()

» rest of echoid source

Steps to Rebuilding echoid.exe

1. Obtain azip file from Rainbow Technologies that contain all the
necessary files. Please see “Files Required for echoid.exe” on page 20.
Unzip the zip file into a directory of your choice.

2. Open the workspace file corresponding to the customized license server
project.

3. Modify the source code. See* Required Changesto Server Source Code”
on page 18.

4, Choose Rebuild All from the Build menu.

Step 3 - Modifying Client Application

The client application should also make acal to VL SsetHoldIdFunc(). This
function call needs to be performed before alicense request isissued. In doing
this, a developer guarantees that both the client-locked licenses and server-
locked licenseswill be handled. Also, the client application will not be adversely
affected by thisfunction call if the default license server, rather than the custom
license server, is used. Please see “ Required Changesto Server Source Code’ on

page 18.

SentinelLM Programmer’s Reference Manual 21

Using a Custom Locking Code

Overall Process of Using a Rebuilt License Server and Rebuilt
echoid.exe

1. Decide on an agorithm for generating custom locking code. Notice, this
locking code needs to be a reproducible long value.

2. Rebuild license server. See “Step 1 - Rebuilding License Server” on
page 17.

3. Rebuild echoid.exe. See “Step 2 - Rebuilding echoid.exe” on page 19.

4. Edit echoid.dat so that the custom locking criteriais acriteriamask. This
step may not be needed if custom locking criteria mask is the default
mask in the rebuilt echoid.exe.

5. Execute the rebuilt echoid.exe.

6. Generate server-locked licenses with the fingerprint obtained from the
rebuilt echoid.exe as the primary criteria.

7. Addlicensesto the rebuilt license server vialslic or viathe license server
configuration file Iservrc.

8. Madify the client application and rebuild it. See “ Step 3 - Modifying
Client Application” on page 21.

9. Execute the client application.

22 Chapter 2 - Protecting Your Application with the Application Library

Chapter 3 - SentinelLM Client
API

Introduction

Using the SentinelLM client API, the following integration styles of varying
complexity are supported:

» Thesimplest style requires adding only two function callsto the
application program. During program initialization, a call is made to
VL Slicense() toinitialize contact with the license server and
automatically update the license code. Then, during program termination,
acal ismadeto VL Sdisablel icense() to disable licensing and return
the license code. Any additional communication required with thelicense
server isautomatically handled by the client library.

» A style providing greater flexibility requires the use of four different
callswithin the application program. During program initialization, calls
are made to VL Sinitialize() to initialize the client library and then to
L SRequest() to request an authorization license code. VL Sinitialize()
or VL SqueuedRequest() should be called only once. During program
termination, calls are made to L SRelease() to release the authorization
license code and then to VL Scleanup() to clean up the client library.
VL Scleanup() should be called only once.

» Thefull featured function interface is recommended when using
advanced licensing features. Thisinterface is compliant with the industry
LSAPI standard. This style uses the API calls described in the
intermediate style above, but is augmented by calls to other library
functions.

SentinelLM Programmer’s Reference Manual 23

24

This chapter describes al the function calls available in the Sentinel LM
Application Program Interface (API), which includes the industry standard,
LSAPI. All function calls, return codes, and data types that begin with the LS
prefix are part of the LSAPI standard. The APIs that begin with the VLS prefix
are the Sentinel LM extensions that make licensing easier and more powerful.

All function calls return the status code, LS SUCCESS, if successful or a
specific error code indicating the reason for failure otherwise. For more
information about applicable error codes, see “Error Handling” on page 113.

On Win32 and UNIX computers, there are three sets of client libraries:

» Stand-alone: For stand-alone operation without requiring a network
license server. The functions not supported in the stand-alone client
library are actually present but do not perform any meaningful action.

Y ou do not need to make any source code changes when moving from a
Sentinel LM network client library to a stand-alone client library.

* Network: For any operation requiring a network license server.

* Integrated: For both stand-alone and networked operations. We
recommend you link with thislibrary if you would like to support both
stand-alone and network license management. Even if you are not sure if
you need to support both, you may still consider using this library for
future expansion. Applications linked with this client library can obtain
stand-alone licenses from alocal file or network licenses from a network
license server. There are special control flags enabling devel opersto
customize the behavior of choosing between stand-alone and network
libraries.

Multiple license codes can be requested within an application for afeature and
feature version. Each license code must be released and updated separately as
the license server treats these license codes as separate clients. A handle that
uniquely identifies the license code will be returned for each L SRequest() call
using the argument, Ishandle. This handle is also used in other SentinelLM
function calls.

All of the SentinelLM client libraries are thread safe. However, license handles
may not be shared or passed from one thread to another. We recommend

Chapter 3 - SentinelLM Client API

spawning athread (or using the main application thread) and perform all
Sentinel LM functions for that single thread.

Available license code generation function calls can be separated into the
following categories:

e Basic client licensing functions
» Challenge-response

e Client configuration

» Client query

* Feature query

e Client utility

e Error handling

e Tracing SentinelLM operation
* Redundancy

* Queuing

Basic Client Licensing Functions

Quick Client Licensing Functions

The following table summarizes the quick client functions:

Table 3-5: Quick Client Licensing Functions

Function Description
VLSlicense() Performs single-call licensing.
VLSdisableLicense() Disables single-call licensing.

SentinelLM Programmer’s Reference Manual

25

VLSlicense()

Syntax

Note

Description

26

VLSlicense()

Client Server Statlc DLL
Library
v v v

Initializes contact with the license server requires authorization and
automatically updates the license.

LS STATUS CODE VL Slicense (

unsigned char *featureName,
unsigned char *version,
LS HANDLE *|shandle;
Argument Description
featureName Name of the feature for which the licensing code is

requested. May consist of any printable characters.
Limited to 24 characters.

version Version of the feature for which the licensing code is
requested. May consist of any printable characters.
Limited to 11 characters.

Ishandle (out) This handle must be used to release this license code by
calling VLSdisableLicense(). Space must be allocated by
the caller.

Length limitations exist on feature name and version depending on the type
of license you want to issue to your customer. See the Sentinel LM
Developer’s Guide for details.

This function obtains an authorization license using L SRequest() and then
automatically updates the license after 80% of the license lifetime has passed,
using the L SUpdate() function. This function uses timers (SIGALRM on
UNIX) to update alicense periodically. Y ou should not update that license
yourself using L SUpdate() or any other license renewal function. When you
wish to release the license (terminate the automatic updates), you must use the
API function VL SdisableL icense() which removes the timer, and releases the

Chapter 3 - SentinelLM Client API

VLSlicense()

license. If you release the license using L SRelease() and your application
continues to run, the timer will keep trying to renew an invalid license since it
does not know that you have released the license yourself.

On UNIX, since there is only one timer available to each running application,
there will be a conflict if your application wishes to use timers and use

VL Slicensg() at the same time. To accommodate multiple simultaneous uses of
asingle timer, the SentinelLM API provides a generalized version of the timer
functions.

From one instance of an application, you can call VL Slicense() only once.
VL Slicensg() can automatically update only a single handle. Subsequent callsto
VL Slicense() will fail.

Note Thisfunction isavailable on most UNIX platforms. This function may not
be available on platforms that do not support atimer event or atime signal.

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_APP_UNNAMED featureName is NULL
version is NULL
VLS_CALLING_ERROR Ishandle is NULL.

Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

VLS_NO_LICENSE_GIVEN Invalid handle specified. Handle is already
released and destroyed from previous
license operations.

LS_INSUFFICIENTUNITS License server does not currently have
sufficient licensing units for requested
feature to grant a license.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature.

VLS _TRIAL_LIC_EXHAUSTED Trial license has expired.

LS_LICENSE_EXPIRED License has expired.

SentinelLM Programmer’s Reference Manual 27

VLSlicense()

28

VLS_APP_NODE_LOCKED

VLS_USER_EXCLUDED

VLS_VENDORIDMISMATCH

VLS_NON_REDUNDANT_SRVR

VLS_SERVER_SYNC_IN_PROGRESS
VLS_ELM_LIC_NOT-ENABLE

VLS_FEATURE_INACTIVE

VLS_MAJORITY_RULE_FAILURE

VLS_NO_SERVER_RESPONSE

VLS_BAD_SERVER_MESSAGE

VLS_NO_SERVER_RUNNING

VLS_HOST_UNKNOWN

VLS_NO_SERVER_FILE

LS_NORESOURCES

LS_NONETWORK

Requested feature is node locked, but
request was issued from an unauthorized
machine.

User or machine excluded from accessing
requested feature.

The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has the license.

License server is non-redundant and
therefore cannot support this redundancy-
related operation.

License server synchronization in process.

The license was converted using the
license conversion utility (from a 5.x
license), but the DLT process is not

running.

Feature is inactive on specified license
server.

Majority rule failure prevents token from
being issued.

Communication with license server has
timed out.

Message returned by license server could
not be understood.

License server on specified host is not
available for processing license operation
requests.

Invalid hostName was specified.

The license server has not been set and is
unable to determine which license server to
use.

An error occurred in attempting to allocate
memory needed by this function.

Failed to initialize Winsock wrapper. (Only
applicable if using network-only library.)
Generic error indicating network failure.

Chapter 3 - SentinelLM Client API

VLSdisableLicense()

VLS_INTERNAL_ERROR Failure occurred in setting timer. (Timer is
only attempted to be set if timer is available
for platform and if license requires timer for
updates.)

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

VLSdisableLicense()

Client Server Statlc DLL
Library
v v v

This function disables single-call licensing and returns the license code.

Syntax LS STATUS CODE VL SdisableLicense (
LS HANDLE *|shandle);
Argument Description
Ishandle The handle which had been obtained earlier by a call to

VLSlicense().

Returns The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING ERROR Ishandle is an ambiguous handle; it is not
exclusively active or exclusively queued.

VLS_ALL_UNITS RELEASED All units have already been released.

VLS_RETURN_FAILED Generic error indicating that the license
could not be returned.

VLS _NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS _HOST_UNKNOWN Invalid hostName is specified.

SentinelLM Programmer’s Reference Manual 29

VLSdisableLicense()

30

VLS_NO_SERVER_RESPONSE
VLS_BAD_SERVER_MESSAGE

LS_NO_NETWORK

LS_NORESOURCES

VLS_INTERNAL_ERROR

Communication with license server timed
out.

Message returned by server could not be
understood.

Generic error indicating that the network is
unavailable for servicing the license opera-
tion.

An error occurred in attempting to allocate
memory needed by function.

An error occurred with respect to the
serialization/customization of SentinelLM
files.

For acompletelist of the error codes, “ Appendix C - Error and Result Codes for

Client Functions’ on page 283.

Chapter 3 - SentinelLM Client API

VLSinitialize()

Standard Client Licensing Functions

The following table summarizes the standard client functions:

Table 3-6: Standard Client Licensing Functions

Function

Description

VLSinitialize()
LSRequest()
LSRelease()
VLScleanup()
LSUpdate()

Initializes the client library.

Requests an authorization license code.
Releases an authorization license code.
Called when finished using the client library.

Called periodically to renew the license code and inform
the license server that it is alive.

VLSinitialize()

Client Server Statlc DLL
Library
v v v
Initializes the client library.
Syntax LS STATUS CODE VLSinitiaize (void);

This function has no arguments.

Description This call must be made before any SentinelLM function can be called.

Note Applicationsthat call the UNIX standard-C library function, fork(),
generally follow this call with an exec() function cal to re-initialize all
global values. For some applications, however, this may be undesirable. In
such cases, issue the call before the first L SRequest() call and after each
fork() call. Thiscall isnot necessary for applications that do not use

fork() or exec() after forking. Calling this function unnecessarily does not have

any negative side effects.

SentinelLM Programmer’s Reference Manual

31

LSRequest()

Returns

See Also

Syntax

32

The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.
LS_NONETWORK Failed to initialize Winsock wrapper. (Only

applicable if using network-only library.)

For acomplete list of the error codes, “Appendix C - Error and Result Codes for
Client Functions’ on page 283.

VL Scleanup()
LSRequest()
Client Server Static DLL
Library
v v v

Requests an authorization license code from the license server.

LS STATUS CODE L SRequest (

unsigned char *licenseSystem,
unsigned char * publisherName,
unsigned char *featureName,
unsigned char *version,
unsigned long *unitsReqd,
unsigned char *|ogComment,
LS CHALLENGE *challenge,
LS HANDLE *|shandle;
Argument Description
licenseSystem Unused. Use LS_ANY as the value of this variable.

LS_ANY is specified to indicate a match against installed
license systems.

Chapter 3 - SentinelLM Client API

LSRequest()

Argument

Description

publisherName

featureName

version

unitsReqd

logComment

challenge

Ishandle

A string giving the publisher of the product. Limited to 32
characters and cannot be NULL. Company name and
trademark may be used.

Name of the feature for which the licensing code is
requested. May consist of any printable characters and
cannot be NULL. Limited to 24 characters.

Version of the feature for which the licensing code is
requested. May consist of any printable characters. Limited
to 11 characters.

The number of licenses required. The license server
verifies that the requested number of units exist and may
reserve those units, but no units are actually consumed at
this time. The number of units available is returned.

If the number of licenses available with the license server
is less than the requested number, the number of available
licenses will be returned using unitsReqd. If unitsReqd is
NULL, a value of 1 unit is assumed.

A string to be written by the license server to the comment
field of the usage log file. Pass a NULL value for this
argument if no log comment is desired.

The challenge structure. If the challenge-response
mechanism is not being used, this pointer must be NULL.
The space for this structure must be allocated by the
calling function. The response to the challenge is provided
in the same structure, provided a license was issued, i.e.,
provided the function LSRequest() returned
LS_SUCCESS. For details of the challenge-response
mechanism and how to use it effectively, see page 45.

The handle for this request is returned in Ishandle. This
handle must be used to later update and release this
license code. A client can have more than one handle
active at a time. Space for Ishandle must be allocated by
the caller.

Description Thisfunction is used by the application to request licensing resources to allow
the product to execute. If the valid license is found, the challenge-responseis
computed (if applicable) and LS SUCCESS s returned. The challenge-response

SentinelLM Programmer’s Reference Manual

33

LSRequest()

iscomputed if anon-NULL value is passed for the challenge argument. At
minimum, the PublisherName, ProductName, and Version strings are used to
identify matching license(s). When the application has completed execution, it
must call L SRelease() to release the license resource.

If the number of units required is greater than the number of units available, then
L SRequest() will not grant the license.

Every client should complete this call successfully before commencing
execution of the application or the feature.

If the default error handler is not used, the client application must check the code
returned by the L SRequest() call and should continue only if LS SUCCESSis
returned. The default error handler will exit the application on error.

Note If queuing isdesired, you must use VL SqueuedRequest() instead of
L SRequest().

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR Ishandle is NULL.
challenge argument is non-NULL, but
cannot be understood.
Attempted to use stand-alone mode with
network-only library, or network mode with
stand-alone library.

VLS_APP_UNNAMED featureName is NULL
version is NULL.
VLS_NO_LICENSE GIVEN unitsReqd is zero

Ishandle is not a valid handle.

License is only available at license server
that does not match mode settings, e.g.
network license available when stand-alone

mode, etc.
VLS_NO_SUCH_FEATURE License server does not have license that
matches requested feature.
LS_INSUFFICIENTUNITS License server does not currently have

sufficient licensing units for requested
feature to grant license.

34 Chapter 3 - SentinelLM Client API

LSRequest()

LS_LICENSE_EXPIRED
VLS_TRIAL_LIC_EXHAUSTED

VLS_APP_NODE_LOCKED

VLS_USER_EXCLUDED

VLS_VENDORIDMISMATCH

VLS_SERVER_SYNC_IN_PROGRESS

VLS_FEATURE_INACTIVE

VLS_MAJORITY_RULE_FAILURE

VLS_NO_SERVER_RUNNING

VLS_NO_SERVER_RESPONSE

VLS_HOST_UNKNOWN
VLS_NO_SERVER-FILE

VLS_BAD_SERVER_MESSAGE

LS_NO_NETWORK

LS_NORESOURCES

VLS_INTERNAL_ERROR

SentinelLM Programmer’s Reference Manual

License is expired.

Trial license expired or trial license usage
exhausted.

Requested feature is node locked, but
request was issued from unauthorized
machine.

User or machine excluded from accessing
requested feature.

The vendor identification of requesting
application does not match the vendor
identification of the feature for which the
license server has the license.

License server synchronization in process.

Feature is inactive on specified license
server.

Majority rule failure prevents token from
being issued.

License server on specified host is not
available for processing license operation
requests.

Communication with license server has
timed out.

Invalid hostName was specified.

No license server has been set and unable
to determine which license server to use.

Message from license server could not be
understood.

Generic error indicating that the network is
unavailable for servicing the license
operation.

An error occurred in attempting to allocate
memory needed by function.

Failure occurred in setting timer. (Timer is
only attempted to be set if timer is available
for platform and if license requires timer for
updates.)

35

LSRelease()

VLS _ELM_LIC_NOT_ENABLE The license was converted using the
license conversion utility (from a 5.x
license), but the DLT process is not
running.

For acomplete list of the error codes, “Appendix C - Error and Result Codes for
Client Functions’ on page 283.

See Also “Challenge-response” on page 45, VL Sset TimeoutInterval(),
VL SqueuedRequest().

LSRelease()

Client Server S_tano DLL
Library
v v v

Requests that the license server release licenses associated with a handle.

Syntax LS STATUS CODE LSRelease (
LS HANDLE Ishandle,
unsigned long *units_consumed,

unsigned char L SFAR*log-comment;

Argument Description

Ishandle The handle returned by the corresponding LSRequest().
units_consumed Number of units released.

log_comment A string to be written by the license server to the comment

field of the usage log file. Pass a NULL value for this
argument if no log comment is desired.

Description Releases the license(s) associated with Ishandle, allowing them to be
immediately used by other requesting applications. For a shared license, all
client applications must release their licenses before the license server marksthe

license as available.

36 Chapter 3 - SentinelLM Client API

VLScleanup()

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR Ishandle is an ambiguous handle; it is not
exclusively active or exclusively queued.

VLS_RETURN_FAILED Generic error indicating that the license
could not be returned.

VLS _ALL_UNITS_RELEASED All units already released.

VLS _NO_SERVER_RUNNING License server on specified host is not
available for processing the license
operation requests.

VLS _NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS _HOST_UNKNOWN Invalid hostName was specified.

VLS _BAD_SERVER_MESSAGE Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

For acompletelist of the error codes, “Appendix C - Error and Result Codes for

Client Functions’ on page 283.

VLScleanup()
Client Server S_tatlc DLL
Library
v v v
Cleans up the client library.
Syntax LS STATUS CODE VL Scleanup (void);

This function has no arguments.

SentinelLM Programmer’s Reference Manual

37

LSUpdate()

Description After all SentinelLM calls are done and before exiting, you must call this func-

Returns

See Also

Syntax

38

tion. This function may not be called if the application is being protected using
the Quick-API. Calling VL Scleanup() after calling VL SdisablelLicense() can
produce unpredictable results.

The status code, LS _SUCCESS, is aways returned. For a complete list of the
error codes, see “Appendix C - Error and Result Codes for Client Functions” on
page 283.

VL Sinitialize()
LSUpdate()
Client Server Static DLL
Library
v v v

Once an authorization license has been received, the client must call
L SUpdate() periodically to renew itslicense and inform the license server that
itisalive, if automatic renewal is disabled.

LS STATUS CODE LSUpdate (

LS HANDLE Ishandle,

unsigned long *unusedl,
long *unused?,
unsigned char *unuseds3,

LS CHALLENGE *unused4;

Argument Description

Ishandle This must be the handle previously returned by the
corresponding LSRequest() call.

unusedl Unused. Use LS_DEFAULT_UNITS as the value.

unused?2 Unused. Use NULL as the value.

unused3 Use NULL as the value.

unused4 Use NULL as the value.

Chapter 3 - SentinelLM Client API

LSUpdate()

Description Currently the client library defaults to automatic (local) license renewal. Y ou do
not need to call this API unless you disable local license renewals.

If local license renewals are disabled, the client must call L SUpdate() periodi-
cally to renew itslicense and inform the license server of its continued need for a
license. However, you should do this only in rare cases where renewal s are criti-
cal or the system load is uncertain.

If you do call L SUpdate() manually to verify the client is still attached to the
license server, you must disable local renewals before calling L SUpdate().

Local Vs. Remote License Renewal

In order to reduce network traffic and communication overhead, SentinelLM
checks whether the license lifetime is close to expiration, and contacts the
license server only if it is about to expire. Otherwise, it returns the success code.
Thisiscalled local renewal. Thereis no appreciable overhead in renewing a
license too frequently, and non-timer based renewal schemes can use thisfeature
to their advantage.

Lifetime of a license

Local renewals Remote renewals

That part of the lifetime of alicense which resultsin the renewal of the license
by the license server is called the remote renewal period. Its default valueis 80%
of the license lifetime. However, for best results, the use of timersto optimally
control the frequency of renewal callsis recommended.

Note Auto timerswill not work in a Win32 console application.

Timer-based renewal schemes are not required to uselocal renewals at al. The
period of the timer can be such that L SUpdate() calls occur only during the
remote renewal period of the license.

The SentinelLM API aso provides the function, VL Sdisablel ocalRenewal(),
which forces all future L SUpdate() requests to go to the license server.

SentinelLM Programmer’s Reference Manual 39

LSUpdate()

Returns

40

VL SgetRenewal Status() provides information on whether the last successful
update was local or remote. See page 73 for these and other related function
cals.

Note that L SUpdate() is asignal-safe function, so that it can be called from
signal handlers and can be interrupted by other signal handlers without any
known ill effects. Other functions are not guaranteed to be signal-safe.

The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR Ishandle is a queued handle. Cannot use
LSUpdate() to update a queued handle.

challenge argument is non-NULL, but cannot
be understood.

VLS_NO_LICENSE GIVEN Generic error indicating that license was not
updated.

LS_LICENSETERMINATED Cannot update the license because the license
has already expired.

VLS _NO_SUCH_FEATURE License server does not have license that
matches requested feature.

LS_NOLICENSESAVAILABLE All licenses in use.

LS_LICENSE_EXPIRED License has expired.

VLS _TRIAL_LIC_EXHAUSTED Trial license expired or trial license usage
exhausted.

VLS_FINGERPRINT_MISMATCH Client-locked; locking criteria does not match.

VLS_APP_NODE_LOCKED Feature is node locked, but the update request
was issued from an unauthorized machine.

VLS _CLK_TAMP_FOUND License server has determined that the client’s

system clock has been modified. The license
for this feature has time-tampering protection
enabled, so the license operation is denied.

VLS_VENDORIDMISMATCH The vendor identification of requesting
application does not match the vendor
identification of the feature for which the
license server has a license.

Chapter 3 - SentinelLM Client API

LSUpdate()

VLS_INVALID_DOMAIN

VLS_NO_SERVER_RUNNING

VLS_NO_SERVER_RESPONSE

VLS_HOST_UNKNOWN
VLS_BAD_SERVER_MESSAGE

LS_NO_NETWORK

LS_NORESOURCES

VLS_ELM_LIC_NOT_ENABLE

The domain of the license server is different
from that of client.

License server on specified host is not
available for processing license operation
requests.

Communication with license server has timed
out.

Invalid hostName was specified.

Message returned by license server could not
be understood.

Generic error indicating that the network is
unavailable for servicing the license operation.

An error occurred in attempting to allocate
memory needed by function.

The license was converted using the license
conversion utility (from a 5.x license), but the
DLT process is not running.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes

for Client Functions’ on page 283.

See Also VL SbhatchUpdate(), VL SsetRemoteRenewal Time(),
VL SgetRenewal Status(), VL Sdisablel ocalRenewal(),
VL Senablel ocalRenewal(), VL SisL ocalRenewal Disabled(),

VL SsetTimeoutlnterval()

Advanced Client Licensing Functions

The following table summarizes the advanced client functions:

Table 3-7: Advanced Client Licensing Functions

Function Description

VLSinitialize() Initializes the client library.
VLSrequestExt() Requests an authorization license.
VLSreleaseExt() Releases an authorization license.

SentinelLM Programmer’s Reference Manual

41

VLSinitialize()

Syntax

42

Table 3-7: Advanced Client Licensing Functions (Continued)

Function Description

VLScleanup()
VLSbatchUpdate()

Called when finished using the client library.
Updates several license codes at once.

VLSinitialize()
See“VLSinitialize()” on page 31.

VLSrequestExt()
Client Server S_tano DLL
Library
v v v

LS STATUS CODE VL SrequestExt (

unsigned char *|icenseSystem,

unsigned char * publisherName,

unsigned char *featureName,

unsigned char *version,

unsigned long *unitsReqd,

unsigned char *|ogComment,

LS CHALLENGE *challenge,

LS HANDLE *|shandle,

VLSserverlnfo *server|nfo;
Argument Description
licenseSystem Unused. Use LS_ANY as the value of this variable.

publisherName

featureName

A string giving the publisher of the product. Limited to 32
characters. Company name and trademark may be used.

Name of the feature for which the licensing code is
requested. May consist of any printable characters.
Limited to 24 characters.

Chapter 3 - SentinelLM Client API

VLSrequestExt()

Argument

Description

version

unitsReqd

logComment

challenge

Ishandle

serverinfo

Version of the feature for which the licensing code is
requested. May consist of any printable characters.
Limited to 11 characters.

The number of licenses required. If the number of licenses
available with the license server is less than the requested
number, the number of available licenses will be returned
using unitsReqd. If unitsReqd is NULL, a value of 1 unit is
assumed.

A string to be written by the license server to the comment
field of the usage log file. Pass a NULL value for this
argument if no log comment is desired.

The challenge structure. If the challenge-response
mechanism is not being used, this pointer must be NULL.
The space for this structure must be allocated by the
calling function. The response to the challenge is provided
in the same structure, provided a license code was issued,
i.e., provided the function LSRequest() returned
LS_SUCCESS. For details of the challenge-response
mechanism and how to use it effectively, see page 45.

The handle for this request is returned in Ishandle. This
handle must be used to later update and release this
license. A client can have more than one handle active at a
time. Space for Ishandle must be allocated by the caller.

This information is passed to the license server for use in
server hook functions. See“VLSeventAddHook()" on
page 263.

Description Use VL SrequestExt() when using license server hooks. Before calling
VL SrequestExt(), you must call VL SinitServerInfo().
(See“VLSinitServerlnfo()” on page 65.)

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

SentinelLM Programmer’s Reference Manual

43

VLSrequestExt()

44

VLS_APP_UNNAMED

VLS_CALLING_ERROR

VLS_NO_LICENSE GIVEN

VLS_NO_SUCH_FEATURE
LS_NOLICENSESAVAILABLE
LS_INSUFFICIENTUNITS
LS_LICENSE_EXPIRED
VLS_TRIAL_LIC_EXHAUSTED

VLS_USER_EXCLUDED

VLS_CLK_TAMP_FOUND

VLS_VENDORIDMISMATCH

VLS_SERVER_SYNC_IN_PROGRESS
VLS_FEATURE_INACTIVE

VLS_MAJORITY_RULE_FAILURE

featureName is NULL
version is NULL

Ishandle is NULL
challenge argument is non-NULL

Attempted to use stand-alone mode with
network-only library, or network mode with
stand-alone library.

unitsReqd is zero
Ishandle is not a valid handle.

License server does not have license that
matches requested feature.

All licenses in use.

License server does not currently have
sufficient licensing units for requested
feature to grant license.

License has expired.

Trial license expired or trial license usage
exhausted.

User or machine excluded from accessing
requested feature.

License server has determined that the
client’s system clock has been modified.
The license for this feature has time-
tampering protection enabled, so the
license operation is denied.

The vendor identification of requesting
application does not match the vendor
identification of the feature for which the
license server has the license.

License server synchronization in process.

Feature is inactive on specified license
server.

Majority rule failure prevents token from
being issued.

Chapter 3 - SentinelLM Client API

VLSrequestExt()

VLS _NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS _NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS _HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER-FILE No license server has been set and unable
to determine which license server to use.

VLS BAD_SERVER_MESSAGE Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

VLS_INTERNAL_ERROR Failure occurred in setting timer. (Timer is

only attempted to be set if timer is available
for platform and if license requires timer for
updates.)

VLS _ELM_LIC_NOT_ENABLE The license was converted using the
license conversion utility (from a 5.x
license), but the DLT process is not
running.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

See Also “Challenge-response” below, VL SeventAddHook()

Challenge-response

The challenge-response mechanism can be used by a licensed application to
authenticate the license server.

SentinelLM Programmer’s Reference Manual 45

VLSrequestExt()

Syntax typedef struct {
unsigned long
unsigned long
unsigned long
unsigned char

} CHALLENGE;

ulReserved;
ulChallengedSecret;
ulChallengeSize;
ChallengeData[30];

typedef CHALLENGE LS CHALLENGE;

typedef struct {
unsigned long
unsigned char

ulResponseSize;
ResponseData[16];

} CHALLENGERESPONSE:

Member

Description

ulReserved
ulChallengedSecret

ulChallengeSize

ChallengeData

ulResponseSize
ResponseData

LSAPI requires this to be set to 0.

The index of the secret which the client application wishes
the license server to use in computing its response to this
challenge. This value may range from 1 to the number of
secrets provided. The actual secrets are provided to the
license server through the license code produced using the
code generator and can include characters in the range
A-Z,and1-9.

Number of characters in ChallengeData. This value cannot
be 0.

The actual string that is used in challenging the license
server. (Mentioned as data in the explanation above.) This
is a string of at most 30 characters, each of which can have
any values, including 0.

Number of characters in the response to the challenge.
The string of characters representing the actual response.

Description In challenge-response, the license server associates a secret with a feature,
provided by the license code. The application also contains this secret. In the
license server validation process, an application will “challenge” the license

46

Chapter 3 - SentinelLM Client API

VLSrequestExt()

server with a data string. The license server computes a response according to
some previously arranged algorithm using the values, data and secret, which it
returns. The client application locally computes the expected response using
data and secret, and verifies that the expected response matches the response
returned by the license server.

In order for the authentication mechanism to work correctly and securely, both
the license server and the client application must use the same algorithm to
compute the response given the values of data and secret. LSAPI requires the
use of the software, “RSA Data Security, Inc. MD4 Message Digest Algorithm”
provided by RSA Data Security, Inc. to compute the response.

In practice, to save execution time and space, the client application need not
invoke the MD4 Message Digest Algorithm at run time to cal cul ate the response.
Challenge-response pairs can instead be maintained in a pre-computed table.

Sentinel LM allows for the usage of multiple secrets, with secrets indexed
starting at 1. Client applications can challenge the license server to produce a
response for a string date using the secret[i], wherei is theindex of the secret
(maximum is 7).

The following structures are used by the challenge parameter in challenge-
response. challengeis an in/out parameter for the L SRequest() and

VL SrequestExt() function calls and must be properly allocated and initialized
by the calling process. Refer to the sample files, crexamp.c, chalresp.c, and
md4.c for additional details on using this mechanism.

The parameter used to pass the challenge structure is also used by the library to
return the response structure. The CHALLENGE pointer must therefore be
typecast to CHALLENGERESPONSE * to obtain the correct response after the
function call.

The response to a challenge made with any function call, for example,

L SRequest() isvalid only if that function call returnsLS_SUCCESS. If

LS SUCCESS s not returned, the response to the challenge is undefined. For
more information on how to associate secrets with afeatures, see
“VLScgAllowSecrets()" on page 162 in Chapter 4 - License Code Generation
API, “VLScgSetNumSecrets()” on page 164 in Chapter 4 - License Code

SentinelLM Programmer’s Reference Manual a7

VLSreleaseExt()

Syntax

Returns

48

Generation API, and “V L ScgSetSecrets()" on page 163 in Chapter 4 - License
Code Generation API.

VLSreleaseExt()

Client Server Statlc DLL
Library
v v v

LS STATUS CODE VL SreleaseExt (

LS HANDLE Ishandle,
unsigned long *unusedl,
unsigned char *logComment,
VLSserverinfo *server|nfo;
Argument Description
Ishandle The handle returned by the corresponding LSRequest().
unusedl Unused. Use the value, LS _DEFAULT_UNITS.
logComment A string to be written by the license server to the comment
field of the usage log file. Pass a NULL value for this
argument if no log comment is desired.
serverinfo This information is passed to the license server for use in

server hook functions. See See “VLSeventAddHook()” on

page 263.

The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR

VLS_RETURN_FAILED

VLS_ALL_UNITS_RELEASED

Ishandle is ambiguous handle; it is not
exclusively active or exclusively queued.

Generic message indicating that the license
could not be returned.

All units released.

Chapter 3 - SentinelLM Client API

VLScleanup()

VLS_NO_SERVER_RUNNING

VLS_NO_SERVER_RESPONSE

VLS_HOST_UNKNOWN

VLS_BAD_SERVER_MESSAGE

LS_NO_NETWORK

LS_NORESOURCES

License server on specified host is not
available for processing license operation
requests.

Communication with license server has
timed out.

Invalid hostName was specified.

Message from license server could not be
understood.

Generic error indicating that the network is
unavailable for servicing the license
operation.

An error occurred in attempting to allocate
memory needed by function.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

See Also VL SeventAddHook()

VLScleanup()

See “VLScleanup()” on page 37.

VLSbatchUpdate()

Client Server

Static
Library

DLL

v

v

v

Updates several licenses at once. Currently the client library defaults to
automatic license renewal. Y ou do not need to call this API unless you disable
the automatic license renewal.

Syntax

LS STATUS CODE VL SbatchUpdate (

int *numHandles,

LS HANDLE

SentinelLM Programmer’s Reference Manual

*|shandle,

49

VLSbatchUpdate()

unsigned long *unusedl,
long *unused?,
unsigned char *unused3,

LS CHALLENGE *unused4,
LS STATUS CODE *tatus;

Argument Description

numHandles Specifies the number of handles.

Ishandle (in) Array of numHandles handles, allocated by caller.
unusedl Currently ignored—pass in a NULL.

unused2 Currently ignored—pass in a NULL.

unused3 Use NULL as the value.

unused4 Use NULL as the value.

status (out)

Array of numHandles status codes, allocated by caller.

Description API function interface for updating several licenses. It handles properly the fact
that some of the licenses may need to be updated locally, and some remotely. In
case the handles need to be updated on different license servers, use the

VL ShatchUpdate() callsinterspersed with VL SsetContactServer () cals. This
function contacts only one license server for the updates. This function does not
cal built-in error handlers at all. Thereis no limit on the number of handles

Returns

50

passed.

If everything fails, this function will return anon-LS SUCCESS code. For
failuresin individual updates of license codes, this function will return

LS SUCCESS, but the value of the corresponding status element will be set to
the error code. Otherwise, it will return the following error codes:

LS_BADHANDLE
VLS_CALLING_ERROR

VLS_CALLING_ERROR

Invalid handle

challenge argument is non-NULL, but
cannot be understood.

License server used for update is not the
same one that was used for acquiring the
license.

Chapter 3 - SentinelLM Client API

VLSbatchUpdate()

VLS_NO_LICENSE_GIVEN

VLS_NO_SUCH_FEATURE

LS_LICENSETERMINATED

LS_NOLICENSESAVAILABLE
LS_LICENSE_EXPIRED
VLS_USER_EXCLUDED

VLS_APP_NODE_LOCKED

VLS_CLK_TAMP_FOUND

VLS_VENDORMISMATCH

VLS_NO_SERVER_RUNNING

VLS_NO_SERVER_RESPONSE

VLS_HOST_UNKNOWN
VLS_BAD_SERVER_MESSAGE

LS_NO_NETWORK

LS_BUFFER_TOO_SMALL

Generic error indicating that the license was
not updated.

License server does not have license that
matches requested feature.

Cannot update license because license
already expired.

All licenses in use.
License has expired.

User or machine are excluded from
accessing requested feature.

Requested feature is node locked but
update request was issued from
unauthorized machine.

License server has determined that the
client’s system clock has been modified.
The license for this feature has time-
tampering protection enabled, so the
license operation is denied.

The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has a license.

License server on specified host is not
available for processing license operation
requests.

Communication with license server has
timed out.

Invalid hostName was specified.

Message from license server could not be
understood.

Generic error indicating that the network is
unavailable for servicing the license
operation.

An error occurred in the use of an internal
buffer.

“Challenge-response” on page 45, L SUpdate(),

SentinelLM Programmer’s Reference Manual

51

VLSbatchUpdate()

VL SsetRemoteRenewal Time(), VL Sdisablel ocalRenewal(),
VL Senablel ocalRenewal(), VL SisL ocalRenewal Disabled(),
VL SsetTimeoutlnterval()

Client Configuration Functions

52

The Client Configuration Functions allow an application to retrieve or overwrite
the default setting. The following table summarizes the functions that enable
certain properties of the client library to be configured.

Table 3-8: Client Configuration Functions

Function Description

VLSsetContactServer() Defines the license server's host name.
VLSgetContactServer() Retrieves the license server’s host name.
VLSsetServerPort() Defines the license server's communication port.
VLSgetServerPort() Obtains the license server's communication port.
VLSinitMachinelD() Sets the fields in machinelD to default values.
VLSgetMachinelD() Sets machinelD values for the current host.
VLSmachinelDtoLock Computes the machinelD locking code.

Code()

VLSgetServerNameFrom Retrieves the license server's name based on handle_id.
Handle()

VLSinitServerList() Initializes a list of default license servers to search for a
license.

VLSgetServerList() Retrieves the default license server list.

VLSinitServerinfo() Initializes the license serverinfo data structure to default
values.

VLSsetHostldFunc() Sets the host ID function.

VLSsetBroadcastinterval() Configures broadcast behavior.
VLSgetBroadcastinterval() Retrieves broadcast behavior parameters.

VLSsetTimeoutinterval() Configures timeout behavior.

Chapter 3 - SentinelLM Client API

Table 3-8: Client Configuration Functions (Continued)

VLSsetContactServer()

Function

Description

VLSgetTimeoutinterval()
VLSsetHoldTime()
VLSsetSharedld()
VLSsetSharedldValue()

Retrieves timeout behavior parameters.

Sets license hold time.
Redefines shared ID functions.

Registers a customized shared ID value.

Note There are aso function callsrelating to local vs. remote license renewal .
For adetailed description, see “Local vs. Remote Renewal of Keys” on

page 73.

VLSsetContactServer()

Client Server S_tatlc DLL
Library
v v v

Specifies the computer the licensed application will contact for the license

Server.
Syntax LS STATUS CODE VL SsetContactServer (char * serverName);
Argument Description
serverName The host name of the computer running the license server.

Description Each licensed application must be aware of the location of a SentinelLM license
server on the network. By default, on the first communication transaction each
application first checks the environment variable, LSFORCEHOST for the name
of the license server computer. If that environment variable exists, but the
license server computer it specifiesis not found, SentinelLM returns an error. If
the LSFORCEHOST environment variable does not exist, the application checks
the environment variable, LSHOST, for the name of the license server computer.
If the variable is not set, it looks for atext file named LSHOST or Ishost, which
should contain the name of the license server computer, usually in the current
directory. If that is also not available, the client uses a broadcast mechanism on

SentinelLM Programmer’s Reference Manual

53

VLSsetContactServer()

the local subnet to determine the existence and location of a SentinelLM license
server. If aclient makes a SentinelLM function call that involves contacting the
license server and the license server is not found, the function call returns the
error code, VLS NO_SERVER FOUND. Once contact has been established,
the name of the computer on which thelicense server isrunning is cached and all
future transactions (with the exception of VL Sdiscover()) are directed to that
license server only. If contact with that license server islost, the Sentinel LM
client library returns an error.

After alicenseis successfully requested (via L SRequest() or its variants)
SentinelLM will remember the name of the license server host which was
contacted to obtain the license. In any further client-server communication
involving this handle obtained by the client, SentinelLM will aways
communicate with the license server from which it obtained the license,
regardless of intervening VL SsetContactServer () calls. The license server
name set by VL SsetContactServer () will be contacted only for operations that
do not involve an already valid handle. Therefore, in case the original license
server goes down, you must request a fresh license (hence afresh handle) from
the new license server you wish to use, instead of attempting to send license
update messages to the new license server, unless redundant license servers are
in use. When aredundant license server fails, al clients' are automatically
reconnected to one of the other redundant license servers.

VL SsetContactSer ver () resets the cached host name to the val ue of
serverName. It overrides LSFORCEHOST and the LSHOST environment
variables and the LSHOST file. All future transactions will be directed to that
host regardless of the validity of the host name or whether alicense server is
running at that host.

VL SsetContactServer () has an extrarole to play in case the application is
linked with the UNIX integrated library, liblssrv.a.

54 Chapter 3 - SentinelLM Client API

VLSsetContactServer()

The roles are summarized in the table bel ow:

Linked With serverName

Meaning

libls.a Valid host name

NULL

NO-NET
libnonet.a Valid host name

NULL

NO-NET
liblssrv.a Valid host name

NULL

NO-NET

Client should communicate with the license server on
serverName.

Client should determine serverName using default
mechanism.

Calling error.
Calling error.
Communicate with integrated license server.
Communicate with integrated license server.

Client should communicate with the license server on
serverName.

Client should determine serverName using default
mechanism.

Communicate with integrated license server.

Note Inthe above discussion, NO-NET, NO_NET, no_net, and no-net are

Synonymous.

In general, serverName is obtained in the following order:

1. Any name supplied with VL SsetContactServer () call.
2. The LSFORCEHOST environment variable.
3. The LSHOST environment variable—Checked only at application start-

up.

4. Thelshost file—Checked only at application startup.

In case of libls.a and liblssrv.a, if no serverName is specified using
VL SsetContactServer (), the LSHOST environment variable, or the LSHOST
file, a subnet broadcast is used to find a license server.

The environment variable LSFORCEHOST overrides LSHOST and the

broadcast mechanism.

SentinelLM Programmer’s Reference Manual

55

VLSgetContactServer()

In case of libnonet.a, SentinelLM communicates with the stand-alone license
server with no network communication.

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR

VLS_NO_RESOURCES

Attempted to use stand-alone mode with
network-only library, or network mode with
stand-alone library.

An error occurred in attempting to allocate
memory needed by function.

For acomplete list of the error codes, “Appendix C - Error and Result Codes for
Client Functions’ on page 283.

See Also VL SgetContactServer()

VLSgetContactServer()

Client Server $tat|c DLL
Library
v v v

Retrieves the license server name.

Syntax LS STATUS CODE VL SgetContactServer (
char *outBuf,
int outBufSz);
Argument Description
outBuf (out) Contains a single license server name, space allocated by

outBufSz

caller.

Size of outBuf.

Description Returnsthe name of the license server host that will be contacted, in case the
client has already set the license server name. Otherwise this function will fail. If

56

Chapter 3 - SentinelLM Client API

VLSsetServerPort()

the Sentinel LM library isrunning in stand-alone mode, it returns the string,
VLS STANDALONE.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR outBuf is NULL.

VLS_NO_SERVER_FILE The license server has not been set and is
unable to determine which license server to
use.

LS _BUFFER_TOO_SMALL outBuf is not large enough to store license

server's name.

For acompletelist of the error codes, “ Appendix C - Error and Result Codes for
Client Functions’ on page 283.

See Also VL SsetContactServer ()

VLSsetServerPort()
Client Server S_tanc DLL
Library
v v v

Sets the port number.
Syntax int port_number (void);
Description Definesthe license server’s communication port.

Returns Does not return anything.

SentinelLM Programmer’s Reference Manual 57

VLSgetServerPort()

Syntax

Description

Returns

Syntax

Description

58

VLSgetServerPort()
Client Server Statlc DLL
Library
v v v

Retrieves the port number.
int VL SgetServerPort (void);

Obtains the number of the port to which all network messages intended for the
license server will be sent. The default configured port number is 5093.

The currently set license server port number is returned.

VLSinitMachinelD()

Client Server Statlc DLL
Library
v v v

Initializes the fields of the machinel D data structure to the default values for the
current host.

LS STATUS CODE VLSinitMachinelD (
VLSmachinelD LSFAR*machinelD;)

Argument Description
machinelD User allocated structure where the machine ID will be
maintained.

Sets the fields in machinel D to their default values.

The license manager uses the following data structure to define the
characteristics of amachine.

Chapter 3 - SentinelLM Client API

VLSinitMachinelD()

typedef struct {
unsigned long id_prom;
char ip_addr[VLS MAXLEN];
unsigned long disk id;
char host_name[VLS MAXLEN];
char ethernet[VLS MAXLEN];
unsigned long nw_ipx;
unsigned long nw_serial;
char portserv_addr[VLS MAXLEN];
unsigned long custom;
unsigned long reserved;
char cpu_id;
unsigned long unused2;

} VLSmachinelD;

The structureis called the machinel D, and the contents of thefirst ninefields are
called the fingerprint for the machine to which the contents apply. In practice, a
devel oper may choose to use some subset of these fields for agiven machine. To
specify which fields are to be used, aflag word called alock_selector is defined.
A lock selector is a number which sets aside one bit for each fingerprinting
element type. Each bit designates alocking criterion, and the lock selector
represents the fingerprint elements for a given machine. Note that alock selector
does not describe the fingerprint, it only designates which fields in the machine
ID are to be used to specify the fingerprint. The masks which define each
locking criterion are given below.

#define VLS LOCK_ID_PROM 0x1

#define VLS LOCK_IP_ ADDR Ox2

#define VLS LOCK_DISK_ID Ox4

#define VLS LOCK_HOSTNAME ~ 0Ox8

#define VLS LOCK_ETHERNET Ox10

#define VLS LOCK_NW._IPX 0x20

#define VLS LOCK_NW_SERIAL 0x40

#define VLS LOCK_PORTABLE_SERV 0x80

#define VLS LOCK_CUSTOM 0x100

#define VLS LOCK_PROCESSOR_ID 0x200

The mask that defines all locking criteriais:

#define VLS LOCK_ALL Ox1FF

SentinelLM Programmer’s Reference Manual 59

VLSgetMachinelD()

Returns

Syntax

The machine ID and lock selector are input to the license generator and
encrypted to create alocking code which then becomes part of the license that
authorizes use of an application. When alicense is requested by the application,
afingerprint for the machineis calculated and used to create alocking code. This
must compare favorably with its counterpart in the license before execution of
the application can be authorized.

The status code, VL Scg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_MACHINE_FAILURE_CODE machinelD is NULL.

For acompletelist of the error codes, “ Appendix C - Error and Result Codes for
Client Functions’ on page 283.

VLSgetMachinelD()

Client Server Statlc DLL
Library
v v v

LS STATUS CODE VL SgetMachinelD (

unsigned long lock_selector_in,
VLSmachinelD LSFAR *machinel D,
unsigned long LSFAR *|ock_selector_out;)
Argument Description
lock_selector_in User provided mask specifying locking criteria to be read.
machinelD User provided machine ID from which locking criteria will
be read.
lock_selector_out Mask returned specifying which locking criteria were read.

Description Sets the values of the machinel D struct for the current host. The input

60

machinel D struct should first be initialized by calling VL SinitM achinel D().
Then, calling this function will attempt to read only those items indicated by the
lock selector_in. If lock selector_out isnot NULL, *lock selector_out will be

Chapter 3 - SentinelLM Client API

VLSmachinelDtoLockCode()

set to abit mask specifying which items were actually read. To try and obtain all
possible machinel D struct items, set lock _selector_into VLS LOCK_ALL.

Returns The status code, VL Scg_SUCCESS, is always returned. For a complete list of

the error codes, see“ Appendix C - Error and Result Codes for Client Functions”
on page 283.

VLSmachinelDtoLockCode()

Client Server S_tatlc DLL
Library
v v v
Syntax LS STATUS CODE VL Smachinel DtoL ockCode(

VLSmachinelD LSFAR *machinel D,

unsigned long lock_selector,

unsigned long LSFAR *|ockCode;
Argument Description
machinelD Machine ID used to generate lock code.
lock_selector Bit mask defining the different lock criteria to retrieve
lockCode Lock code string generated from lock selector

Description Thisfunction computes the locking code from the machinel D based on the lock
selector. Note that every bit in lock _selector is significant. For instance, if you
have a machinel D that has valid information only for the | P address (lock
selector is 0x2), then you should pass 0x2 into the lock_selector parameter. If
you passin any other lock_selector value, adifferent lockCode will result.

Returns The status code, VL Scg_ SUCCESS, isreturned if successful and if
lock_selector is zero. For acomplete list of the error codes, see “ Appendix C -
Error and Result Codes for Client Functions’ on page 283.

SentinelLM Programmer’s Reference Manual 61

VLSgetServerNameFromHandle()

VLSgetServerNameFromHandle()

Client Server Statlc DLL
Library
v v v
Syntax LS STATUS CODE VL SgetServerNameFromHandle(

LS HANDLE handle _id,

char LSFAR * outBuUf,

int outBufSz,
Argument Description
handle_id The handle returned by LSRequest() or

VLSrequestExt()

outBuf User allocated buffer to receive license server name
outBufSz Size of buffer in bytes

Description Thisfunction retrieves the name of license server based on handle_id. A valid
handle_id is always obtained as a product of a successful license request. This
handle is associated with the license server that was contacted for the license
regquest. VL SgetSer ver NameFromHandle() can be used to retrieve the name
of the license server which granted the license.

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR
LS_BADHANDLE
LS_BUFFER_TOO_SMALL

outBuf is NULL.
Invalid handle.

outBuf is smaller than license server's
name that will be returned.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

62

Chapter 3 - SentinelLM Client API

VLSinitServerList()

VLSinitServerList()

Client Server Statlc DLL
Library
v v v
Syntax LS STATUS CODE VLSinitServerList (
char LSFAR *serverList,
int optionFlag;
Argument Description
serverList Caller allocated array of license server names, or IP or IPX
addresses.
optionFlag A three-bit flag used to determine how license servers are
found

Description Thisfunction initializes alist of default license serversto contact whenever a
call ismade to get alicense. serverList should be in the same format as the last
parameter of the VL Sdiscover () call, and have the same syntax. See
“VLSdiscover()” on page 101 for description of optionFlag. This API should be
called prior to calling L SRequest() or VL SqueuedRequest().

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

SentinelLM Programmer’s Reference Manual 63

VLSgetServerList

VLSgetServerList

Client Server Statlc DLL
Library
v v v
Syntax LS STATUS CODE VL SgetServerList (
char LSFAR * outBuUf,
int outBufSz;
Argument Description
outBuf User allocated buffer to receive the license server list
outBufSz Length of buffer in bytes

Description Thisfunction returns the default license server list that was set previously
through acall to VL SinitServerList(). If the default license server list has not
been set, an empty string is returned in outBuf.

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR outBuf is NULL.

LS_BUFFER_TOO_SMALL outBuf is smaller than license server’'s
name that will be returned.

VLS_NO_SERVER_FILE License server does not have a list file.

License server has not been set and is
unable to determine which license server to
use.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

64 Chapter 3 - SentinelLM Client API

Syntax

Description

Note

Returns

Syntax

SentinelLM Programmer’s Reference Manual

VLSinitServerinfo()

VLSinitServerinfo()

Client Server Statlc DLL
Library
v v v

LS STATUS CODE VLSinitServerinfo (
VL Sserverlnfo LSFAR* serverInfo;

Argument Description

User allocated buffer that will contain initialized
VLSserverinfo().

serverinfo

Initializes the serverInfo data structure to its default values.

This function must be called before calling VL SrequestExt() or
VL SreleaseExt().

The status code, LS _SUCCESS, is aways returned. For a complete list of the
error codes, see “Appendix C - Error and Result Codes for Client Functions” on
page 283.

VLSsetHostldFunc()

Client Server S_tanc DLL
Library
v v v v

Sets the host 1D function.

LS STATUS _CODE VL SsetHostldFunc (long (* myGetHostldFunc) ());

Argument Description

The address of the custom host ID function. In Windows
this must be the address returned by MakeProclinst.

myGetHostldFunc

65

VLSsetBroadcastinterval()

Description

Returns

Syntax

Description

66

Thisfunction sets the host ID function for the client library to be the function
pointed to by myGetHostldFunc. This enables the customization of host ID
locking.

The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

VLSsetBroadcastinterval()

Client Server Statlc DLL
Library
v v v

Sets the broadcast interval.

LS STATUS CODE VL SsetBroadcastinterval (long interval);

Argument Description

interval The interval between broadcasts in seconds.

If alicensed application performs a broadcast to establish the presence of a
license server on the subnet, it makes two broadcast attempts, where the length
of the second broadcast attempt is slightly longer than the first.

VL SsetBroadcastl nterval() setsthetotal length of both attemptsto be interval
seconds. The default value of interval is9 seconds.

Chapter 3 - SentinelLM Client API

Returns

Syntax

Description

Returns

SentinelLM Programmer’s Reference Manual

VLSgetBroadcastinterval()

The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

LS_NORESOURCES An error occurred in attempting to allocate

memory needed by function.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

VLSgetBroadcastinterval()

Client Server S_tatlc DLL
Library
v v v

Retrieves the broadcast interval.
long VL SgetBroadcastinterval (void);

If alicensed application performs a broadcast to establish the presence of a
license server on the subnet, it makes two broadcast attempts, where the length
of the second broadcast attempt is slightly longer than the first.

VL SgetBroadcastinterval() returns the total length of broadcast attempts.

VLSsetTimeoutInterval()

Client Server Statlc DLL
Library
v v v

Sets the timeout interval.

67

VLSgetTimeoutinterval()

Syntax

Description

Returns

Syntax

Description

68

LS STATUS CODE VL SsetTimeoutinterval (long interval);

Argument Description

interval The timeout period in seconds.

This call sets the time-out interval for all direct application/license server
communication to interval seconds. When alicensed application sends arequest
to alicense server and the license server does not respond, it resends the message
afew times. Each time, the length of the timeout interval is dightly longer than
the previous. VL Sset Timeoutl nterval() setsthe total length of a set of attempts
to be interval seconds. The default value of interval is 30 seconds. Note that
these timeouts are different from the broadcast timeouts.

The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

VLSgetTimeoutinterval()

Client Server Statlc DLL
Library
v v v

Retrieves the timeout interval.
long VL SgetTimeoutInterval ();

When alicensed application sends a request to a license server and the license
server does not respond, it resends the message a few times. Each time, the
length of the timeout interval is slightly longer than the previous one.

Chapter 3 - SentinelLM Client API

VLSsetHoldTime()

Returns This call retrieves the time-out interval for al direct application/license server
communication.

VLSsetHoldTime()

Client Server Statlc DLL
Library
v v v

Sets the hold time for licenses.

Syntax LS STATUS CODE VL SsetHoldTime (
char *featureName,
char *version,
int timelnSecs;
Argument Description
featureName Name of the feature.
version Version of the feature.
timelnSecs Time in seconds. Default: 15 seconds.

Description This function sets the hold time of licenses issued to the feature to timelnSecs
seconds. This function call will only be effective if the license for the feature
specifies that the hold time should be set by the application. This function call
must be made before thefirst VLS REQUEST, L SRequest(), or
VL SqueuedRequest() call for it to be applicable. Once alicense is requested
using VLS REQUEST or L SRequest(), the hold timeis set for that application,
and VL SsetHoldTime() will not change it.

SentinelLM Programmer’s Reference Manual 69

VLSsetSharedld()

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

VLS_APP_UNNAMED featureName is NULL
version is NULL

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by function.

VLS_CALLING_ERROR An error occurred in the use of an internal
buffer.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions” on page 283.

VLSsetSharedld()

Client Server S_tano DLL
Library
v v v

Redefines the functions called to get the relevant sharing parameter of the client.
For network use only.

Syntax LS STATUS CODE VL SsetSharedid (
int sharedid,
int (*mySharedldFunc) (char *);
Argument Description
sharedld Must be one of the following values:

« VLS _CLIENT_HOST_NAME_ID
« VLS_USER_NAME_ID

« VLS _X_DISPLAY_NAME_ID

« VLS _VENDOR_SHARED_ID

mySharedldFunc Pointer to a function that will return the sharedID value.

Description Thisfunction must be used to register a customized sharedID function with the
SentinelLM client library. The value of the sharedlD must be passed back by

70 Chapter 3 - SentinelLM Client API

VLSsetSharedld()

myShar edldFunc through the character buffer. All sharedID character buffers
will be truncated to 32 bytes. For instance, a customized function which returns
the host name can be used by the client library instead of the built-in function to
determine eligibility for sharing alicense.

Note If the host name or user name are changed using this function, the change
will also be reflected in the usage file written by the license server.

One of the many flexibilities provided by LM licensing is the sharing of same
license keys, based on the following criteria:

1. User-name based sharing

2. Hostname based sharing

3. X-display based sharing

4. Application-defined sharing

This model is often used by software publishers who do not want to count every
instance of arunning application. They may allow multiple instances of a
running application to share a single license token/key based on a common user
name, host name or custom sharing criteria.

When any of the sharing-options are enabled in alicense, the license server
checksif the new request made by a client is coming from the same User/Host/
X-display or not. If it is so, then it checks with the sharing-limit per license-key
and then issues the same key to the new user.

Internally, VL SrequestExt() function, while sending a License I ssue Request
Message to the license server, passes on theinformation regarding its user-name,
client-hostname, x-displaynameto the license server. Thisinformation is kept by
the license server initsinternal tables for future use. The next time alicenseis
reguested for the same Feature, the saved information is used to determine
whether this new request is originating from the same user/host/x-display.

By default, Sentinel LM has default functions to get these values (i.e. user name,
x-display, etc.). To use your own functions to retrieve these values, use the
VL SsetSharedld() function to override the default functions.

SentinelLM Programmer’s Reference Manual 71

VLSsetSharedldValue()

Returns

Syntax

The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR mySharedldFunc is NULL.

VLS _UNKNOWN_SHARED_ID Invalid sharedld; is either negative or
exceeds maximum value.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

VLSsetSharedldValue()

Client Server S.tatlc DLL
Library
v v v

Uses the value passed in by the caller as the shared ID for licensing purposes.
For network use only.

LS STATUS CODE VL SsetSharedidValue (

int sharedld,
char *sharedldValue;
Argument Description
sharedld Must be one of the following values:
e VLS_CLIENT_HOST_NAME_ID
* VLS_USER_NAME_ID
e VLS_X_ DISPLAY_NAME_ID
e« VLS_VENDOR_SHARED_ID
sharedldValue A character buffer which can contain up to 32 characters.

Description Thisfunction goes along with VL SsetSharedl d() and can be used to register a

72

customized sharedld value with the Sentinel LM client library. Y ou can
explicitly provide the sharedid itself using this function. The value of the
sharedld must be passed through the character buffer. All sharedld character
buffers will be truncated to 32 bytes. If you call both VL SsetSharedld() and

Chapter 3 - SentinelLM Client API

VLSsetSharedldValue()

VL SsetSharedldValue(), VL SsetSharedl d() has priority and the value set by
VL SsetSharedldValue() will be ignored.

The same concept appliesto VL SsetSharedl dValue()function as

VL SsetShar edl d()function. The difference between VL SsetSharedld() and
VL SsetSharedldValue() liesin the fact that VL SsetSharedid() function will
make the VL SrequestExt() internally send different IDs as returned by the
Developer-Defined functions, whereas VL SsetShar edl dValue() will make the
VL SrequestExt() send the same ID irrespective of the fact “who is running the
client,” “from where the client isbeing run,” and so on.

Thefirst priority is given to the developer defined functions as set by

VL SsetSharedld(). If no developer defined function is found then the priority
is passed to the SharedldValug() as set by VL SsetShar edl dValue() function.
If neither the devel oper defined function nor the devel oper defined
SharedldValue() isfound, the default functions are used.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

VLS CALLING_ERROR An error occurred in the use of aninternal
buffer.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

Local vs. Remote Renewal of Keys

The key (license token) issued by the license server to a client upon request has
to be renewed by calling L SUpdate() within the period of the license lifetime.
The APIsrelated to enabling/disabling of alocal renewal basically changes the
time during the lifetime of the license, at which an update is sent to the license
server. Unless updates are carried out by setting auto-timers, updating the license
on the license server has to be carried out manually by the client before the
expiration of the license lifetime. For more information on this, see
“LSUpdate()" on page 38.

SentinelLM Programmer’s Reference Manual 73

VLSdisableLocalRenewal()

The following function calls relate to license renewal :

Table 3-9: License Renewal Functions

Function Description

VLSdisableLocalRenewal() Disables local license renewal.

VLSenableLocalRenewal() Resets local license renewal.

VLSisLocalRenewalDisabled() Informs you whether or not local updates are
enabled.

VLSgetRenewalStatus() Returns renewal status.

VLSsetRemoteRenewalTime() Sets the remote renewal period.
VLSdisableAutoTimer() Disables automatic renewal of one feature.

VLSdisableLocalRenewal()

Client Server Statlc DLL
Library
v v v

Forces all future license renewals to go to the license server.

Syntax LS STATUS CODE VL Sdisablel ocaRenewal (void);

This function has no arguments.

Description Thisdisablesthe local license renewa mechanism. Under local renewal, callsto
L SUpdate() do not result in amessage being sent to the license server until the
remote renewal timeisreached. On executing thisfunction call, al future license
renewals made using L SUpdate() or VLS UPDATE for all handlesin this pro-
cess, will go to the license server for renewal.

Returns The status code, LS_SUCCESS, is aways returned. For a complete list of the
error codes, see “Appendix C - Error and Result Codes for Client Functions” on
page 283.

See Also LSUpdate(), VL SenablelL ocalRenewal()

74 Chapter 3 - SentinelLM Client API

Syntax

Description

Returns

See Also

Syntax

SentinelLM Programmer’s Reference Manual

VLSenableLocalRenewal()

VLSenableLocalRenewal()

Client Server Statlc DLL
Library
v v v

Resets the license renewal mechanism to the default.

LS STATUS CODE VL Senablel ocalRenewal (void);

This function has no arguments.

License server will only be contacted when alicenseis closeto its expiration
date. Resets the license renewal for all future license renewals made using
LSUpdate() or VLS UPDATE for al handlesin this process.

The status code, LS SUCCESS, is aways returned. For acomplete list of the
error codes, see “Appendix C - Error and Result Codes for Client Functions’ on
page 283.

Updates until remote renewal time will not go to the license server. Updates will
be returned locally. Only updates sent after the remote renewal time will be sent
to the license server.

L SUpdate(), VL Sdisablel ocalRenewal()

VLSisLocalRenewalDisabled()

Client Server S_tanc DLL
Library
v v v

Informs you whether or not local updates are enabled.

VLS LOC_UPD_STAT VL SisL ocal Renewal Disabled (void);

This function has no arguments.

75

VLSgetRenewalStatus()

Returns Returns the following error codes:

VLS_LOCAL_UPD_ENABLE Local renewal is enabled. This is the initial
status and the status after
VLSenableLocalRenewal() is called.

VLS _LOCAL_UPD_DISABLE Local renewal is disabled. This is the status
after VLSdisableLocalRenewal() is called.

VLSgetRenewalStatus()

Client Server S_tatlc DLL
Library
v v v

Retrieves license renewal status.

Syntax LS STATUS CODE VL SgetRenewal Status (void);

This function has no arguments.

Description Returnsthe renewal status of the last successful license renewal made using
LSUpdate() or VLS _UPDATE. If thelast operation that successfully renewed a
license involved contacting the license server, this function returns
VLS REMOTE_UPDATE. If the last operation that successfully renewed a
license did not involve contacting the license server (was done locally), this
function returnsthevalue VLS LOCAL_UPDATE. If an update has not
occurred, it returns VLS NO_UPDATES SO _FAR.

Returns Returns the following error codes:

VLS _NO_UPDATES_SO_FAR No updates have been made. Specifies the
initial value.

VLS_LOCAL_UPDATE During the most recent update, the license
was valid and did not need to be renewed.

VLS _REMOTE_UPDATE During the most recent update, the license

was invalid and required update from the
license server.

76 Chapter 3 - SentinelLM Client API

See Also L SUpdate()

VLSsetRemoteRenewalTime()

VLSsetRemoteRenewal Time()

Client Server Statlc DLL
Library
v v v
Sets the remote renewal time period.
Syntax LS STATUS CODE VL SsetRemoteRenewa Time (

char *featureName,

char *version,

int timelnSecs;
Argument Description
featureName Name of the feature.
version Version of the feature.
timelnSecs Time in seconds. Default: 15 seconds.

Description Sets the remote renewal period of licenses issued to the feature to timelnSecs
seconds. This function call must be made before the first VLS REQUEST or
L SRequest() call for it to be applicable. Once alicense is requested using
VLS REQUEST or L SRequest(), the remote renewal timeis set for that
application, and VL SsetRemoteRenewal Time() will not change it.

Returns The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_APP_UNNAMED

LS_NORESOURCES

VLS_CALLING ERROR

featureName is NULL
version is NULL

An error occurred in attempting to allocate
memory needed by function.

An error occurred in the use of an internal
buffer.

SentinelLM Programmer’s Reference Manual

77

VLSdisableAutoTimer()

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

See Also LSRequest(), L SUpdate()

VLSdisableAutoTimer()

Client Server Statlc DLL
Library
v v v
Syntax LS STATUS CODE VL SdisableAutoTimer (

LS HANDLE Ishandle,

int state;
Argument Description
Ishandle The handle returned by LSRequest() or

VLSrequestExt()

state VLS_ON or VLS_OFF

Description Using the handle returned from requesting alicense, acall to thisfunction can be
used to disable automatic renewal of one feature. Calling with an argument of
zero handle disables auto renewal of all features.

Note On UNIX, call VL SdisableAutoTimer () before using sleep() or
SIGALRM, or there could be a potentia conflict with the timer signal.

OnWin32, call VL SdisableAutoTimer () if thread has no message loop since
the message loop is used to process the timer. If you disable the automatic timer,
you must ensure that the license key is renewed periodically (before it expires)
by calling L SUpdate().

78 Chapter 3 - SentinelLM Client API

VLSdisableAutoTimer()

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR Invalid state. Needs to be either VLS_ON or
VLS_OFF
LS_BADHANDLE Invalid handle.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

Client Query Functions

There are three functions that return information about a client feature:

Table 3-10: Client Query Functions

Function Description

VLSgetClientinfo() Returns information about a client currently
licensed by the license server.

VLSgetHandlelnfo() Returns information about a client given a handle.

VLSgetLicInUseFromHandle() Returns the number of licenses used for the feature
name used to obtain a given handle.

Query functions provide a snapshot of the current status of the license server and
the featuresit licenses. Typically, users at asite are interested in information
about how many concurrent copies (or licenses) afeature is licensed for, which
users are currently using a particular feature, how soon alicensing agreement
will expire, and so on. These functions can be used within application software,
or to build stand-alone query utilities. All functions return the status code

LS SUCCESS on success or an appropriate error code. For alisting of error
values, see“Appendix C - Error and Result Codes for Client Functions’ on page
283.

If alicense server host name is not established, the client query function will
attempt to locate a license server. Information about any instance of application

SentinelLM Programmer’s Reference Manual 79

VLSdisableAutoTimer()

Syntax

80

authorized by the SentinelLM license server is returned in the following

structure:

typedef struct client_info_struct {

char

user_name[VLS MAXLEN];

unsigned long host_id;

char group[VLS MAXLEN];
long start_time;
long hold_time;
long end_time;
long ey_id;
char host_name[VLS MAXLEN];
char x_display_name[VLS MAXLEN];
char shared_id_name[VLS MAXLEN];
int num_units;
int g_wait_time;
int is_holding;
int is sharing intis_commuted;
} VLSclientInfo;
Member Description
MAXLEN Set to 64 characters.
user_name The login name of the user using the application. This
information can be changed using the VLSsetSharedId()
API call.
host_id The host ID of the computer on which the user is working.
This can be changed using the VLSsetHostldFunc() call.
group Name of the reserved group to which the user belongs. If
the user does not belong to an explicitly named group,
DefaultGrp is returned.
start_time The time at which the current license code was issued by
the license server.
hold_time Specifies the hold time, in seconds, if any.
end_time The time at which the user’s current license will expire if
not renewed.
key_id The internal ID of the license currently issued to the user’s

application. After starting up, the license server issues
licenses with unique IDs until it is restarted.

Chapter 3 - SentinelLM Client API

VLSgetClientinfo()

Member

Description

host_name

x_display_name

shared_id_name

num_units
g_wait_time
is_holding

is_sharing

is_commuted

Name of the host/computer where the user is running the
application. This information can be changed using the
VLSsetSharedld() API call.

Name of the X display where the user is displaying the
application. This information can be changed using the
VLSsetSharedld() API call.

A special vendor-defined ID that can be used for license
sharing decisions. It always has the fixed value, default-
sharing-ID, unless it is changed by registering a custom
function using the VLSsetSharedld() API call. If you plan
to use this ID, you should register your own function from
your application, and choose Application-defined sharing
while running the code generator.

Number of units consumed by the client so far.
Unused.

Has the value, VLS _TRUE, if the user’s current license is
being held after its expiration. Otherwise, the value is
VLS_FALSE.

Total number of clients sharing this particular license,
including the current client being queried. If sharing is
disabled, is_sharing will be 0.

Total number of clients that have “checked out” a license
from the network.

VLSgetClientinfo()

Client Server S_tatlc DLL
Library
v v v

Returns information about a client feature.

Syntax LS STATUS CODE VL SgetClientlnfo (
char *featureName,
char *version,
int index,

SentinelLM Programmer’s Reference Manual

81

VLSgetClientInfo()

char *unusedl,
VLSclientInfo *clientlnfo;
Argument Description
featureName Name of the feature.
version Version of the feature.
index Used to specify a particular client.
unusedl Use NULL as the value.
clientinfo (out) The structure in which information will be returned. Space

allocated by caller.

Description After thiscall, clientinfo containsinformation about al clients' features. Sinceit

Returns

82

is possible for multiple clients of aparticular feature to be active on the network,
index is used to retrieve information about a specific client. The suggested use of
thisfunctionisin aloop, wherethefirst call is made with index O which retrieves
information about the first client. Subsequent calls, when made with 1, 2, 3, and
so on, will retrieve information about other clients of that feature type. So long
astheindex isvalid, the function returns the success code, LS SUCCESS.
Otherwisg, it returns the Sentinel LM status code, VLS NO_MORE_CLIENTS.
Memory for clientlnfo should be allocated before making the call.

The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_APP_UNNAMED featureName is NULL
version is NULL.
VLS_CALLING_ERROR clientinfo parameter is NULL

index is negative.

Attempted to use stand-alone mode with
network-only library, or network mode with
stand-alone library.

VLS _NO_MORE_CLIENTS Finished retrieving client information for all
clients.
VLS _NO_SUCH_FEATURE License server does not have a license that

matches requested feature.

Chapter 3 - SentinelLM Client API

VLSgetHandlelnfo()

VLS_MULTIPLE_VENDORID_FOUND

VLS_NO_SERVER_RUNNING

VLS_NO_SERVER_RESPONSE

VLS_HOST_UNKNOWN
VLS_NO_SERVER-FILE

VLS_BAD_SERVER_MESSAGE

LS_NO_NETWORK

LS_NORESOURCES

The license server has licenses for the
same feature and version from multiple
vendors. It is ambiguous which feature is
requested.

License server on specified host is not
available for processing license operation
requests.

Communication with license server has
timed out.

Invalid hostName was specified.

No license server has been set and unable
to determine which license server to use.

Message from license server could not be
understood.

Generic error indicating that the network is
unavailable for servicing the license
operation.

An error occurred in attempting to allocate
memory needed by function.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

VLSgetHandlelnfo()

Client Server S_tatlc DLL
Library
v v v

Returns information about a client feature.

SentinelLM Programmer’s Reference Manual

83

VLSgetLicInUseFromHandle()

Syntax LS STATUS CODE VL SgetHandlelnfo (
LS HANDLE Ishandle,
VLSclientinfo *clientInfo;
Argument Description
Ishandle The handle returned by LSRequest(), VLSrequestExt(),
or VLS_REQUEST.
clientinfo (out) The structure in which information will be returned. Space

allocated by caller.

Description Thisfunction also retrieves client information, except that Ishandle replaces the
arguments (featureName, version, and index) used in VL SgetClientInfo().

Returns The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS _BAD_HANDLE Invalid handle. Handle may have already
been released and destroyed from previous
license operations or too many handles
have already been allocated.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

VLSgetLiclnUseFromHandle()

Client Server Statlc DLL
Library
v v v

Returns the total number of licensesissued by the license server for the feature
name and version used to obtain this handle.

84 Chapter 3 - SentinelLM Client API

VLSgetLiclnUseFromHandle()

Syntax LS STATUS CODE VL SgetLiclnUseFromHandle (
LS HANDLE Ishandle,
int *total Keysl ssued;
Argument Description
Ishandle The handle returned by any Request API call.
totalKeyslssued (out) The number of licenses issued by the license server.

Space should be allocated by the caller.

Description Given avalid handle returned by an L SRequest() call or its variants, it returns
the total number of licensesissued by the license server for the feature name and
version used to obtain this handle. Note that the information returned by this
function will be correct only immediately after acquiring the handle. The
information in the handle is not updated subsequently. For more current
information, use VL SgetFeaturel nfo().

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

LS_BADHANDLE Invalid handle. Handle has already been
released and destroyed from previous
license versions or too many handles have
been allocated.

LS _BUFFER_TOO_SMALL in_use_ p parameter is NULL.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

See Also VL SgetFeaturelnfo()

SentinelLM Programmer’s Reference Manual 85

VLSgetLicInUseFromHandle()

Feature Query Functions

The following table summarizes the feature query functions:

Table 3-11: Feature Query Functions

Function Description

VLSgetFeaturelnfo() Retrieves feature licensing information from the license
server.

VLSgetVersions() Retrieves licensed version information for a feature.

VLSgetFeatureFromHandle() Returns the feature name corresponding to the handle.

VLSgetVersionFromHandle() Returns the version corresponding to the handle.

VLSgetTimeDriftFrom Returns the difference in seconds between the
Handle() estimated current time on the license server and the
estimated time on the client.
VLSgetFeatureTimeLeft- Returns the difference in seconds between the
FromHandle() estimated current time on the license server and the
estimated feature expiration time on the license server.
VLSgetKeyTimeLeftFrom- Returns the difference in seconds between the
Handle() estimated current time on the license server and the

estimated license expiration time on the license server.

Information about specific features licensed by the SentinelLM license server is
returned in the following structure.

Syntax I* Feature Information structure */

typedef struct feature_info_struct {
long structSz char
feature_ nameg[VLS MAXFEALEN];
char version[VLS MAXFEALEN];
int lic_type; inttrial_days_count;
longbirth_day
long death_day;

int num_licenses,

int total_resv;

int lic_from resv;

int glic_from resv; int

86 Chapter 3 - SentinelLM Client API

VLSgetLiclnUseFromHandle()

lic_from_free pool; int
glic_from free pool
int is node_locked;
int concurrency;,
int sharing_crit;
int locking_crit;
int holding_crit;
int num_subnets;
char site_license info[VLS _SITEINFOLEN];
long hold_time;
int meter_value;
char vendor_info [VLS_VENINFOLEN + 1];
char cl_lock infol VLS MAXCLLOCKLEN];
long key life_time;
int sharing_limit;
int soft_num_licenses;
int is_standalone;
int check_time_tamper;
int is_additive; intisRedundant;
intmajority_rule;
int num_Servers; int
isCommuter; intlog_encrypt_level;
intelan_key flag;
longconversion_time;
longavg_queue_time;
long gueue_length ; inttot_lic_reqd
intisELMEnabled
int commuted _keys int
commuter_keys |eft;
} VLSfeaturelnfo;
Member Description
structSz Calling of the structure.

feature_name

version

lic_type
trial_days_count

SentinelLM Programmer’s Reference Manual

Name of the feature whose information is retrieved.
Maximum 64 characters.

Feature version.
Type of license either trial or normal.
Number of trial days.

87

VLSgetLicInUseFromHandle()

Member Description
birth_day Day of the license start date.
death_day The time when the feature expires. The constant,

VLS _NO_EXPIRATION, is returned if the license does not
have any expiration date.

num_licenses The total number of licenses the license server is
authorized to issue.

total_resv Number of licenses reserved using group reservations.

lic_from_resv Number of reserved licenses issued to clients.

lic_from_free_pool Number of unreserved licenses issued to clients.

glic_from_free_pool Number of reserved licenses issued to clients.

is_node_locked Depending on the locking scheme of the feature, this

returns one of the following constants:

« VLS_NODE_LOCKED (client locked to license
server)

e« VLS_CLIENT_NODE_LOCKED (client locked)
e VLS_FLOATING (license server locked)
 VLS_DEMO_MODE (unlocked)
concurrency Unused.
sharing_crit Returns the license sharing criteria, which can be one of
the following constants:
* VLS_NO_SHARING
e VLS_USER_NAME_ID
e VLS_CLIENT_HOST_NAME_ID
e VLS_X DISPLAY_NAME_ID
* VLS_VENDOR_SHARED_ID

88 Chapter 3 - SentinelLM Client API

VLSgetLiclnUseFromHandle()

Member Description
locking_crit The license server locking criteria, which can be one of the
following constants:
e VLS_LOCK_ID_PROM
e VLS _LOCK_IP_ADDR
e VLS_LOCK_DISK_ID
e VLS_LOCK_HOSTNAME
e VLS_LOCK_ETHERNET
e VLS_LOCK_NW_IPX
¢ VLS_LOCK_NW_SERIAL
e VLS _LOCK _PORTABLE_SERV
e VLS_LOCK_CUSTOM
e VLS _LOCK_CPU
holding_crit The license holding criteria, which can be one of the follow-
ing constants:
e VLS_HOLD_NONE (no held licenses).
« VLS_HOLD_VENDOR (the client specifies the hold
time through the function, VLSsetHoldTime()).
« VLS_HOLD_CODE (the license code specifies the
hold time).
hold_time The hold time specified for licenses issued for this feature.

num_subnets
site_license_info
meter_value
vendor_info
cl_lock_info

key_life_time
sharing_limit

SentinelLM Programmer’s Reference Manual

The number of subnet specifications provided for the site.
A space-separated list of subnet wildcard specifications.
Unused.

The vendor-defined information string.

Locking information about clients in a space-separated
string of host IDs and/or IP addresses.

If licenses-per-node restrictions have been specified, they
are also returned in parentheses with each host ID/IP
address. For instance, cl_lock_info could be:

0x8ef38b91(20#) 0xa4c7188d 0x51f8c94a(10#).
The license lifetime for this feature (in seconds).

The limit on how many copies of the licensed application
can share the same license.

89

VLSgetFeaturelnfo()

Member

Description

soft_num_licenses

is_standalone

check_time_tamper

is_additive

isRedundant
majority_rule
num_servers
isCommuter

log_encrypt_level

elan_key flag
conversion_time

avg_queue_time

queue_length
tot_lic_reqd
iSELMEnabled

commuted_keys

The soft limit (for alerts) on the number of concurrent users
of this feature.

Returns VLS_TRUE if this is a stand-alone license or
VLS_FALSE if this is a network license.

Returns VLS_TRUE if this feature is time tamper proof or
VLS_FALSE if not time tamper proof.

Returns VLS_TRUE if this is an additive license or
VLS_FALSE if this is an exclusive license.

Validates if the license is actually redundant.
Checks whether majority rule is on or off.
Number of redundant license servers.
Commuter licenses.

Encryption level in the network license for the license
server’'s usage log file.

Validates if the Elan license is converted.

Time when the Elan license code is converted into
SentinelLM license code.

Average time the past or present clients are in the queue.
(Not implemented.)

Length of the queue.

Required number of licenses for all queued clients.
Query to Elan licenses.

Number of commuter keys that have been checked out.

commuter_keys_left

Number of computer keys left.

VLSgetFeaturelnfo()

Client Server S_tano DLL
Library
v v v

Retrieves licensing information about a feature using the structure, feature_info.

90

Chapter 3 - SentinelLM Client API

VLSgetFeaturelnfo()

Syntax LS STATUS CODE VL SgetFeaturel nfo(
char *name,
char *version,
int index,
char *unused1,
VL Sfeaturelnfo *featurel nfo;
Argument Description
name Name of the feature.
version Version of the feature.
index Used to specify a particular client.
unusedl Use NULL as the value.
featurelnfo (out) The structure in which information will be returned. Space

must be allocated by caller.

Description Returnsinformation on all features. Y ou will need to initialize the structSz field
of VL Sfeaturelnfo() structure being passed to this API before actually calling
this API.

If nameisnot NULL, information about the feature indicated by name and
version isreturned.

If information about all licensed features is desired, name should be NULL, and
index should be used in aloop as described for the function call,

VL SgetClientInfo(). Refer to the source code of the Ismon.c utility for
additional information.

VL SgetFeatur el nfo() returns the status code, VLS NO_MORE_FEATURES,
when it runs out of features to describe. If an error occurs, for example, the
featureis unknown to the Sentinel LM license server, an appropriate error codeis
returned. For acomplete list of error codes, see “Appendix C - Error and Result
Codesfor Client Functions’ on page 283.

SentinelLM Programmer’s Reference Manual 91

VLSgetFeaturelnfo()

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR featurelnfo is NULL
index is negative

Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

VLS_APP_UNNAMED version is NULL when name is non_NULL

VLS _NO_MORE_FEATURES Finished retrieving feature information for
all features on license server.

VLS _NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS _NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS _HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER-FILE No license server has been set and unable
to determine which license server to use.

VLS _BAD_SERVER_MESSAGE Message from license server could not be
understood.

LS _NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate

memory needed by function.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

92 Chapter 3 - SentinelLM Client API

VLSgetVersions()

VLSgetVersions()

Client Server Statlc DLL
Library
v v v

Returnsthe list of versions licensed by the license server for a given feature.

Syntax LS STATUS CODE VL SgetVersions (
char *featureName,
int bufferSze,
char *versionList,
char *unusedl;
Argument Description
featureName Name of the feature.
bufferSize Specifies the size of versionList.
versionList (out) An array containing the version list. Space should be
allocated by the caller.
unusedl Use NULL as the value.

Description Thisfunction returnsalist of versions separated by spacesin the array,
versionList. Space for this array must be allocated prior to the call, and the size
of the array must be provided using buffer Sze. This function isuseful in
situations where you could have licenses for several versions of your software
and you wish to implement version-based licensing schemes.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

VLS _NO_SUCH_FEATURE License server does not have a license that
matches the requested feature.

VLS_APP_UNNAMED featureName is NULL.

VLS_CALLING_ERROR Attempted to use stand-alone mode with

network only library, or network mode with
stand-alone library.

SentinelLM Programmer’s Reference Manual 93

VLSgetFeatureFromHandle()

VLS _NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS _NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS _HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE No license server has been set and unable
to determine which license server to use.

VLS BAD_SERVER_MESSAGE Message from license server could not be
understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS _BUFFER_TOO_SMALL An error occurred in the use of an internal
buffer.

LS_NORESOURCES An error occurred in attempting to allocate

memory needed by function.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

VLSgetFeatureFromHandle()

Client Server S_tatlc DLL
Library
v v v

Returns the feature name corresponding to handle.

Syntax LS STATUS_CODE VL SgetFeatureFromHandle (
LS HANDLE handle,
char *puffer,
int bufferSize;
Argument Description
handle Handle returned by license request API.

94 Chapter 3 - SentinelLM Client API

VLSgetVersionFromHandle()

Argument Description
buffer (out) Buffer to hold the feature name. Space allocated by caller.
bufferSize Size of the buffer.

Description The feature name is returned in buffer which must be allocated by the calling
program. The size of buffer is passed in the argument buffer Sze.

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

LS_BADHANDLE Invalid handle.

LS_BUFFER_TOO_SMALL buffer parameter is NULL.

Size of feature information exceeds
bufferSize parameter.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

VLSgetVersionFromHandle()

Client Server S_tanc DLL
Library
v v v

Returns the version corresponding to handle.

Syntax LS STATUS CODE VL SgetVersionFromHandle (
LS HANDLE handle,
char *puffer,
int bufferSze;
Argument Description
handle Handle returned by LSRequest(), VLSrequestExt(), or
VLS _REQUEST.
buffer Buffer to hold the feature version. Space allocated by
caller.

SentinelLM Programmer’s Reference Manual 95

VLSgetTimeDriftFromHandle()

Argument Description

bufferSize Size of the buffer.

Description The feature version isreturned in buffer which must be allocated by the calling
program. The size of buffer is passed in the argument, buffer Sze.

Returns The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

LS_BADHANDLE Invalid handle.

LS _BUFFER_TOO_SMALL buffer parameter is NULL.
Size of feature information exceeds
bufferSize parameter.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

VLSgetTimeDriftFromHandle()

Client Server $tat|c DLL
Library
v v v
Syntax LS STATUS CODE VL SgetTimeDriftFromHandle (
LS HANDLE Ishandle,
long *secondsServer AheadOfClient (* out*);
Argument Description
Ishandle Handle returned by LSRequest(), VLSrequestExt(), or

VLS_REQUEST or VLSqueuedRequest().

secondsServerAheadOf Caller allocates memory for *out* data. Function returns
Client the difference between system clocks.

Description Thefunction isused when the time properties of the client and server may not be
in sync. It returns the difference in seconds between the estimated current time

96 Chapter 3 - SentinelLM Client API

VLSgetFeatureTimeLeftFromHandle()

on the license server and the estimated time on the client. The estimation error is
usually the network latency time.

Note Theinformation returned by this function will be correct only immediately
after acquiring the handle. The information in the handle is not updated
subsequently.

Returns The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

LS_BADHANDLE Invalid handle.
LS _BUFFER_TOO_SMALL secondsServerAheadOfClient parameter is
NULL.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

VLSgetFeatureTimeLeftFromHandle()

Client Server Statlc DLL
Library
v v v
Syntax LS STATUS CODE VL SgetFeatureTimelL eftFromHandle (
LS HANDLE Ishandle,
unsigned long *secondsUntil TheFeatur eExpires (* out*);
Argument Description
Ishandle Handle returned by LSRequest(), VLSrequestExt(), or

VLS_REQUEST.

secondsUntilTheFeature Caller allocates memory for *out* data. Function returns
Expires the number of seconds until the expiration of the license for
this feature.

Description Thefunction is used when the time properties of the client and server may not be
in sync. It returns the difference in seconds between the estimated current time

SentinelLM Programmer’s Reference Manual 97

VLSgetFeatureTimeLeftFromHandle()

Note

Note

Returns

98

on the license server and the estimated feature expiration time on the license
server.

The information returned by this function will be correct only immediately
after acquiring the handle. The information in the handle is not updated
subsequently.

VL SgetFeatureTimel eftFromHandle() provides the difference between the
License Expiration Time and the Current System Time at the license server end.
For example, if the license expiration date is 20th Aug 1998 (12:00PM) and the
current time is 16th June 1998 (12:00AM), then this call will return the
difference between these two times, in seconds. Thisis common to all the clients
and is based on the license code for the feature.

VL SgetFeatur eTimel eftFromHandle() does not return the number of
trial daysleftinatrial license.

The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

LS_BADHANDLE Invalid handle.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches the requested feature.

LS _BUFFER_TOO_SMALL secondsUntilTheFeatureExpires is NULL.

VLS _NO_SERVER_RUNNING License server on specified host is not

available for processing the license
operation requests.

VLS _NO_SERVER_RESPONSE Communication with the license server has
timed out.

VLS _HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE The license server has not been set and
cannot determine which license server to
use.

VLS BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS _NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

Chapter 3 - SentinelLM Client API

VLSgetKeyTimeLeftFromHandle()

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

VLSgetKeyTimeLeftFromHandle()

Client Server S_tatlc DLL
Library
v v v
Syntax LS STATUS CODE VL SgetKeyTimeL eftFromHandle (
LS HANDLE Ishandle,
unsigned long *secondsUntil TheKeyExpires,
Argument Description
Ishandle Handle returned by LSRequest(), VLSrequestExt(), or
VLS_REQUEST().
secondsUntilTheKey Caller allocates memory for *out* data. Function returns
Expires the number of seconds for the run-time license to expire.

Description Thefunction is used when the time properties of the client and server may not be
in sync. It returns the difference in seconds between the estimated current time
on the license server and the estimated license expiration time on the license
server.

Note Theinformation returned by this function will be correct only immediately
after acquiring the handle. The information in the handle is not updated
subsequently.

VL SgetkeyTimel eftFromHandle() returns the difference between the time
when the License Key (asissued by the license server to the client) expires (i.e.
before this client must do an L Supdate()) and the current time. Since the
information in the handle is not updated at regular intervals, the value returned
by this call isin very close proximity to the key lifetime mentioned in the
license. For example, if the key lifetime mentioned in the license is 2 minutes,

SentinelLM Programmer’s Reference Manual 99

VLSgetKeyTimelLeftFromHandle()

Returns

the value returned by this call will be approximately 120. Naturally, this value
varies with each client.

The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

LS_BADHANDLE Invalid handle.
LS_BUFFER_TOO_SMALL secondsUntilTheKeyExpires parameter is
NULL.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

Client Utility Functions

100

The following table lists functions that provide client library capabilities useful
to certain specialized applications:

Table 3-12: Client Utility Functions

Function Description

VLSdiscover() Retrieves the names of the computers on the local subnet
(or beyond) running the SentinelLM license server which
are authorized to service requests from an application.

VLSaddFeature() Adds licensing information to the license server’s internal
tables.

VLSaddFeatureToFile() Adds licensing information about a feature to the license
server's internal tables.

VLSdeleteFeature() Removes licensing information from the license server's
internal tables.

VLSgetLibInfo() Retrieves SentinelLM client library information.

VLSshutDown() Shuts down the license server.

VLSwhere() Locates and returns information about the server.

Chapter 3 - SentinelLM Client API

VLSdiscover()

VLSdiscover()

Client Server Statlc DLL
Library
v v v

Retrieves the names of the computers on the local subnet (or beyond) running
the Sentinel LM license server which are authorized to service requests from an
application.

Syntax LS STATUS CODE VL Sdiscover(
unsigned char *feature_name,
unsigned char *version,
unsigned char *reservedl,

int server_list_len,

char *server_list,

int optionFlag,

char *query_list;
Argument Description IN/OUT
feature_name Name of the feature. IN
version Version of the feature. IN
reservedl Use any value. IN
server_list_len Specifies the size of server_list. IN
server_list Space separated list of license server names. ouT
optionFlag A three bit flag which guides the behavior of IN

VLSdiscover() in finding the license servers. Details
are discussed later.

query_list A colon separated list of hostNames to be queried IN
during the search for license servers.

Description feature_name, must be licensed by the same vendor asthe library issuing the
VL Sdiscover () cal. If versionisNULL, it istreated as awildcard and all
license serversthat are authorized to service requests for feature_name will
respond regardless of version. If feature_nameisNULL, version will beignored
and all SentinelLM license servers on the local subnet will respond. The space-

SentinelLM Programmer’s Reference Manual 101

VLSdiscover()

separated name list of the responding SentinelLM license servers are returned in
server_list. The buffer must be allocated prior to the call and its size provided
using server_list_len.

query_list isacolon-separated list of host names and/or |1P-addresses which are
queried during the search for license servers.

optionFlag is a three-hit flag which can have any of the following values or a
combination of them:

* VLS DISC_NO_USERLIST—Does not check the host list specified by
the user. By defaullt, it first checks the LSFORCEHOST environment
variable. If LSFORCEHOST doesn’t exist, it reads the list specified by
the user in the environment variable, LSHOST, and the file, LSHOST/
Ishost. (The content of these lists are joined together and appended to the
contents of query_list) append them together and then append to the
query_list. Finally, all the hosts on this combined list are queried during
search for license servers.

* VLS DISC_RET_ON_FIRST—If the combined query listisNULL, this
function returns as soon as it contacts a license server and returns the
name of thislicense server in server_list. Otherwise, it returns when it
hears from alicense server whose name s listed in the combined query
list. In this case, it returns, in server_list, that particular license server
name along with all other license servers which are not on the list, but
responded by that time. If this option is not specified, this function,

VL Sdiscover (), obtains al the names of all the license servers which
responded.

* VLS DISC _PRIORITIZED_LIST—Treats the combined query list asa
prioritized one, the leftmost being the highest priority host. After
execution, server_list contains license servers sorted by this priority. If
this option is not specified, the combined query list istreated as arandom
one.

VLS DISC DEFAULT_OPTIONS—Thisflag is a combination of the
aforementioned flags. It should be used if you are undecided which
options you need.

102 Chapter 3 - SentinelLM Client API

VLSdiscover()

» If you want to specify no flags, use the value
VLS DISC_NO_OPTIONS.

Returns The status code, LS_SUCCESS, isreturned if stand-alone library is used.
Otherwise, it will return the following error codes:

VLS _NO_RESPONSE_TO _ No license servers have responded.

BROADCAST

LS_NO_SUCCESS Failed to retrieve computer names on local
subnet.

LS_NORESOURCES An error occurred in attempting to allocate

memory needed by this function.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

Examples Togetalist of al the SentinelLM license servers running on the subnet, the call
can be made as:

char server_lisfMAX_BUF];
VL Sdiscover(NULL, NULL, NULL, MAX_BUF, server_list, VLS DISC_ NO_OPTIONS,
NULL);

To get one license server having feature for all versions of application, dots:

char server_lisfMAX_BUF];
VLSdiscover("DOTS", NULL, NULL, MAX_BUF, server_list,
VLS DISC_RET_ON_FIRST,NULL);

where “DOTS’ isthe feature name for the application, dots.

To find out license servers for dots version 1.0 running on the local subnet as
well as on computers 'troilus.soft.net' and '123.23.234.1', and get the resultsin
prioritized order:

char query_list[100];

char server_lisfMAX_BUF];

strepy(query_list, "troilus.soft.net:123.23.234.1");

VLSdiscover("DOTS", "1.0", NULL, MAX_BUF, server_list,
VLS DISC_PRIORITIZED_LIST, query_list);

SentinelLM Programmer’s Reference Manual 103

VLSaddFeature()

See Also VL SsetBroadcastlnterval()

VLSaddFeature()
Client Server Statlc DLL
Library
v v v

Adds licensing information about a feature.

Syntax LS STATUS CODE VL SaddFeature (
unsigned char *licenseString,
unsigned char *unusedl,

LS CHALLENGE *unused2;

Argument Description

licenseString String containing licensing information.
unusedl Use NULL as the value.

unused2 Use NULL as the value.

Description Dynamically adds the license code, licenseString, to the license server’sinternal
tables. If licensing information for this feature and version aready existsin the
license server’ stables, it may be overwritten with the new information.

Notice, feature is not permanently added to the license server, therefore the fea-
ture will not be on the license server when the license server is shutdown and
restarted.

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

LS_NO_SUCCESS licenseString is NULL

104 Chapter 3 - SentinelLM Client API

VLSaddFeatureToFile()

VLS_ADD_LIC_FAILED

VLS_BAD_DISTB_CRIT
VLS_CLK_TAMP_FOUND

VLS_NO_SERVER_RUNNING

VLS_NO_SERVER_RESPONSE

VLS_HOST_UNKNOWN
VLS_NO_SERVER_FILE

VLS_BAD_SERVER_MESSAGE

LS_NO_NETWORK

LS_NORESOURCES

Generic error indicating the feature has not
been added.

Invalid distribution criteria.

License server has determined that the
client’s system clock has been modified.
The license for this feature has time-
tampering protection enabled, so the
license operation is denied.

License server on specified host is not
available for processing the license
operation requests.

Communication with license server has
timed out.

Invalid hostName was specified.

The license server has not been set and is
unable to determine which license server to
use.

Message returned by the license server
could not be understood.

Generic error indicating that the network is
unavailable in servicing the license
operation.

An error occurred in attempting to allocate
memory needed by this function.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

See Also VL SdeleteFeature()

VLSaddFeatureToFile()

Client Server Statlc DLL
Library
v v v

Adds licensing information about a feature.

SentinelLM Programmer’s Reference Manual

105

VLSaddFeatureToFile()

Syntax LS STATUS CODE VL SaddFeatureToFile (
unsigned char *licenseString,
unsigned char *unusedl,
unsigned char *unused2,

LS CHALLENGE *unuseds;

Argument Description

licenseString String containing licensing information.
unusedl Use NULL as the value.

unused2 Use NULL as the value.

unused3 Use NULL as the value.

Description Dynamically adds licensing information about a feature to the license server’s
internal tables. If licensing information for this feature already existsin the
license server’ stables, it may be overwritten with the new information.

Notice, feature is permanently added to the license server, therefore the feature
will be on the license server when the license server is shutdown and restarted.

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

LS_NO_SUCCESS licenseString is NULL.

VLS_ADD_LIC_FAILIED Generic error indicating the feature has not
been added.

VLS _BAD_DISTB_CRIT Invalid distribution criteria.

VLS _CLK_TAMP_FOUND License server has determined that the

client’s system clock has been modified.
The license for this feature has time-
tampering protection enabled, so the
license operation is denied.

106 Chapter 3 - SentinelLM Client API

VLSdeleteFeature()

VLS_NO_SERVER_RUNNING

VLS_NO_SERVER_RESPONSE

VLS_HOST_UNKNOWN
VLS_NO_SERVER_FILE

VLS_BAD_SERVER_MESSAGE

LS_NO_NETWORK

LS_NORESOURCES

License server on specified host is not
available for processing the license
operation requests.

Communication with license server has
timed out.

Invalid hostName is specified.

The license server has not been set and is
unable to determine which license server to
use.

Message returned by the license server
could not be understood.

Generic error indicating that the network is
unavailable for servicing the license
operation.

An error occurred in attempting to allocate
memory needed by this function.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

See Also VL SdeleteFeature()

VLSdeleteFeature()

Client Server Statlc DLL
Library
v v v

Deletes licensing information about a feature.

Syntax LS STATUS CODE VL SdeleteFeature (
unsigned char *featureName,
unsigned char *version,

SentinelLM Programmer’s Reference Manual

107

VLSdeleteFeature()

unsigned char *unusedl,
LS CHALLENGE *unused2;

Argument Description
featureName Name of the feature.
version Version of the feature.
unusedl Unused.

unused?2 Unused.

Description Deleteslicensing information from the license server’ sinternal tables, for the
given featureName and version. This API does not delete licenses from the

Returns

108

licensefile.

The status code, LS SUCCESS, isreturned if successful. Otherwise, it will

return the following error codes:

VLS_APP_UNNAMED

VLS_CALLING_ERROR

VLS_NO_SUCH_FEATURE

VLS_DELETE_LIC_FAILED

VLS_VENDORIDMISMATCH

VLS_MULTIPLE_VENDORID_FOUND

VLS_NO_SERVER_RUNNING

featureName is NULL
version is NULL.

Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

License server does not have a license that
matches requested feature.

Generic error indicating the feature has not
been deleted.

The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has a license.

The license server has licenses for the
same feature and version from multiple
vendors. It is ambiguous which feature is
requested.

License server on specified host is not
available for processing the license
operation requests.

Chapter 3 - SentinelLM Client API

VLSgetLibInfo()

VLS_NO_SERVER_RESPONSE

VLS_HOST_UNKNOWN
VLS_NO_SERVER_FILE

VLS_BAD_SERVER_MESSAGE

LS_NO_NETWORK

LS_NORESOURCES

Communication with license server has
timed out.

Invalid hostName is specified.

The license server has not been set and is
unable to determine which license server to
use.

Message returned by the license server
could not be understood.

Generic error indicating that the network is
unavailable for servicing the license
operation.

An error occurred in attempting to allocate
memory needed by this function.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

See Also VL SaddFeature()

VLSgetLibInfo()

Client Server Statlc DLL
Library
v v v

Returns information about the Sentinel LM client library currently being used in
the structure pointed to by pInfo.

Syntax LS STATUS CODE VLSgetLibinfo(LS_LIBVERSION *plnfo)

typedef struct {
unsigned long ullnfoCode;

char s2Version [VERSTRLEN];

char szProtocol [VERSTRLEN];
char szPlatform [VERSTRLEN];
char szUnusedl1 [VERSTRLEN];
char szUnused2 [VERSTRLEN];

SentinelLM Programmer’s Reference Manual

109

VLSshutDown()

} LS LIBVERSION;

Member Description

ullnfoCode Unused.

szVersion The version of the SentinelLM client library.

szProtocol The communication protocol being used for application/
license server communication.

szPlatform Platform of the client application.

szUnused1 Unused.

szUnused?2 Unused.

Description Space for pInfo must be allocated by the caller.

Returns The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

LS_NORESOURCES pinfo is NULL.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

VLSshutDown()
Client Server S_tatlc DLL
Library
v v v

Shuts down license server at specified hostname.

Syntax LS STATUS CODE VL SshutDown (
char * hostname;
Argument Description
hostname The host name of the computer running the license server.

110 Chapter 3 - SentinelLM Client API

VLSshutDown()

Description A client can send this message to the license server in order to shut the license
server down. Once shut down, there is no automatic way of restarting the license
server through any client message. Any applications that may be running at that
time could stop running after awhile, as the license renewa messages will fail
oncethe license server goes down. The license server does not check for running
applications prior to shutting down.

The following permissions tests must succeed in order for this call to be
successful:

» Theclient and license server must be running on the same network
domain name.

» User identification of the license server process should match the client,
or client must be run by superuser (root) as shown in the following table:

Server UNIX
""""" Win 95/98 WInNT (Admin) UNIX (root)
Client (non-root)
UNIX Same — Same _
(non-root) UserName UserName or
Userld

Win 95/98 Same - Same —
(non-Admin) UserName or UserName

SameHost
WinNT Same — Same _
(non-Admin) ~ UserName UserName
Win 95/98 yes yes yes yes
(Admin)
WInNT (Admin) Y€sS yes yes yes
UNIX (root) yes yes yes yes

SentinelLM Programmer’s Reference Manual 111

VLSwhere()

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR

LS_NORESOURCES

VLS_NO_SERVER_RUNNING

VLS_NO_SERVER_RESPONSE

VLS_HOST_UNKNOWN

VLS_BAD_SERVER_MESSAGE

LS_NO_NETWORK

hostName parameter is NULL.

An error occurred in attempting to allocate
memory needed by function.

License server on specified host is not
available for processing the license
operation requests.

Communication with license server has
timed out.

Invalid hostName is specified.

Message returned by the license server
could not be understood.

Generic error indicating that the network is
unavailable for servicing the license
operation.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

VLSwhere()
Client Server S_tatlc DLL
Library
v v v

Retrieves the names of the computers on the local subnet (beyond running) the
Sentinel LM license server which are authorized to service requests from an

application.

Syntax LS STATUS CODE VL Swhere(
unsigned char *feature_name,
unsigned char *version,
unsigned char * unusedl,

int

112

bufferSze,

Chapter 3 - SentinelLM Client API

VLSwhere()

char *server_names,

int broadcastFlag;
Argument Description IN/OUT
feature_name Name of the feature. IN
version Version of the feature. IN
unusedl Use any value. IN
bufferSize Specifies the size of the buffer. IN
server_names Space separated list of license server names. ouT
broadcastFlag A three bit flag which guides the behavior of IN

VLSwhere() in finding the license servers.

Description Locates and returns information about the license servers.

Returns The status code, LS SUCCESS, isreturned if stand-alone library is used. Other-
wise, it will return the following error codes.

VLS_NO_RESPONSE_TO_
BROADCAST

LS_NORESOURCES

Failed to retrieve computers names on local
subnet.

An error occurred in attempting to allocate
memory needed by this function.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

Error Handling

The following table summarizes the three error-handling functions:

Table 3-13: Error-handling Functions

Function

Description

VLSerrorHandle()
LSGetMessage()

SentinelLM Programmer’s Reference Manual

Toggles default error handling on or off.

Prints error messages corresponding to specified error
code.

113

VLSerrorHandle()

Table 3-13:

Error-handling Functions

Function

Description

VLSsetErrorHandler()

VLSsetUserErrorFile()

Registers custom error handlers.

Configures the display of error messages.

Sentinel LM has built-in responses to most error conditions expected to be
encountered in the field. For alist of types of error conditions detected by
Sentinel LM, their descriptions, and the default built-in actions, see“ Appendix C
- Error and Result Codes for Client Functions’ on page 283. The SentinelLM
client library has a built-in error handler for each type of error listed.

An error handler is a simple function that tries to correct whatever situation
caused the error condition to occur. In most cases, the conditions are difficult to
correct, and the handlers perform some clean-up tasks and display error

messages.

If an error occurs while processing a function call and the default error handlers
are unable to correct the situation, the API functions return an error code after
displaying an appropriate error message. If the built-in error handlers are able to
correct the error-causing condition, the function call returns the success code,
LS SUCCESS, asif the error never occurred.

VLSerrorHandle()

Client Server S_tatlc DLL
Library
v v v

Turns default error handling on or off.

Syntax LS STATUS CODE VL SerrorHandle (int flag);
Argument Description
flag To turn on error handling, use VLS_ON. To turn off error

handling, use VLS_OFF. Default: VLS_ON.

114

Chapter 3 - SentinelLM Client API

LSGetMessage()

Description If the value of flag isthe constant, VLS_ON, error handling is enabled. If flag is
VLS OFF, error handling is disabled. When error handlers are not being used,
the client function call returns the status code of the latest error condition. The
caller of the function should therefore check the value returned by the function
before proceeding.

Returns The status code, LS_SUCCESS, is aways returned. For a complete list of the
error codes, see “Appendix C - Error and Result Codes for Client Functions” on

page 283.
LSGetMessage()
Client Server Static DLL
Library
v v v

Prints error messages corresponding to specified error code.

Syntax LS STATUS CODE L SGetMessage (
LS HANDLE Ishandle,
LS STATUS CODE value,
unsigned char *puffer,
unsigned long bufferSze;
Argument Description
Ishandle Handle returned by LSRequest(), VLSrequestExt(), or
VLS_REQUEST.
value Error code.
buffer (out) Buffer to store message.
bufferSize Size of the buffer.

Description Returnsin the buffer atext description of the error condition indicated by error
code value, for the feature associated with Ishandle. The buffer must be allocated
by the calling function with its size indicated by bufferSze.

SentinelLM Programmer’s Reference Manual 115

VLSsetErrorHandler()

Returns

Syntax

Description

116

The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

LS_NO_MSG_TEXT buffer is NULL
bufferSize is zero or negative.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

VLSsetErrorHandler()

Client Server Statlc DLL
Library
v v v

Enables registration of custom error handlers.

LS STATUS CODE VL SsetErrorHandler (
LS STATUS CODE (*myErrorHandler)(LS STATUS CODE, char *),
LS STATUS CODE LSErrorType;

Argument Description
myErrorHandler Pointer to the error-handling function.
LSErrorType Error code to be handled.

In some situations, the default responses may not be suitable. Therefore,
Sentinel LM allows custom error handling routines to replace the default
routines. Customized routines should perform actions that are functionally
similar to the defaults.

myErrorHandler must point to the error handling function and adhere to the
prototype outlined below. LSError Type must indicate the type of the error to be
handled. The SentinelLM default routines continue to handle other errors. The
customized function should accept as input the error code of the condition that
caused it to be called and the name of the feature. The same error-handling
function can be used to handle all error conditions for all features of an

Chapter 3 - SentinelLM Client API

VLSsetUserErrorFile

application, using internal conditional statements. The special target error code,
VLS EH_SET ALL, can be used to set up the provided error handler to handle

all errors.
Customized error handlers must adhere to the following prototype:

LS STATUS_CODE myErrorHandler (

LS STATUS CODE errorCode,
char *featureName;
Argument Description
errorCode The error code to be handled.
featureName The name of the feature involved in the error.

If customized error handlers are used, a client function call will return the value
returned by the error handler if it was the last error handler to be called.

Returns The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR myErrorHandler parameter is NULL
LSErrorType() is an invalid error type.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

VLSsetUserErrorFile

Client Server S_tanc DLL
Library
v v v

Configures the manner in which error messages are displayed.

Syntax typedef enum {
VLS STDOUT, VLS STDERR

} VLS ERR FILE;

SentinelLM Programmer’s Reference Manual 117

VLSsetUserErrorFile

LS STATUS CODE VL SsetUserErrorFile(
VLS ERR FILE msgFile,

char LSFAR *filePath;
Argument Description
msgFile The file to which error messages will be directed.
filePath Full path name of desired error file

Description Thisfunction configuresthe displaying of error messages to the user through the

Note

Returns

default error handlers. If you disable the default error handlers, you do not need
to use this function.

The default handling of error messagesis as follows:

Windows Pop up a Message Box.
UNIX Writeto stderr.

Y ou can alter this behavior by providing either aFILE* or afile path, while
keeping the other parameter NULL. If you provide both parameters, preference
will be given to the FILE*.

The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR Could not open msgFile.

For acomplete list of the error codes, see “ Appendix C - Error and Result Codes
for Client Functions’ on page 283.

Tracing SentinelLM Operation

118

Client Server S_tano DLL
Library
v v v

Enables tracing of theinternal operation of the SentinelLM client library.

Chapter 3 - SentinelLM Client API

VLSsetUserErrorFile

Syntax LS STATUS_CODE VL SsetTracelLevel (int tracelevel);
Argument Description
traceLevel The default value of traceLevel is VLS_NO_TRACE. Other

valid values are:
VLS _TRACE_KEYS
e VLS_TRACE_FUNCTIONS
« VSL_TRACE_ERRORS
e VLS_TRACE_ALL

SentinelLM Programmer’s Reference Manual 119

VLSsetUserErrorFile

SentinelLM Programmer’s Reference Manual 120

Chapter 4 - License Code
Generation API

The License Code Generation Application Programming Interface (API) makes
it possible to generate license codes to authorize use of an application program.

The functions are prototyped in Iscgen.h and the implementation is contained in
Iscgen32.lib. Use of these files enables you to write your own utility program to
generate license codes. Such programs must be written to run under Win95/98 or
Windows NT.

Programs that do license generation must first allocate an integer handle and a
data structure of type codeT. The handleis used with al other License
Generation functions, and must be initialized before any of those functions can
be called. The codeT data structure is used to pass arguments back and forth
between the program and the different library functions.

A typical sequence of operations to generate alicense would look like the
following:

» Besurethat ahandle and a codeT data structure have been all ocated.

» Cal VLScglnitialize() toinitialize the handle. Thiswill ensure that the
number of handles has not exceeded the limit, allocate space for internal
data structures, and initialize the error list and error count.

e Call VLScgReset() toinstall default values into the codeT data
structure. This must be done before setting the values of any of the fields
in the data structure.

» Obtain input from the user that is to be used to define the license code.
The order of input isimportant since some values will depend on others.
The order of input refers to the Allow and Set functions of code struct.

SentinelLM Programmer’s Reference Manual 121

We suggest you use the Allow function first to check the differential
integrity of the field value, before using the Set function. Please refer to
Table 4-3, “Functions of the Code Struct,” on page 132.

» Call the appropriate VL ScgAllowX XX () function for each input to
ensure that its value can be properly included into the license code.

» If theinput can be accepted, call the corresponding VL ScgSetX XX ()
function. Thiswill lock the codeT data structure, install the value in the
designated field, and then unlock the structure.

» |f the set function causes an error, call VL ScgPrintError () function to
copy the error structure to a specified file.

» After al inputs have been received, call VL ScgGeneratel icense() to
create the license string.

e Call VL ScgCleanup() to release the handle.

License Code Generation Functions

Available function callsfall into these categories:

» Basicfunctions

» Functions which retrieve or print errors

» Functions which set flags and data fields of code struct
» License generation functions

* License meter related functions

122 Chapter 4 - License Code Generation API

Example:

/**/

I* */

[* Copyright (C) 1999 Rainbow Technologies, Inc. */
I* All Rights Reserved */

I* */

~

* ThisModule contains Proprietary Information of */
/* Rainbow Technologies, Incand should betreatedas ~ *//* Confidential

/**/

#include <stdio.h> /* For scanf(), sprintf() etc.*/
#include "lscgen.h" /* For the code generator API.*/
[* The fixed feature name of licenses generated by this example
* program.
*/

#defineVLS_CGENXMPL_FEATURE_NAME "CGENXMPL"

/* Mnemonic used for setting code structure for long codes. */
#define VLS LONG_CODE_TYPE STR "1"

/*
* Utility function to print code generator API errorsto
* stderr.
* |t also calls the code generator library cleanup function on
* the handle if necessary.
*/
static int VL SPrintErrors (VLScg HANDLE *iHandle, int retCode)
{
if (*iHandle!=VLScg_INVALID_HANDLE) {
(void) VL ScgPrintError(*iHandle, stderr);
(void) VL ScgCleanup(iHandle);
}
return retCode;
} I* VLSPrintErrors() */

/*
* A simple example to illustrate the use of the code
* generation API to generate license strings.
* Thisisacommand line utility that generates license codes
* for afixed feature name, "CGENXMPL".

SentinelLM Programmer’s Reference Manual 123

124

* |t prompts the user for the expiration date and then calls

* the code generator API functions to generate an appropriate
* license for CGENXMPL.

* To build this example, compile and then link with the

* appropriate code generator AP library.

*/

int main ()

/* Code generator library handle. */
VLScg HANDLE iHandle;

[* Code generator APIs license code structure. */
codeT licCode;

[* Expiration date information: acquired from user. */
int expMonthint, expDayInt, expY earint;

[* String versions of above for calling code generator API functions.*/
char expMonth[10], expDay[10], expY ear[10];

[* For license string to be returned by code generator API. */
char *licStr = (char *) NULL;

[* For return codes from code generator API functions. */
int retCode;

[* Initialize the code generator library. */
if ((retCode = VLScglnitialize(&iHandle)) != VL Scg_SUCCESS) {
(void) VL SPrintErrors(&iHandle, retCode);
fprintf(stderr, "\NnERROR: Code generator library initialization failed.\n");
return retCode;
} /¥ if (VL Scylnitialize()) */

/* Initialize the license code structure. */
if ((retCode = VL ScgReset(iHandle, &licCode)) !=
VLScg_SUCCESS)
return VL SPrintErrors(&iHandle, retCode);

[* Specify that we want to generate along code. */
if ((retCode = VL ScgSetCodel ength(iHandle, & licCode,
VLS LONG_CODE_TYPE_STR))
1=VLScg_SUCCESS)
return VL SPrintErrors(&iHandle, retCode);

/* Set the feature name. */

Chapter 4 - License Code Generation API

if (VLScgAllowFeatureName(iHandle, &licCode) == 0)
return VL SPrintErrors(&iHandle, VLScg_FAIL);

if ((retCode = VL ScgSetFeatureName(iHandle, &licCode,
VLS CGENXMPL_FEATURE_NAME))
I=VLScg_SUCCESS)
return VL SPrintErrors(&iHandle, retCode);

/*
* Prompt for and acquire the expiration date from the user.
*/
printf("License Expiration Month [1-12] :);
scanf("%d", & expMonthint);
printf("License Expiration Day [1-31] :");
scanf("%d", & expDaylnt);
printf("License Expiration Y ear)
scanf("%d", &expY earlnt);
/* Convert expiration date information to strings. */
sprintf(expMonth, "%d", expMonthint);
sprintf(expDay, "%d", expDaylInt);
sprintf(expYear, "%d", expYearint);

[* Set the expiration date. */
if (VLScgAllowLicExpiration(iHandle, & licCode) == 0)
return VL SPrintErrors(&iHandle, VLScg_FAIL);

if (((retCode = VL ScgSetLicExpirationMonth(iHandle, &licCode,
expMonth))
I=VLScg _SUCCESS) ||
((retCode = VL ScgSetLicExpirationDay(iHandle, &licCode,
expDay))
I=VLScg_SUCCESS) ||
((retCode = VL ScgSetLicExpirationY ear(iHandle, &licCode,
expY ear))
1= VL Scg_SUCCESS))
return VL SPrintErrors(&iHandle, retCode);

[* Generate the license: memory for license string is allocated
* by library. */
if ((retCode = VL ScgGeneratelLicense(iHandle, &licCode,
&licstr))
I=VLScg SUCCESS)
return VL SPrintErrors(&iHandle, retCode);

SentinelLM Programmer’s Reference Manual 125

VLScglnitialize()

[* Print out the license string. */
(void) fprintf(stdout, "%s\n", licStr);

I* Free the license string, which was allocated by VL ScgGeneratel icense() */
free(licStr);

[* Terminate use of code generation library cleanly. */
(void) VL ScgCleanup(&iHandle);

return 0;

} * main() */

Basic Functions

The following table summarizes the basic functions for this library:

Table 4-1: Basic Functions

Function Description

VLScglnitialize() Initializes the handle.

VLScgCleanup() Destroys the created handle.
VLScgReset() Resets the structure with default values.

VLScglnitialize()

Syntax int VL Scglnitialize(
VLScg HANDLE *iHandleP)

Argument Description

iHandleP The pointer to the instance handle for this library. Provides
access to the internal data structure.

Description Required library initialization call. Every API call requiresavalid handle. This
function all ocates resources required for generating licenses. This function must
be called before using any other VL ScgX XX () function.

126 Chapter 4 - License Code Generation API

VLScgCleanup()

Returns The status code, VL Scg_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_MAX_LIMIT_CROSSED No more handles left.

VLScg_INVALID_HANDLE Call VLScgCleanup() to free the resources
associated with invalid handle.

For acomplete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

See Also VL ScgCleanup()

VLScgCleanup()

Syntax int VL ScgCleanup(
VLScg HANDLE *iHandleP)

Argument Description

iHandleP The pointer to the instance handle for this library.

Description Thisfunction destroys the handle and its associated resources created by
VL Scgl nitialize().

Returns The status code, VLScg_SUCCESS, is returned if successful. Otherwise, a
specific error code is returned indicating the reason for failure. For a complete
list of the error codes, see “ Appendix D - Error and Result Codes for License
Generation Functions’ on page 291.

SentinelLM Programmer’s Reference Manual 127

VLScgReset()

Syntax

VLScgReset()
int VL ScgReset(
VLScg_ HANDLE iHandle,
codeT *codeP)
Argument Description
iHandle The instance handle for this library.
codeP Name of the structure.

Description Thisfunction resets the codeP structure by filling in default values. It must be

Returns

called before calling VL ScgSet X XX () functions.

The status code, VLScg SUCCESS, isreturned if successful. Otherwise, a
specific error code is returned indicating the reason for failure. For a complete
list of the error codes, see “ Appendix D - Error and Result Codes for License
Generation Functions’ on page 291.

Functions Which Retrieve or Print Errors

128

When errors are encountered during execution of License Generation functions,

they are queued to the handle that controls access to the library in use. These
errors may be printed immediately, or allowed to accumulate and flushed at a

later time. The following table summarizes the functions used to retrieve or print

errors.

Table 4-2: Functions Which Retrieve and Print Errors

Function Description

VLScgGetNumErrors() Retrieves number of error messages recorded.
VLScgGetErrorLength() Retrieves the length of a error message.
VLScgGetErrorMessage() Retrieves the earliest error from the handle.
VLScgPrintError() Spills the error struct to a file.

Chapter 4 - License Code Generation API

VLScgGetNumErrors()

Syntax

VLScgGetNumErrors()
int VL ScgGetNumErrors(
VLScg HANDLE *iHandleP,
int numMsgsP)
Argument Description
iHandleP The pointer to the instance handle for this library.
numMsgsP The number of messages queued to the handle.

Description Thisfunction retrieves the number of messages queued to the handle and returns

Returns

it in numMsgsP.

The status code, VL Scg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_NO_RESOURCES If no resources are available.
VLScg_FAIL If operation failed.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’” on page 291.

Syntax

SentinelLM Programmer’s Reference Manual

VLScgGetErrorLength()

int VL ScgGetErrorLength(
VLScg_ HANDLE iHandle,
int msgNum,
int errLenP)
Argument Description
iHandle The instance handle for this library.
msgNum The number of the message whose length is to be queried.
errLenP The length of the message identified by msgNum.

129

VLScgGetErrorMessage()

Description Thisfunction retrieves the length of message # msgNum recorded in the handle.

Returns

It includes the space required for NULL termination.

The status code, VL Scg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg NO_RESOURCES If no resources are available.
VLScg FAIL If operation failed.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’” on page 291.

Syntax

VLScgGetErrorMessage()

int VL ScgGetErrorM essage(
VLScg_ HANDLE iHandle,
char *msgBuf,
int bufLen)
Argument Description
iHandle The instance handle for this library.
msgBuf A user allocated buffer into which the reference message
will be copied.
bufLen The byte length of the message copied into msgBuf.

Description Thisfunction retrieves the oldest error queued to the handle, and copies a

Returns

130

maximum of bufLen bytes to msgBuf as a null-terminated string. msgBuf isa
user allocated buffer and must be bufLen bytes in length. Upon successful
completion of this function, the message retrieved will have been removed from

the queue.

The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_NO_RESOURCES If no resources are available.

Chapter 4 - License Code Generation API

VLScgPrintError()

VLScg_FAIL If operation failed.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’” on page 291.

VLScgPrintError()

Syntax int VL ScgPrintError(
VLScg_ HANDLE iHandle,
FILE *file)
Argument Description
iHandle The instance handle for this library.
file File pointer.

Description Thisfunction writes the accumulated errors to the specified file.

Returns The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_NO_RESOURCES If no resources are available.
VLScg_FAIL If operation failed.

For acomplete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

SentinelLM Programmer’s Reference Manual 131

VLScgPrintError()

Functions for Setting the Fields in Code Struct

132

Note

The following table summarizes the functions used to set flags and data fiel ds of
the code struct.

The sequence of input is very important for the VL ScgAllow functions and
VLScgSet functions. Y ou need to use the Allow function first to check the
differential integrity and syntax of the field value, before using the Set
function. The Set function will put it in the correct structure and format.

Table 4-3: Functions of the Code Struct

Function Description

VLScgAllowAdditive() Sets the license to exclusion or additive.

VLScgSetAdditive()

VLScgSetCodeLength() Sets the license code length.

VLScgSetLicType() Sets the license type.

VLScgAllowHeldLic() Enables/disables license hold time and

VLScgSetHoldingCrit() determines where that hold time is specified.

VLScgAllowNetworkFlag() Sets whether license will be for stand-alone or

VLScgAllowStandAloneFlag() network computer.

VLScgSetStandAloneFlag()

VLScgAllowSharedLic() Enables shared licenses and sets sharing

VLScgSetSharedLicType() criteria.

VLScgAllowTrialLicFeature() Sets the number of trial days.

VLScgSetTrialDaysCount()

VLScgAllowLockMechanism() Sets client’s fingerprint criteria.

VLScgSetClientLockMechanism()

VLScgSetServerLock Sets license server primary fingerprint criteria.

Mechanism1() Installs license server's fingerprint criteria in
primary lock.

VLScgSetServerLock Sets license server secondary fingerprint criteria.

Mechanism2() Installs license server's fingerprint criteria in

secondary lock.

Chapter 4 - License Code Generation API

Table 4-3:

VLScgPrintError()

Functions of the Code Struct (Continued)

Function

Description

VLScgAllowClockTamperFlag()
VLScgSetClockTamperFlag()

Controls action on detection of clock being set
back on the machine.

VLScgAllowOutLicType()
VLScgSetOutLicType()

Sets the license output format.

VLScgAllowLicenseType()
VLScgSetLicenseType()

Controls the license type.

VLScgAllowCodegenVersion()
VLScgSetCodegenVersion()

Sets the version of license codes to generate.
Checks if the current license code setting allows
multiple features.

VLScgAllowRedundantFlag()
VLScgSetRedundantFlag()

Controls whether the license will be used with
redundant license servers.

VLScgAllowMajorityRuleFlag()
VLScgSetMajorityRuleFlag()

Controls whether the majority of redundant
license servers must be running.

VLScgAllowCommuterLicense()
VLScgSetCommuterLicense()

Enables commuter licenses to be checked out.

VLScgAllowLogEncryptLevel()
VLScgSetLogEncryptLevel()

Controls the network license encryption level for
the license server’s usage log file.

VLScgAllowMultiKey()

Controls whether a license will be single or multi-

VLScgSetKeyType() feature.

VLScgAllowMultipleServerinfo() Fields for information on various license servers.
VLScgSetNumServers()

VLScgAllowSecrets() Sets the value of the specified challenge-
VLScgSetSecrets() response secrets.

VLScgSetNumSecrets() Sets the total number of secrets for the

challenge-response.

VLScgAllowVendorinfo()
VLScgSetVendorinfo()

Sets vendor-defined information in the license.

VLScgAllowFeatureName()
VLScgSetFeatureName()

Sets the name of the feature to be licensed.

VLScgAllowFeatureVersion()
VLScgSetFeatureVersion()

SentinelLM Programmer’s Reference Manual

Sets the version number to be licensed.

133

VLScgPrintError()

134

Table 4-3: Functions of the Code Struct (Continued)

Function

Description

VLScgAllowLockModeQuery()

VLScgSetClientServerLockMode()

Sets locking mode for the license server
computer. Installs client server lock mode in
codeP.

VLScgAllowServerLockInfo()
VLScgSetServerLockInfol()

VLScgSetServerLockInfo2()

Sets license server primary locking code. Installs
license server lock code in primary lock.

Sets license server secondary locking code.
Installs server lock code in secondary lock.

VLScgAllowClientLockInfo()
VLScgSetClientLockInfo()

Sets the client locking code.

VLScgAllowKeysPerNode()
VLScgSetKeysPerNode()

Sets the number of license tokens per node for
the specified number of clients.

VLScgAllowSiteLic()
VLScgSetSiteLicInfo()

VLScgSetNumSubnets()

Sets address of subnets licensed application will
be restricted to.

Sets the number of subnets the licensed
application is restricted to.

VLScgAllowNumFeatures()
VLScgSetNumFeatures()

Sets the number of features.

VLScgSetNumClients()

Sets the number of client locking codes to be
specified.

VLScgAllowNumKeys()
VLScgSetNumKeys()

Sets the number of concurrent licenses allowed.

VLScgAllowSoftLimit()
VLScgSetSoftLimit()

Sets soft limit number.

VLScgAllowKeyLifeUnits()
VLScgSetKeyLifetimeUnits()

Sets unit of time used to specify time between
license renewals.

VLScgAllowKeyHoldUnits()
VLScgSetKeyHoldtimeUnits()

Sets units of time to be used to specify license
hold time.

VLScgAllowKeyLifetime()
VLScgSetKeyLifetime()

Sets time between license renewals.

VLScgAllowKeyHoldtime()
VLScgSetKeyHoldtime()

Sets the time a license will be held.

Chapter 4 - License Code Generation API

Table 4-3:

VLScgAllowAdditive()

Functions of the Code Struct (Continued)

Function

Description

VLScgAllowLicBirth()
VLScgSetLicBirthMonth()

VLScgSetLicBirthDay()
VLScgSetLicBirthYear()

Sets the month of the license start date.

Sets the day of the license start date.
Sets the year of the license start date.

VLScgAllowLicExpiration()
VLScgSetLicExpirationMonth()

VLScgSetLicExpirationDay()
VLScgSetLicExpirationYear()

Sets month license expires.

Sets day month the license expires.
Sets the year the license expires.

VLScgAllowShareLimit()
VLScgSetShareLimit()

Sets the number of users that can share a
license.

VLScgSetNumericType()

Sets the value of numeric type.

VLScgSetLoadSWLicFile

Sets and loads the software license file
(Iscgen.lic).

VLScgAllowAdditive()

Syntax int VL ScgAllowAdditive(
VLScg HANDLE iHandle,
codeT *codeP),
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
Returns The VL ScgSet XXX () function tests whether the corresponding

VL ScgSetX X X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return

O asfalse.

SentinelLM Programmer’s Reference Manual

135

VLScgSetAdditive()

Syntax

VLScgSetAdditive()

int VL ScgSetAdditive(
VLScg_ HANDLE iHandle,
codeT *codeP,
char *flag)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
flag The value of flag indicates whether the license to be

generated is additive/exclusive. The legal values are:
* VLScg_ADDITIVE =“0"
e VLScg_EXCLUSIVE =*“1"

Description Thisfunction determines how this license will interact with alicense already

Returns

installed for this feature and version. If alicense is defined as exclusive, it will
override an existing license for the same feature and version. If alicenseis
additive, its number of users licensed for the feature and version is added to an

existing installed license.

The status code, VL Scg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not numeric.
VLScg_EXCEEDS_MAX_VALUE If value exceeds VLScg_EXCLUSIVE.
VLScg_LESS_THAN_MIN_VALUE If the value is lower than VLScg_ADDITIVE.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

Syntax

136

VLScgSetCodeLength()

int VL ScgSetCodel ength(
VLScg HANDLE iHandle,

Chapter 4 - License Code Generation API

VLScgSetCodelLength()

codeT *codeP,
char *flag)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
flag Flag values are used to set the code_type member of

codeT struct. Legal values are:
e VLScg_SHORT_CODE_STRING =“0"
* VLScg_LONG_CODE_STRING =“1"
e VLScg_SHORT_NUMERIC_CODE = “2"

Description Setsthe license code length to short or long.
License codes are 10 characters or longer uppercase a phanumeric or al-numeric
strings. The code generator will generate long, short or short, numeric license
codes.

» Short codes contain less information than the long code and cannot
support certain licensing option. However, they have the advantage of
being easier to generate and easier to communicate to end users.

» Long codes contain as many characters as needed.

» Short, numeric codes generate numeric strings only and requires minimal
information from the user. This code contains the |east information.

Returns The status code, VL Scg_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INPUT If either codeP or flag are NULL.
VLScg_INVALID _INT_TYPE Value is not numeric.
VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_SHORT_CODE_STRING.
VLScg_LESS_THAN_MIN_VALUE If the value is lower than

VLScg_LONG_CODE_STRING.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’” on page 291.

SentinelLM Programmer’s Reference Manual 137

VLScgSetLicType()

Syntax

VLScgSetLicType()

int VLScgSetLicType(
VLScg HANDLE iHandle,

codeT *codeP,

char *lictype)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
lictype Set the type of license.

* VLScg_TRIAL_LIC_STRING =*1"
* VLScg_NORMAL_LIC_STRING = “0"

Description Setsthe type of license to either trial or normal.

Returns

138

Trial licenses are relative time-limited licenses that use atrial period of 1 to 120
days. Notice, trial licenses do not start until the first time the application is
executed (as opposed to the time that the application isinstalled).

The status code, VL Scg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID _LIC_TYPE If license type is not valid.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

Chapter 4 - License Code Generation API

VLScgAllowHeldLic()

VLScgAllowHeldLic()

Syntax int VLScgAllowHeldLic(
VLScg HANDLE iHandle,
codeT *codeP)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

Returns The VL ScgSet XXX () function tests whether the corresponding
VL ScgSetX X X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfalse.

VLScgSetHoldingCrit()

Syntax int VL ScgSetHol dingCrit(
VLScg HANDLE iHandle,
codeT *codeP,
char *flag)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
flag The flag is used to set the criteria for held licenses.
Values are:
e VLScg_HOLD_NONE_STRING =*“0" - Held licenses
not allowed.

e VLScg_HOLD_VENDOR_STRING =“1" - Client API
specifies hold time.

e VLScg_HOLD_CODE_STRING ="2" - License code
specifies hold time.

SentinelLM Programmer’s Reference Manual 139

VLScgAllowStandAloneFlag()

Description Thisdefinesthe criteriafor determining the hold time for alicense, and controls

Returns

whether or not held licenses are allowed for this feature. Hold time provides a
grace period after the license is released during which only the original license
reguestor will be granted the license. Validates and installs the value of the flag
in the license code structure.

The status code, VLScg SUCCESS, isreturned if successful Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_HOLD_CODE_STRING.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than

VLScg_HOLD_NONE_STRING.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

Syntax

Returns

140

VLScgAllowStandAloneFlag()

int VL ScgAllowStandAloneFlag(
VLScg HANDLE iHandle,

codeT *codeP)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

The VL ScgSet X XX () function tests whether the corresponding

VL ScgSetX XX () should be caled. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfalse

Chapter 4 - License Code Generation API

VLScgAllowNetworkFlag()

VLScgAllowNetworkFlag()

Syntax int VL ScgAllowNetworkFlag(VLScg HANDLE
iHandle,
codeT *codeP)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

Returns The VL ScgSet XXX () function tests whether the corresponding
VL ScgSetXXX() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfalse.

VLScgSetStandAloneFlag()

Syntax int VL ScgSetStandAloneFlag(
VLScg HANDLE iHandle,
codeT *codeP,
char *flag)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
flag Flag values are used to set the standalone_flag of codeT

struct. Legal values are:
¢ VLScg NETWORK_STRING = “0"
¢ VLScg_STANDALONE_STRING =*“1"

Description Setswhether license will be for stand-alone or network computer.
Stand-alone and network applications cannot be used interchangeably.

SentinelLM Programmer’s Reference Manual 141

VLScgAllowSharedLic()

Returns

The status code, VL Scg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_STANDALONE_STRING.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than

VLScg_NETWORK_STRING.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’” on page 291.

Syntax

Returns

VLScgAllowSharedLic()

int VLScgAllowSharedLic(
VLScg HANDLE iHandle,

codeT *codeP)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

The VL ScgSet X XX() function tests whether the corresponding

VL ScgSetX XX () should be caled. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfase

Syntax

142

VLScgSetSharedLicType()

int VL ScgSetSharedLicType(
VLScg HANDLE iHandle,

Chapter 4 - License Code Generation API

VLScgSetSharedLicType()

codeT *codeP,
char *flag)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
flag This flag enables shared licenses and specifies the sharing

criteria. Legal values are:
* VLScg_NO_SHARING_STRING = “0"
e VLScg_USER_SHARING_STRING =*“1"
e VLScg_HOSTNAME_SHARING_STRING = “2"
* VLScg_XDISPLAY_SHARING_STRING = “3”

¢ VLScg_VENDOR_SHARING_STRING = “4” -
Vendor defined / customized. Need to customize the
client library for this.

Description The concept of shared licenseisonly applicable to network licenses. If sharing is
enabled a user can use multiple instances of a protected application without
consuming more than one license. Call this function enables sharing and also
sets which criteriato use to determine eligibility of the user to share alicense
already granted to an existing user: user name, x-display 1D, host name, or
vendor-defined.

Sharing allows multiple copies of your application to run at the same time
without using more than one license.

Returns The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_VENDOR_SHARING_STRING.

VLScg_LESS_THAN_MIN_VALUE If the value is lower than

VLScg_NO_SHARING_STRING.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

SentinelLM Programmer’s Reference Manual 143

VLScgAllowTrialLicFeature()

Syntax

Returns

VLScgAllowTrialLicFeature()

int VLScgAllowTrialLicFeature(
VLScg HANDLE iHandle,

codeT *codeP)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

The VL ScgSet X XX () function tests whether the corresponding

VL ScgSetX X X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfalse.

Syntax

Description

Returns

144

VLScgSetTrialDaysCount()

int VL ScgSetTrial DaysCount(
VLScg HANDLE iHandle,
codeT *codeP, char* daysStr
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
daysStr String representing the number of days to use in a trial

period.

Sets the number of trial days to the count specified by the daysStr parameter.
The count string defines awindow of time during which the application can run
after thefirst time the license is requested.

The status code, VLScg SUCCESS, isreturned if successful. Otherwise, a
specific error code is returned indicating the reason for failure. For a complete

Chapter 4 - License Code Generation API

VLScgAllowLockMechanism()

list of the error codes, see “ Appendix D - Error and Result Codes for License
Generation Functions’ on page 291.

VLScgAllowLockMechanism()

Syntax int VL ScgAllowL ockMechanism(
VLScg HANDLE iHandle,
codeT *codeP)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

Returns The VL ScgSet XXX (') function tests whether the corresponding
VL ScgSetX XX () should be caled. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfalse.

VLScgSetClientLockMechanism()

Syntax int VL ScgSetClientL ockM echanism(
VLScg HANDLE iHandle,
codeT *codeP,
char *criterion,
int client_num)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
criterion Mask defining which fields of machinelD are to be used for

locking. Value should be in hex format.
client_num Number identifying the client for whom the lock is to be set.

SentinelLM Programmer’s Reference Manual 145

VLScgSetServerLockMechanism1()

Description Installs aclient’s fingerprint criteriain the code structure. A fingerprint is

Returns

computed by selecting operating characteristics of the host system and forming a
mask with bits set corresponding to those characteristics. The different
fingerprinting elements are defined in the VL Scg_L OCK _ section of Iscgen.h,
and includes criteria such as ID Prom, |P address, disk ID, etc.

The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_HEX_TYPE If value is not in hexadecimal format.
VLScg_EXCEEDS_MAX_VALUE If value is too large.
VLScg_LESS_THAN_MIN_VALUE If the value is lower than minimum.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’” on page 291.

Syntax

VLScgSetServerLockMechanism1()

int VL ScgSetServerL ockM echanisml(
VLScg_ HANDLE iHandle,

codeT *codeP,
char *criterion,
int server)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
criterion The lock code to install. Value should be in hex format.
server Number of license servers.

Description Thisfunction sets the criteriafor the primary license server. Installs alicense

146

server’s primary fingerprint criteriain the code structure. A fingerprint is
computed by selecting operating characteristics of the host system and forming a
mask with bits set corresponding to those characteristics. The different
fingerprinting elements are defined in the VL Scg_LOCK _ section of Iscgen.h,

Chapter 4 - License Code Generation API

VLScgSetServerLockMechanism2()

and includes criteria such as 1D Prom, IP address, disk ID, etc. A license server
can be locked to either of two groups of fingerprints. The second group will be
tried if the first licensed fingerprint group fails to match the license server’s
fingerprint at the end-user site.

Returns The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_HEX_TYPE if criterion is not in hexadecimal format.
VLScg_EXCEEDS_MAX_VALUE if client_num is too large.
VLScg_LESS_THAN_MIN_VALUE if the client_num is lower than minimum.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’” on page 291.

VLScgSetServerLockMechanism2()

Syntax int VL ScgSetServerL ockM echanism?2(

VLScg HANDLE iHandle,

codeT *codeP,

char *criterion

int server)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
criterion The lock code to install (in hex).
server Number of license servers.

Description Thisfunction sets the criteria for the secondary license server. Installs alicense
server’s secondary fingerprint criteriain the code structure. A fingerprint is
computed by selecting operating characteristics of the host system and forming a
mask with bits set corresponding to those characteristics. The different
fingerprinting elements are defined in the VL Scg_LOCK _ section of Iscgen.h,
and includes criteria such as 1D Prom, IP address, disk ID, etc. A license server

SentinelLM Programmer’s Reference Manual 147

VLScgAllowClockTamperFlag()

Returns

can be locked to either of two groups of fingerprints. The second group will be
tried if the first licensed fingerprint group fails to match the license server’s
fingerprint at the end-user site.

The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_HEX_TYPE If criterion is not in hexadecimal format.
VLScg_EXCEEDS_MAX_VALUE If server is too large.
VLScg_LESS_THAN_MIN_VALUE If the server is lower than minimum.

For acomplete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

Syntax

Returns

VLScgAllowClockTamperFlag()

int VL ScgAllowClockTamperFlag(
VLScg_ HANDLE iHandle,

codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

The VL ScgSet X X X() function tests whether the corresponding

VL ScgSetX XX () should be caled. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfase

Syntax

148

VLScgSetClockTamperFlag()

int VL ScgSetClockTamperFlag(
VLScg HANDLE iHandle,

Chapter 4 - License Code Generation API

VLScgSetClockTamperFlag()

codeT *codeP,

char *flag,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
flag Valid values are:

e VLScg_NO_CHECK_TAMPER_STRING - Do not
check clock tamper = “0”

e VLScg_CHECK_TAMPER_STRING - Check clock
tamper = “1”

Description Controls action on detection of clock being set back on the machine.
Clock tamper check will only be done when the license server starts up, but the
license server will not exit on detection of tampering. Only those license strings
that specify they want the check will be denied if tampering is detected. Other
features will continue to be served by the license server. Even if someone sets
the clock back after starting the license server, and then dynamically adds a
tamper-sensitive license string, the license server will detect it and throw the
license string out. When the license server accepts alicense string at start-up but
detects later that the clock has been set back, it does not grant alicense for the
feature until the clock is reset to its correct value.

Returns The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not a decimal number.
VLScg_INVALID_RANGE If value is not in the range allowed.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

SentinelLM Programmer’s Reference Manual 149

VLScgAllowOutLicType()

VLScgAllowOutLicType()

Syntax int VL ScgAllowOutLicType(
VLScg HANDLE iHandle,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

Returns The VL ScgSet XX X () function tests whether the corresponding
VL ScgSetX X X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfalse.

VLScgSetOutLicType()

Syntax int VL ScgSetOutLicType(
VLScg HANDLE iHandle,
codeT *codeP,
char *flag,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
flag Valid values are:

« VLScg ENCRYPTED_STRING = “0”
VLScg EXPANDED_READABLE_STRING =“1"
« VLScg CONCISE_READABLE_STRING = “2”

Description Controls the type of license string generated. License output formats can be:
encrypted, expanded readable, and concise readable.

150 Chapter 4 - License Code Generation API

VLScgAllowLicenseType()

The license code contains al of the information that defines the license
agreement between you and your customer: how many users can run the
application at atime, whether the license will expire after a specific number of
days, whether the application can only run on a specific computer, and so on.
Encrypted license strings contain this information about the license agreement,
but cannot be read by your customers.

Concise readable license codes store information about the provisions of a
licensing agreement in readable form, such as plain text with white spaces so
that it is easily read (and understood) by the user.

The expanded readable license string, a string is appended to the numeric values
to specify what that numeric value stands for, e.g., 60_MINSimplies that 60
specifies the time in minutes. These strings do not appear in the concise format,
only a 60 appears in the concise readable license string, as opposed to 60_MINS
in the expandabl e readable format.

Returns The status code, VL Scg_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not a decimal number.
VLScg_INVALID_RANGE If value is not in the range allowed.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’” on page 291.

VLScgAllowLicenseType()

Syntax int VLScgAllowLicenseType(VLScg HANDLE
iHandle,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

SentinelLM Programmer’s Reference Manual 151

VLScgSetLicenseType()

Returns

The VL ScgSet X XX () function tests whether the corresponding
VL ScgSetX X X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X XX () function can be called. Otherwise, it will return

O asfalse.

Syntax

VLScgSetLicenseType()

int VL ScgSetLicenseType(VLScg HANDLE
iHandle,
codeT *codeP, char *flag,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
flag Flag is used to set the code_type member of codeT struct.

The values are:
e VLScg_NORMAL_LIC_STRING - Non-trial license =
“or
e VLScg_TRIAL_LIC_STRING - Trial license = “1”

Description Controlsthe license type for non-trial and trial licenses.

Returns

152

The status code, VL Scg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_TRIAL_LIC_STRING.

VLScg_LESS_THAN_MIN_VALUE If value is lower than

VLScg_NORMAL_LIC_STRING.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’” on page 291.

Chapter 4 - License Code Generation API

VLScgAllowCodegenVersion()

VLScgAllowCodegenVersion()

Syntax int VL ScgAllowCodegenVersion(VLScg HANDLE
iHandle,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

Returns The VL ScgSet XXX () function tests whether the corresponding
VL ScgSetX X X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfalse.

VLScgSetCodegenVersion()

Syntax int VL ScgSetCodegenV ersion(VLScg HANDLE
iHandle,
codeT *codeP, char*
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
flag Sets the possible values for version_num flag.

Description Sets the version of license codes to generate. Checksiif the current license code
setting allow multiple features.

Returns The status code, VL Scg_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not numeric.

SentinelLM Programmer’s Reference Manual 153

VLScgAllowRedundantFlag()

VLScg_EXCEEDS_MAX_VALUE If value exceeds
MAX_CODEGEN_VERSION.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’” on page 291.

VLScgAllowRedundantFlag()

Syntax int VL ScgAllowRedundantFlag(VLScg HANDLE
iHandle,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

Returns The VL ScgSet X XX() function tests whether the corresponding
VL ScgSet XX X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfase

VLScgSetRedundantFlag()

Syntax int VL ScgSetRedundantFl ag(VLScg HANDLE
iHandle,
codeT *codeP, char *flag,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

154 Chapter 4 - License Code Generation API

VLScgAllowMajorityRuleFlag()

Argument Description

flag Valid values are:
¢ VLScg_NON_REDUNDANT_CODE_STRING -
Non-redundant license = “0”
« VLScg_REDUNDANT_CODE_STRING -
Redundant license = “1"

Description Controls whether the license will be used with redundant license servers.
Redundancy allows the total number of licensesto remain available to the
enterprise even if one or more license serversfail. License balancing allows the
developer’s end user to set up an initial distribution of license tokens among
different sites. The Sentinel LM license servers will automatically adjust the
distribution of the licenses to match the actual usage pattern of the license tokens
across the enterprise.

Returns The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_REDUNDANT_CODE_STRING.

VLScg_LESS_THAN_MIN_VALUE If value is less than
VLScg_NON_REDUNDANT_CODE_
STRING.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

VLScgAllowMajorityRuleFlag()

Syntax int VL ScgAllowMajorityRuleFlag(VLScg HANDLE
iHandle,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.

SentinelLM Programmer’s Reference Manual 155

VLScgSetMajorityRuleFlag()

Returns

Argument Description

codeP The pointer to the codeT struct.

The VL ScgSet X XX() function tests whether the corresponding

VL ScgSet XX X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X XX () function can be called. Otherwise, it will return
Oasfase

Syntax

Description

Returns

156

VLScgSetMajorityRuleFlag()

int VL ScgSetM gj orityRuleFlag(VLScg HANDLE
iHandle,
codeT *codeP, char *flag,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
flag Valid values are:

¢ VLScg_MAJORITY_RULE_FOLLOWS_STRING -
Sets the majority_rule_flag = “1”

¢ VLScg_MAJORITY_RULE_NOT_FOLLOWS_
STRING - Unset the majority_rule_flag = “0”

Controls whether the majority of redundant license servers must be running.

If the number of redundant license servers running isless than half of the number
of license servers specified in the license file, then all serverswill stop servicing
al old and new clients. For example, if 7 redundant license servers are specified,
at least 4 of them must be running to satisfy the majority rule.

The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not numeric.

Chapter 4 - License Code Generation API

VLScgAllowCommuterLicense()

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_MAJORITY_RULE_FOLLOWS _

STRING.

VLScg_LESS_THAN_MIN_VALUE If value is lower than
VLScg_MAJORITY_RULE_NOT_FOLLOW

S_STRING.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

VLScgAllowCommuterLicense()

Syntax int VL ScgAllowCommuterLicense(VLScg HANDLE
iHandle,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

Returns The VL ScgSet XXX () function tests whether the corresponding
VL ScgSetX X X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfase

VLScgSetCommuterLicense()

Syntax int VL ScgSetCommuterLicense(VLScg HANDLE
iHandle,
codeT *codeP, char *flag,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

SentinelLM Programmer’s Reference Manual 157

VLScgAllowLogEncryptLevel()

Argument Description
flag Valid values are:
e VLScg_NOT_ISSUE_COMMUTER_CODES _

STRING =“0”
« VLScg ISSUE_COMMUTER_LICENSE_CODE_

STRING ="1"

Description Enables commuter licenses.

This function is used to generate keys for traveling clients. Commuter licensing
allows end usersto “check out” alicense from a network served license group
and “check it in” when they are done using the license.

Returns The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_ISSUE_COMMUTER_CODES_
STRING.

VLScg_LESS_THAN_MIN_VALUE If value is lower than

VLScg_NOT_ISSUE_COMMUTER_
CODES_STRING.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’” on page 291.

VLScgAllowLogEncryptLevel()

Syntax int VL ScgAllowLogEncryptLevel(VLScg HANDLE
iHandle,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.

158 Chapter 4 - License Code Generation API

VLScgSetLogEncryptLevel()

Argument Description

codeP The pointer to the codeT struct.

Returns The VL ScgSet X XX () function tests whether the corresponding
VL ScgSet X XX() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfase

VLScgSetLogEncryptLevel()

Syntax int VL ScgSetL ogEncryptLevel (VLScg HANDLE
iHandle,
codeT *codeP, char *flag,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
flag Allowed value are:
o« “0"
o« 417
o u"
o 43"
NV

Description Controls the encryption level to the network licenses for the license server’s
usage log file.

Returns The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE if value is not a decimal number.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_MAX_ENCRYPTION_LEVEL.

SentinelLM Programmer’s Reference Manual 159

VLScgAllowMultiKey()

VLScg_LESS_THAN_MIN_VALUE If value is lower than
VLScg_NO_ENCRYPTION.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’” on page 291.

Syntax

Returns

VLScgAllowMultiKey()

int VLScgAllowMultiKey(VLScg HANDLE

iHandle, T

codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

The VL ScgSet X XX() function tests whether the corresponding
VL ScgSet XX X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return

O asfase

Syntax

160

VLScgSetKeyType()
int VLScgSetKey Type(VLScg HANDLE
iHandle,
codeT *codeP, char *flag,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
flag Flag used to set the code_type member of codeT struct.

The values are:
e VLScg_SINGLE_KEY_STRING =*“0"
e VLScg_MULTI_KEY_STRING =*“1"

Chapter 4 - License Code Generation API

VLScgAllowMultipleServerinfo()

Description Controls whether alicense will be single or multi-feature license code types.

Single Feature: Predefined short, numeric license codes where the license code
isfor asingle feature. Notice, if you select Predefined-Single Feature, the
Feature name must be no more than 2 numeric digits. Most of the attributes are
aready defined for you and cannot be modified.

Multi Feature: Predefined, short numeric license types where multiple features
(value between 2 - 11) can be placed into asingle license code. Notice, if you
select Predefined-Multi Feature, the Feature name must be no more than 2
numeric digits. Most of the attributes are already defined for you and cannot be
modified.

Returns The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not a decimal number.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_MULTI_KEY_STRING.

VLScg_LESS_THAN_MIN_VALUE If value is lower than

VLScg_SINGLE_KEY_STRING.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

VLScgAllowMultipleServerinfo()

Syntax int VL ScgAllowMultipleServerinfo(VLScg HANDLE
iHandle,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

Returns The VL ScgSet XXX () function tests whether the corresponding
VL ScgSetX XX () should be caled. If VL ScgAllowXXX() returns 1 then the

SentinelLM Programmer’s Reference Manual 161

VLScgAllowSecrets()

corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfase

VLScgAllowSecrets()

Syntax int VL ScgAllowSecrets(
VLScg HANDLE iHandle,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

Returns The VL ScgSet XXX () function tests whether the corresponding
VL ScgSetX XX () should be caled. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return

Oasfalse.
VLScgSetSecrets()
Syntax int VL ScgSetSecrets(
VLScg_ HANDLE iHandle,
codeT *codeP,
char *valu,
int num,
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
valu Any printable ASCII text.
num Number of secrets: should be from 0 to num_secrets -1.

Description Setsthe value of the specified challenge-response secrets.

162 Chapter 4 - License Code Generation API

VLScgSetNumSecrets()

Both the application and the license contain data known as secrets. When an
application wishes to challenge, it generates arandom text string, whichis
passed as the challenge value to the license server. In response to this challenge
value, the license server examines the software license to determine the secret
and computes the corresponding answer. The result is then passed back to the
client application as the response to the challenge.

The purpose of the challenge isto verify that thereisavalid license present.
Even atampered license server cannot respond correctly to the challenge.

Returns The status code, VL Scg_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_CHARACTERS If string is not valid.
VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum.
VLScg_LESS_THAN_MIN_VALUE If the value is lower than minimum.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

VLScgSetNumSecrets()
Syntax int VL ScgSetNumSecrets(
VLScg HANDLE iHandle,
codeT *codeP,
char *valu,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
valu This value sets the number of secrets.

Description Sets the total number of secrets for the challenge-response mechanism.
Up to seven secret text strings can be specified, each up to twelve characters
long. The secrets are encrypted within the license itself, with only the license

SentinelLM Programmer’s Reference Manual 163

VLScgAllowVendorinfo(')

Returns

server knowing how to decrypt the secrets. The license server will then compute
an authentication response when challenged by a client to confirm itsidentity.

The status code, VL Scg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INT_TYPE If value is not numeric.

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_MAX_NUM_SECRETS.

VLScg_LESS_THAN_MIN_VALUE If value is lower than 0.

For acomplete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

Syntax

Returns

VLScgAllowVendorinfo()

int VLScgAllowVendorinfo
VLScg HANDLE iHandle,

codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

The VL ScgSet X XX () function tests whether the corresponding

VL ScgSetX X X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfalse.

Syntax

164

VLScgSetVendorinfo()

int VL ScgSetV endorlnfo(
VLScg_ HANDLE iHandle,

Chapter 4 - License Code Generation API

VLScgAllowFeatureName()

codeT *codeP,
char *info,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
info Any printable ASCII text except #. Maximum of 98
characters.

Description Sets vendor-defined information in the license. Supported only for long license
codes.
Any piece of information can be encoded into alicense code. The information

can beretrieved later through aclient library function call. This capability is
useful for keeping track of distributors or implementing a variety of licensing

schemes.

Returns The status code, VL Scg_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_CHARS If string is not valid.
VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum.
VLScg_LESS_THAN_MIN_VALUE If the value is lower than minimum.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

VLScgAllowFeatureName()

Syntax int VL ScgAllowFeatureName(
VLScg HANDLE iHandle,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.

SentinelLM Programmer’s Reference Manual 165

VLScgSetFeatureName()

Argument Description

codeP The pointer to the codeT struct.

Returns The VL ScgSet X XX() function tests whether the corresponding
VL ScgSet XX X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X XX () function can be called. Otherwise, it will return
Oasfase

VLScgSetFeatureName()

Syntax int VL ScgSetFeatureName(
VLScg HANDLE iHandle,
codeT *codeP,
char *info,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
info Any printable ASCII text except #.

Description A feature name can represent a single executable file, multiple executable files,
or aportion (afunction) of an executable file. A feature name may be a
maximum of 11 ASCII characters for short license codes and a maximum of 24
for long license codes and two for short, numeric license codes and multi-feature
license codes.

Notice, al applications must have a name by which they will be identified.

Returns The status code, VL Scg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_NO_FEATURE_NAME If the name is NULL.
VLScg_RESERV_STR_ERROR If the string is a reserved string.
VLScg_INVALID_CHARS If the string characters are not printable.

166 Chapter 4 - License Code Generation API

VLScgAllowFeatureVersion()

VLScg_EXCEEDS_MAX_VALUE If value exceeds 21.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’” on page 291.

VLScgAllowFeatureVersion()

Syntax int VL ScgAllowFeatureVersion
VLScg HANDLE iHandle,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

Returns The VL ScgSet X XX () function tests whether the corresponding
VL ScgSetX X X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfase

VLScgSetFeatureVersion()

Syntax int VL ScgSetFeatureV ersion(
VLScg HANDLE iHandle,
codeT *codeP,
char *info,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
info Any printable ASCII text except #. Maximum of 11

characters.

Description Version number is optional. Not supported for short license codes.

SentinelLM Programmer’s Reference Manual 167

VLScgAllowLockModeQuery()

Returns

The status code, VL Scg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_RESERV_STR_ERROR If the string is a reserved string.

VLScg_INVALID_CHARS If the string characters are not printable.

VLScg_EXCEEDS_MAX_VALUE If string exceeds maximum number of
characters.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

Syntax

Returns

VLScgAllowLockModeQuery()

int VL ScgAllowL ockM odeQuery(
VLScg HANDLE iHandle,

codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

The VL ScgSet X X X() function tests whether the corresponding

VL ScgSetX X X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfase

Syntax

168

VLScgSetClientServerLockMode()

int VL ScgSetClientServerL ockM ode(
VLScg HANDLE iHandle,

Chapter 4 - License Code Generation API

VLScgSetClientServerLockMode()

codeT *codeP,
char *flag,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
flag The flag values are:
e VLScg_FLOATING_STRING - License server is

locked = “0”

e VLScg_BOTH_NODE_LOCKED_STRING - Clients
and license server are locked = “1”

e VLScg_DEMO_MODE_STRING - Trial license (no
locking) = “2”

e VLScg_CLIENT_NODE_LOCKED_STRING - Only
clients are locked = “3”

Description Setswhether license server islocked, clients and license server are both locked,
only clients are locked, or neither license server nor clients are locked. Validates
the value of flag and installs it in the license code structure.

Returns The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not numeric.
VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum.
VLScg_LESS_THAN_MIN_VALUE If the value is lower than minimum.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

SentinelLM Programmer’s Reference Manual 169

VLScgAllowServerLockInfo()

VLScgAllowServerLockInfo()

Syntax int VL ScgAllowServerL ockInfo(
VLScg HANDLE iHandle,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

Returns The VL ScgSet XX X () function tests whether the corresponding
VL ScgSetX X X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfalse.

VLScgSetServerLockiInfol()

Syntax int VL ScgSetServerL ocklnfol(
VLScg HANDLE iHandle,
codeT *codeP,
char *lockCode,
int num,),
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
lockCode The lock code to be checked and set. Lock code should be

an 8-character hex string (32-bit numeric locking code),
optionally preceded by “0x.”

num Position in server_lock_infol where lockCode is stored
starting from codeP to num_server_1.

Description Installsthe value of lockCode in the code structure field server_lock_infol[num]
to set the primary locking code.

170 Chapter 4 - License Code Generation API

VLScgSetServerLockInfo2()

Returns The status code, VL Scg_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_HEX_TYPE If value is not in hexadecimal format.

VLScg_EXCEEDS_MAX_VALUE If value exceeds the maximum number of
license servers.

VLScg_LESS_THAN_MIN_VALUE If the value is less than minimum number of

license servers.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’” on page 291.

VLScgSetServerLockInfo2()

Syntax int VL ScgSetServerL ocklnfo2(
VLScg HANDLE iHandle,
codeT *codeP,
char *|ockCode,
int num,),
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
lockCode The lock code to be checked and set. Lock code should be
an 8-character hex string (32-bit numeric locking code),
optionally preceded by “0x.”
num Position in server_lock_info2 where lockCode is stored

starting from codeP to num_server_1.

Description Installsthe value of lockCode in the code structure field server_lock_info2[num]
to set the secondary locking code.

Returns The status code, VL Scg_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_HEX_TYPE If value is not in hexadecimal format.

SentinelLM Programmer’s Reference Manual 171

VLScgAllowClientLockInfo()

VLScg_EXCEEDS_MAX_VALUE If value is too large.
VLScg_LESS_THAN_MIN_VALUE If the value is lower than minimum.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

Syntax

Returns

VLScgAllowClientLockInfo()

int VL ScgAllowClientL ockInfo(
VLScg HANDLE iHandle,

codeT *codeP,)
Argument Description
iHandle The instance handle for this library.

codeP The pointer to the codeT struct.

The VL ScgSet X XX () function tests whether the corresponding
VL ScgSetX XX () should be caled. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return

O asfalse.

Syntax

172

VLScgSetClientLocklInfo()

int VL ScgSetClientL ocklnfo(
VLScg_ HANDLE iHandle,

codeT *codeP,
char *lockCode,
int num,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
lockCode This buffer is used to set the lock code information for
clients.

Chapter 4 - License Code Generation API

VLScgAllowKeysPerNode()

Argument Description

num Number of clients: should be from 0 to maximum number
of clients specified -1.

Description Setsthe client locking code.

Returns The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_HEX_TYPE If value is not in hexadecimal format.
VLScg_EXCEEDS_MAX_VALUE If number is greater than num_nl_clients -1.
Number of node locked clients.
VLScg_LESS_THAN_MIN_VALUE If number is less than 0.
VLScg_INVALID_IP_TYPE If value is not in dot format.
VLScg_UNKNOWN_LOCK If the locking criteria is unknown.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

VLScgAllowKeysPerNode()

Syntax int VL ScgAllowK eysPerNode(
VLScg HANDLE iHandle,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

Returns The VL ScgSet XXX () function tests whether the corresponding
VL ScgSet X XX() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return

O asfalse

SentinelLM Programmer’s Reference Manual 173

VLScgSetKeysPerNode()

Syntax

Description

Returns

174

VLScgSetKeysPerNode()

int VL ScgSetK eysPerNode(

VLScg HANDLE iHandle,

codeT *codeP,

char *keys,

int num,)

Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
keys Used to set the number of keys per node. Give any
decimal value. Should be from 0. Give NOLIMITSTR for no
limit.
num Number of clients: should be from 0 to the maximum

number of clients -1.

This function sets the number of keys per node for the specified number of
clients.

For each client locked and client& server locked node, the number of copies
running on each computer is controlled. Thisis an extra per-host restrictionin
addition to the overal number of licenses.

The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If number is not a non-negative integer.
VLScg_EXCEEDS_MAX_VALUE If number exceeds num_nl_clients -1.
VLScg_LESS_THAN_MIN_VALUE If number is less than 0.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

Chapter 4 - License Code Generation API

VLScgAllowSiteLic()

VLScgAllowSiteLic()

Syntax int VLScgAllowSiteLic(
VLScg HANDLE iHandle,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

Returns The VL ScgSet XXX () function tests whether the corresponding
VL ScgSetX X X() should be called. If VL ScgAllowXXX() returns 1 then the

corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfalse.

VLScgSetSiteLicInfo()

Syntax int VL ScgSetSiteLiclnfo(
VLScg HANDLE iHandle,
codeT *codeP,
char *info,
int num,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
info Set the subnet address. You can use wildcards (e.qg.,
,123..28) to specify a range.
num Subnet number, from 0 to codeP to num_subnet_1.

Description Sets subnet address. See VL ScgSetNumSubnets().
Specifies the number of subnets used for site licensing.

SentinelLM Programmer’s Reference Manual 175

VLScgSetNumSubnets()

Returns

The status code, VL Scg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_RANGE If value is not in the range allowed and if
value is not a valid character.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

Syntax

Description

Returns

176

VLScgSetNumSubnets()
int VL ScgSetNumSubnets(
VLScg HANDLE iHandle,
codeT *codeP,
char *info,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
info Sets the number of subnets: should be from 1 to

VLScg_MAX_NUM_SUBNETS 0 is a special value which
means no site licensing.

Sets the number of subnets the licensed application can run on. To set actual site
addresses, use VL ScgSetSiteL iclnfo* ().

The status code, VL Scg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If input is not a non-negative integer.

VLScg_EXCEEDS_MAX_VALUE If num is greater than codeP to
num_subnets.

VLScg_LESS_THAN_MIN_VALUE If num is less than 0.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

Chapter 4 - License Code Generation API

VLScgAllowNumFeatures()

VLScgAllowNumFeatures()

Syntax int VL ScgAllowNumFeatures(
VLScg HANDLE iHandle,
codeT *codeP,) ,
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

Returns The VL ScgSet XXX () function tests whether the corresponding
VL ScgSetX X X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfalse.

VLScgSetNumFeatures()

Syntax int VL ScgSetNumFeatures(
VLScg HANDLE iHandle,
codeT *codeP,
char *flag,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
flag Sets the flag for number of features in case of multi-

feature.

Description Setsthe number of features.

Returns The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If input is not a decimal number.

SentinelLM Programmer’s Reference Manual 177

VLScgSetNumClients()

VLScg_EXCEEDS_MAX_VALUE If value exceeds
VLScg_MAX_NUM_FEATURES.
VLScg_LESS_THAN_MIN_VALUE If value is lower than

VLScg_MIN_NUM_FEATURES.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

Syntax

VLScgSetNumClients()

int VL ScgSetNumClients(
VLScg HANDLE iHandle,

codeT *codeP,
char *info,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
info Number of client locking codes to be specified.

Description Applications can be locked to specific client computers using locking codes that

Returns

178

uniquely identify those computers.

The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If input is not a non-negative integer.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum number of
clients.

VLScg_LESS_THAN_MIN_VALUE If value is less than 1.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

Chapter 4 - License Code Generation API

VLScgAllowNumKeys()

VLScgAllowNumKeys()

Syntax int VLScgAllowNumKeys(
VLScg HANDLE iHandle,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

Returns The VL ScgSet XXX () function tests whether the corresponding
VL ScgSetX X X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return

O asfalse.
VLScgSetNumKeys()
Syntax int VL ScgSetNumK eys(
VLScg HANDLE iHandle,
codeT *codeP,
char *info, intnum,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
info Sets the number of concurrent licenses: should be from 0
to NOLIMITSTR for no limit.
num Should be 0 in case of single feature and from 0 to

"no_of _features -1" in case of multi-feature.

Description Sets the number of concurrent licenses allowed. (Network license only.)

SentinelLM Programmer’s Reference Manual 179

VLScgAllowSoftLimit()

Returns

The status code, VL Scg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not a non-negative integer.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum number of keys
allowed. Maximum value for long codes is
32767 and maximum value for short codes
is 255.

VLScg_LESS_THAN_MIN_VALUE If value is less than O.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’” on page 291.

Syntax

Returns

VLScgAllowSoftLimit()

int VL ScgAllowSoftLimit(
VLScg_ HANDLE iHandle,

codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

The VL ScgSet X XX() function tests whether the corresponding

VL ScgSetX XX () should be caled. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfase

Syntax

180

VLScgSetSoftLimit()

int VL ScgSetSoftLimit(
VLScg HANDLE iHandle,

Chapter 4 - License Code Generation API

VLScgAllowKeyLifeUnits()

codeT *codeP,
char *info,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
info Sets soft limit: should be from 0 to NOLIMITSTR for no
limit. NOLIMSTR is not allowed if the license is a commuter
license.

Description The soft limit number defines athreshold at which awarning can be issued that
the maximum number of licensesis being approached. Must be less than the
maximum number of users (the hard limit).

Returns The status code, VL Scg_ SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If information is not a non-negative integer.

VLScg_EXCEEDS_MAX_VALUE If information exceeds maximum number of
keys allowed. Maximum value for long
codes is 32767 and maximum value for
short codes is 255.

VLScg_LESS_THAN_MIN_VALUE If information is less than 0 nor num is less
than 0.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’” on page 291.

VLScgAllowKeyLifeUnits()

Syntax int VLScgAllowKeyLifeUnits(
VLScg HANDLE iHandle,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.

SentinelLM Programmer’s Reference Manual 181

VLScgSetKeyLifetimeUnits()

Argument Description

codeP The pointer to the codeT struct.

Returns The VL ScgSet X XX() function tests whether the corresponding
VL ScgSet XX X() should be called. If VL ScgAllowXXX() returns 1 then the

corresponding VL ScgSet X XX () function can be called. Otherwise, it will return
Oasfase

VLScgSetKeyLifetimeUnits()

Syntax int VL ScgSetK eyLifetimeUnits(
VLScg_ HANDLE iHandle,
codeT *codeP,
char *info,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
info Lifetime specification units of keys: from 0 to 3. The values
are:

e “0”- Multiple of 1 minute(s), maximum 15 minutes.

e “1"- Multiple of 10 minute(s), maximum 150
minutes.

e “2"- Multiple of 30 minute(s), maximum 450
minutes.

e “3"- Multiple of 60 minute(s), maximum 900
minutes.

Description Thisfunction specifies the units of time used to specify the time between
renewals. A license must be renewed by the application on aregular schedule or
the license will be reclaimed. See VL ScgSetK eyL ifetime().

182 Chapter 4 - License Code Generation API

Returns

VLScgAllowKeyHoldUnits()

The status code, VL Scg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If information is a non-negative integer.
VLScg_EXCEEDS_MAX_VALUE If value exceeds 3.
VLScg_LESS_THAN_MIN_VALUE If value is less than 0.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

Syntax

Returns

VLScgAllowKeyHoldUnits()

int VLScgAllowKeyHoldUnits(
VLScg HANDLE iHandle,

codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

The VL ScgSet X XX () function tests whether the corresponding
VL ScgSetX X X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return

O asfalse.

Syntax

SentinelLM Programmer’s Reference Manual

VLScgSetKeyHoldtimeUnits()

int VL ScgSetK eyHol dtimeUnits(
VLScg_ HANDLE iHandle,

codeT *codeP,
char *info,)
Argument Description
iHandle The instance handle for this library.

183

VLScgAllowKeyLifetime()

Argument Description

codeP The pointer to the codeT struct.

info Hold time specification units of keys: from 0 to 3. The
values are:

e “0”- Multiple of 1 minute(s), maximum 15 minutes

e “1"- Multiple of 10 minute(s), maximum 150
minutes.

e “2"- Multiple of 30 minute(s), maximum 450
minutes.

e “3"- Multiple of 60 minute(s), maximum 900
minutes.

Description Network licenses may be held for atime when released by a specific user.
During that time only the original requestor of the license can be granted the
license again. This function sets the units of time used to specify the hold time.

Returns The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not a non-negative integer.
VLScg_EXCEEDS_MAX_VALUE If value exceeds 3.
VLScg_LESS_THAN_MIN_VALUE If value is less than O.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’” on page 291.

VLScgAllowKeyLifetime()

Syntax int VL ScgAllowK eyL ifetime(
VLScg_ HANDLE iHandle,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

184 Chapter 4 - License Code Generation API

VLScgSetKeyLifetime()

Returns The VL ScgSet XXX () function tests whether the corresponding
VL ScgSetX X X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X XX () function can be called. Otherwise, it will return
Oasfalse

VLScgSetKeyLifetime()

Syntax int VL ScgSetK eyL ifetime(
VLScg HANDLE iHandle,
codeT *codeP,
char *info,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
info Absolute value in minutes of license lifetime. Maximum

depends on lifetime units set by
VLScgSetKeyLifetimeUnits().

Description A license must be renewed by the application on aregular schedule or thelicense
will be reclaimed. This function specifies the number of minutes between
renewals. Maximum and granularity depends on
VL ScgSetK eyLifetimeUnits().

Returns The status code, VL Scg_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not a non-negative integer.
VLScg_NOT_MULTIPLE If value is not a correct multiple.
VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum key lifetime.
VLScg_LESS_THAN_MIN_VALUE If value is less than 1.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’” on page 291.

SentinelLM Programmer’s Reference Manual 185

VLScgAllowKeyHoldtime()

VLScgAllowKeyHoldtime()

Syntax int VL ScgAllowKeyHol dtime(
VLScg HANDLE iHandle,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

Returns The VL ScgSet XX X () function tests whether the corresponding
VL ScgSetX X X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfalse.

VLScgSetKeyHoldtime()

Syntax int VL ScgSetK eyHol dtime(
VLScg HANDLE iHandle,
codeT *codeP,
char *info,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
info Absolute values in minutes. Maximum depends on units

set by VLScgSetKeyHoldtimeUnits(). NOLIMITSTR for
infinite hold time.

Description Network licenses may be held for atime when released by a specific user.
During that time only that user can reclaim the license. This function specifies
the hold time. This function sets the value codeP->key_holdtime to the value of
info and performs small checks to validate user input.

186 Chapter 4 - License Code Generation API

VLScgAllowLicBirth()

Returns The status code, VL Scg_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not a non-negative integer.
VLScg_NOT_MULTIPLE If value is not a correct multiple.
VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum allowed hold
time.
VLScg_LESS_THAN_MIN_VALUE If value is less than 0.

For acomplete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

VLScgAllowLicBirth()

Syntax int VLScgAllowLicBirth(
VLScg HANDLE iHandle,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

Returns The VL ScgSet XXX () function tests whether the corresponding
VL ScgSet X XX() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfalse.

VLScgSetLicBirthMonth()

Syntax int VL ScgSetLicBirthMonth(
VLScg HANDLE iHandle,

SentinelLM Programmer’s Reference Manual 187

VLScgSetLicBirthDay()

codeT *codeP,
char *info,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
info Sets the month of year to 1-12 or Jan-Dec.

Description Sets the month of the license start date. Not applicable if year isinfinite.

Returns The status code, VL Scg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_CHARACTERS If not a valid string.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum allowed month
(exceeds 12).

VLScg_LESS_THAN_MIN_VALUE If value is less than 1.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

VLScgSetLicBirthDay()
Sets the day of the license start date.

Syntax int VL ScgSetLicBirthDay(
VLScg HANDLE iHandle,
codeT *codeP,
char *info,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
info Sets the day of the month (1-31).

188 Chapter 4 - License Code Generation API

VLScgSetLicBirthYear()

Description Setsthe day of the license start date. Not applicable if year has been set to
infinite.

Returns The status code, VL Scg_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not a non-negative integer.
VLScg_INVALID_DATE If value is not valid for the month.
VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum allowed day.
VLScg_LESS_THAN_MIN_VALUE If value is less than 1.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’” on page 291.

VLScgSetLicBirthYear()

Syntax int VLScgSetLicBirthY ear(
VLScg HANDLE iHandle,
codeT *codeP,
char *info,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
info Enter year in 4 digits (e.g., 1999) to avoid year 2000

problem.

Description Setsthe year of the license start date. Not applicable if year isinfinite.

Returns The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not a non-negative integer.
VLScg_INVALID_YEAR If year is invalid.
VLScg_INVALID_BIRTH_YEAR If year is too early.

SentinelLM Programmer’s Reference Manual 189

VLScgAllowLicExpiration()

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum allowed year.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

VLScgAllowLicExpiration()

Syntax int VL ScgAllowLicExpiration(
VLScg HANDLE iHandle,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

Returns The VL ScgSet X XX() function tests whether the corresponding
VL ScgSetX X X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfase

VLScgSetLicExpirationMonth()

Syntax int VL ScgSetLicExpirationMonth(
VLScg HANDLE iHandle,
codeT *codeP,
char *info,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
info Sets the month of year: 1-12 or Jan-Dec.

Description Sets month of date license expires. Not applicable if year isinfinite.

190 Chapter 4 - License Code Generation API

VLScgSetLicExpirationDay()

Returns The status code, VL Scg_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_CHARACTERS If not a valid string.

VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum allowed month
(exceeds 12).

VLScg_LESS_THAN_MIN_VALUE If value is less than 1.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’” on page 291.

VLScgSetLicExpirationDay()

Syntax int VL ScgSetLicExpirationDay/(
VLScg_ HANDLE iHandle,
codeT *codeP,
char *info,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
info Sets the day of the month: 1-31.

Description Setsthe day of the month of the date on which the license expires. No need to set
if theyear isinfinite.

Returns The status code, VL Scg_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not a non-negative integer.
VLScg_INVALID_DATE If value is not valid for the month.
VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum allowed day.
VLScg_LESS_THAN_MIN_VALUE If value is less than 1.

SentinelLM Programmer’s Reference Manual 191

VLScgSetLicExpirationYear()

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

VLScgSetLicExpirationYear()

Syntax int VL ScgSetLicExpirationY ear(
VLScg HANDLE iHandle,
codeT *codeP,
char *info,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
info Enter year in 4 digits (e.g., 1999) to avoid year 2000

problem. NEVERSTRING for infinite.

Description Setsthe year of the date that the license expires.

Returns The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not a non-negative integer.
VLScg_INVALID_YEAR If year is invalid.
VLScg_INVALID_DEATH_YEAR If year is too early.
VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum allowed year.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

192 Chapter 4 - License Code Generation API

VLScgAllowShareLimit()

VLScgAllowShareLimit()

Syntax int VL ScgAllowShareLimit(
VLScg HANDLE iHandle,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.

Returns The VL ScgSet XXX () function tests whether the corresponding
VL ScgSetX X X() should be called. If VL ScgAllowXXX() returns 1 then the
corresponding VL ScgSet X X X () function can be called. Otherwise, it will return
Oasfalse.

VLScgSetShareLimit()

Syntax int VL ScgSetShareLimit(
VLScg HANDLE iHandle,
codeT *codeP,
char *decimalNUM,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
decimalNUM Controls the number of users/clients who can share a

single license. Use a decimal numeric value setting to
control the number of users that can share a license.
NOLIMITSTR for unlimited.

Description If sharing is set, multiple users or asingle user using multiple instances of your
application, can share alicense.

SentinelLM Programmer’s Reference Manual 193

VLScgSetNumericType()

Returns

This function restricts the number of clients who can share alicense. The
decimalNUM limit forces the issue of anew license, when the sharing limit has
been reached for a particular license.

The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_INT_TYPE If value is not numeric.
VLScg_EXCEEDS_MAX_VALUE If value exceeds maximum.
VLScg_LESS_THAN_MIN_VALUE If the value is lower than minimum.

For acomplete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

Syntax

VLScgSetNumericType()

int V1ScgSetNumericType(
VLScg HANDLE iHandle,

codeT *codeP, intnum,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
num Numeric type values are:

« VLScg NUMERIC_UNKNOWN = “0”
« VLScg NOT_NUMERIC = “1”

« VLScg MISC_SHORT_NUMERIC = “2”
« VLScg_MISC_NUMERIC = “3"

Description Setsthe value of numeric type.

Returns

194

The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_EXCEEDS _MAX_VALUE Value exceeds the maximum value of 3.

Chapter 4 - License Code Generation API

VLScgSetLoadSWLicFile()

VLScg_LESS_THAN_MIN_VALUE If value is less than 0.
VLScg_INVALID_INT_TYPE If the value is not a non-negative integer.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

VLScgSetLoadSWLicFile()

Syntax int VL ScgSetL oadSWLicFile(
VLScg HANDLE iHandle,
char *filename,
Argument Description
iHandle The instance handle for this library.
filename Complete name and path of sw license file.

Description Sets and loads the sofware license file (Iscgen.lic).

The status code, VL Scg SUCCESS, isreturned if successful. Otherwise, a
specific error codes is returned indicating the reason for failure. For a complete
list of the error codes, see “ Appendix D - Error and Result Codes for License

Generation Functions’ on page 291.

Returns

License Generation Functions
The following table summarizes the license generation functions:

Table 4-4: License Generation Functions

Generates the license string.

VLScgGenerateLicense()
Decodes the license string.

VLScgDecodeLicense()

SentinelLM Programmer’s Reference Manual 195

VLScgGenerateLicense()

Syntax

Description

Returns

VLScgGenerateLicense()

int VL ScgGeneratelicense(
VLScg HANDLE iHandle,

codeT *codeP,
char *result,)
Argument Description
iHandle The instance handle for this library.
codeP The pointer to the codeT struct.
result Address of pointer pointing to generated license string.

This function generates the license string for the given codeT struct. It should be
called after all the VL ScgSet() functions are called. Memory allocation and free
for codeT are the responsibilities of the caller of function.

Memory allocation for the license string is handled by this function. Its address
isto be passed by the caller of this function in the second argument.

The status code, VL Scg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_VENDOR_CODE If vendor identification is illegal.
VLScg_VENDOR_ENCRYPTION_FAIL If vendor-customized encryption fails.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’” on page 291.

Syntax

196

VLScgDecodelicense()

int VL ScgDecodel icense(
VLScg HANDLE iHandle,
char * AnyLicenseString,
char *lic_string,

Chapter 4 - License Code Generation API

Description

Returns

VLScgDecodeLicense()

int lic_string_length,
codeT *codeP,)
Argument Description
iHandle The instance handle for this library.
AnyLicenseString User provided license string to be decoded.
lic_string User allocated buffer to receive decoded license string.
lic_string_length Length of decoded license string returned.
codeP Pointing to codeT containing input license string.

This function decodes the license string AnyLicenseString and puts the
corresponding codeT struct in the last argument. Pointer to codeT struct isto be
passed as the last argument. This pointer will contain the codeT corresponding to
AnyString. This function takes care of all memory allocations it uses.

The status code, VLScg SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_INVALID_VENDOR_CODE If vendor identification is illegal.
VLScg_VENDOR_ENCRYPTION_FAIL If vendor-customized encryption fails.

For acomplete list of the error codes, see “ Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

License Meter Related Functions

SentinelLM Programmer’s Reference Manual

The following table summarizes the license meter related functions:

Table 4-5: License Meter Related Functions

VLScgGetLicenseMeterUnits() Returns the number of license generation units.
VLScgGetTrialLicenseMeter Returns the number of trial license generation
Units() units.

197

VLScgGetLicenseMeterUnits()

VLScgGetLicenseMeterUnits()

Syntax int VL ScgGetLicenseM eterUnits(
VLScg HANDLE iHandle,
long *initialUnitsP,
long *unitsLeftP) intcodegen_version,)
Argument Description
iHandle The instance handle for this library.
initialUnitsP The number of units that were initially available.
unitsLeftP The number of units remaining.
codegen_version Version of the code generator (7 for SentinelLM 7.x).

Description Returns the number of license generation units available in the attached license
meter key.

Returns The status code, VL Scg_ SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLScg_LICMETER_EXCEPTION Unknown value in accessing the license

meter.
VLScg_LICMETER_ACCESS_ERROR Error accessing the license meter.
VLScg_LICMETER_CORRUPT License meter is corrupted.
VLScg_LICMETER_VERSION_ License meter has an invalid version.
MISMATCH

For acomplete list of the error codes, see “Appendix D - Error and Result Codes
for License Generation Functions’ on page 291.

On platforms that do not support hardware keys, the function returns V_FAIL.

198 Chapter 4 - License Code Generation API

VLScgGetTrialLicenseMeterUnits()

VLScgGetTrialLicenseMeterUnits()

Syntax int VLScgGetTrialLicenseM eterUnits(
VLScg_ HANDLE iHandle,
int units, intcodegen_version)
Argument Description
iHandle The instance handle for this library.
units The number of licenses available.
codegen_version Version of the code generator (7 for SentinelLM 7.x).

Description Returnsthe number of trial license generation units available in the attached
license meter.

Returns The status code, VLScg SUCCESS, isreturned if successful. Otherwise, a
specific error code is returned indicating the reason for failure. For a complete
list of the error codes, see “ Appendix D - Error and Result Codes for License
Generation Functions’ on page 291.

Trial License Related Functions

The following table summarizes thetrial license related functions:

Table 4-6: Trial License Related Functions

VLSgetTrialPeriodLeft() Returns the remaining time left in atrial
license.

VLSgetTrialPeriodLeft()

Syntax int VL SgetTrial PeriodL eft(
unsigned char *feature_name,
unsigned char *version unsigned long

SentinelLM Programmer’s Reference Manual 199

VLSgetTrialPeriodLeft()

Description

Returns

200

*trialperiod
LSFAR *unusedl,)

unsigned char

Argument

Description

feature_name
version
trialperiod

unusedl

Name of the feature.
Version of the feature. Must be unique.

Number of seconds left in the trial license. Points to integer
in the trialperiod parameter.

Uses NULL as the value.

Returns the remaining time left in atrial license. The usage period for tria
licenses does not begin until the application isfirst executed, i.e., not when the

application isinstalled.

The status code, VLScg SUCCESS, isreturned if successful. Otherwise, a
specific error code is returned indicating the reason for failure. For a complete
list of the error codes, see “ Appendix D - Error and Result Codes for License
Generation Functions’ on page 291.

Chapter 4 - License Code Generation API

Chapter 5 - Redundancy API

Redundancy allows the total number of licensesto remain available to the
enterprise even if one or more license serversfail. For example, if an end user
has a 100-user license (100 tokens), the administrator can disperse the license
load to three license servers in different segments (these could be across the
world). License Server One will have 30, License Server Two will have 30, and
License Server Three will have 40. If any license server fails, the license tokens
it isserving will be taken over by the remaining license servers. With thistype of
architecture, asingle network segment will not have to handle the load of the
entire network traffic.

For information on setting up and using redundant license servers, please see the
Sentinel LM Developer’s Guide.

The following table summarizes the redundancy functions:

Table 5-1: Redundancy Functions

Function Description

VLSaddFeature() Dynamically adds licensing information about a
feature into the license server’s internal tables. If
licensing information for this feature and version
already exists in the license server’s tables, it
may be overwritten with the new information.

Feature is not permanently added to the license
server when the license server is shutdown and

restarted.
VLSaddFeatureExt() Adds a license dynamically.
VLSaddFeatureToFile() Dynamically adds licensing information to the

license server’s internal tables and normal or
redundant license file.

VLSaddFeatureToFileExt() Writes a license dynamically.

SentinelLM Programmer’s Reference Manual 201

202

Table 5-1: Redundancy Functions

Function

Description

VLSaddServerToPool()

VLSchangeDisthCrit()

VLSdelServerFromPool()

VLSdiscoverExt()

VLSgetDistbCrit()

VLSgetDistbCritToFile()

VLSgetHostName()

VLSgetHostAddress()

VLSgetFeaturelnfoToFile()

VLSgetLeaderServerName()

Sends a request to add a new license server into
the pool. This API will actually modify the license
structure in order to add the given license server
to the pool.

Changes license token distribution criteria on
license servers in the redundant license server
pool.

Requests to remove a license server's name
from the pool. This API will actually modify the
license redundant file in order to delete the given
license server from the pool.

Returns the license server characteristic
information, which has the keys for a particular
specified feature and version. The client can
decide a license server preference on some
criteria

Returns the current token distribution status for
the given license feature and version.

Requests the license server to provide current
token distribution status for the given license
feature and version or for all features or version
(wild card characters are acceptable). Writes the
distribution to a file.

Takes the IP address as input and tries to
resolve it into the hostName, if possible.

Accepts hostName as input and tries to resolve it
into IP or IPX address, if possible.

Requests the license server to provide
information for the given license feature and
version.

Returns the current leader license server's name
by contacting any license server. The license
server to be contacted is selected by
VLSgetServerName() call. So a license
server's name must be set before a call is made
to this function.

Chapter 5 - Redundancy API

VLSaddFeature()

Table 5-1: Redundancy Functions

Function Description

VLSgetLicSharingServerList() Returns the license server's names, which are
sharing tokens for a given feature name and
version. The server_name_list will contain
license server names (hostNames or IPX

addresses).
VLSaddFeature()
Syntax int VL SaddFeature (
unsigned char LSFAR *licenseStr,
unsigned char LSFAR *unused1,

LS CHALLENGE LSFAR *unused2

Argument Description

licenseStr The license string that will be added.
unusedl Should be NULL.

unused2 Should be NULL.

Description Dynamically adds licensing information about a feature into the license server
and adds the license code to the license server’ sinternal tables. If licensing
information for this feature and version aready existsin the license server’'s
tables, it may be overwritten with the new information contained in licenseStr.
Notice, feature is not permanently added to the license server when the license
server is shutdown and restarted.

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

LS_NO_SUCCESS licenseString is NULL

SentinelLM Programmer’s Reference Manual 203

VLSaddFeatureExt()

VLS_ADD_LIC_FAILED

VLS_BAD_DISTB_CRIT

VLS_CLK_TAMP_FOUND

VLS_NO_SERVER_RUNNING

VLS_NO_SERVER_RESPONSE

VLS_HOST_UNKNOWN
VLS_NO_SERVER_FILE

VLS_BAD_SERVER_MESSAGE

LS_NO_NETWORK

LS_NORESOURCES

Generic error indicating the feature has not
been added.

Invalid distribution criteria.

License server has determined that the
client’s system clock has been modified.
The license for this feature has time-
tampering protection enabled, so the
license operation is denied.

License server on specified host is not
available for processing the license
operation requests.

Communication with license server has
timed out.

Invalid hostName was specified.

License server has not been set and is
unable to determine which license server to
use.

Message returned by the license server
could not be understood.

Generic error indicating that the network is
unavailable in servicing the license
operation.

An error occurred in attempting to allocate
memory needed by this function.

For acompletelist of the error codes, “ Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

VLSaddFeatureExt()

Syntax int VL SaddFeatureExt (

unsigned char LSFAR *licenseString,
unsigned char LSFAR *DistCritString unsigned char

204

Chapter 5 - Redundancy API

VLSaddFeatureExt()

LSFAR *unusedl
LS CHALLENGE LSFAR *unused2

Argument Description

licenseString The license string that will be added.

DistCritString Distribution criteria string. The string will allocate the
license to another license server, if the main license server
is locked.

unusedl Should be NULL.

unused2 Should be NULL>

Description Addsalicense dynamically to the license server.

Returns The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

LS_NO_SUCCESS licenseString is NULL

VLS_ADD_LIC_FAILED Generic error indicating the feature has not
been added.

VLS_BAD_DISTB_CRIT Invalid distribution criteria.

VLS _CLK_TAMP_FOUND License server has determined that the

client’s system clock has been modified.
The license for this feature has time-
tampering protection enabled, so the
license operation is denied.

VLS _NO_SERVER_RUNNING License server on specified host is not
available for processing the license
operation requests.

VLS _NO_SERVER_RESPONSE Communication with license server has
timed out.
VLS _HOST_UNKNOWN Invalid hostName was specified.

SentinelLM Programmer’s Reference Manual 205

VLSaddFeatureToFile()

VLS_NO_SERVER_FILE License server has not been set and is
unable to determine which license server to
use.

VLS _BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

For acomplete list of the error codes, “ Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

VLSaddFeatureToFile()

Syntax int VL SaddFeatureToFile (

unsigned char LSFAR *licenseString, unsigned char
LSFAR *unusedl unsigned charLSFAR* unused3
unsigned char LSFAR *unused3

Argument Description

licenseString The license_string character.

unusedl Should be NULL.

unused?2 Should be NULL.

unused3 Should be NULL.

Description Writes alicense dynamically to either the redundant license file or normal
licensefile. Notice, feature is permanently added to the license server when the
license server is shutdown and restarted.

206 Chapter 5 - Redundancy API

VLSaddFeatureToFile()

The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

Returns

VLS_CALLING_ERROR

LS_NO_SUCCESS

VLS_ADD_LIC_FAILED

VLS_BAD_DISTB_CRIT
VLS_CLK_TAMP_FOUND

VLS_NO_SERVER_RUNNING

VLS_NO_SERVER_RESPONSE

VLS_HOST_UNKNOWN

VLS_NO_SERVER_FILE

VLS_BAD_SERVER_MESSAGE

LS_NO_NETWORK

LS_NORESOURCES

Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

licenseString is NULL.

Generic error indicating that the feature has
not been added.

Invalid distribution criteria.

License server has determined that the
client’s system clock has been modified.
The license for this feature has time-
tampering protection enabled, so the
license operation is denied.

License server on specified host is not
available for processing the license
operation requests.

Communication with license server has
timed out.

Invalid hostName is specified.

License server has not been set and is
unable to determine which license server to
use.

Message returned by the license server
could not be understood.

Generic error indicating that the network is
unavailable in servicing license operation.

An error occurred in attempting to allocate
memory needed by this function.

For acomplete list of the error codes, “ Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

SentinelLM Programmer’s Reference Manual

207

VLSaddServerToPool()

VLSaddServerToPool()

Syntax int VL SaddServerToPool (
char LSFAR *server_name, char LSFAR
*server_addr,
Argument Description
server_name Name of the license server to add to the pool.
server_addr IP or IPX address of the license server.

Description Will send areguest to add a new license server into the pool. This APl will
actually modify the license server redundant licensefile in order to add the given
license server to the pool.

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR server_name is NULL
server_address is NULL
challenge argument is non-NULL, but
cannot be understood.
Using stand-alone library. This function
cannot be used with stand-alone library.

LS_NO_SUCCESS Generic error indicating that the license
server could not be added to the pool.

VLS_ADD_LIC_FAILED Generic error indicating the feature has not
been added.

VLS _NON_REDUNDANT_SRVR License server is non-redundant and

therefore cannot support this redundancy-
related operation.

VLS _SERVER_ALREADY_PRESENT Attempted to add a license server that is
already in the pool.

VLS _POOL_FULL Pool already has maximum number of
license servers. No more license servers
can be added.

208 Chapter 5 - Redundancy API

VLSchangeDistbCrit()

VLS _BAD_HOSTNAME hostName is not valid.

VLS _NOT_AUTHORIZED Invalid user.

VLS _SERVER_SYNC_IN_PROGRESS License server synchronization in process.
VLS_CONF_FILE_ERROR Error in configuration file.

VLS _NO_SERVER_RUNNING License server on specified host is not

available for processing the license
operation requests.

VLS _HOST_UNKNOWN Invalid hostName is specified.

VLS BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS _NO_NETWORK Generic error indicating that the network is
unavailable in servicing license operation.

LS_NORESOURCES An error occurred in attempting to allocate

memory needed by this function.

For acompletelist of the error codes, “ Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

VLSchangeDistbCrit()

Syntax int VL SchangeDistbCrit (

char LSFAR *feature_name, charLSFAR
*version charLSFAR
*dist_crit

Argument Description

feature_name Name of the feature.

version Version of the feature. Must be unique.

dist_crit Dist_crit consists of the names of license server, which will

have licenses for the given feature_name and version. The
dist_crit string must be null-terminated.

Description Requests to change the distribution criteriafor the given license feature and
version.

SentinelLM Programmer’s Reference Manual 209

VLSdelServerFromPool()

Returns The status code, LS_SUCCESS, is returned if successful.Otherwise, it will
return the following error codes:

LS_BAD_DIST_CRIT Change dist_crit and allocate some keys to
the deleted license server.

LS_NON_REDUNDANT_SERVER_ LSHOST is set to a non-redundant license

CONTACTED server.

LS_BAD_PARAMETER License server's name is NULL or an empty
string.

LS_NO_AUTHORIZATION License server does not recognize this
feature name.

LS_NO_SUCH_FEATURE Feature_version is non-existent.

LS_UNRESOLVED_SERVER_NAME License server's name cannot be resolved.

LS _MSG_TO_LEADER The request has been sent to the leader

license server.

For acompletelist of the error codes, “ Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

VLSdelServerFromPool()

Syntax int VL Sdel ServerFromPool (
char LSFAR *server_name, char LSFAR
*server_name,

Argument Description
server_name Name of the license server to delete from the pool.
server_addr IP or IPX address of license server.

Description Will request to remove alicense server’s name from the pool of redundant
license servers. This API will actually modify the redundant license filein order
to delete the given license server from the pool.

210 Chapter 5 - Redundancy API

VLSdelServerFromPool()

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will

return the following error codes:

VLS_CALLING_ERROR

LS_NO_SUCCESS

VLS_NON_REDUNDANT_SRVR

VLS_SERVER_NOT_PRESENT

VLS_ONLY_SERVER

VLS_NO_SERVER_RUNNING

VLS_BAD_HOSTNAME
VLS_NOT_AUTHORIZED

VLS_SERVER_SYNC_IN_PROGRESS

VLS_CONF_FILE_ERROR
VLS_NO_SERVER_RUNNING

VLS_HOST_UNKNOWN

VLS_BAD_SERVER_MESSAGE

LS_NO_NETWORK

LS_NORESOURCES

server_name is NULL
server_address is NULL

challenge argument in non-NULL, but
cannot be understood.

Using stand-alone library. This function
cannot be used with stand-alone library.

Generic error indicating that the license
server could not be deleted from the pool

License server is non-redundant and
therefore cannot support this redundancy-
related operation.

Attempted to delete a license server that is
not in the pool.

Cannot remove the last license server from
the pool.

License server on specified host is not
available for processing the license
operation requests.

hostName is not valid.

Invalid user,

License server synchronization in process.
Error in configuration file.

License server on specified host is not
available for processing license operation
requests.

Invalid hostName is specified.

Message returned by the license server
could not be understood.

Generic error indicating that the network is
unavailable for servicing license operation.

An error occurred in attempting to allocate
memory needed by this function.

SentinelLM Programmer’s Reference Manual

211

VLSdiscoverExt()

For acompletelist of the error codes, “ Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

Syntax

212

VLSdiscoverExt()

int VL SdiscoverExt(
unsigned char LSFAR *feature name,
unsigned char LSFAR *version
unsigned char LSFAR *unusedl int
num_servers VL SdiscoverInfo discoverInfo
int *option_Flag int
*sharing_crit char LSFAR *vendor_list

Argument Description

feature_name Name of the feature.

version Version of the feature. Must be unique.

unusedl Should be NULL.

num_servers Number of license servers for which discoverInfo array is

allocated.
discoverinfo The core function that receives the broadcast message,

splits and puts the license server's name in array format.
VLSdiscoverInfo() struct that will contain requested
information.

Chapter 5 - Redundancy API

VLSdiscoverExt()

Argument Description

option_Flag The option flag is allowed to be logically ORed with other
flags. However, this flag will have first priority.
Valid flags are:

e LS_BAD_PARAMETER - License server's hame is
NULL or an empty string.

e LS _SERVER_DOES_NOT_EXIST - Named license
server does not exist.

e LS_LEADER_NOT_KNOWN - Leader name is not
known.

e LS _NON_REDUNDANT_SERVER_CONTACTED -
Sets LSHOST to non-redundant license server.

e LS UNRESOLVED_SERVER_NAME - License
server's name is not resolvable.

¢ VLS_CALLING_ERROR - License server's name is
NULL or an empty string.

e VLS_SERVER_ALREADY_PRESENT - License
server’'s name already exists in the redundant
license server pool.

e VLS_LEADER_NOT_PRESENT - Leader name is
not known.

* VLS_NON_REDUNDANT_SRVER - Sets LSHOST
to non-redundant license server.

e VLS_ONLY_SERVER - Only one server remained in
the pool.

sharing_crit The license server will match client’s internal information
with the keys it is already granted. Values are:

e VLScg_NO_SHARING

e VLScg_USER_SHARING

e VLScg_HOSTNAME_SHARING

e VLScg_XDISPLAY_SHARING

e VLScg_VENDOR_SHARING

vendor_list Consists of server names. These license serves will be
contacted. The names of all the license servers that have
licenses for specified feature_name and version will be
returned in vendor_list in the same order as in the original
(before the call) vendor_list.

SentinelLM Programmer’s Reference Manual 213

VLSdiscoverExt()

Description Returnsthe license server characteristic information of the license server which
has the license tokens for a specified feature and version. The client can specify
alicense server preference based on some criteria.

Each license server that is contacted will determineif it has alicense that
matches the requested feature name and version. If found, the license server will
then notify the client with the following information:

* Protocol supported

e Total number of clients connected to the license server
* Server IP address

* Number of units/tokens available

» Whether this client has already been granted a license for the feature and
version (based on sharing_crit)

Returns The status code, LS_SUCCESS, is returned if stand-alone library is used.
Otherwise, it will return the following error codes:

VLS_CALLING_ERROR num_servers is less than or equal to zero.

VLS _NO_RESPONSE_TO_ License servers have not responded.

BROADCAST

LS_NO_SUCCESS Generic error indicating the license server’s
characteristic information could not be
retrieved.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLS _DISC_NO_USERLIST Do not check the host list specified by the

user. By default, it first records
LSFORCEHOST environment variable. If
LSFORCEHOST does not exist, it reads the
file LSHOST/Ishost.

214 Chapter 5 - Redundancy API

VLSgetDistbCrit()

VLS _DISC_RET_ON_FIRST If the combined query list is NULL, it returns
as soon as it is contacted by the license
server and returns the license servers’
name in server_list. Otherwise, it returns
when it is contacted by the license server
the names listed in the combined query list.
In this case, it returns, in server_list, that
particular default, if this option is not
specified. VLSdiscover() returns all the
license servers which responded.

VLS _DSC_PRIORITIZER_LIST Treat the combined query list as a
prioritized one, left most being the highest
priority host. It returns, in server_list, license
servers sorted in the order of priority host. It
returns, in server_list, license servers
sorted in the order of priority. If this option is
not specified, the combined query list is
treated as random.

VLS _DISC_REDUNDANT_ONLY Expecting reply only from redundant license
servers. All non-redundant license servers
will ignore the message.

VLS _DISC_DEFAULT_OPTIONS This flag is a combination of the
aforementioned flag. Use it if you are not
sure which flag you want to specify.

For acompletelist of the error codes, “ Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

VLSgetDistbCrit()

Syntax int VL SgetDistbCrit (
char *feature_name, char
*feature_version char *dist_crit
int distcrit_buflen
Argument Description
feature_name Name of the feature.
feature_version Version of the feature. Must be unique.

SentinelLM Programmer’s Reference Manual 215

VLSgetDistbCrit()

Argument

Description

dist_crit

distcrit_buflen

Dist_crit consists of the names of license server, which
have licenses for the given feature_name and version. The
dist_crit string must be null-terminated.

Size of memory allocated for dist_crit.

Description Returnsthe current token distribution status for the given license feature and

version.

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR

VLS_NO_SUCH_FEATURE

LS_BUFFER_TOO_SMALL

feature_name is NULL

version is NULL

dist_crit is NULL

dist_crit_len is zero or negative
challenge argument is non-NULL, but
cannot be understood.

Using stand-alone library. This function
cannot be used with stand-alone library.

License server does not have a license that
matches requested feature.

dist_crit buffer not large enough to store
information.

VLS _NON_REDUNDANT_SRVR License server is non-redundant and

VLS_FEATURE_INACTIVE

therefore cannot support this redundancy-
related operation.

Feature is inactive on specified license
server.

VLS _SERVER_SYNC_IN_PROGRESS License server synchronization in process.
VLS _NON_REDUNDANT_FEATURE Feature is non-redundant and thus cannot

VLS_DIFF_LIB_VER

SentinelLM Programmer’s Reference Manual

be used in this redundancy-related
operation.

Version mismatch between license server
APl and client API.

216

VLSgetDistbCritToFile()

VLS_VENDORIDMISMATCH The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has a license.

VLS _NO_SERVER_RUNNING License server on specified host is not
available for processing the license
operation requests.

VLS _HOST_UNKNOWN Invalid hostName is specified.

VLS BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS _NO_NETWORK Generic error indicating that the network is
unavailable in servicing license operation.

LS_NORESOURCES An error occurred in attempting to allocate

memory needed by this function.

For acompletelist of the error codes, “ Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

VLSgetDistbCritToFile()

Syntax int VL SgetDistbCritToFile (
char LSFAR *feature_name,
char LSFAR *feature_version char

LSFAR *file_name

Argument Description

feature_name Name of the feature.

feature_version Version of the feature.

file_name License server will write distribution criteria for the

specified feature or version to the file.

Description Requests the license server to provide current token distribution status for the
given license feature and version, or for all features, or for al versions, or for all
features and all versions (wild card characters are acceptable).

SentinelLM Programmer’s Reference Manual 217

VLSgetDistbCritToFile()

The status code, LS SUCCESS, isreturned if successful. Otherwise, it will

return the following error codes:

VLS_CALLING_ERROR

VLS_NO_SUCH_FEATURE

VLS_FILE_OPEN_ERROR
VLS_NON_REDUNDANT_SRVR

VLS_NON_REDUNDANT_FEATURE

VLS_DIFF_LIB_VER

VLS_SERVER_SYNC_IN_PROGRESS

VLS_NO_SERVER_RUNNING

VLS_HOST_UNKNOWN

VLS_BAD_SERVER_MESSAGE

LS_NO_NETWORK

LS_NORESOURCES

LS_BAD_PARAMETER

LS_BUFFER_TOO_SMALL
LS_NO_SUCH_FEATURE

LS_NON_REDUNDANT_SERVER_

CONTACTED

SentinelLM Programmer’s Reference Manual

feature_name is NULL
file_name is NULL.

Using stand-alone library. This function
cannot be used with stand-alone library.

License server does not have a license that
matches requested feature.

An error occurred opening the file.

License server is non-redundant and
therefore cannot support this redundancy-
related operation.

Feature is non-redundant and thus cannot
be used in this redundancy-related
operation.

Version mismatch between license server
APl and client API.

License server synchronization process.

License server on specified host is not
available for processing license operation
requests.

Invalid hostName is specified.

Message returned by license server could
not be understood.

Generic error indicating that the network is
unavailable in servicing license operation.

An error occurred in attempting to allocate
memory needed by this function.

License server’'s name is NULL or an empty
string.

Buffer provided is too small.
feature_version is non-existent.

LSHOST is set to non-redundant license
server.

218

VLSgetFeaturelnfoToFile()

VLS_CALLING_ERROR License server’'s name is NULL or an empty
string.

VLS_SERVER_ALREADY_PRESENT License server's name already exists in the
redundant license server pool.

VLS _LEADER_NOT_PRESENT Leader name is not known.
VLS _NON_REDUNDANT_SRVR Sets LSHOST to non-redundant license
server.

For acomplete list of the error codes, “ Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

VLSgetFeaturelnfoToFile()

Syntax int VL SgetFeaturelnfoToFile (
unsigned char LSFAR *feature_name,
unsigned char LSFAR *version char

LSFAR *file_name

Argument Description

feature_name Name of the feature.

version Version of the feature. Must be unique.

file_name License server will write distribution criteria for the

specified feature or version to the file.

Description Requests the license server to provide al feature information for the given
licenseto file_name. Wild cards are acceptable.

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR file_name is NULL
feature_name is NULL.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature.

SentinelLM Programmer’s Reference Manual 219

VLSgetHostName()

VLS_NON_REDUNDANT_SRVR

VLS_NO_SERVER_RUNNING

VLS_HOST_UNKNOWN
VLS_BAD_SERVER_MESSAGE

LS_NO_NETWORK

LS_NORESOURCES

License server is non-redundant and
therefore cannot support this redundancy-
related operation.

License server on specified host is not
available for processing the license
operation requests.

Invalid hostName is specified.

Message returned by the license server
could not be understood.

Generic error indicating that the network is
unavailable in servicing license operation.

An error occurred in attempting to allocate
memory needed by function.

For acompletelist of the error codes, “ Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

Syntax

VLSgetHostName()
int VL SgetHostName (
char LSFAR *IP_address,
char LSFAR *hostname int
HostNameBufLen
Argument Description
IP_address IP addresses to be converted to hosthame
hostname IP address to be converted to hostname
HostNameBufLen The length of the message copied into hostname.

Description Will take the IP address as input and try to resolve it into the hostName, if

220

possible.

Chapter 5 - Redundancy API

VLSgetLeaderServerName()

Returns The status code, LS_SUCCESS, is returned if successful.Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR

IP_address is NULL
hostName is NULL
hostNameBufLen is NULL

Using stand-alone library. This function
cannot be used with stand-alone library.

VLS_INVALID_IP_ADDRESS IP_address is not valid.
VLS _UNRESOLVED_IP_ADDRESS IP_address is valid, but could not be

LS_BUFFER_TOO_SMALL

LS_NORESOURCES

resolved.

Length of hostName returned exceeds
hostNameBufLen.

An error occurred in attempting to allocate
memory needed by this function.

For acompletelist of the error codes, “ Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

VLSgetLeaderServerName()

Syntax int VL SgetL eaderServerName (
char LSFAR *leader_name))
Argument Description
leader_name Current lead license server's name.

Return types:
¢ 0= Success. Found leader license server name.

* 1 =Contact license server is not a redundant license
server.

e 2 = Other error.

Description Returnsthe current lead license server’s name by contacting any license server.
Thelicense server to be contacted is selected by VL SgetServer Name() call. So
alicense server’s name must be set before acall is made to this function.

SentinelLM Programmer’s Reference Manual

221

VLSgetLeaderServerName()

Returns

222

The status code, LS SUCCESS, isreturned if successful.Otherwise, it will

return the following error codes:

VLS_CALLING_ERROR

LS_BUFFER_TOO_SMALL

VLS_NON_REDUNDANT_SRVR

VLS_LEADER_NOT_PRESENT

VLS_SERVER_SYNC_IN_PROGRESS

VLS_NON_REDUNDANT_FEATURE

VLS_DIFF_LIB_VER

VLS_NO_SERVER_RUNNING

VLS_HOST_UNKNOWN

VLS_BAD_SERVER_MESSAGE

LS_NO_NETWORK

LS_NORESOURCES

LS_UNRESOLVED_IP_ADDRESS
LS_BAD_PARAMETER

LS_BUFFER_TOO_SMALL
VLS_CALLING_ERROR

VLS_SERVER_ALREADY_PRESENT

leader_name is NULL
leadername_len is NULL.

leadername_len is smaller than the license
server name that will be returned.

License server is non-redundant and
therefore cannot support this redundancy-
related operation.

Unknown leader.
License server synchronization in process.

Feature is non-redundant and thus cannot
be used in this redundancy-related
operation.

Version mismatch between license server
API and client API.

License server on specified host is not
available for processing the license
operation requests.

Invalid hostName is specified.

Message returned by the license server
could not be understood.

Generic error indicating that the network is
unavailable in servicing license operation.

An error occurred in attempting to allocate
memory needed by this function.

IP address given is not correct.

License server's name is NULL or an empty
string.

Buffer provided is too small.

License server's name is NULL or an empty
string.

License server’'s name already exists in the
redundant license server pool.

Chapter 5 - Redundancy API

VLSgetHostAddress()

VLS _LEADER_NOT_PRESENT Leader name is not known.

VLS _NON_REDUNDANT_SRVR Sets LSHOST to non-redundant license
server.

For acomplete list of the error codes, “ Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

VLSgetHostAddress()
Syntax int VL SgetHostAddress (

char LSFAR * hostname, charLSFAR
*|P_AddressBuf intl PAddrBufLen

Argument Description

hostname The host name of the computer containing the license

server that is using the log file.
IP_AddressBuf Pointer to the IP address buffer.
IPAddrBufLen The length of the message copied into IP_AddressBuff.

Description Will take hostName as input and triesto resolveit into I P address, if possible.

Returns The status code, LS SUCCESS, isreturned if successful.Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR IPaddressBuf is NULL
IPAddrBufLen is NULL.
Using stand-alone library. This function
cannot be used with stand-alone library.
VLS _UNRESOLVED_HOSTNAME IP_address is valid, but could not be
resolved.
IPX protocol is current.

For acompletelist of the error codes, “ Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

SentinelLM Programmer’s Reference Manual 223

VLSgetLicSharingServerList()

Syntax

Description

Returns

224

VLSgetLicSharingServerList()

int VL SgetLicSharingServerList (

char LSFAR *feature_name,
char LSFAR *feature_version
SHR_SRVR_TYPE *server_list
int LSFAR *server_list_len int*num_servers
Argument Description
feature_name Name of the feature.
feature_version Version of the feature.
server_list A list that contains the license server’'s names (hostNames

or IPX addresses).

server_list_len License server will retrieve all the license servers names. If
the list is larger than the specified limit, it will be truncated.

num_servers Identifies the number of license servers.

Returns the license server names which are sharing tokens for a given feature
name and version. The server_name _list will contain license server names
(hostNames or IPX addresses).

The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR feature_name is NULL
feature_version is NULL
server_list is NULL
server_list_len is zero.

LS _BUFFER_TOO_SMALL server_list_len is smaller than license
server name that will be returned.

VLS_NO_SUCH_FEATURE License server does not have a license that
matches the requested feature.

VLS_FEATURE_INACTIVE Feature is inactive on specified license
server.

VLS _SERVER_SYNC_IN_PROGRESS License server synchronization in process.

Chapter 5 - Redundancy API

VLSgetLicSharingServerList()

VLS _NON_REDUNDANT_FEATURE Feature is non-redundant and thus cannot
be used in this redundancy-related

operation.

VLS _DIFF_LIB_VER Version mismatch between license server
APl and client API.

VLS _NO_SERVER_RUNNING License server on specified host is not

available for processing the license
operation requests.

VLS _HOST_UNKNOWN Invalid hostName is specified.

VLS _BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable in servicing license operation.

LS_UNRESOLVED_HOSTNAME Host name given is not correct.

LS_BAD_PARAMETER License server’'s name is NULL or an empty
string.

LS_BUFFER_TOO_SMALL Buffer provided is too small.

VLS_CALLING_ERROR License server’'s name is NULL or an empty
string.

VLS _SERVER_ALREADY_PRESENT License server's name already exists in the
redundant license server pool.

VLS _LEADER_NOT_PRESENT Leader name is not known.
VLS _NON_REDUNDANT_SRVR Sets LSHOST to non-redundant license
server.

For acomplete list of the error codes, “ Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

SentinelLM Programmer’s Reference Manual 225

VLSgetLicSharingServerList()

226 Chapter 5 - Redundancy API

Chapter 6 - License Queuing
API

License queuing isthe ability of our license serversto take alicense request for a
feature and placeit in reserve until alicenseis available. Once the licenseis
available, the license server will then notify the requesting application that the
licenseis now ready for use.

License Queuing Example Code

The following sampleisfor illustration purposes only. For aworking sample
application, please refer to gbounce.c in the samples directory.

/**/

I* */

[* Copyright (C) 1999 Rainbow Technologies, Inc. */
* All Rights Reserved */

I* */

[* ThisModule contains Proprietary Information of */
/* Rainbow Technologies, Incand should betreatedas ~ *//* Confidential
*/

/**/

#include "lserv.h"
Static LS Handle Is_handle;

[* Prototype of timer handler function */
void TimerHandler ();

int main(argc, argv)

SentinelLM Programmer’s Reference Manual 227

int argc;
char **argv;

{
char feature_name [] ="My Application";
char version_name[] ="1.0";
LS STATUS CODE returnCode = 0;
int number_of_units_requested = 1;
VL SqueuePreference queue_preference;
int request_flag

if (VLS_INITIALIZE()) { /* InitializetheLSAPI */
return (1);
}

request_flag= VLS REQ GET | VLS REQ QUEUE;

[* Stay in queue at most 30 minutes */
queue_preference.wait_time = 1800;

/* Once license available for thisclient, reserveit
for 5 minutes */
queue_preference.hold_time = 600;

queue_preference.priority_num=1; */ Not used */

[* Don't queue me if there are 5 or more entries
on the queue */
queue_preference.absPosition = 5;

/* Don't queue me if there are 2 or more entries from my
reservation group on the queue */
queue_preference.grpPosition = 2;

/* Request key from Sentinel LM license manager */
returnCode =
VL SqueuedRequest
(LS_ANY,

(unsigned char LSFAR *) "SentinelLM User",
(unsigned char LSFAR *) feature_name,
(unsigned char LSFAR *) version_name,
&number_of units_requested,

228 Chapter 6 - License Queuing API

(unsigned char LSFAR *) NULL,
(LS CHALLENGE LSFAR*) NULL,

&ls_handle,
& queue_preference,
&request_flag);
if (returnCode==LS_SUCCESS)
{
if (request_flag & VLS REQ _GET)
[* License was available, run the application! */
}
elseif (request_flag & VLS REQ QUEUE)
{
[* Was placed on the queue */
[* TODO: Start timer for sending periodic queue updates
(every 50 secsis recommended). Assume function
TimerHandler () will be called when the timer expires
(see below). */
}
}
ese
{
/* Queued request was not successful, clean up and exit. */
VL Scleanup ();
return (1);
} /* End if success */
} /¥ end main () */

void TimerHandler ()
{
/* Called periodically in order to check the queue status.*/

long expiration_time
LS STATUS CODE returnCode

returnCode = VL SupdateQueuedClient (

SentinelLM Programmer’s Reference Manual 229

Is_handle,

&expiration_time

(unsigned char LSFAR *) NULL

(LS CHALLENGE LSFAR*) NULL;

/* Isthe queued license available

if (returnCode==LS SUCCESS & &
expiration_time>0)
{
if ((returnCode =
VL SgetQueuedLicense
(Is_handle,
(unsigned char LSFAR *) NULL
(LS CHALLENGE LSFAR*) NULL))==LS SUCCESS)

[* Disable the application’s timer and run the
application! */

/* Enable automatic heartbeats to the server */
VL SdisableAutoTimer (Is_handle, VLS _ON);

}

else

{
[* Error getting the license, clean up and quit. */
VL Scleanup ();

[* Terminate the process */

230 Chapter 6 - License Queuing API

License Queuing Functions

The following table summarizes the license queuing functions:

Table 6-1: License Queuing

Function

Description

VLSqueuedRequest()
VLSqueuedRequestExt()

VLSgetQueuedClientinfo()

VLSremoveQueuedClient()
VLSremoveQueue()
VLSgetHandleStatus()
VLSupdateQueuedClient()

VLSgetQueuedLicense()

VLSinitQueuePreference()

An integrated request for an authorized license
code from the license server. Use this API to:

* Request a license, with option to queue
(requestFlag = VLS _REQ_GET |
VLS_REQ_QUEUE).

* Request a license without queuing
(requestFlag = VLS_REQ_GET). This
option has the same effect as calling an
non-queuing API request (LSRequest(),
VLSrequestExt(), etc.).

* Request to be placed on the queue, even
if the license server has available licenses
(requestFlag = VLS_REQ_QUEUE).

Retrieves the current information of a queued
client, such as the number of requested
licenses, feature_name, version, and index.

Removes a queued client from the queue.
Deletes the entire queue.
Reports the current status of the handle.

Once the client has been put in the queue, it
must call this API periodically to inquire its
current status with the license server. Moreover,
calling this function has the effect of informing
the license server that the client is alive and is
still seeking the license.

Obtains license, once it has been granted. This
function is called only after a call to
VLSupdateQueuedClient() reveals that a
license has been granted to a queued client.

Initializes provided queue preference structure
to default values.

SentinelLM Programmer’s Reference Manual

231

VLSqueuedRequest() and VLSqueuedRequestEXxt()

VLSqueuedRequest() and VLSqueuedRequestExt()

Syntax int VL SqueuedRequest(
unsigned char LSFAR *license_system
unsigned char LSFAR *publisher_name,
unsigned char LSFAR*product_name unsigned char) LSFAR*version
unsigned long LSFAR *units_reqd unsigned charLSFAR
*|og_comment LS CHALLENGELSFAR *challenge
LS HANDLE LSFAR *Ishandle VL SqueuePreference
LSFAR *gPreference intLSFAR requestFlag;

int VL SqueuedRequestEXt(

unsigned char LSFAR *license_system
unsigned char LSFAR *publisher_name,
unsigned char LSFAR*product_name unsigned char) LSFAR*version
unsigned long LSFAR *units_reqd unsigned charLSFAR
*|og_comment LS CHALLENGELSFAR *challenge
LS HANDLE LSFAR *Ishandle VL SqueuePreference
LSFAR *gPreference intLSFAR requestFlag

VL Sserverinfo LSFAR server_info;

Argument Description

license_system A license requested in the system. Pointer to the string
which uniquely identifies a particular license system.

publisher_name Refers to the name of the publisher (manufacturer) of the
product. Cannot be NULL and must be unique. It is
recommended that a company name and trademark be
used.

product_name Feature name. The name of the product requesting
licensing resources. Cannot be NULL and must be unique.

version Version for which licenses are requested. Must be unique
for the associated feature.

units_reqd Number of units requested to run the license. The license
system verifies that the requested number of units exist
and is possible to reserve those units, but no units are
actually consumed at that time. The default is 1, and this
value is used if NULL value is passed.

232 Chapter 6 - License Queuing API

VLSqueuedRequest() and VLSqueuedRequestExt()

Argument

Description

log_comment

challenge

Ishandle

gPreference

requestFlag

server_info

A string that is written by the license manager to the
comment field of the usage log file.

Pointer to a challenge structure. The challenge-response
will also be returned.

Handle to the license for which the user has requested. If
the user has successfully received the license, the status
of the handle is VLS_ACTIVE_HANDLE. Otherwise, the
client is put in the queue and the status of the handle is
VLS_QUEUED_HANDLE.

Pointer to the VLSqueuePreference() structure, which is
used to specify the client’s preference for how it wishes to
be placed in the queue. After the call is made, the structure
contains the values assigned by the license server when it
has placed the client in the queue.

Valid values are:
 VLS_REQ_GET - specifies a non-queuing request
(without queuing the client). If license is not
available, client will not be queued.

* VLS_REQ_QUEUE - specifies to queue the client
(without returning with the license). Even if license is
available, client will be queued.

If both are specified the client informs the license server to
give the license, if available, otherwise queue the client.
Upon return from this API, this parameter will be set to
either VLS_REQ_GET (specifying the license has been
granted) or, VLS_REQ_QUEUE (specifying that the client
has been queued).

Information about the server.

Description The API provides the mechanism to the calling application to ask the license
server to grant alicense, if available. If no license is available, the client will be
gueued. The client can call VL SupdateQueuedClient() toinquireif alicenseis
available. Once alicenseis available, the client can call
VL SgetQueuedL icense() to obtain the license.

In response, the license server will either issue the key when (and if) the license
isavailable, put the client in the queue when the license is not available, or issue

SentinelLM Programmer’s Reference Manual

233

VLSqueuedRequest() and VLSqueuedRequestEXxt()

234

an appropriate error message, which describes the cause for not being able to
service the request.

The client will pass the following information to the license server:

Time in seconds for the client to wait in the queue for the license.

Time in seconds for the server to hold the license once it becomes
available.

Priority relative to other clients.

The maximum position within the queue before which the client can
be queued.

The maximum position within the group queue, before which the
client can be queued.

Noticethat the LS MAX_QLEN environment variable can override the
gPreference structure. The end-user can put alimit on the maximum size of the
gueue by definingthe LS MAX_QLEN environment variable. Thisvariable
depends upon the availability of memory resources. The different values of

LS MAX_QLEN are:

LS MAX_QLEN not set. Client preferenceis applied.

LS MAX_QLEN =-1. Client preferenceisignored and the client is
always queued.

LS MAX_QLEN =0. Queueisdisabled and no clients will be put in
the queue.

LS MAX_QLEN > 0. Overrides the client’s preference.

Similarly variable LS MAX_GRP_QLEN will override the setting of the max
group wait time in the gPreference structure.

VariablesLS MAX WAIT SECandLS MAX HOLD_SEC override the max
wit time and max hold time elements of the gqPreference structure.

Chapter 6 - License Queuing API

VLSqueuedRequest() and VLSqueuedRequestExt()

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will

return the following error codes:

VLS_CALLING_ERROR

VLS_APP_UNNAMED

VLS_NO_LICENSE_GIVEN

LS_NOLICENSESAVAILABLE

LS_INSUFFICIENTUNITS

VLS_NO_SUCH_FEATURE

LS_LICENSE_EXPIRED

VLS_NOMORE_QUEUE_
RESOURCES

VLS_APP_NODE_LOCKED

VLS_USER_EXCLUDED

VLS_CLK_TAMP_FOUND

SentinelLM Programmer’s Reference Manual

request_flag specifies queuing but
gPreference is NULL.

Ishandle is NULL.

challenge argument is non-NULL, but
cannot be understood.

product_name is NULL

version is NULL

units_reqd is zero.

Invalid handle specified.

Generic error indicating that the license is
not granted.

All licenses in use.

License server does not currently have
sufficient licensing units for the requested
feature to grant a license.

License server does not have a license that
matches requested feature.

License has expired.
Queue is full.

Requested feature is node locked, but
request was issued from an unauthorized
machine.

User or machine excluded from accessing
requested feature.

License server has determined that the
client’s system clock has been modified.
The license for this feature has time-
tampering protection enabled, so the
license operation is denied.

235

VLSqueuedRequest() and VLSqueuedRequestEXxt()

VLS_VENDORIDMISMATCH

VLS_TRIAL_LIC_EXHAUSTED

VLS_NO_SERVER_RUNNING

VLS_NO_SERVER_RESPONSE

VLS_HOST_UNKNOWN

VLS_NO_SERVER_FILE

VLS_BAD_SERVER_MESSAGE

LS_NO_NETWORK

VLS_NON_REDUNDANT_SRVR

VLS_SERVER_SYNC_IN_PROGRESS

VLS_FEATURE_INACTIVE

VLS_MAJORITY_RULE_FAILURE

LS_NORESOURCES

VLS_ELM_LIC_NOT_ENABLE

The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has the license.

Trial license has expired.

License server on specified host is not
available for processing license operation
requests.

Communication with license server has
timed out.

Invalid hostName is specified.

The license server has not been set and is
unable to determine which license server to
use.

Message returned by the license server
could not be understood.

Generic error indicating that the network is
unavailable for servicing the license
operation.

License server is non-redundant and
therefore cannot support this redundancy-
related operation.

License server synchronization in process.

Feature is inactive on specified license
server.

Majority rule failure prevents token from
being issued.

An error occurred in attempting to allocate
memory needed by this function.

The license was converted using the
license conversion utility. (From a 5.x
license), but the DLT process is not
running.

For acomplete list of the error codes, “ Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

236

Chapter 6 - License Queuing API

VLSgetQueuedClientinfo()

VLSgetQueuedClientinfo()

Syntax int VL SgetQueuedClientInfo
unsigned char LSFAR, *feature name
unsigned char LSFAR *version
int index
VL SqueuedClientinfoLSFAR *client_info
Argument Description
feature_name Feature name of the client for which we are requesting
information.
version Version for which licenses are requested. Must be unique.
for the associated feature.
index Index of the client with the license server, for a particular
feature.
client_info The structure in which information will be returned. Pointer
to the VLSqueuedClientinfo() structure, which specifies
the client information.

Description Fillsthe structure pointed by client_info to a structure containing the current
information of aqueued client identified by specified feature_name, version, and
index.

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will

return the following error codes:

VLS_CALLING_ERROR

VLS_APP_UNNAMED

VLS_NO_LICENSE_GIVEN

SentinelLM Programmer’s Reference Manual

client_info parameter is NULL.
index is negative.

Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

feature_name is NULL
version is NULL

Finished retrieving client information for all
the clients.

237

VLSremoveQueuedClient()

VLS_NO_SUCH_FEATURE License server does not have a license that
matches requested feature.

VLS _MULTIPLE_VENDORID_FOUND The license server has licenses for the
same feature and version from multiple
vendors. It is ambiguous which feature is
requested.

VLS _NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS _NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS _HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE The license server has not been set and is
unable to determine which license server to
use.

VLS BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS _NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

For acomplete list of the error codes, “ Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

VLSremoveQueuedClient()

Syntax int VL SremoveQueuedClient
unsigned char LSFAR, *feature name
unsigned char LSFAR *version
int gkey_id ;
Argument Description
feature_name Feature name of the client for which we are requesting

information.

238 Chapter 6 - License Queuing API

VLSremoveQueuedClient()

Argument Description
version Version for which licenses are requested. Must be unique.
gkey_id Identifier of the client queue, which needs to be removed.

Description This APl provides an administrative mechanism to remove a queued client.
VL SremoveQueuedClient() will be available to:

« Theuser who started the license server, which actually signifies when
the client was put in the queue.

* Theroot/administrator account.

» The user-account that originally goes to the queue placement.

Internally, this API will send a message to signal the license server that a
specified client in the queue for a specified feature should be removed.

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR g_key_id parameter cannot be negative.
Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

VLS_APP_UNNAMED feature_name is NULL
version is NULL

VLS _NO_SUCH_CLIENT License server does not have the specified
client

VLS_CLIENT_NOT_AUTHORIZED Client is not authorized to make the
specified request.

VLS _NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS _NO_SERVER_RESPONSE Communication with license server has
timed out.

VLS _HOST_UNKNOWN Invalid hostName was specified.

SentinelLM Programmer’s Reference Manual 239

VLSremoveQueue()

VLS_NO_SERVER_FILE The license server has not been set and is
unable to determine which license server to

use.

VLS _BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

For acompletelist of the error codes, “ Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

VLSremoveQueue()

Syntax int VL SremoveQueue unsigned char
LSFAR *feature name
unsigned char LSFAR *version
Argument Description
feature_name Identifies the license whose queue needs to be removed.
version Version for which licenses are requested. Must be unique.

Description This APl will provide a mechanism to delete the complete queue for a specified
license.

VL SremoveQueue() will be available to:

e The user-account who started the license server, which actually
signifies when the client was put in the queue.

* the root/administrator account.

240 Chapter 6 - License Queuing API

VLSgetHandleStatus()

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR Attempted to use stand-alone mode with
network only library, or network mode with
stand-alone library.

VLS_APP_UNNAMED feature_name is NULL
version is NULL
VLS_CLIENT_NOT_AUTHORIZED Client not authorized to remove queue.

VLS _NO_SERVER_RUNNING License server on specified host is not
available for processing license operation
requests.

VLS _HOST_UNKNOWN Invalid hostName was specified.

VLS_NO_SERVER_FILE The license server has not been set and is
unable to determine which license server to
use.

VLS _BAD_SERVER_MESSAGE Message returned by the license server
could not be understood.

LS_NO_NETWORK Generic error indicating that the network is
unavailable for servicing the license
operation.

LS_NORESOURCES An error occurred in attempting to allocate

memory needed by this function.

For acomplete list of the error codes, “ Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions” on page 295.

VLSgetHandleStatus()

Syntax int VL SgetHandleStatus
LS Handle Ishandle ;
Argument Description
Ishandle Identifies the handle previously returned by

VLSqueuedRequest().

SentinelLM Programmer’s Reference Manual 241

VLSupdateQueuedClient()

Description Reports the current status of the handle.

Returns Returns the following error codes:

LS_BADHANDLE Invalid handle. Handle is already released
and destroyed from previous license
operations.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLS _AMBIGUOUS_HANDLE Ishandle is an ambiguous handle; it is not
exclusively active or exclusively queued.

VLS_ACTIVE_HANDLE Ishandle is an active handle.

VLS _QUEUED_HANDLE Ishandle is a queued handle.

For acompletelist of the error codes, “ Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

VLSupdateQueuedClient()

Syntax int VL SupdateQueuedClient
LS HANDLE Ishandle longLSFAR
absExpiryTime unsigned charLSFAR unused1

LS CHALLENGE LSFAR *unused2 ;

Argument Description

Ishandle The handle previously returned by VLSqueuedRequest().
The status of the handle must be
VLS _QUEUED_HANDLE or an error will occur.

242 Chapter 6 - License Queuing API

VLSupdateQueuedClient()

Argument Description

absExpiryTime Once the license is available with the license server, the
next call to this API returns in this parameter, the absolute
expiry time before which the client should get the license
using VLSgetQueuedLicense(). If any call to
VLSupdateQueuedClient() returns a non-negative value
in this parameter, then the license has been granted and
set aside for the client. There is no need to continue its
periodic call to this function. The next step is to obtain the
license by calling VLSgetQueuedLicense().

Possible values for absExpiryTime are:
e Zero = license is not available.
* Non-zero = license is available and will stop calling
the API.
unusedl Uses NULL as the value.
unused?2

Description Theclient callsthis API, requesting the license server to put him in the queue.

Returns

Once the client has been put in the queue, it must call this API periodically to
inquire its current status with the license server. Moreover, it aso informs the
license server that, heis alive and is seeking the license.

Notice, the client will be needs to make at least one queue update, within 5
minutes of the previous queue-update or the request to queueitself. Thisis
imperative so as to make the license server aware of the active clients. If the
license server does not receive an update request from a client within 5 minutes
of the last queue-update, it will then assume the client to be inactive and remove
the client from the queue.

The status code, LS SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR absExpiryTime is NULL.
Handle cannot be active.
challenge argument is non-NULL, but
cannot be understood.

LS_BADHANDLE Invalid handle.

SentinelLM Programmer’s Reference Manual 243

VLSupdateQueuedClient()

LS_LICENSETERMINATED

VLS_NO_SUCH_FEATURE

LS_NOLICENSESAVAILABLE
LS_LICENSE_EXPIRED
VLS_TRIAL_LIC_EXHAUSTED
VLS_USER_EXCLUDED

VLS_FINGERPRINT_MISMATCH

VLS_APP_NODE_LOCKED

VLS_CLK_TAMP_FOUND

VLS_VENDORIDMISMATCH

VLS_INVALID_DOMAIN

VLS_NO_SERVER_RESPONSE

VLS_BAD_SERVER_MESSAGE

LS_NO_NETWORK

LS_NORESOURCES

Cannot update license because license has
already expired.

License server does not have a license that
matches requested feature.

All licenses are in use.
License has expired.
Trial license has expired.

User or machine excluded from accessing
requested feature.

User or machine excluded from accessing
the requested feature.

Feature is node locked, but update request
was issued from an unauthorized machine.

License server has determined that the
client’s system clock has been modified.
The license for this feature has time-
tampering protection enabled, so the
license operation is denied.

The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has the license.

The domain of the license server is different
from that of the client.

Communication with license server has
timed out.

Message returned by the license server
could not be understood.

Generic error indicating that the network is
unavailable for servicing the license
operation.

An error occurred in attempting to allocate
memory needed by this function.

For acompletelist of the error codes, “ Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

Chapter 6 - License Queuing API

VLSgetQueuedLicense()

VLSgetQueuedLicense()

Syntax int VL SgetQueuedLicense
LS HANDLE Ishandle unsigned charLSFAR
*log_comment LS CHALLENGE

LSFAR *challenge ;

Argument Description

Ishandle The handle previously returned by VLSqueuedRequest().
The status of the handle must be
VLS_QUEUED_HANDLE and the last call to
VLSupdateQueuedClient() must have reported that the
licenses have been made available with the license server.

log_comment A string that is written by the license manager to the
comment field of the usage log file. Pointer to a challenge
structure. The challenge-response will also be returned.

challenge The challenge-response for this operation.

Description Once the queued client identifies that the required licenses are made available
with the license server, it callsthis API to fetch the license.
This API will be passed from the client library handle only and, internaly, it will
send all the memorized information to the license server. On return it will
provide avalid client-handle value that will be used in later API calls.

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR challenge argument is non-NULL, but
cannot be understood.

LS_BADHANDLE Invalid handle.

LS_BUFFER_TOO_SMALL An error occurred in the use of an internal
buffer.

VLS_NO_LICENSE_GIVEN Generic error indicating that the license is
not granted.

VLS_NO_SUCH_FEATURE License server does not have a license that

matches requested feature.

SentinelLM Programmer’s Reference Manual 245

VLSgetQueuedLicense()

246

LS_LICENSE_EXPIRED
VLS_TRIAL_LIC_EXHAUSTED
LS_NOLICENSESAVAILABLE
VLS_USER_EXCLUDED

VLS_FINGERPRINT_MISMATCH

VLS_APP_NODE_LOCKED

VLS_CLK_TAMP_FOUND

VLS_VENDORIDMISMATCH

VLS_INVALID_DOMAIN

VLS_NO_SERVER_RESPONSE

VLS_BAD_SERVER_MESSAGE

LS_NO_NETWORK

LS_NORESOURCES

VLS_ELM_LIC_NOT_ENABLE

License has expired.
Trial license has expired.
All licenses are in use.

User or machine excluded from accessing
requested feature.

Client-locked. Locking criteria does not
match.

Requested feature is node locked, but
request was issued from unauthorized
machine.

License server has determined that the
client’s system clock has been modified.
The license for this feature has time-
tampering protection enabled, so the
license operation is denied.

The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has the license.

The domain of the license server is different
from that of client.

Communication with license server has
timed out.

Message returned by the license server
could not be understood.

Generic error indicating that the network is
unavailable for servicing the license
operation.

An error occurred in attempting to allocate
memory needed by this function.

The license was converted using the
license conversion utility. (From a 5.x
license), but the DLT process is not
running.

For acomplete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

Chapter 6 - License Queuing API

VLSinitQueuePreference()

VLSinitQueuePreference()

Syntax int VLSinitQueuePreference
VL SqueuePreference * gPreference ;
Argument Description
gPreference Pointer to the VLSqueuePreference() structure, which

specifies the client preference for getting into the queue.
After the call is made, the structure signifies the actual
values, which the license server allocates to the client
while putting him in the queue.

Description Initializes the VL SqueuePr efer ence() structure to default values.

Returns The status code, LS_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR gPreference is NULL.

For acompletelist of the error codes, “ Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

SentinelLM Programmer’s Reference Manual 247

VLSinitQueuePreference()

248 Chapter 6 - License Queuing API

Chapter 7 - Commuter License
API

Commuter licensing is the capability to temporarily check out an authorization
to use a protected application from a Sentinel LM license server to a portable
computer. The most common use of this feature isto allow use of a protected
application on alaptop computer that will be disconnected from the network.

Commuter License Related Functions

The following table summarizes the commuter license related functions:

Table 7-1: Commuter License Related Functions

VLSgetCommuterinfo() Returns the commuter license information.
VLSgetAndlInstallCommuter- Obtains the commuter code from the license
Code() server and issues the commuter authorization to

the client side persistence database

VLSuninstallAndReturnCommuter- Removes the commuter authorization from the
Code() client side persistence database and returns the
token to the license server.

VLSgetCommuterinfo()

Syntax int VL SgetCommuterinfo
unsigned char *feature_name,

SentinelLM Programmer’s Reference Manual 249

VLSgetAndInstallCommuterCode()

Description

Returns

unsigned char *version intindex
VLScommuterinfo *commuter_info,

Argument Description

feature_name Name of the feature.

version Version of the feature.

index Used to specify a particular client.

commuter_info Displays the number of clients for commuter licenses.

Returns the commuter license information.

VL SgetCommuter Info() can be used two ways:

1. Specify feature_name and version as non-NULL and API will return
information about this feature. API will ignore the index argument.

2, If feature_nameis NULL, then API will return information about the index
feature in the persistence database. API will ignore the version argument.

API will be called until it return VLS NO_MORE_FEATURES by
incrementing the index every time.

The status code, VL Scg SUCCESS, isreturned if successful. For acomplete list
of the error codes, “Appendix E - Error Codes for Redundancy, Queuing and
Commuter Functions’ on page 295.

Syntax

250

VLSgetAndinstallCommuterCode()

int VL SgetAndlnstall CommuterCode

unsigned char *feature_name,
unsigned char *feature_version long*units_reqd
int* duration int

*lock_mask insigned char
*log_comment LS CHALLENGE
*challenge,

Argument Description

feature_name Name of the feature.

feature_version Version of the feature.

Chapter 7 - Commuter License API

VLSuninstallAndReturnCommuterCode()

Argument Description

units_reqd Number of units required to run the license. The license
system verifies that the requested number of units exist
and may reserve those units, but no units are actually
consumed at that time.

duration Displays the number of clients for commuter licenses.

lock_mask Mask defining which fields are to be used for locking.

On entry, lock_mask specifies the locking-criteria that
should be used for looking the commuter-code. If a zero is
given, the API will lock the code to Disk ID (windows),
otherwise it will lock to host name. Notice, the API will
replace the zero with lock_mask for Disk ID or host name
before sending this value to the license server.

log_comment A string to be written by the license server to the comment
field of the usage log file. Pass a NULL value for this
argument if no log comment is desired.

challenge The challenge-response for this operation. Pointer to a
challenge structure. The challenge-response will also be
returned in this structure.

Description Obtains the commuter code from the license server and installs the stand-alone
commuter authorization at the client.

Returns The status code, VL Scg_SUCCESS, isreturned if successful. Otherwise, it will
return the following error codes:

VLS_CALLING_ERROR duration is NULL
lock_mask is NULL.

For acomplete list of the error codes, “Appendix E - Error Codes for
Redundancy, Queuing and Commuter Functions’ on page 295.

VLSuninstallAndReturnCommuterCode()

Syntax int VL Suninstall AndReturnCommuterCode
unsigned char *feature_name,

SentinelLM Programmer’s Reference Manual 251

VLSuninstallAndReturnCommuterCode()

Description

Returns

252

unsigned char *feature_version unsigned char
*log_comment

Argument Description

feature_name Name of the feature.

feature_version Version of the feature.

log_comment A string to be written by the license server to the comment

field of the usage log file. Pass a NULL value for this
argument if no log comment is desired.

Uninstalls the commuter authorization from the client and returns the commuter
authorization to the license server.

The status code, VL Scg SUCCESS, isreturned if successful. For acomplete list
of the error codes, “Appendix E - Error Codes for Redundancy, Queuing and

Commuter Functions” on page 295.

Chapter 7 - Commuter License API

Chapter 8 - Usage Log Functions

The Usage log functions provide capability of controlling and manipulating the
usage log file.
The following table summarizes the usage log functions:

Table 8-1: Usage log functions
Function Description

VLSchangeUsageLogFileName() This API changes the name of the existing
usage log file. This change can be done while

the file is being used.

VLSgetUsagelLogFileName() API determines the name of the existing usage
log file.

VLSchangeUsageLogFileName()

Syntax int VL SchangeUsagel ogFileName
char *hostName, char

*newkFileName

Argument Description

hostName The host name of the computer containing the license
server that is using the log file.

newFileName The new name you want to use for the log file.

Description Changes the name of the existing usage log file. This change can be done while
thefileis being used.

SentinelLM Programmer’s Reference Manual 253

VLSgetUsagelLogFileName()

Returns

The status code, LS SUCCESS, isreturned if successful. Otherwise, a specific
error code is returned indicating the reason for failure. For a complete list of the
error codes, see see “Appendix D - Error and Result Codes for License
Generation Functions’ on page 291.

Syntax

Description

Returns

254

VLSgetUsagelLogFileName()

int VL SgetUsagel ogFileName (

char *hostName, char*fileName
Argument Description
hostName The host name of the computer containing the license
server that is using the log file.
fileName The name of the existing usage log file is returned in this
argument.

Determines the name of the existing usage log file.

The status code, LS SUCCESS, isreturned if successful. Otherwise, a specific
error code is returned indicating the reason for failure. For a complete list of the
error codes, see see “Appendix D - Error and Result Codes for License
Generation Functions’ on page 291.

Chapter 8 - Usage Log Functions

Chapter 9 - Utility Functions

The utility functions are only available on UNIX platforms.:

Table 9-1: Utility Functions

Function Description

VLSscheduleEvent() Schedules eventhandler to be awakened after
so many seconds. It handles only SIGALRM
signal.

VLSdisableEvents() Disables the events scheduled. To disable a

particular event pass the event handler function
name as the argument. To disable all the events
pass NULL as argument.

VLSeventSleep() Disables the feature for an allotted time.

VLSscheduleEvent()

Syntax int VL Sschedul eEvent (
unsigned long *seconds, void*eventHandler
long *repeat_event
Argument Description
seconds Time interval in seconds.
eventHandler Signal handler.
repeat_event Number of event repetitions.

Description Thisfunction iscalled for scheduling eventHandler to be awakened after so
many seconds. Handles only SIGALRM signal.

SentinelLM Programmer’s Reference Manual 255

VLSdisableEvents()

Returns

The status code, LS SUCCESS, isreturned if successful. Otherwise, a specific
error code is returned indicating the reason for failure. For a complete list of the
error codes, see “Appendix D - Error and Result Codes for License Generation
Functions’ on page 291.

Syntax

Description

Returns

VLSdisableEvents()

int VL SdisableEvents (

void *eventHandler ,
Argument Description
eventHandler Signal handler.

Thisfunction is called for disabling the events scheduled. To disable a particular
event pass the event handler function name as the argument. To disable al the
events pass NULL as argument.

The status code, LS SUCCESS, isreturned if successful. Otherwise, a specific
error code is returned indicating the reason for failure. For a complete list of the
error codes, see “Appendix D - Error and Result Codes for License Generation
Functions’ on page 291.

Syntax

Description

256

VLSeventSleep()

int VLSeventSleep (
void VL SeventSleep (unsigned int seconds)

Argument Description

seconds Time in seconds to sleep.

Thisfunction is called for disabling the license operations for an alotted time
and interferes with the system alarms.
VL SeventSleep() must be used in conjunction with VL SdisableAutoTimer ().

Chapter 9 - Utility Functions

VLSeventSleep()

Returns The status code, LS_SUCCESS, is returned if successful. Otherwise, a specific
error code is returned indicating the reason for failure. For acomplete list of the

error codes, see “Appendix D - Error and Result Codes for License Generation
Functions” on page 291.

SentinelLM Programmer’s Reference Manual 257

VLSeventSleep()

258 Chapter 9 - Utility Functions

Appendix A - Sample
Applications

Each platform has an examples directory. For UNIX platforms thisincludes a
file called Makefile. Makefile can be used to build the sample programs, utilities,
and to customize parts of SentinelLM. For Windows platforms, the fileis called
samples32.mak.

When you run sample32.mak, use the following commands:
nmake /f sample32.mak sample-program

This appendix lists the available sample programs, utilities, and Sentinel LM
components.

Sample Program Summary

The following table lists the sample programs, the features illustrated in each,
and on which platforms the programs are available:

Table A-1: Sample Programs, Features, and Platforms

Program Features Platforms

bounce Simple function macros Windows NT, Windows 95/98
dotsl Simple function macros UNIX

gbounce Queueing API Windows NT, Windows 95/98
timer Simple function macros and UNIX

using timer signals
tutorl Simple function macros UNIX

SentinelLM Programmer’s Reference Manual 259

Customization Samples

Table A-1: Sample Programs, Features, and Platforms

Program Features Platforms

single Single-call licensing UNIX

starsl LSAPI function calls and error UNIX
handlers

Note Programsendingin“1” also have “0" versions without licensing.

Customization Samples

On the UNIX platforms the following components/files are avail able:

Table A-2: Customization Sample Files

Component File(s)

linking Makefile

converting license codes rdctoenc.o, enctordc.o
the license manager server.o

Isdecode Isde.o

Islic Islic.c

Ismon Ismon.c

Iswhere Iswhere.c

distcgen distcgen.o

the code Iscgen.o

generator

enctordc enctordc.o

rdctoenc rdctoenc.0
Challenge-response crexamp.c, chalresp.[c h], md4.[c h]

260 Appendix A - Sample Applications

Appendix B - Customization
Features

The Sentinel LM package is optionally shipped with a number of precompiled
object modules to enable you to re-link the license manager and the code
generator executables, and override certain predefined Sentinel LM
characteristics.

There are compatibility issues for abject files generated by different versions of
compilers on Microsoft Windows platforms. Therefore, server.o and Iscgen.o
files are not included in the Windows distribution. Please contact Technical
Support (see page xix) for information about customization tools availability for
your version of Windows developer platforms.

The following table summarizes the customizing functions:

Table B-1: Customizing Functions

VLSserverVendorlnitialize()
VLSeventAddHook()
VLSconfigureTimeTamper()
VLSisClockSetBack()
VLSencryptLicense()
VLSdecryptLicense()
VLSencryptMsg()
VLSdecryptMsg()
VLSchangePortNumber()
getCustomHostld()

SentinelLM Programmer’s Reference Manual 261

Note

Onthe UNIX platform, creating customized executabl es requires the use of
the Makefile in the examples directory and various object files provided in
the lib directory of the shipped software. If you customize your license
server, ship it under a different name from the original and change the port
number on which it receives network messages so that your customized
server does not interfere with other vendors' license servers that may be
running at a customer's site.

All customized encryption and decryption functions for the network licenses
must adhere to the following rules:

1. Nomalloc() or freg() callsare alowed in the functions.
No signal-unsafe calls are allowed.
All strings must be NULL-terminated.

All functions must return O on success.

o > 0D

Buffers are guaranteed to be at least 500 characters long. Lengths of
output strings need not be the same as the input strings.

To build your customized functions, copy your source filesto c:\Program

Files\Rainbow Technol ogies\sentLM\MsvcDewv\custom. In this directory you will

find the Makefile custom32.mak. Make a copy of thisfile and name it
MAKEFILE. Edit thisfile. Add your customized object filesin the following
section:

For now, use the default functions from the SentinelLM library:
ENCRYPT_LIC_OBJS=

DECRYPT_LIC_OBJS=

ENCRYPT_MSG_OBJS=

DECRYPT_MSG_OBJS=

CHANGE_PORT_OBJS =

CHANGE_HOSTID_OBJS=

TIME_TAMPER_OBJS =

SERVER_HOOK_OBJS =

Go to the DOS prompt and run make.

Appendix B - Customization Features

Initializing the Server

Initializing the Server

These functions are called by the server during server initialization. Thisis
where callsto VL SeventAddHook() should be placed in order to configure the

server to consult vendor event handler functions.

Syntax

VLSserverVendorlnitialize()

Client

Server

Static
Library

DLL

v

v

Initializes the server.

LSERV_STATUS VL SserverVendorlnitiaize (void);

This function has no arguments.

Syntax

SentinelLM Programmer’s Reference Manual

VLSeventAddHook()

Client

Server

Static
Library

DLL

v

v

Registers an event handler with the server.

LSERV_STATUS VL SeventAddHook (

int
int
char

eventName,
(*handler FuncPtr)(VLShandlerSruct *, char *, char *, int),
*identifier,);

263

Initializing the Server

Argument Description

eventName Specifies the type of event.

Handler function will be called LS_REQ_PRE right before
the license request is processed by the server.

Handler function will be passed LS_REQ_POST right after
the license request is processed by the server.

Handler function will be called LS_REL_PRE right before

the license release is processed by the server.

Handler function will be passed LS_REL_PODY right after
the license release is processed by the server.

(*handlerFuncPtr) The function pointer.
(VLShandlerStruct *, char*,

char *, int)

identifier The client identifier to match.

Description Hooks are based on events. For each event, there is a pre-event hook and a post-

Note

264

event hook.

Currently the only events with hooks are license request and license release. So
you can have a hook function BEFORE a license request is processed by the
server or AFTER arequest isprocessed. Inthe“pre” hook, you can decide on the
licensing action such as looking up external information before granting a
reguest. In the post hook, you cannot change the license decision but can provide
custom information to be passed to the client.

Y ou can use only one hook and do not have to use all the hook functions.

Thefile below for this example can be found in srhkdemo.c. The entire sample
hook project can be found in the following files: regprhkl.c, regpshkl.c,
relprhkl.c, relpshkl.c, relpshkl.c, regprhk2.c, regpshk2.c, and relprhk2.c. The
client portion of the project can be found in hookdemo.c.

Appendix B - Customization Features

Initializing the Server

/***‘k‘k******************‘k**‘k*****‘k‘k***k*****************************I

I* */

/¥ Copyright (C) 1999 Rainbow Technolgies, Inc. */
I* All Rights Reserved */

I* */

R K KA KKK KKK KKK KKK KKK KKK KKK KKK KRR K KKK KRR KKk ok k kK [

#include "lservest.h"
extern int L SRegPreHook1(V L ShandlerStruct *handleStruct, char *inBuf, char
*outBuf, int outBufSz);
extern int L SRegPostHook 1(V L ShandlerStruct *handleStruct, char *inBuf, char
*outBuf, int outBufSz);
extern int L SRelPreHook1(V L ShandlerStruct * handleStruct, char *inBuf, char
*outBuf, int outBufSz);
extern int L SRel PostHook1(V L ShandlerStruct * handleStruct, char *inBuf, char
*outBuf, int outBufSz);
extern int L SRegPreHook2(V L ShandlerStruct *handleStruct, char *inBuf, char
*outBuf, int outBufSz);
extern int L SReqPostHook2(V L ShandlerStruct * handleStruct, char *inBuf, char
*outBuf, int outBufSz);
extern int L SRel PreHook2(V L ShandlerStruct * handleStruct, char *inBuf, char
*outBuf, int outBufSz);
extern int L SRel PostHook2(V L ShandlerStruct * handleStruct, char *inBuf, char
*outBuf, int outBufSz);
LSERV_STATUS VL SserverVendorlnitialize(void) {
#ifndef _VWIN31X_
VL SeventAddHook(LS REQ_PRE,
L SRegPreHook1,
"Hook1");
VLSeventAddHook(LS_REQ_POST,
L SRegPostHook1,
"Hook1");
VLSeventAddHook(LS REL_PRE,
L SRelPreHook1,
"Hook1");
VLSeventAddHook(LS REL_POST,
L SRel PostHook1,
"Hook1");
VL SeventAddHook(LS REQ_PRE,
L SRegPreHook?2,
"Hook2");
VLSeventAddHook(LS_REQ_POST,
L SRegPostHook?2,
"Hook2");
VLSeventAddHook(LS REL_PRE,
L SRelPreHook?2,
"Hook2");
VLSeventAddHook(LS REL_POST,

SentinelLM Programmer’s Reference Manual

265

Protecting Against Time Clock Changes

L SRelPostHook?,
"Hook2");
#endif
return(LSERV_STATUS_SUCCESS);
}

Protecting Against Time Clock Changes

266

Software-based license protection schemes may break down if the end user
changes the system time. The Sentinel LM license server can be configured to
detect tampering of the system clock.

Sentinel LM checks about 500 system files (in strictly read-only mode) to
determineif the system clock of the machineit isrunning on has been set back in
order to use an expired license. It does this on startup, and periodically
thereafter. Checking takes about 10 to 20 seconds.

Sentinel LM callsthefunction VL SconfigureTimeT amper () before performing
any time tamper checks. This configuration function can be used to modify the
default behavior of SentinelLM regarding time tamper checking. Y ou need to
perform the following steps:

1. Writeyour own VL SconfigureTimeTamper () function which takesthe
following arguments, and writes valid values into all of the arguments.

2. If you plan to use your own clock tamper checking function, you should
write another function VL SisClock SetBack () which returns O if the
system clock has not been set back, and 1 otherwise.

3. Inthe Makefilein the examples directory [UNIX], modify the
TIME_TAMPER_OBJ macro so that its value is the name of the object
file containing your new function(s).

4. Relink the license server (or your application if in stand-alone mode).

Appendix B - Customization Features

Protecting Against Time Clock Changes

VLSconfigureTimeTamper()

Client Server Statlc DLL
Library
v v
Syntax void VL SconfigureTimeTamper (

VL SactionOnTmTamper *actionOnTmTamper,
VLStmTamperMethod *tmTamperMethod,

int *gracePeriod,

int *percentViolations,

int *numViolationsForError
);

int VLSisClockSetBack();

Types VL SactionOnTmTamper () and VL StmTamper M ethod() are defined
inlserv.h:

typedef enum {VLS_CONT_AFTER_TM_TAMPER, VLS EXIT_AFTER_TM_TAMPER}
VL SactionOnTmTamper;

typedef enum {VLS_ENABLE_DEFAULT TM_TAMPER,

VLS DISABLE_DEFAULT_TM_TAMPER}
VL StmTamperMethod;

In the table below, default values are indicated in brackets ([]).

Argument Description

actionOnTmTamper Whether to exit from the license manager (or your
application if in stand-alone mode) once time clock
tampering is detected.
[VLS_CONT_AFTER_TM_TAMPER]

tmTamperMethod Whether to use the SentinelLM built-in system clock
tamper checking function, or use one provided by you.
[VLS_ENABLE_DEFAULT_TM_TAMPER]

SentinelLM Programmer’s Reference Manual 267

Protecting Against Time Clock Changes

Note

Argument Description

gracePeriod Useful only in case tmTamperMethod is
VLS_ENABLE_DEFAULT_TM_TAMPER. If SentinelLM
finds the system clock has been set back by less than
gracePeriod seconds, it will not count the offending system
file as a violation.

percentViolations Percentage of system files that must be found in violation
of the grace period before concluding that the system clock
has been set back. Pass the value of 0 for this argument ot
ignore the functionality..

numViolationsForError Number of system files that must be found in violation of
the grace period before concluding that the system clock
has been set back. [5] 0 to ignore this.

The default algorithm uses a grace period of 86,400 seconds (1 day) and allows
1% of the filesto violate the grace period.

Out of percentViolations and numViolationsForError, the lower evaluated
value will be used.

Syntax

Description

Returns

268

VLSisClockSetBack()

Client Server Statlc DLL
Library
4 4

Notifies the license server to check whether the clock has been set back.

int VLSisClockSetBack();

This function has no arguments.

Thisfunction is called only in case the VL SconfigureTimeT amper () function
returns tmTamperMethod to be VLS _DISABLE_DEFAULT_TM_TAMPER.

Returns O if the clock has not been set back.

Appendix B - Customization Features

Encrypting License Codes

Encrypting License Codes

License code encryption can be modified to add an additional layer of
encryption/decryption security. License encryption and decryption isused by the
license server, the code generator, and the Sentinel LM utility, Isdecode. All
three programs must be re-linked. Licensed applications do not encrypt or
decrypt license codes. Client applications need not be re-linked.

Note Encryption is not available for stand-alone licenses.

VLSencryptLicense()

Client Server S_tatlc DLL
Library
v v
Encrypts license codes.
Syntax int VL SencryptLicense ()

char *origText;
char *encryptedTextBuffer;
int buffSize;

Argument Description

origText The original license code.

encryptedTextBuffer The encrypted license code to be returned.

buffSize Size of the encrypted text buffer.

Description VL SencryptLicense() will always receive any of the ASCII character set inits
input text string. Since the output of this function will be written directly to the
code generator’ s output file as an encrypted license code, this function must not
generate any unprintable or special characters.

SentinelLM Programmer’s Reference Manual 269

Encrypting License Codes

Returns

270

The function may generate any printable ASCII characters other than:

Character Hex Value Description

0x23 Pound sign or number sign or hash mark.
\n O0x0A Backslash-n.

\t 0x09 Backslash-t.

(0x28 Opening parenthesis.

) 0x29 Closing parenthesis.

- 0x2D Hyphen or dash or minus sign.

, 0x2C Comma.

In fact, by generating alarger character set than the input, the encryption

algorithm can generate shorter license codes. To add another layer of encryption

and decryption follow these steps:

1

3.

Write custom VL SencryptLicense() and VL SdecryptLicense()
functions in separate source files.

In the examples directory of the distribution tree, the example Makefile
can be used to re-link the license server, the code generator, and
Isdecode directly. In the example Makefile, set the variable,
ENCRYPT_LIC_OBJ, to the object file containing

VL SencryptLicense(), and DECRYPT_LIC_OBJto the object file
containing VL SdecryptLicense().

Issue the make commands for the license server, the code generator,
Isdecode, and the distributor’ s code generator (optional).

0 if successful; other value on failure.
Examplefile:

/***/
I* */

/¥ Copyright (C) 1999 Rainbow Technologies, Inc. */

I* All Rights Reserved */

I* */
/***/
/* Usage of VLSencryptLicense() */

#include <stdio.h>

Appendix B - Customization Features

Encrypting License Codes

#include <string.h>
#include "Istest.h”
int VL SencryptLicense(outputString,inputString,size)
char outputString[MAX_LIC_SIZE];
char inputStringlMAX_LIC_SIZE];
int size;
{
int j=0;
fprintf(stdout,"ENCRY PTING LICENSE\n");
while ((outputString[j]!'="0") & & (outputString[j+1]'=0") & & (outputString[j]!="\n")
& & (outputString[j+1]!="\n") && (j<size)) {
inputString[j]=outputString[j+1];
inputString[j+1]=outputString[j];
j=i+z;
}
inputString[j]=outputString[j];
j++;
if (outputString[j]=="0") {inputString[j]=outputString[j]; j++;}
if (outputString[j]=="n") {inputString[j]=outputString[j]; j++;}
return(0);

VLSdecryptLicense()

Client Server Statlc DLL
Library
v v
Decrypts license codes.
Syntax int VL SdecryptLicense ()

char *origText;

char *decryptedTextBuffer;

int buffSize;
Argument Description
origText The original license code.
decryptedTextBuffer The decrypted license code to be returned.
buffSize Size of the decrypted text buffer.

SentinelLM Programmer’s Reference Manual 271

Encrypting Messages

Description See VL SencryptLicense() above.

Examplefile:
/***/
I* */
/¥ Copyright (C) 1999 Rainbow Technologies, Inc. */
I* All Rights Reserved */
I* */

/***‘k‘k*********************‘k**‘k‘k*‘k‘k*********************************/

/* Usage of VL SdecryptLicense() */
#include <stdio.h>
#include <string.h>
#include "Istest.h”
int VL SdecryptLicense(outputString,inputString,size)
char outputString[MAX_LIC_SIZE];
char inputStringflMAX_LIC_SIZE];
int size;
{
int j=0;
fprintf(stdout,"DECRY PTING LICENSE\n");
while ((outputString[j]!'="0") & & (outputString[j+1]'="0") & & (outputString[j]!="\n")
& & (outputString[j+1]'="\n") & & (j<size)) {
inputString[j]=outputString[j+1];
inputString[j+1]=outputString[j];
=i+2;
}
inputString[j]=outputString[j];
j*
if (outputString[j]1=="0") {inputString[j]=outputString[j]; j++;}
if (outputString[j]=="n") {inputString[j]=outputString[j]; j++;}
return(0);
}

Encrypting Messages

All SentinelLM network communication is encrypted. However, for added
security an additional layer of encryption and decryption can be added.
Customizing involves changes to both the license server and the client
application.

272 Appendix B - Customization Features

Encrypting Messages

VLSencryptMsg()

Client Server Statlc DLL

Library
v v v
Encrypts messages.
Syntax int VL SencryptMsg ()

char *origText;

char *encryptedTextBuffer;

int buffSize;
Argument Description
origText The original message text.
encryptedTextBuffer The encrypted message text.
buffSize Size of the encrypted text buffer.

Description VL SencryptMsg() can receive any ASCII characters asitsinput text string.
The function can produce any ASCII characters other than \0 (0x0). To add
another layer of encryption and decryption follow these steps:

1. Write custom VL SencryptMsg() and VL SdecryptM sg() functionsin

separate source files.

2. Inthe examples directory of the distribution tree, the example Makefile
can be used to re-link the license server directly and edited to link with
the application to be licensed using the new message encryption. In the
example Makefile, set the variable, ENCRY PT_MSG_OBJ, to the object
file containing VL SencryptM sg(), and DECRYPT_MSG_OBJto the
object file containing VL SdecryptM sg().

3. Issuethe make commandsfor the license server and the application. The
client application must be incrementally linked with the new object files

before linking with the SentinelLM client library.

Returns 0 if successful; other value on failure.

SentinelLM Programmer’s Reference Manual

273

Encrypting Messages

Examplefile:
/***/
I* */
/¥ Copyright (C) 1999 Rainbow Technologies, Inc. */
I* All Rights Reserved */
I* */

/***‘k‘k*********************‘k**‘k‘k*‘k‘k*********************************/

/* Usage of VL SencryptMsg() */
#include <stdio.h>
#include <string.h>
#include "Istest.h”
int VL SencryptM sg(outputString,inputString,size)
char outputStringlMAX_MSG_SIZE];
char inputStringlMAX_MSG_SIZE];
int size;
{
int j=0;
fprintf(stdout,"encrypting MESSAGE\n");
while ((outputString[j]!'="0") & & (outputString[j+1]'="0") & & (outputString[j]!="\n")
& & (outputString[j+1]'="\n") && (j<size)) {
inputString[j]=outputString[j+1];
inputString[j+1]=outputString[j];
j=i+2;
}
inputString[j]=outputString[j];
j*
if (outputString[j]=="0") {inputString[j]=outputString[j]; j++;}
if (outputString[j]=="n") {inputString[j]=outputString[j]; j++;}

return(0);
}
VLSdecryptMsg()
Client Server Static DLL
Library
4 v v
Decrypts messages.
Syntax int VL SdecryptMsg ()
char *origText;

274 Appendix B - Customization Features

Encrypting Messages

char *decryptedTextBuffer;

int buffSize;
Argument Description
origText The original message text.
decryptedTextBuffer The decrypted message text.
buffSize Size of the decrypted text buffer.

Description See VL SencryptM sg() on the previous page.

Examplefile:
/***/
I* */
/¥ Copyright (C) 1999 Rainbow Technologies, Inc. */
I* All Rights Reserved */
I* */

/‘k**‘k‘k******************‘k**‘k**********k*****************************I

/* Usage of VL SdecryptMsg() */
#include <stdio.h>
#include <string.h>
#include "Istest.h”
int VL SdecryptM sg(outputString,inputString,size)
char outputStringlMAX_MSG_SIZE];
char inputStringMAX_MSG_SIZE];
int size;
{
int j=0;
fprintf(stdout," decrypting MESSAGE \n");
while ((outputString[j]!="0") & & (outputString[j+1]!="0") & & (j<size)) {
inputString[j]=outputString[j+1];
inputString[j+1]=outputString[j];

=i+,
}
inputString[j]=outputString[j];
j++;
if (outputString[j]=="0") {inputString[j]=outputString[j];}
return(0);

}

SentinelLM Programmer’s Reference Manual 275

Changing the Default Port Number

Changing the Default Port Number

This requires separate changes to the license server and the licensed application.

VLSchangePortNumber()

Client Server Statlc DLL
Library
v v
Changes the port number.
Syntax int VL SchangePortNumber ()

int currentPort;
Argument Description
currentPort Current port number.

Description Sets port number to newPort.This function is called only once, at license server

start-up time.

To customize the license server:

1. Writeacustom VL SchangePortNumber () function in a separate source

file.

2. Inthe examples directory of the distribution tree, the example Makefile
can be used to re-link the license server directly. In the example
Makefile, set the variable, CHANGE_PORT_OBJ, to the object file
containing VL SchangePortNumber ().

3. Issuethe make commands for the license server.

The licensed application can obtain or reset its port number through the client
library function calls, VL SgetServerPort() and VL SsetServerPort(). These
set-up functions must be called before making a request.

276

Appendix B - Customization Features

Customizing the Host ID

Returns 0 if successful; other value on failure.

Note Optionally, you may change the port number by using the port switch when
starting the license server.

Examplefile:
/******************************~k*~k~k*~k~k*~k~k***************************/
I* */
/¥ Copyright (C) 1999 Rainbow Technologies, Inc. */
I* All Rights Reserved */
I* */

R KKK KKK K KKK KKK KKK KKK KA KKK KA K KA KA KT A KKK KKK KT A KKK XKk k [

#include "lservest.h"
#include "lserv.h"
#include <stdio.h>
#ifdef __ STDC__
int VL SchangePortNumber(int newPort)
#else
int VL SchangePortNumber (newPort)
int newPort;
#endif
{
newPort=6000;
return(newPort);

Customizing the Host ID

Sentinel LM provides a developer with the capability to have aclient send a cus-
tomized fingerprint along with standard fingerprints as determined by the client
library.

In making arequest for akey for a particular feature/version, the client sends the
information about the fingerprints (IP Address, host name, PROM |D etc.) of its
host machine. This fingerprint information is then compared against the
fingerprint information available with the server, through the license string for
that feature/version.

Customizing a host ID consists of performing the following steps:

» Create the custom host ID function

SentinelLM Programmer’s Reference Manual 277

Customizing the Host ID

278

* Register the custom host ID function on the server
* Register the custom host ID function on the client
* Build the server

» Create an updated client ID generator

Creating the Custom Host ID Function

Thefirst step to implement the customized fingerprint is to write a custom host
ID (basically a customized fingerprint) function. This function must return a
“long” value, based on the customized logic that is unique for each host. The
following is an example of generating a custom host ID. In this example, the
custom host ID is being generated by converting each of the standard machine
fingerprints to integer values, and then adding them all together.

long getCustomHostld()
{
VLSmachinelD LSFAR machinelD;
unsigned long LSFAR lock_selector_out,templ, temp2;
long temp;

VL SinitMachinel D(& machinel D); /* Set default values.*/
/*Get the locking information for all available locking mechanisms*/

VLSgetMachinelD(VLS_LOCK_ID_PROM|VLS LOCK_IP_ADDR|VLS LOCK_DISK_ID|
VLS LOCK_HOSTNAME|VLS LOCK_ETHERNET|VLS LOCK_NW_IPX|
VLS LOCK_NW_SERIAL|VLS_LOCK_PORTABLE_SERV,&machinel D,&lock_selector_out);

temp2 = machinel D.id_prom,;
templ =0;

/*Check to seeif we were able to generate locking info for each criteria. If so, convert that info to an
unsigned long and add it to the sum */

if ((machinelD.ip_addr !'= NULL) && (machinelD.ip_addr[0] !="0")/*checking for presence*/

templ = strtoul (machinel D.ip_addr, (char **)NULL, 10);

temp2 += templ + machinel D.disk_id;

if ((machinelD.host_name!= NULL) && (machinel D.host_name[0] !="\0"))
templ = strtoul (machinel D.host_name,(char **)NULL,10);

temp2 += temp1l;

if ((machinelD.ethernet = NULL) && (machinelD.ethernet[0] !="0"))
templ = strtoul (machinel D.ethernet, (char **)NULL, 10);

Appendix B - Customization Features

Customizing the Host ID

temp2 += templ + machinel D.nw_ipx + machinelD.nw_serial;

if ((machinelD.portserv_addr != NULL) && (machinel D.portserv_addr[0] !="0"))
templ = strtoul (machinel D.portserv_addr,(char **)NULL,10) ;

temp2 += temp1l;

temp2=temp2 / 200; /*just to customise hostid */

temp=temp2 + 10;

return temp; /*return long */

}

Registering the Custom Host ID Function on the Server

The function used to register the function with the server is

VL SsetHostldFunc(), which we call from within

VL SserverVendorlnitialize(). VL SserverVendor I nitialize() is called when
the server first startsto run. Here you inform the server of the name of the
function which it can use to return the custom host ID by calling

VL SsetHostldFunc(). Below is an example using a custom host ID function
named “getCustomHostI D()”. This code should be put into a separate “c” file.

extern long getCustomHostld();

LSERV_STATUS VL SserverVendorlnitialize(void)
{
VL SsetHostl dFunc(& getCustomHosti d);
return(LSERV_STATUS_SUCCESS);

Registering the Custom Host ID Function on the Client

Here you need to call VL SsetHostIdFunc() in the client application. in the
same manner as was done in VL SserverVendor I nitialize() above.

main(int argc,char ** argv){
VLSinitialize();
VL SsetHostldFunc();
VLSrequest();

}

SentinelLM Programmer’s Reference Manual 279

Customizing the Host ID

280

Building the Server

Build the new customized Iserv by linking it to files that contain code for
getCustomHostld() and VL SserverVendor | nitialize() using Custom32.mak.

In thisstep the abject filesfor the” c” files generated in the first two steps need to
be linked with the server library.

Creating an Updated Client ID Generator

Y ou will need to create an updated client ID generator (echoid.exe). Thefile,
myechoid.c, takes the host ID from the getCustomHostl d() function and prints
it in hex. Sample code is shown below:

extern long getCustomHostld();

long main(int argc,char ** argv){
long customid;
customid=getCustomHostld();
printf("0x%l X" ,customid);
}

Using a Customized Host ID

The sequence of events for an application using a custom ID is as follows:

1. Generate client node lock and/or server node locked licenses with the
custom host ID as returned by myechoid.exe.

2. Rebuild and execute the customized Iserv.

3. Inthe client application set the host ID function to getCustomHostid().
Now the client side host ID has been changed.

4. Add the client node lock license to the server.

When an application tries to request a key for a client node-locked
license, the server then verifies the client host ID as sent in the request
message and compares it with the host ID in the license.

Appendix B - Customization Features

Customizing the Host ID

5. Inthe case of server locking to a customized host ID, when a server-
locked license is added to the server, it executes the
VL SserverVendor | nitialize() function and gets the host ID for the
server then checksit against the host 1D in the license.

SentinelLM Programmer’s Reference Manual 281

282 Appendix B - Customization Features

Appendix C - Error and Result
Codes for Client Functions

Client Function Return Codes

Thefollowing tableslist LSAPI and Sentinel LM client function return codes and
their default actions:

SentinelLM Programmer’s Reference Manual 283

Client Function Return Codes

Table C-1: LSAPI Client Function Return Codes

Shell

SentinelL.M Error Return Code Default Description
Error Number Message
Number
0xC800100B 056 LS_BAD_INDEX Bad index Invalid index specified in
LSEnumProviders() or any query
functions.
0xC8001001 046 LS _BADHANDLE Bad handle Handle given to function
represents an invalid licensing
system context.
0xC800100E 059 LS BUFFER_TOO_SMALL Input buffer too Input buffer provided to function is
small, string not largeenough to store the
truncated. license server’'s name. Need to
input a larger buffer.
0xC8001002 047 LS_INSUFFICIENTUNITS Could not locate Not enough sufficient resources to
enoughlicensing | satisfy LSRequest().
resources.
0xC800100D 058 LS_LICENSE_EXPIRED Feature cannot Licensing agreement for this
run due to time feature has expired.
restriction on it.
Contact your
software vendor.
0xC8001003 048 LS_LICENSESYSNOTAVAILABLE Licensing Licensing system itself is
System not unavailable.
available.
0xC8001004 049 LS_LICENSETERMINATED License LSupdate() failed. License
terminated expired due to time-out.
because
renewal time
expired.
0xC800100C 057 LS_NO_MORE_UNITS No additional Additional licenses/units requested
units are are unavailable.
available.
284 Appendix C - Error and Result Codes for Client Functions

Client Function Return Codes

Table C-1: LSAPI Client Function Return Codes

SentinelLM Shell Default s
Error Return Code Description
Error Number Message
Number
0xC80010009 034 LS_NO_MSG_TEXT The specified LSGetMessage() unable to
filename can not | retrieve message text.
be found on
license server.
0xC8001008 053 LS_NO_NETWORK Unable to talk to Network communication problems
the host encountered.
specified. Verify
client/server
communication.
0xC800100F 060 LS_NO_SUCCESS No success in No success in achieving the target.
achieving the
target.
0xC8001005 044 LS_NOAUTHORIZATIONAVAILABLE Could not find License server does not recognize
the specified this feature name.
client for the
feature.
0xC8001006 051 LS_NOLICENSESAVAILABLE All licensing License server has no more license
keys are codes available for this request. All
currently in use. licenses are in use.
0xC8001007 047 LS_NORESOURCES Could not locate Insufficient resources (such as
enoughlicensing | memory) are available to complete
resources. the request. An error occurred in
attempting to allocate memory
needed by function.
0x0 00 LS_SUCCESS Successful completion of function
call.
0xC800100A 055 LS_UNKNOWN_STATUS Unknown error Unknown or unrecognized status
code, cannot code was passed to
provide error LSGetMessage().
message.

SentinelLM Programmer’s Reference Manual 285

Client Function Return Codes

Table C-2: SentinelLM Client Function Return Codes

SentinelLM Shell
Error Return Code Default Message Description
Error Number
Number

19 019 VLS_ADD_LIC_FAILED Failed to add Dynamic license addition failed.
license string to the | Default: Display error message,
license server. return error code.

39 039 VLS_ALL_UNITS_RELEASED All the keys issued | The client asked VLSreleaseExt()
to the feature have | API to return a specific number of
been returned. units, it returned all the issued units.

42 042 VLS_AMBIGUOUS_HANDLE The status of the | The status of LS_HANDLE is
handle is ambiguous. It is not exclusively active
ambiguous. or exclusively queued.

6 006 VLS_APP_NODE_LOCKED Feature not Server-locked feature cannot be
licensed to run on |issued a floating license code.
this machine. Default: Display error message,

return error code.

2 002 VLS_APP_UNNAMED Feature name or | No feature name provided with
version cannot be | function call. Default: Display error
NULL. message, return error code.

25 025 VLS_BAD_SERVER_MESSAGE Could not An error has occurred in decrypting
understand (or decoding) a network message at
message received | the client end. Probably an
from the license incompatible or unknown license
server. Verify server, or a version mismatch.
Client and License
server versions
match.

11 011 VLS_CALLING_ERROR Error in calling the | Error in calling a SentinelLM function.
function. Check the| Default: Display error message,
calling parameters.| return error code.

45 045 VLS_CLIENT_NOT_AUTHORIZED Client is not Client not authorized to make the
authorized for the | specified request.
specified action.

286 Appendix C - Error and Result Codes for Client Functions

Client Function Return Codes

Table C-2: SentinelLM Client Function Return Codes

SentinelLM Shell L
Error Return Code Default Message Description
Error Number
Number

26 026 VLS_CLK_TAMP_FOUND Request denied The license server has found
due to clock evidence of tampering of the system
tamper detection. | clock, and it cannot service the

request since the license for this
feature has been set to be time-
tamper proof.

20 020 VLS_DELETE_LIC_FAILED Failed to delete Dynamic license deletion failed.
feature from the Default: Display error message,
license server. return error code.

36 036 VLS_FINGERPRINT_MISMATCH Machine’s The fingerprint identification of
fingerprint requesting computer does not match
mismatched. with the system.

3 003 VLS_HOST_UNKNOWN Unknown license | License server host does not seem to
server host. be on the network. Invalid host name

specified. Default: Display error
message, return error code.

12 012 VLS_INTERNAL_ERROR Internal error in SentinelLM internal error. Failure
licensing or occurred in setting timer. (Timer is
accessing feature. | only attempted to be set if timer is

available for platform and if license
requires timer for updates.) Default:
Display error message, return error
code.

28 028 VLS_INVALID_DOMAIN Cannot perform The domain of license server is
this operation on | different from that of client.
the domain name
specified.

21 021 VLS_LOCAL_UPDATE The last update The last update was done locally.
was done locally.

35 035 VLS_LOG_FILE_NAME_NOT_ Cannot change Log file name was not changed.

CHANGED specified log
filename on license
server.
34 034 VLS_LOG_FILE_NAME_NOT_FOUND | The specified log | Log file name not recognized by

filename can not
be found on license
server.

license server.

SentinelLM Programmer’s Reference Manual

287

Client Function Return Codes

Table C-2: SentinelLM Client Function Return Codes

SentinelLM Shell
Error Return Code Default Message Description
Error Number
Number

24 024 VLS_MULTIPLE_VENDORID_FOUND | Feature licensed | The license system has licenses for
by multiple the same feature, version, and it is
vendors. not clear from the requested

operation which license the requestor
is interested in.

7 007 VLS_NO_KEY_TO_RETURN Attempt to return a | LSrelease() was called before the
non-existent key | license code was issued. Default:
for feature. Display error message.

1 001 VLS_NO_LICENSE_GIVEN Unable to obtain Other internal error not listed above.
licensing key. Default: Display error message,

return error code.

9 009 VLS_NO_MORE_CLIENTS No more clients to | VLSgetClientinfo() has no more
report. clients to report. Default: No action.

10 010 VLS_NO_MORE_FEATURES No more features |LSgetFeaturelnfo() has no more
to report. features to report. Default: No action.

17 017 VLS_NO_RESPONSE_TO_ Probably no No license servers responded to the

BROADCAST license servers VLSdiscover() call. Default: Display
running on this error message, return error code.
subnet.

4 004 VLS_NO_SERVER_FILE License server Client not initialized with the name of
hostname not the license server host. No license
specified. Set server has been set and unable to
environment determine which license server to
variable LSHOST | use. Default: Get the host name
to name the license| interactively from the user.
server.

14 014 VLS_NO_SERVER_RESPONSE License server not | The license server is not responding
responding. due to communication has timed out.

Default: Display error message,
return error code.

5 005 VLS_NO_SERVER_RUNNING Cannot talk to the | No license server seems to be
license server. running on the remote host. License
Verify license server on specified host is not
server is running. | available for processing the license

operation requests. Default: Display
error message, return error code.
288 Appendix C - Error and Result Codes for Client Functions

Client Function Return Codes

Table C-2: SentinelLM Client Function Return Codes

SentinelLM Shell
Error Return Code Default Message Description
Error Number
Number

44 044 VLS_NO_SUCH_CLIENT Could not find the | The client specified is not found on
specified client for | the license server.
the feature.

18 018 VLS_NO_SUCH_FEATURE No license string is | The license server does not
available. recognize the given feature. Default:

Display error message, return error
code.

38 038 VLS_NO_UPDATES_SO_FAR The updates for the| No updates have been made so far.
specified feature
have not been
made so far.

43 043 VLS_NOMORE_QUEUE_ RESOURCES | Could not locate Could not queue the client because
enough resources | the queue is full.
to queue for
license feature.

27 027 VLS_NOT_AUTHORIZED Unauthorized The specified operation is not
operation permitted - authorization failed.
requested.

40 040 VLS_QUEUED_HANDLE The specified The LS_HANDLE is a queued handle,
handle is a queued
handle.

22 022 VLS_REMOTE_UPDATE The last update The last update was performed by
was done remotely.| contacting the SentinelLM license

server.

8 008 VLS_RETURN_FAILED Cannot return key | LSrelease() failed to return the
for feature. issued license code. Default: Display

error message, return error code.

13 013 VLS_SEVERE_INTERNAL_ERROR Severe internal SentinelLM severe internal error. An
error in licensing or | error occurred while attempting to
accessing feature. | retrieve system time. Default: Display

error message, return error code.

37 037 VLS_TRIAL_LIC_EXHAUSTED Duration or usage | Trial license usage exhausted or trial
of a trial license is | license has expired.
exhausted.

16 016 VLS_UNKNOWN_SHARED_ID Unknown shared id| The supplied sharing criteria is

specified.

unknown. Default: Display error
message, return error code.

SentinelLM Programmer’s Reference Manual

289

Client Function Return Codes

Table C-2: SentinelLM Client Function Return Codes

SentinelLM Shell —
Error Return Code Default Message Description
Error Number
Number
15 015 VLS_USER_EXCLUDED User/machine The user/computer is excluded by
excluded from group reservations. Default: Display
running the given | error message, return error code.
feature.
23 023 VLS_VENDORIDMISMATCH Feature licensed | The license system has those
by a different resources that could satisfy the
vendor. request, but the vendor code of
requested application does not match
with that of the application licensed by
the license server.
290 Appendix C - Error and Result Codes for Client Functions

Appendix D - Error and Result
Codes for License Generation
Functions

License Generation Function Return Codes

Thefollowing table lists Sentinel LM license generation function return codes
and their default actions (where applicable):

Table D-1: License Generation Function Return Codes

Return Code Description
VLScg_BAD_HANDLE Bad file handle.
VLScg_DECRYPT_FAIL Decryption failed for license string.

VLScg_DYNAMIC_DECRYPT_FAILURE Decryption failed for dynamically added
license string.

VLScg_EXCEEDS_MAX_STRLEN Length of <value> is greater than <value>.

VLScg_EXCEEDS_MAX_VALUE Value entered (<value>) exceeds the
maximum allowed value. The maximum
value can be <value>.

VLScg_EXPIRED_LICENSE Your SW license file has expired.
VLScg_FAIL Operation failed.
VLScg_FIXED_STR_ERROR Default fixed string error.
VLScg_INTERNAL_ERROR Internal error.
VLScg_INVALID_BIRTH_YEAR Start year cannot be less than <value>.
VLScg_INVALID_CHARS Invalid characters - \"<value>\.

SentinelLM Programmer’s Reference Manual 291

License Generation Function Return Codes

Table D-1: License Generation Function Return Codes (Continued)

Return Code

Description

VLScg_INVALID_CHKSUM

VLScg_INVALID_DATE
VLScg_INVALID_DEATH_YEAR
VLScg_INVALID_EXP_DATE

VLScg_INVALID_EXP_MONTH

VLScg_INVALID_EXP_YEAR

VLScg_INVALID_HANDLE
VLScg_INVALID_HEX_TYPE

VLScg_INVALID_INPUT
VLScg_INVALID_INT_TYPE
VLScg_INVALID_IP_TYPE

VLScg_INVALID_LICTYPE
VLScg_INVALID_RANGE

VLScg_INVALID_TRIAL_COUNT
VLScg_INVALID_TRIALDAYS
VLScg_INVALID_VENDOR_CODE

VLScg_INVALID_YEAR
VLScg_LESS_THAN_MIN_VALUE

VLScg_LICMETER_ACCESS_ERROR

Checksum validation failed for license string.
Please verify the license string.

<value> is not valid in <value>, <value>.
Expiration year cannot be less than <value>.

Expiration Date must be greater than Start
Date.

License Expiration Month must be greater
than Start Month.

License Expiration Year must be greater than
Start Year.

Invalid handle entered.

Wrong value entered - \"<value>\. Should be
hexadecimal.

Invalid input - \"<value>\.
Expected an integer value, found \"<value>\".

Wrong value entered - \"<value>\. IP address
should be specified in dot form.

Invalid License Type.

Value \"<value>\" violates the valid range of
input.

Invalid Trial License Count.

Invalid Trial Days.

Invalid Vendor Code. Please contact your
SentinelLM distributor.

Invalid year entered - \"<value>\.

Value entered (<value>) is less than the
minimum supported value. The minimum
value is <value>.

Error accessing SentinelLM license meter(s).
Please make sure the Sentinel System Driver
is properly installed and a license meter is
attached to the parallel port.

Appendix D - Error and Result Codes for License Generation Functions

Table D-1:

License Generation Function Return Codes

License Generation Function Return Codes (Continued)

Return Code

Description

VLScg_LICMETER_CORRUPT

VLScg_LICMETER_COUNTER_
TOOLOW

VLScg_LICMETER_DECREMENT_OK

VLScg_LICMETER_EMPTY

VLScg_LICMETER_EXCEPTION

VLScg_LICMETER_VERSION _
MISMATCH

VLScg_MALLOC_FAILURE
VLScg_MAX_LIMIT_CROSSED
VLScg_NO_ENABLE_FEATURE
VLScg_NO_FEATURE_NAME

VLScg_ NO_NETWORK_
AUTHORIZATION

VLScg_NO_RESOURCES
VLScg_NOT_MULTIPLE

VLScg_PORTSERV_ACCESS_ERROR

VLScg_PORTSERV_CORRUPT

SentinelLM Programmer’s Reference Manual

Your SentinelLM license meter(s) are
corrupted.

Too few units (Normal License
Count=<value>/ Trial License Count=
<value>) left in your SentinelLM license
meter(s) to generate requested license.
<value> units required.

Your SentinelLM license meter(s) have been
decremented by <value> units. You now
have <value> units left out of an initial count
of <value> units.

All <value> units of your SentinelLM license
meter(s) have been used up. License
generation will fail.

Unknown exception (<value>) in accessing
SentinelLM license meter(s).

Your SentinelLM license meter has an invalid
version (<value>.<value>). Expected
<value>.<value>.

Out of heap memory.
Maximum limit crossed.
Enable feature not specified.

Feature Name must be specified. It cannot
be empty.

Server does not recognize this network.

No resources left.

Value of <value> should be a multiple of
<value>.

Error accessing SentinelLM license server(s)
for a commuter license.

Your SentinelLM license server(s) for
commuter licensing is corrupted.

293

License Generation Function Return Codes

Table D-1:

License Generation Function Return Codes (Continued)

Return Code

Description

VLScg_PORTSERV_EXCEPTION

VLScg_PORTSERV_VERSION_
MISMATCH

VLScg_ PREMATURE_TERM

VLScg_ REMAP_DEFAULT

VLScg_RESERV_STR_ERR
VLScg_SECRET_DECRYPT_FAILURE

VLScg_SHORT_STRING
VLScg_SIMPLE_ERROR
VLScg_SUCCESS
VLScg_TRIAL_SUCCESS

VLScg_TRIALMETER_EMPTY

VLScg_ UNKNOWN_LOCK
VLScg VALUE_LARGE
VLScg VENDOR_ENCRYPTION_FAIL

Unknown exception (<value>) in accessing
SentinelLM license server(s) for commuter
licenses.

Your SentinelLM license server has an
invalid version (<value>.<value>) for
commuter licenses. Expected
<value>.<value>.

Premature termination of license string.
Please check.

Failed to remap default strings from
configuration file for license \"<value>\".

\"<value>\" is a reserved string.

Decryption failed for secrets. Verify the
configuration file for readable licenses.

License string \"<value>\" too small to parse.
Error in license string. Please check.
Successful completion of function call.

Your SentinelLM Trial license meter(s) have
been decremented by <value> units. You
now have <value> units left.

All <value> units of your SentinelLM Trial
license meter(s) have been used up.

Unknown lock mechanism - \"<value>\"
Value \"<value>\" : too large.
Vendor-customized encryption failed.

Appendix D - Error and Result Codes for License Generation Functions

Appendix E - Error Codes for
Redundancy, Queuing and

Commuter Functions

Return Codes

Thefollowing tableslist Sentinel LM redundancy, queuing, and commuter return

codes and their descriptions:

Table E-1: Redundancy, Queuing, and Commuter Return Codes

Return Code

Description

LS_BAD_PARAMETER

LS_BADHANDLE
LS_BUFFER_TOO_SMALL

LS_INSUFFICIENTUNITS

LS_LICENSE_EXPIRED
LS_LICENSETERMINATED

LS_NO_AUTHORIZATION

SentinelLM Programmer’s Reference Manual

License server’'s name is NULL or an empty
string.

Invalid handle.

Buffer is not large enough to store license
server’'s name.

License server does not currently have
sufficient licensing units for requested feature
to grant a license.

License has expired.

Cannot update the license because the
license has already expired.

License server does not recognize this
feature name.

295

Return Codes

Table E-1: Redundancy, Queuing, and Commuter Return Codes

Return Code Description

LS_NO_SUCCESS Failed to retrieve computer names on local
subnet.

LS_NO_SUCH_FEATURE feature_version is non-existent.

LS_NOLICENSESAVAILABLE All licenses in use.

LS_NON_REDUNDANT_SERVER_ Sets LSHOST to a non-redundant license

CONTACTED server.

LS_NONETWORK Generic error indicating network failure.

LS_NORESOURCES An error occurred in attempting to allocate
memory needed by this function.

VLS_ACTIVE_HANDLE Ishandle is an active handle.

VLS_ADD_LIC_FAILED Generic error indicating the feature has not
been added.

VLS _AMBIGUOUS_HANDLE Ishandle is an ambiguous handle; it is not
exclusively active or exclusively queued.

VLS_APP_NODE_LOCKED Requested feature is node locked, but
request was issued from an unauthorized
machine.

VLS_APP_UNNAMED Specified feature is NULL.

VLS _BAD_DISTB_CRIT Invalid distribution criteria.

VLS _BAD_HOSTNAME hostName is not valid.

VLS _BAD_SERVER_MESSAGE Message returned by license server could not
be understood.

VLS_CALLING_ERROR Attempted to use stand-alone mode with

network only library, or network mode with
stand-alone library.

VLS_CLIENT_NOT_AUTHORIZED Client not authorized to remove queue.

VLS _CLK_TAMP_FOUND License server has determined that the
client’s system clock has been modified. The
license for this feature has time-tampering
protection enabled, so the license operation
is denied.

VLS_CONF_FILE_ERROR Error in configuration file.

296 Appendix E - Error Codes for Redundancy, Queuing and Commuter Functions

Return Codes

Table E-1: Redundancy, Queuing, and Commuter Return Codes

Return Code

Description

VLS_DIFF_LIB_VER

VLS_FEATURE_INACTIVE

VLS_FINGERPRINT_MISMATCH

VLS_HOST_UNKNOWN
VLS_INVALID_DOMAIN

VLS_INVALID_IP_ADDRESS
VLS_LEADER_NOT_PRESENT
VLS_MAJORITY_RULE_FAILURE

VLS_MULTIPLE_VENDORID_FOUND

VLS_NO_LICENSE_GIVEN

VLS_NO_RESPONSE_TO_
BROADCAST

VLS_NO_SERVER_FILE

VLS_NO_SERVER_RESPONSE

VLS_NO_SERVER_RUNNING

VLS_NO_SUCH_FEATURE

VLS_NOMORE_QUEUE_RESOURCES
VLS_NON_REDUNDANT_FEATURE

SentinelLM Programmer’s Reference Manual

Version mismatch between license server
API and client API.

Feature is inactive on specified license
server.

Client-locked; locking criteria does not match.
Invalid hostName was specified.

The domain of the license server is different
from that of the client.

IP_address is not valid.
Unknown leader.

Majority rule failure prevents token from
being issued.

The license server has licenses for the same
feature and version from multiple vendors. It
is ambiguous which feature is requested.

Invalid handle specified.
No license servers have responded.

The license The license server has not been
set and is unable to determine which license
server to use.

Communication with license server has timed
out

License server on specified host is not
available for processing license operation
requests.

License server does not have a license that
matches request feature.

Queue is full.

Feature is non-redundant and thus cannot be
used in this redundancy-related operation.

297

Return Codes

Table E-1:

Redundancy, Queuing, and Commuter Return Codes

Return Code

Description

VLS_NON_REDUNDANT_SRVR

VLS_NOT_AUTHORIZED

VLS_ONLY_SERVER

VLS_POOL_FULL

VLS_QUEUED_HANDLE

VLS_SERVER_ALREADY_PRESENT

VLS_SERVER_NOT_PRESENT

VLS_SERVER_SYNC_IN_PROGRESS
VLS_TRIAL_LIC_EXHAUSTED
VLS_UNRESOLVED_HOSTNAME

VLS_UNRESOLVED_IP_ADDRESS

VLS_USER_EXCLUDED

VLS_VENDORIDMISMATCH

License server is non-redundant and
therefore cannot support this redundancy-
related operation.

Invalid user.

Pool will not exist if this license server is
removed.

Pool already has maximum number of
license servers. No more license servers can
be added.

Ishandle is a queued handle.

Attempted to add a license server that is
already in the pool.

Attempted to delete a license server that is
not in the pool.

License server synchronization in process.
Trial license has expired.

IP_address is valid, but could not be
resolved.

IP_address is valid, but could not be
resolved.

User or machine excluded from accessing
requested feature.

The vendor identification of the requesting
application does not match the vendor
identification of the feature for which the
license server has the license.

Appendix E - Error Codes for Redundancy, Queuing and Commuter Functions

Appendix F - Error and Result
Codes for SentinelLM-Shell

SentinelLM-Shell Return Codes
The following table list Sentinel LM-Shell return codes and their default actions:

SentinelLM Programmer’s Reference Manual 299

SentinelLM-Shell Return Codes

Table F-1: SentinelLM-Shell Return Codes
Shell
Error Return Code Default Message Description
Number
009 ACTIVATOR_ERROR Could not launch the Client Unknown error occurred when launching the
Activator. Client Activator.
003 ERROR_LOADING Error loading program. The protected application was not loaded into
memory prior to execution.
007 HEARTBEAT_FAIL Heartbeat failed. Failed to receive a response to a periodic query
from the license server.
006 IMPORT_FUNC_ERROR Error importing library function. Error importing library function.
005 IMPORT_LIB_ERROR Error loading import library. Error loading import library.
001 INIT_ERROR Initialization error. A problem occurred when initializing the license
manager library.
008 LIC_RENEWAL_FAIL License renewal failed. Failed to renew license or portable hardware
key removed.
004 MEMORY_ACCESS_ERR Memory access error. Error accessing memory at run-time.
012 METER_ACCESS Meter key access error. Error accessing the key which meters the
SentinelLM-Shell.
010 METER_INIT License meter driver License meter key driver initialization error.
initialization error.
011 METER_VERSION License meter version License meter key version mismatch.
mismatch.
002 NO_LICENSE Could not get a license. No license was found.
300 Appendix F - Error and Result Codes for SentinelLM-Shell

Appendix G - File Formats

This appendix contains the formats for the following files:

* Licensecode

» Configuration

* Log

» Group reservation

The license server looks for these files under the directory specified by the
environment variable, LSDEFAULTDIR. If thisenvironment variable is not set,
it looksin the directory where the executable resides.

License Code File Format

The license code file contains the encrypted license codes that provides the
license server details of licensing agreements with software vendors. Thereis
one license code for each feature licensed by the license server.

All SentinelLM utilities that read or write license codes use the following
conventions:

» No more than one license code can be specified on one line of afile.
» A singlelicense code cannot be split across lines.

» A license code must be terminated either by a new line or a pound sign

).

SentinelLM Programmer’s Reference Manual 301

Configuration File Format

» If apound sign (#) is present on aline, al charactersfollowing it (until a
new line) will be treated as a comment and ignored. Comments may
appear anywhere in alicensefile.

Configuration File Format

302

A configuration file can be used for specifying aert actions aswell as
customizing the “fixed” or predefined strings found in areadable license string.

The fixed strings or keywords that can be remapped are:

SHORT # code_type

LONG

ADD # additive

EXCL

NO_SHR # sharing_crit

USER_SHR

HOST_SHR

XDISP_SHR

APP_SHR

NO_HLD # holding_crit

APP_HLD

LIC_HLD

FLOAT # client_server_lock_mode

ND_LCK

DEMO

CL_ND_LCK

_KEYS # num_keys suffix

_MINS # key_holdtime, key_lifetime suffix

comment character
subfield delimiterl
subfield delimiter2

The strings above are used as the default strings to generate the readabl e license
codes unless they are mapped to other strings and specified in the configuration
file.

The format of the configuration fileis as follows:

Appendix G - File Formats

Configuration File Format

[feature_namel feature versionl]
default_string = new_string # comments. Thisis aremap statement.

[feature_name2 feature version2]
default_string = new_string # comments. This is another remap statement.

[feature_name feature_version] marks the beginning of a new section. All
subsequent remap statements apply to readable licenses with this feature and
version, until another [feature_name feature_version] section is encountered.

In the configuration file comments can be written after the pound sign/hash mark
(#) character.

To remap the comment character and the two subfield delimitersused in a
readable license, the following format must be used in the corresponding section

of the map file:

Item Description

COMMENT = $ The comment character used in the readable license string is #
now changed to ‘$'.

SUBF_DELIM1 =; The subfield delimiter used in the readable license # string is *;’
not ‘,".

SUBF_DELIM2 =/ The other subfield delimiter used in the readable license # string
is /" not *:’.

These characters are allowed to be remapped just in case you wish to use one or
more of these charactersin your license code generator data (e.g., in vendor
info), which could interfere with parsing of the subfields of areadable license.
This remapping should be done when you run the license code generator.
Perform the following steps:

1. Writethe configuration file.

2. Make sure the license code generator finds the configuration file, and
that the appropriate feature and version section exists.

3. Thelicense code generator will generate the remapped license string.

4. Ship the configuration file aswell as the readabl e license to the end user.

SentinelLM Programmer’s Reference Manual 303

Configuration File Format

304

5.

The end user should make sure that |sdecode and/or the license server
able to read the configuration file. If either of these are not able to read
the configuration file, the license string may not be parsed correctly.

Steps 3 and 5 apply to any remap statement, whether it isthe comment character
or LONG that is being remapped.

In the configuration file the feature_name and feature_version can be specified
in the following three formats to control the range of applicability of the section:

1

3.

[feature_name feature_version] ==>

Subsequent remap statements apply only to feature_name and
feature version.

For example:

[DOTS 1.0] ==> remapping for version 1.0 of DOTS.
[feature_name *] ==> remapping for all versions of feature_name.
For example:

[DOTS*] ==> remapping for all versions of DOTS.

[] or [* *] ==> remapping for al license codesin the licensefile.

If aparticular feature name and version corresponds to more than one
[feature_name feature version] section, then the section which describes the
feature most accurately is selected and the remap statements under that section
are used for remapping.

For example:
If[],[DOTS 2], and [DOTS*] are all specified in the map file, then:

For DOTS version 2 statements specified below [DOTS 2] will be used.

For DOTS version 1.0 statements specified below [DOTS *] will be
used.

For TUTOR version 0 statements specified below [] will be used.

Appendix G - File Formats

Configuration File Format

[JTor[]areinvalid and should be written as[] (no space between the two square
brackets).

[**] isinvalid and should be written as[* *] in the configuration file.

Furthermore, for statements associated with a particular feature and version, only
the statements within the applicable section will be used. If some statements are
missing from [DOTS*] but are givenin [* *], the onesin [* *] will not be used
for DOTS 1.0.

An example configuration file is shown below:

(1 #all features

SHORT = SH # short code

COMMENT =# # comment char remains the same
LONG =Ln

_KEYS=_keys

_MINS = _minutes

[DOTS*] # mapping for all versions of DOTS
SHORT = short

_KEYS=_number_of_keys

LONG = long_code

_MINS=_minutes

[DOTS 1] # mapping for version 1 of DOTS
SHORT=SHORT_CODE

LONG = LONG_CODE

FLOAT = FLOATING

_KEYS=_NUM_LICENSES

SUBF_DELIM1=; # comma remapped to a semi-colon
[STARS 2] # stars version 2
_MINS=_MINUTES

LONG=LONG_CODE

SHORT=SHORT_CODE

_KEYS=_LICENSE

SUBF_DELIM2 =/ # colon remapped to '/

COMMENT = @ # comment delimiter

For parsing errorsin readable license strings, the license server givesthe line
number of the string, the file name, and the cause of error.

The environment variable, LSERVRCCNF, can specify the path to the
configuration file. The path for <licenseFile>.cnf, is constructed from the
license file path the user is using. licenseFile can be specified using existing
methods such as the -s option, or the LSERVRC environment variable. It is not

SentinelLM Programmer’s Reference Manual 305

Log File Format

an error for the configuration file to be missing. The configuration file can
contain information other than remap statements. For instance, alert
specifications are also given in thisfile, so it is a general-purpose configuration
file associated with a particular licensefile.

Log File Format

The license server generates a usage file that logs all license codes issued or
denied. License code updates are not recorded. Usage reports can be generated
using the SentinelLM utility, Isusage. Reports for encrypted log files can be
generated by devel opers only using the vusage utility. See the Sentinel LM
Developer’s Guide for information on Isusage and vusage.

Various levels of encryption can be set for the log file entries. Y ou set the
encryption level for a particular license code when you generate it, and any log
file entry created for that license code will be encrypted at that level. A

devel oper-specified non-zero encryption level overrides any encryption level set
by a customer. See the Sentinel LM Developer’ s Guide and the Sentinel LM
Administrator’s Guide for details.

License codes with an LFE level of O will be encrypted using the level specified
in the -Ife license server switch.

Information is recorded in the log file one entry per line in the following format:

Table G-1: Log Entry Format

Server- License-

Date Time- Feature Ver Trans Numkeys Keylife User Host LSver Currency Comment

LFE LFE stamp
Table G-2: Elements of a Log File
Element Description
Server-LFE Customer-defined log file encryption level as specified by the license
server -Ife startup option.
License-LFE Developer-defined log file encryption level as specified during license
code generation. If this is non-zero, it overrides the Server-LFE.
306 Appendix G - File Formats

Log File Format

Table G-2: Elements of a Log File (Continued)

Element Description

Date The date the entry was made, in the format:
Day-of-week Month Day Time (hh:mm:ss) Year

Time-stamp The time stamp of the entry, according to the format set by the mktime()

C library call.
Feature Name of the feature.
Ver Version of the feature.
Trans The transaction type. 0 indicates an issue, 1 a denial, and 2 a return.
Numkeys The number of licenses in use after the current request/release.
Keylife The time, in seconds, that the license was issued.
User The user name of the application associated with the entry.
Host The host name of the application associated with the entry.
LSver The version of the SentinelLM license server.
Currency The number of licenses handled during the transaction.
Comment The text associated with the log_comment string passed in by

LSRequest() or LSRelease().

A typical entry might appear as:

3 3 xxxx Tue Jul 06 11:46:27 1999 931286887 99 v1 2 MQ == 632 jsmith engrl 7.00 1 ----- XX XXXX
XXXXXX

This entry indicates that Tuesday, July 06, 1999, at 11:46:27, the user, jsmith
finished using an application with the feature 99 and version 1. The license was
returned after using the application for 632 seconds on computer engrl1. Because
thisis encrypted to level 3, the number of license tokens remaining after the
license was returned is encrypted. The license server versionis 7.00, and 1
license token was used by the application.

If the maximum size of the log file has been specified using the -z option,
Sentinel LM automatically trims the log file so that it will not grow indefinitely.
The trimming mechanism ensures that the log file always will have less than
2,000 lines of ASCII text (each line requiring less than 100 bytes).

SentinelLM Programmer’s Reference Manual 307

308 Appendix G - File Formats

A

adding

APIs 9

feature licensing information 104, 106

security 266-268, 269, 272
advanced client functions 41
Advanced-API 2
APlIs

adding 9

advanced 2

client 23-119

client example 3

commuter 249

license code generation 121

queuing 231

quick 1

redundancy 201

standard 1
applications

sample 259-260
authenticating the license manager 4548

B
basic client licensing functions 25-30
basic license code generation functions 126
broadcast intervals
retrieving 67
setting 66

C
CHALLENGE structure, defined 46
challenge-response mechanism 4548
CHALLENGERESPONSE structure,
defined 46
CHANGE_PORT_OBJ Makefile
variable 276
changing

SentinelLM Programmer’s Reference Manual

Index

port number default 276-277
system time 266268
client APl 23-119
example 3
client configuration functions 2, 52
client feature information, retrieving 81, 83
client function return codes 283
client libraries 24
client library
initializing 31
retrieving information 109
tracing calls 119
client query functions 2, 79
client utility functions 2, 100-112
clock, detecting changes 17, 266268
code struct field setting functions 132-151
codeT 121
Commuter Licensing 249
commuter licensing 249
configuration files
format of 302—306
contacting Rainbow Xxix
conventions
syntax Xxviii
typographic xvii
custom host I1Ds, creating 277-281
customizing functions 261
customizing Sentinel LM
changing port numbers 276-277
creating acustom host ID 277-281
detecting time tampering 266—268
error handling 116
license code encryption 269-272
message encryption 272-275

D
DECRYPT_LIC_OBJMakefile variable 270

309

DECRYPT_MSG_OBJMakefile
variable 273

decrypting

license codes 269-272

messages 272-275
deleting

feature licensing information 107
destroying the handle for Iscgen.h 127
disable auto timer 78
displaying error messages 115, 117

E
ENCRYPT_LIC_OBJMakefile variable 270
ENCRYPT_MSG_OBJMakefile

variable 273
encrypting
license codes 269-272
messages 272-275
environment variables
LS MAX_GRP_QLEN 234
LS MAX_HOLD_SEC 235
LS MAX_QLEN 234
LS MAX_WAIT_SEC 235
LSDEFAULTDIR 301
LSERVRC 305
LSERVRCCNF 305
LSFORCEHOST 11
LSHOST 15, 53
error codes
client functions 283
license generation functions 291
redundancy, queuing and commuter
functions 295
SentinelLM-Shell functions 299
error handling 113-118
customizing 116
setting 116
error handling functions 2
error message display 117

310

error messages, displaying 115

errors, retrieving 128-131

event handlers, registering with the
server 263

examplefiles 264

F
feature licensing information
adding 104, 106
deleting 107
retrieving 91
feature names, retrieving 94
feature query functions 2, 86-100
feature time left information
retrieving 97
FeatureName parameter 3, 10
file formats 301-307
configuration 302—306
license codes 301
log 306-307
files
Iservrc 301
Ishost 53
functions
basic client 25-30
client configuration 2, 52
client query 2,79
client utility 2, 100-112
customizing 261
error handling 2
feature query 2, 86-100
redundancy 201

H
help
getting xviii
hold time
setting 69
host ID

Index

customizing 277-281
setting 66
host names
retrieving 56
setting 53

I
initializing fields of the machinelD 58
initializing the client library 31
initializing the server 263
initializing the server info 65

K
key time left information
retrieving 99
keys
renewing 38

libraries
client 24
integrated 24
network 24
stand-alone 24
UNIX 15
license code generation APl 121
license codes
encrypting and decrypting 269272
fileformat 301
license generation function return codes 291
license manager
authenticating 45-48
usage logging 306-307
license server
APIs
license code generation 121
locating 101
LICENSE _LIBS macro 16
licenses

SentinelLM Programmer’s Reference Manual

lifetime of 39

local vs. remote renewal of 74

releasing 36, 48

renewing 38

regquesting 32, 42

single-call licensing 26

disabling 29

lifetime of alicense 39
local license renewa 75
locating the license server 101
log file format 306-307
LS LIBVERSION structure, defined 110
LS MAX_QLEN 234
LSAPI client function return codes 284
Iscgen.h handle

destroying 127
LSDEFAULTDIR environment variable 301
LSERVRC environment variable 305
Iservrc file 301
LSFORCEHOST environment variable 11
LSGetMessage 115
LSHOST environment variable 15, 53
Ishost file 53
LSRelease 36
LSRequest 32
LSUpdate 38
Isusage utility 306

M
machine names, retrieving 101
macros
LICENSE LIBS 16
NO_LICENSE 6
Makefile 16, 259, 262
Makefile variables
CHANGE_PORT_0OBJ 276
DECRYPT_LIC OBJ 270
DECRYPT_MSG_0OBJ 273
ENCRYPT_LIC OBJ 270

311

ENCRYPT_MSG_OBJ 273
messages, encrypting and decrypting 272—
275

P

port numbers

changing the default 276-277

retrieving 58
printing errors 128-131
problems

reporting Xxi
programs, sample 259-260
PublisherName parameter 3, 10

quick client functions 25
Quick-APl 1

R

redundancy 295
redundant license server 201
registering an event handler 263
releasing licenses 36, 48
remote renewal period 39
remote renewal time, setting 77
renewing license keys 38
reporting problems xxi
reguesting licenses 32, 42
retrieving

broadcast intervals 67

client feature information 81, 83

client library information 109

errors 128-131

feature licensing information 91

feature names 94

feature time left information 97

license time left information 99

machine names 101

server host names 56

312

server port numbers 58

time drift information 96

time-out intervals 68

version information 93, 95
Returns 37

S
sample applications 259-260
sample programs 259
samples.mak 259
security
adding 16, 266-268, 269, 272
SentinelLM
APIs
client 23-119
license code generation 121
architecture 1-2
customizing
changing port numbers 276-277
creating acustom host ID 277-281
detecting time tampering 266—268
error handling 116
license code encryption 269-272
message encryption 272-275
license generation function return
codes 291
security 16
adding 266-268, 269, 272
servers
detecting 10
initializing 263
retrieving host names 56
retrieving port numbers 58
setting
host names 53
setting
broadcast intervals 66
code struct fields 132-151
error handling 116

Index

hold time 69
host ID 66
remote renewal time 77
server names 53
time-out intervals 68
shared IDs 70, 72
shutting down Iserv 110
single-call licensing 26
disabling 29
standard client functions 31
Standard-API 1
structure definitions
CHALLENGE 46
CHALLENGERESPONSE 46
LS LIBVERSION 110
VLSclientinfo 80
VL Sfeaturelnfo 87
syntax conventions xviii
system time, detecting changes 17, 266268

1
time clock, detecting changes 17, 266268
time drift information

retrieving 96
time-out intervals

retrieving 68

setting 68
tracing client-library cals 119
tracing SentinelLM operation 118
typographic conventions xvii

U

UNIX

libraries 15

Makefile 16, 259
updating 49
updating licenses 49
usage logging 306-307
using the SentinelLM client APl 23

SentinelLM Programmer’s Reference Manual

utilities
Isusage 306

variable 305
variables
environment
LSDEFAULTDIR 301
LSERVRC 305
LSFORCEHOST 11
LSHOST 15, 53
Makefile
CHANGE_PORT_OBJ 276
DECRYPT_LIC_OBJ 270
DECRYPT_MSG_OBJ 273
ENCRYPT_LIC_OBJ 270
ENCRYPT_MSG_OBJ 273
version information
retrieving 93, 95
Version parameter 3, 10
VL SaddFeature 104, 203
VL SaddFeatureExt 205
VL SaddFeatureToFile 106, 206
VL SaddServerToPool 208
VL ShatchUpdate 49
VLScgAllowAdditive 135
VLScgAllowClientLocklnfo 172
VLScgAllowClockTamperFlag 148
VL ScgAllowCodegenVersion 153
VL ScgAllowCommuterLicense 157
VL ScgAllowFeatureName 166
VLScgAllowFeatureVersion 167
VLScgAllowHeldLic 139
VLScgAllowKeyHoldtime 186
VL ScgAllowKeyHoldUnits 183
VLScgAllowKeyLifetime 185
VLScgAllowKeyLifeUnits 182
VLScgAllowKeysPerNode 174
VLScgAllowLicBirth 187

313

VLScgAllowLicenseType 151
VLScgAllowLicExpiration 190
VLScgAllowLockMechanism 145
VLScgAllowL ockModeQuery 169
VLScgAllowLogEncryptLevel 159
VLScgAllowMagjorityRuleFlag 155
VLScgAllowMultiKey 160
VLScgAllowMultipleServerinfo 162
VLScgAllowNetworkFlag 141
VLScgAllowNumFeatures 177
VLScgAllowNumKeys 179
VLScgAllowOutLicType 150
VLScgAllowRedundantFlag 154
VLScgAllowSecrets 162
VLScgAllowServerLocklnfo 170
VLScgAllowSharedLic 142
VLScgAllowSharelimit 193
VLScgAllowSiteLic 175
VLScgAllowSoftLimit 180
VLScgAllowStandAloneFlag 140
VLScgAllowTrialLicFeature 144
VLScgAllowVendorinfo 165
VLScgCleanup 127
VLScgDecodelLicense 197

VL ScgGenerateLicense 196

VL ScgGetErrorLength 129
VLScgGetErrorMessage 130

VL ScgGetLicenseMeterUnits 198
VLScgGetNumErrors 129

VL ScgGetTrialLicenseMeterUnits 199
VLScglnitialize 126
VLScgPrintError 131

VLScgReset 128

VL ScgSetAdditive 136
VLScgSetClientLocklnfo 173

VL ScgSetClientLockMechanism 145
VL ScgSetClientServerLockMode 169
VL ScgSetClockTamperFlag 148
VL ScgSetCodegenVersion 153

314

VL ScgSetCodelength 136

VL ScgSetCommuterLicense 157
VL ScgSetFeatureName 166

VL ScgSetFeatureVersion 168
VLScgSetHoldingCrit 139

VL ScgSetKeyHoldtime 186

VL ScgSetK eyHoldtimeUnits 183
VLScgSetKeyLifetime 185

VL ScgSetKeyLifetimeUnits 182
VL ScgSetKeysPerNode 174

VL ScgSetKeyType 160
VLScgSetLicBirthDay 189
VLScgSetLicBirthMonth 188
VL0LScgSetLicBirthYear 189
VLScgSetLicenseType 152
VLScgSetLicExpirationDay 191
VL ScgSetLicExpirationMonth 191
VLScgSetLicExpirationYear 192
VL0LScgSetLicType 138

VL ScgSetLoadSWLicFile 195
VL ScgSetL ogEncryptLevel 159
VL ScgSetMajorityRuleFlag 156
VLScgSetNumClients 178
VIScgSetNumericType 194

VL ScgSetNumFeatures 177

VL ScgSetNumKeys 179

VL ScgSetNumSecrets 164

VL ScgSetNumSubnets 176

VL ScgSetOutLicType 150

VL ScgSetRedundantFlag 154
VL ScgSetSecrets 163

VL ScgSetServerLockinfol 170
VL ScgSetServerLockinfo2 171
VL ScgSetServerL ockMechanisml 146
VL ScgSetServerL ockMechanism2 147
VLScgSetSharedLicType 142
VL ScgSetShareLimit 193
VLScgSetSiteliclnfo 175

VL ScgSetSoftLimit 181

Index

VL ScgSetStandAloneFlag 141

VL ScgSetTrialDaysCount 144

VL ScgSetVendorinfo 165

VL SchangeDistbCrit 209

VL SchangePortNumber 276

VL SchangeUsagel ogFileName 253
VLSCleanup 37

VLScleanup 49

VLSclientinfo 80

VL SconfigureTimeTamper 266, 267
VL SdecryptLicense 271

VL SdecryptMsg 274

VL SdeleteFeature 107

VL Sdel ServerFromPool 210

VL SdisableAutoTimer 78

VL SdisableEvents 256

VL SdisableLicense 29
VLSdiscover 11, 101

VL SdiscoverExt 212

VL Senablel ocalRenewal 75

VL SencryptLicense 269
VLSencryptMsg 273
VLSerrorHandle 114

VL SeventAddHook 263
VLSeventSleep 256

VL Sfeaturelnfo 87

VL SgetAndinstall CommuterCode 250
VL SgetBroadcastinterval 67
VLSgetClientinfo 82

VL SgetCommuterinfo 249

VL SgetContactServer 56

VL SgetDistbCrit 215

VL SgetDistbCritToFile 217

VL SgetFeatureFromHandle 94

VL SgetFeaturelnfo 91

VL SgetFeaturelnfoToFile 219

VL SgetFeatureTimel eftFromHandle 97
VL SgetHandlelnfo 84

VL SgetHandleStatus 241

SentinelLM Programmer’s Reference Manual

VL SgetHostAddress 223
VL SgetHostName 220

VL SgetKeyTimelL eftFromHandle 99

VL Sgetl eaderServerName 221
VLSgetLibinfo 109
VLSgetLiclnUseFromHandle 85
VL0LSgetLicSharingServerList 224
VL SgetMachinelD 60

VL SgetQueuedClientinfo 237
VL SgetQueuedLicense 245

VL SgetServerList 64

VL SgetServerNameFromHandle 62

VL SgetServerPort 58, 276

VL SgetTimeDriftFromHandle 96
VL SgetTimeoutinterval 68

VL SgetTrialPeriodLeft 200

VL SgetUsagel ogFileName 254
VL SgetVersionFromHandle 95
VL0LSgetVersions 93
VLSinitialize 31
VLSinitMachinelD 58

VL SinitQueuePreference 247
VLSinitServerinfo 65
VLSinitServerList 63
VLSisClockSetBack 268
VLSisLocaRenewalDisabled 75
VLSlicense 26

VL Smachinel DtoL ockCode 61
VL SqueuedRequest 232

VL SqueuedRequestExt 232

VL SreleaseExt 48
VLSremoveQueue 240

VL SremoveQueuedClient 238
VLSrequestExt 42

VL SscheduleEvent 255

VL SserverVendorlnitialize 263
VL SsetBroadcastinterval 66
VL SsetContactServer 53

VL SsetErrorHandler 116

315

VL SsetHoldTime 13, 69

VL SsetRemoteRenewa Time 77
VL SsetServerPort 276

VL SsetSharedld 70

VL SsetSharedldValue 72

VL SsetTimeoutInterval 68

VL SsetTracelLevel 119

VL SsetUserErrorFile 117
VLSshutDown 110

VL Suninstall AndReturnCommuterCode 252
VL SupdateQueuedClient 242
VLSwhere 112

316 Index

	SentinelLM Programmer's Reference Manual
	Contents
	Preface
	The SentinelLM Manuals
	About This Guide
	Typographic Conventions
	Syntax Conventions

	Getting Help
	Online Documentation
	For Additional Help

	Contacting Rainbow Technical Support
	How to Report Problems

	Chapter 1 - Introduction
	Using the SentinelLM Application Library
	Licensing on Stand-alone and Networked Computers
	Client API Example
	Example

	Language Interfaces Supported
	Special Use of Win32 for Generating Tools
	Debugging Your Client Application
	Disabling Licensing

	Chapter 2 - Protecting Your Application with the Application Library
	Adding APIs to Your Source Code
	Application Identification
	Automatic License Server Detection
	Special Licensing Cases

	Linking with the Correct Library
	Windows Static Linked Libraries
	Windows Dynamic Linked Libraries and Import Libraries
	UNIX Libraries

	Notes on Security
	Protecting Against Time Tampering

	Using a Custom Locking Code
	Step 1 - Rebuilding License Server
	Compiler Required
	Files Required
	Required Changes to Server Source Code
	Steps to Rebuilding the License Server

	Step 2 - Rebuilding echoid.exe
	Compiler Required
	Files Required for echoid.exe
	Required Changes to echoid.exe
	Steps to Rebuilding echoid.exe

	Step 3 - Modifying Client Application
	Overall Process of Using a Rebuilt License Server and Rebuilt

	Chapter 3 - SentinelLM Client API
	Introduction
	Basic Client Licensing Functions
	Quick Client Licensing Functions
	Standard Client Licensing Functions
	Advanced Client Licensing Functions

	Challenge-response
	Client Configuration Functions
	Local vs. Remote Renewal of Keys
	Client Query Functions
	Feature Query Functions
	Client Utility Functions
	Error Handling
	Tracing SentinelLM Operation

	Chapter 4 - License Code Generation API
	License Code Generation Functions
	Basic Functions
	Functions Which Retrieve or Print Errors
	Functions for Setting the Fields in Code Struct
	License Generation Functions
	License Meter Related Functions
	Trial License Related Functions

	Chapter 5 - Redundancy API
	Chapter 6 - License Queuing API
	License Queuing Example Code
	License Queuing Functions

	Chapter 7 - Commuter License API
	Commuter License Related Functions

	Chapter 8 - Usage Log Functions
	Chapter 9 - Utility Functions
	Appendix A - Sample Applications
	Sample Program Summary
	Customization Samples

	Appendix B - Customization Features
	Initializing the Server
	Protecting Against Time Clock Changes
	Encrypting License Codes
	Encrypting Messages
	Changing the Default Port Number
	Customizing the Host ID

	Appendix C - Error and Result Codes for Client Functions
	Client Function Return Codes

	Appendix D - Error and Result Codes for License Generation Functions
	License Generation Function Return Codes

	Appendix E - Error Codes for Redundancy, Queuing and Commuter Functions
	Return Codes

	Appendix F - Error and Result Codes for SentinelLM-Shell
	SentinelLM-Shell Return Codes

	Appendix G - File Formats
	License Code File Format
	Configuration File Format
	Log File Format

	Index

