
Security through Diversity
Adam/Javaman

adam@philtered.net/javaman@ghetto.org

Biological Perspectives

• Biological systems survive not as individuals
but as populations.

• If you were not aware, the world will not
stop turning if you die

• From a genetic standpoint, individuals are
highly variable, but are similar enough to
one another so that we can interact and
procreate

Biological Perspectives

• Minor changes in our genome can give rise
to rather devastating illnesses

• Rather than being naturally selected out,
these variations have remained with our
species... but why?

Base Pair Deletion

Effect

Single Base Pair Errors

HbA

HbB

Effect

Biological Perspectives

• Single chromosome CTFR gene mutations
protect against cholera

• Likewise individuals with HbB show
increased resistance to malaria

• Research points to similar genetic resistance
against HIV and SARS

Biological Perspectives

• Genetic variations may cause hereditary
diseases, but also give us resistance to
plagues

• Pathogens that are highly lethal to one set of
individuals may cause no sickness in another.

• The diversity of the genetic code of the
population leads to resistance in some
individuals but not in others.

Biological Perspectives

• The survival of biological systems, including
humanity, in response to environmental
influences of all sorts has depended upon
our genetic variations

Biological Perspectives

• When genetic diversity decreases, however,
susceptibility to disease increases

• Correspondingly, systems with little or no
diversity suffer catastrophic plagues

• Agricultural practices provide several
examples

A Six Pack and a
Potato

• The Irish are in America because of poor
farming practices involving their food staple

• ... not Guinness...

Irish Potato Famine

• Caused when
Phytophthora infestans
fungus ravaged the
Irish potato crop.

• Originated from
South America

• Local farmers kept
the infection in check
by planting a variety
of potato crops

Learning from Mistakes

• Given the effect of the Great Potato Famine,
global farming practices were irrevocably
changed for the better, with farmers planting
a variety of strains of standard food items

Southern Corn Blight

• Another fungus,
Bipolaris Maydis,
ravaged U.S. high
yield corn in the
1970’s

• Over 15%, or

$1*109, worth of the
crop was lost
[Horsfall72]

Are computers that
different?

Biological vs.
Computational

• Individuals, both silicon and carbon based,
are complex systems

• Each composed of millions of lines or amino
acids of instructions

• Populations interact in complex networks,
which are extremely statistically similar
[Faloutsos99, Ebel02, Schroeder92]

Statistics of Networks

0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3
D

e
g
re

e
 (

lo
g
)

Rank (log)

Statistics of Networks

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

3.5

4
F

re
q
u
e
n
c
y
 o

f
D

e
g
re

e
 (

lo
g
)

Degree (log)

Biological vs.
Computational

• Individuals from both groups get “sick”
because of flaws in their construction, and
both suffer from similar epidemics.
[Kephart91, Pastor-Satorras01]

• Repairing flaws in construction ranges from
nearly impossible in the case of biological
systems to nearly impossible in the case of
computational systems

The Principle of
Security Through Diversity

• Computing systems should
emulate biological systems to
become survivable in the face of
attack and adversity

Emulate?

• Survivability is only achieved for the species
and not the individual, with the loss of a
single individual being tolerated and
expected

• Emulation of biological systems should not
stop at organic immune systems and self/
non-self recognition

• Are these systems true biological
emulators?

Emulate?

• Epidemic manifestation closely resembles
biological systems

• Biological systems evolve in tune to
viruses

• Populations are wiped out by their lack of
variation

• Populations which should have been wiped
out are kept in place by flawed market
economics

The Principle of
Security Through Diversity

• Described in several position papers
[Zhang01, Geer03, Stamp04],

• For good reason, the topic has been
extremely controversial

Published Works

• Y. Zhang, et al, “Heterogeneous Networking:
A New Survivability Paradigm”, 2001

• D. Geer, et al, “Cyberinsecurity: The Cost of
Monopoly”, 2003

• A. Stamp, “Risks of Monoculture”, 2004

Go Forth and
Diversify!

• It should be the job of the security
community to encourage/enforce diversity
by any means necessary

• Implementing any form of diversity on a
large scale remains challenge

Diversity Schemes

• Manual and Automatic systems
for introducing heterogeneous
behavior must be considered

Manual Diversity

• Manual replication of
functionality in an uncommon
way.

Manual Diversity

• Obvious example: Web Browsers

• Third party browsers

• Non-standard plug-ins

Manual Diversity

• Replicate libraries that have already been
written in a totally new and more secure
way using totally new and more secure
programming languages

• ... for the love of all that is holy, replace
OpenSSL

Manual Diversity

• Implement new parsers for old grammars in
new ways

• ASN.1 parser in Lisp

• Great idea for a senior project

Manual Diversity

• Make it easy to run different operating
systems on all types of hardware, with only
a few basic requirements

• Functional out-of-the-box, like knoppix

• Easy to use for a beginner, (again, like
knoppix)

Manual Diversity

• Don’t stop at reinventing the wheel, do
things that are totally new!

• Run crypto streams through the GPU,
design reconfigurable computing back-ends
to handle parser state machines, pass out
computations over MPI to terminals in
cubicles staffed by illegal immigrants

Manual Diversity

• Caveat: Use existing API interface schemas,
or create thin API calls to your libraries,
otherwise they may never be used

• People need to be able to rapidly swap
out one library for another in light of a
security event

• Programmers of new applications like
familiar interfaces

Manual Diversity

• Idea described by Joseph and Avižienis, “A
Fault Tolerance Approach to Computer
Viruses”, 1988

Automatic Diversity

• Algorithms exist which can automatically
introduce variability into multiple levels of
system behavior

Current Body of Work

• Introducing randomization on a system-by-
system basis has been explored

• Manipulating instruction sets [Barrantes03,
Kc03], general stochastic configuration
manipulation [Linger99], source code
manipulation [Etoh04]

• These techniques often require source code
access, and don’t take into account the state
of the network

Stochastic
Structural Manipulation

• Proposed by Linger in “Systematic
Generation of Stochastic Diversity as an
Intrusion Barrier in Survivable Systems
Software”, 1999

• Determines program flow and randomly
generates a functionally equivalent code
flow

• Works at the source level, but can be
implemented at the binary level

Randomized
Stack Protection

• One method involves insertion of a
randomized variable between a targeted
buffer and the old frame

• Attacker must correctly “guess” the value
held in this canary variable for a targeted
function to return and subsequently execute
the arbitrary code

• General idea behind the StackGuard project

Randomized
Stack/Heap Protection

• Simpler methods that don’t require as much
code transformation exist

• Randomize the relative location of the
stack/heap

• While attacks are still COMPLETELY
FEASIBLE, guessing the location of the offset
takes time

Address Space
Randomization

• Stack Randomization techniques don’t
protect against return-to-libc style attacks

• Targets to shared libraries can be
randomized [think PaX]

Instruction Set
Randomization

• Akin to running a processor with an alien
instruction set

• Scrambles binaries using XOR encryption,
decryption is done during the instruction
decode stage of the processor

Instruction Set
Randomization

• Can be easily done using runtime emulation
schemes; think Bochs

• Including the technology in hardware would
incur little to no speed penalty

• Even if the critical path lies in the IF/ID
stage, pipelining is already implemented in
most processors at this stage

Instruction Set
Randomization

• See:

• Kc, Keromytis, and Prevelakis, “Countering
Code-injection Attacks with Instruction
Set Randomization”, 2003

• Barrantes, et al, “Randomized Instruction
Set Emulation to Disrupt Binary Code
Injection Attacks”, 2003

F.A.C.

• Frequently Asked Criticisms

Criticism #1

• This is just Security through
Obscurity!

Answer #1

• The difference between diversity and
obscurity is subtle but significant

• Obscurity implies keeping an system closed
or hidden inherently improves security

• Diversity implies that all systems will be
broken, but utilizing an uncommon system
will slow down the attacker

Criticism #2

• This is f---ing impractical! I
can’t manage this much
software!

Answer #2a

• Ideally, diversity can be implemented in a
completely transparent fashion, with
multiple versions of libraries being
continually updated by vendors.

Answer #2b

• Yeah, and redeploying software every day is
practical?

• HINT: patch management

• Also, how practical is every single Internet-
wide virus?

Questions?

?

