It's normal to assemble the PCB with the smaller components first, progressing through to the larger components. Use the PCB legend as a positioning aid, solder the components into the board and trim back the excess leads in the following order.

Professional Limiter Compressor

In any sound broadcasting system the audio level must be controlled to prevent over modulation. The current trend is for broadcast stations to transmit a constant level of audio optimised to 100%. This gives the listener 'loud' audio and prevents constant re-adjustment on the receiver volume control. The Veronica Limiter Compressor is specifically designed to achieve constant 100% modulation without any over modulation using an FM broadcasting transmitter. The result is a professional sound on your station output with all music and speech inputs.

The Limiter Compressor circuit operates the audio gain around 3 individual time constants. These control a smooth AGC combined with a very fast attack on audio signal peaks. Audio compression and output level are nstant for input levels between -6dBu and +24dBu.

...e limiter circuitry also includes built in pre-emphasis.

Some audio equipment, usually CD players output high frequency signals above the audio spectrum. Signals such as these entering a transmitter or stereo coder are very undesirable and cause many problems. The Veronica Limiter Compressor is fitted with a 15KHz brick wall low pass filter to block the high frequencies. From 30Hz to 15KHz the filter response is flat. At 20KHz there is virtually no trace of signal

Before attempting any construction, check all the components against the component list. If any of the components are missing or damaged, immediately contact Veronica FM or your supplier before going any further with this kit. If you are unsure about soldering, see the 'Soldering Tips' section.

The PCB is printed with a legend showing the component shapes and reference numbers (R1, R2, R3, C1, C2, etc). Use the legend together with the component list to find the correct component for the PCB. ke extreme care when placing the components on the

. CB. If a component is incorrectly placed, the circuit will not work properly and may even be damaged.

- Resistors (except R45) and Small Diodes. Flat to board with very short leads. Line up diode with legend for correct polarity(see diagram)
- 2. Links. Use the scrap leads previously cut off the resistors to form the short wire links.
- 3. Integrated Circuits (IC). CAUTION STATIC SENSITIVE DEVICES. (Soldering Iron must have good earth. Avoid touching the IC pins with your fingers). Gently bend IC pins with small pliers to allow fit to PCB. Make sure all pins go into PCB and IC is flat down. Line up with legend for correct polarity. The IC pins are close together, take great care not bridge any of the pins with solder.
- 4. VR1, Ceramic Disc Capacitors and Ferrite Bead Chokes. Leads very short and components close to PCB.
- 5. D1. Line up with legend for correct polarity.
- 6. **Transistors.** Line up with legend for correct polarity. The Transistors will not push flat to the board without damage. As a compromise to keep the leads short, push the components gently, slightly bending the leads until the black casing is about 3 mm above the board.
- 7. LEDs. Line up with legend for correct polarity. These can be fitted flat to PCB or raised on bent leads to face away from the PCB for front panel applications.
- 8. Electrolytic Capacitors. Line up Electrolytic Capacitors with legend for correct polarity (see diagram). All flat to PCB with no leads showing at all.
- 9. **C9 and C17.** Leads as short as possible and close to *PCB.*
- 10.**R45 and ZD1.** <u>DO NOT</u> mount flat to PCB. Bend the leads of R45 and ZD1 and mount to the PCB using the dimensions shown in the diagram below. This is important as these components run HOT under normal operating conditions.

- 11.15KHz Low Pass Filter. Line up with legend and mount flat to PCB. AVOID prolonged contact with the soldering iron as this may damage the filter internally. The filter pins are close together, take great care not bridge any of the pins with solder. DO NOT ADJUST THE FILTER CORES.
- 12 Phono Sockets and Fuse Holder Clips. Line up with legend and flat to PCB.

PRE EMPHASIS

The limiter circuitry features built in pre emphasis. If the limiter a used with a Veronica 1W PLL transmitter, Stereo Transmitter or Stereo Coder, the pre emphasis needs disabling from these units.

Te-sable the pre-emphasis on the Veronica stereo coder/ itter remove C5 and C6 from the transmitter/ coder PCB. 16.

to disable the pre-emphasis on the Veronica 1W PLL transmitter remove C2 from the PLL transmitter PCB.

Veronica CIRCUIT TESTING

Before applying a power supply to the circuit, check and double check that all the components are in the correct position with the right polarisation. Check all the soldered joints, these should be shiny in appearance and all components should be rigid. Look carefully for accidental solder bridges and shorts. When all the checks are complete and okay, continue with the procedure below.

Adjust VR1 to mid position. Connect a regulated power supply of about 13.8V DC to the PCB position marked 13.8v + and -. DO NOT EXCEED 16V DC.

Connect the limiter audio output socket to the transmitter or stereo coder audio input using a phono to phono lead. Apply an audio source from a good quality cassette tape deck with VU metering and a pre recorded tape to the limiter audio input phono socket. Switch on the limiter and wait a few seconds for the limiter gain to settle. Play the tape. The VU metering on the tape deck should be hitting 0dB on the VU scale. Adjust VR1 on the limiter so that LED2 flashes simultaneously with the 0dB indication on the tape deck metering. VR1 is a sensitive ment for the limiter gain circuit. Abrupt adjustments to a Vic. may cause a large temporary gain reduction. If the audio appears to disappear, wait a few seconds for the limiter gain to re-settle. This procedure calibrates the limiter DC conditions and LED2 to 0dBu.

Using an FM radio, monitor the audio from the transmitter. Adjust the variable resistor on the transmitter or stereo coder audio input to give the correct level of FM deviation.

You can now apply any audio source between -6dBu and +24dBu to the limiter.

Veronice SPECIFICATIONS

Туре:	Back feed multiple time constant with			
	AGC			
input Limiting Threshold:	350 mV rms, -6dBu . 5 v pພາຍ			
Maximum Input:	12V rms, +24dBu 17/ 2004			
Bre-emphasis:	50 uS			
Output Level:	775 mV rms, 0dBu Lity pax			
Erequency Response:	30 Hz - 15 KHz relative to pre-emphasis			
Signal to Noise Ratio:	-75dBu			
Distortion:	Less than 0.2% THD at limiting			
Attack Time:	Less than 1 mS			
Release Time:	AGC controlled			
sidicators:	3 LED's for limiting -6dB, 0dB and +6dB			
New Requirement:	11-16 V DC regulated			
Audio Sockets:	All Phono			

- Do LEDs flicker on switch on, if not
- Check power supply for about 13.8V
- Check 1 amp fuse has not blown
- Check soldered joints and polarity on FB1, FB2, fuse holder clips, C3, D1, R45, VR1, R44, C24, C22, ZD1, LED1, LED2, LED3 and IC2

No Audio or Poor Quality Audio

- Check audio source and connection lead.
- Check soldered joints and polarity on phono sockets, R1, FB3, R2, C5, R3, C6, R4, R5, R6, IC1, R9, C8, R10, R11, C10, R12, FB4 and R13.
- Check 15KHz low pass filter, Switch off the limiter at the power supply. Bypass the filter by carefully soldering a short piece of wire across the filter PCB connections as shown in the diagram below. Switch the limiter on and if the audio is okay, the filter is damaged.

No compression/ limiting or audio gain unstable.

- Is the audio input greater than -6dBu (350mV)?
- Check soldered joints and polarity on C9, R14, R15, TR1 R19, IC1, R17, R18, C14, R22, R46, TR2, R20, R21, R23, R24, R25, D2, D3, R27, R26, C19, C18, R30, C17, R28, R31, R39, D4, D5, R41, R40, R42, R43, C21, TR3 and C7.

Due to the complexity of the circuit, other faults are more difficult to locate without test equipment. All of the components in the kit are high quality and brand new, it's very likely that a fault is down to the construction. Using the PCB legend and Component List, check that all 94 components are in the correct positions and have the correct polarity.

Carefully check the PCB soldering. Excessive soldering may have shorted out adjacent tracks on the PCB. Solder splashing from the iron could have shorted out adjacent tracks. A magnifying glass or multimeter may help to find any small hairline short circuits not visible to the naked eye. All soldered joints should be shiny in appearance. Any dull looking soldering may be a 'dry joint', causing the circuit to malfunction. Re-solder dull looking joints.

If the circuit still has a fault after double checking everything, contact your supplier or Veronica FM via Post or Email. Describe in writing or with a diagram the exact problem and we will take steps to get you working.

Veronica Kits, 18 Victoria Street, Queensbury BRADFORD, BD13 1AR, UK Tel/Fax 01274 816200 Email veronica@legend.co.uk Website http://www.legend.co.uk/~veronica/

A asurements taken with power supply at 13.8 volts DC

* POLARISED COMPONENTS TAKE GREAT CARE TO INSERT THE COMPONENT LEADS INTO THE PCB THE CORRECT WAY

R1,	47R	yellow purple black gold		C3*	220u	220uF 16V
2	270K	red purple yellow gold		C4	100p	101J
1 R3	27K	red purple orange gold		C5*	10	1uF 63V
R4	3K9	orange white red gold		C6	1n8	182
R5	3K9	orange white red gold		C7*	10u	10uF 16V
R6	10K	brown black orange gold		C8	100p	101J
R7	1K	brown black red gold		C9	100n	100K 100
R8	1K	brown black red gold		C10*	10u	10uF 16V
R9	56K	green blue orange gold		C11	10n	103
R10	2K2	red red red gold		C12	100p	101J
R11	3K3	orange orange red gold		C13	1n .	102
R12	100K	brown black yellow gold		C'4*	220u	220uF 16V
R13	47R	yellow purple black gold		C15	1n	102
R14	47K	yellow purple orange gold		C16	1n	102
R15	39K	orange white orange gold		C17	680n	680K 100
R16	4K7	yellow purple red gold		C18*	10u	10uF 16V
R17	4K7	yellow purple red gold		C19*	1u	1uF 63V
R18	68R	blue grey black gold		C20	100p	101J
R19	47R	yellow purple black gold		C21*	220u	220uF 16V
R20	47R	yellow purple black gold		C22*	1000u	1000uF 6.3V
R21	270R	red purple brown gold		C23	1n	102
R22	4K7	yellow purple red gold		C24*	220u	220uF 16V
R23	4K7	yellow purple red gold		VR1	2K2	Variable Resistor
R24	4K7	yellow purple red gold		D1*	1N5402	5402
R25	270R	red purple brown gold		D2*	1N4148	4148
R26	33K	orange orange orange gold		D3*	1N4148	4148
R27	1K5	brown green red gold		D4*	1N4148	4148
R28	680K	blue grey yellow gold		D5*	1N4148	4148
R29	2M	red black green gold		ZD1*	9V1	1N5346
R30	1K	brown black red gold		L ED1*	5mm Star	ndard Green
L R31	1K.	brown black red gold		LED2*	L@D2* 5mm Standard Green	
र32	4K7	yellow purple red gold		LED3*	5mm Sta	ndard Green
, R33	1K5	brown green red gold		TR1*	BC548	548C
R34	2k2	red red red gold		TR2*	BC548	548C
R35	39K	orange white orange gold		TR3*	2N3819	3819
R36	680R	blue grey brown gold		IC1*	TL074	TL074
R37	680R	blue grey brown gold		1C2*	TL074	TL074
R38	680R	blue grey brown gold		FB1	2 tum fen	rite bead
R39	22K	red red orange gold		FB2	2 turn fer	rite bead
R40	10K	brown black orange gold		FB3	2 turn fen	rite bead
R41	1K	brown black red gold		FB4	2 turn fen	rite bead
R42	100K	brown black yellow gold		1 x 15KHz Low Pass Filter		
R43	3K9	orange white red gold		2 x PCB Phono Sockets		
R44	2K2	red red gold	1	2 x Fuse Clips		
R45	33R	orange orange black gold		1 x 1 A Fuse		
R45	4K7	yellow purple red gold		2 x Terminal Pins		
C1	1n	102		1 x Limter PCB		
+ C2	1n	102				

SOLDERING TIPS

For good soldered joints it is vital that the PCB is clean and free of grease. If the PCB has become dirty or greasy, clean it down with meths or some other suitable electrical cleaning solvent before starting construction.

Keep everything clean, that's the answer to uccessful soldering. The iron tip always needs be clean and shiny, if the iron looks all grey, black and burnt, the solder will not flow properly. A small piece of sponge dampened with water is ideal for cleaning the iron. After a few soldered joints, wipe the tip of the iron on the damp sponge to remove the dirt build up.

Always apply the iron to the joint first, this heats the joint up, then apply the solder. This will give the joint a shiny and cone shaped appearance, which is correct. Never put a blob of solder on the iron and then apply this blob of solder to the joint. This will not work because the blob of solder will not bond to the cold joint.

C11

Rt:

RIS

GE

0 U

GND

000

0

2

5