
1Copyright © Last Stage of Delirium Research Group

Kernel Level Vulnerabilities

Behind the Scenes of the 5th Argus Hacking Challenge

Originally presented on Black Hat Briefings 2001

Last Stage of Delirium

Research Group

http://LSD-PL.NET
contact@lsd-pl.net

Chaos

Communication

Congress

2001

2Copyright © Last Stage of Delirium Research Group

The Last Stage of Delirium Research Group

 The non-profit organization, established in 1996,

 research activity conducted as the LSD is not

associated with any commercial company,

 four official members,

 all graduates (M.Sc.) of Computer Science from the

Poznań University of Technology, Poland

 for the last six years we have been working as

Security Team at Poznań Supercomputing and

Networking Center.

3Copyright © Last Stage of Delirium Research Group

Our fields of activity

 Continuous search for new vulnerabilities as well as

general attack techniques,

 analysis of available security solutions and general

defense methodologies,

 development of various tools for reverse engineering

and penetration tests,

 experiments with distributed host-based Intrusion

Detection Systems with active protection capabilities,

 other security related stuff.

4Copyright © Last Stage of Delirium Research Group

 General introduction

 Basics of Pitbull Foundation Intrusion Prevention

System

 About 5th Argus Hacking Challenge

 The ldt kernel level vulnerability

 The specified phases of the attack against system

with security enhanced by Pitbull Foundation

 Technical details of successful proof of concept code

 Summary and final remarks

Presentation overview

5Copyright © Last Stage of Delirium Research Group

 The main goal of this demonstration is to present the

technical details of successful exploiting kernel level

vulnerabilities

 The special emphasis will be put on potential

consequences of such errors

 The Argus Hacking Challenges as an interesting case

study of such consequences

 There is no such thing like 100% secured system

 The system can be considered secure only in the

specific place at the specific moment

Motivations

6Copyright © Last Stage of Delirium Research Group

Pitbull Foundation

Intrusion Prevention System

 Software enhancement to the operating

system that is based on the Trusted

Operating Systems (TOS) technology

 It got B1 security evaluation under

the Information Technology Security

Evaluation Criteria (ITSEC)

 It was approved for governmental

use by NSA and DoD

 It has never been hacked before...

7Copyright © Last Stage of Delirium Research Group

 Removal of superuser privileges

 Least privilege

 Information compartmentalization and Mandatory

Access Control (MAC)

 Role compartmentalization

 Kernel-level enforcement

Pitbull Foundation features

8Copyright © Last Stage of Delirium Research Group

 They are attributes of a process or file system

object that define what security relevant actions a

specific code is allowed to perform

 In a standard UNIX OS root inhibits all power in

the system

 In Pitbull root privileges are divided into many

sub-privileges (PV_DAC_R, PV_FS_MOUNT,...)

 There are new privileges added to the system

(PV_MAC_W, PV_PROC,...)

Privileges

9Copyright © Last Stage of Delirium Research Group

 A process or executable should only have the

minimum necessary privileges needed for the

performance of its tasks

 A user should only have the authorizations

which are required for the performance of his

duties

 Privileges are enabled or disabled around the

smallest section of code that requires them

The least privilege principle

10Copyright © Last Stage of Delirium Research Group

 Standard Unix operating systems implement access

control with the use of Discretionary Access Control

(DAC): permission bits and ACLs

 Mandatory Access Control (MAC) is a mechanism

providing information compartmentalization in TOS

 Unlike standard DAC, MAC restrictions cannot be

overruled by a root-owned process

Information Compartmentalization

11Copyright © Last Stage of Delirium Research Group

 Every object on the system, including both files

and processes, has a sensitivity label (SL)

 There are two components of a sensitivity label:

classification and compartments

 Classification is a hierarchical component of SL.

It defines sensitivity of information

 Compartments are non hierarchical components of

sensitivity labels. They define sets of information

categories

Information Compartmentalization (2)

12Copyright © Last Stage of Delirium Research Group

TOP SECRET:ALL

ACCOUNTING MANAGEMENT

PUBLIC

CONFIDENTIAL

RESTRICTED

PUBLIC

ACCOUNTING

RESTRICTED

ACCOUNTING

PUBLIC

MANAGEMENT

RESTRICTED

MANAGEMENT

IMPL. LOW

Information Compartmentalization (3)

13Copyright © Last Stage of Delirium Research Group

 A process cannot open a file for reading unless the

SL of the process dominates the SL of the file

 A process cannot open a file for writing unless the

SL of the process equals the SL of the file

 Unless a process has the privilege needed to

change an SL, the process cannot change its own

SL or the SL of any process or file on the system

Information Compartmentalization (4)

14Copyright © Last Stage of Delirium Research Group

 A combination of privileges and authorizations is

used to enforce role compartmentalization

 Authorizations are assigned to users (privileges to

processes). They are required in order to use

privileges

 If a user is not authorized for a privilege, he will not

be able to use that privilege even if he is permitted

to execute a privileged file

Role Compartmentalization (Authorizations)

15Copyright © Last Stage of Delirium Research Group

 Security decisions are made at the operating

system kernel level

 The security decisions are made as close as

possible to the resources being protected

 The system is more secure than any combination

of user-level or application-level security

 The standard UID 0 checks are replaced with

more specific and more targeted privilege checks

 Root exploits are no longer useful to intruders

Kernel Level Enforcement

16Copyright © Last Stage of Delirium Research Group

+ Provides additional kernel level protection

+ It is based on TOS technology (proved

mathematical security models)

+ Protects against classical user level attacks

but...

- It is potentially open to new threats

- Some of its features seem to be overused

- Tight configuration of the system is very difficult. It

requires a lot of experience and work.

LSD comments on Pitbull Foundation

17Copyright © Last Stage of Delirium Research Group

Coincided with Infosecurity Europe 2001 Exhibition,

held in London, 20-25 April 2001.

5th Argus Hacking Challenge

The rules:

 Hack the system secured with Pitbull Foundation
3.0 MU4 and servicing the web pages of two
fictional companies: Xtype and XCursion

 Do it within 5 days time

 In a case of success reveal how it was achieved

 Get the prize of 50 000 USD!

18Copyright © Last Stage of Delirium Research Group

 Solaris 7 x86 with Pitbull Foundation 3.0 and

.comPack (web protection) installed

 Partially secured OS (patches applied, the number of

services decreased, set-user-id bits removed from

many system binaries)

 Remote shell access via TSSH service to the public

webhack account

 Separate and disjoint compartment definitions for

user webhack, httpd server, xtype and xcursion web

pages directories

 ASN rules for network protection

Challenge system configuration

19Copyright © Last Stage of Delirium Research Group

TOP SECRET: ALL

HTTPD WEBHACK

PUBLIC

CONFIDENTIAL

RESTRICTED

PUBLIC

WEBHACK

RESTRICTED

XTYPE

RESTRICTED

XCURSION

XTYPE XCURSION

IMPL. LOW

Simplified challenge system configuration (2)

20Copyright © Last Stage of Delirium Research Group

The companies and products depicted on these pages are ficitious and were created solely for the purposes

of the Argus hacking contest. No resemblance to real companies, services, or products is intended.

Challenge system configuration (3) XTYPE

21Copyright © Last Stage of Delirium Research Group

The companies and products depicted on these pages are ficitious and were created solely for the purposes

of the Argus hacking contest. No resemblance to real companies, services, or products is intended.

Challenge system configuration (4) XCURSION

22Copyright © Last Stage of Delirium Research Group

 Specific to x86 architecture and OS protection

mechanisms provided by x86 family of processors

 Kernel level vulnerability that allows user mode

processes to install call gates in their Local

Descriptor Table

 Installed call gate could be an entry point to 0

protection level, thus it would allow code execution

at the OS kernel level

 Uncommon and tricky to exploit

The weapon: ldt bug

23Copyright © Last Stage of Delirium Research Group

 First reported in a NetBSD Security Advisory in

January 2001 (reported by Bill Sommerfeld)

 According to the advisory the following operating

systems were vulnerable: Solaris, NetBSD / OpenBSD

 We found its existence in SCO Unixware and

SCO OpenServer

 At the time of a challenge Solaris x86 as well as

Pitbull were still vulnerable (!)

 Is it a Solaris or Pitbull’s bug ?

ldt bug (2) - destroying the myth

24Copyright © Last Stage of Delirium Research Group

 The attack was performed within 24 hours time

and it consisted of several phases, reflecting major

modifications done to the ldt proof of concept code

 During each of the phase some new idea was tried

 There were some mistakes done, that fortunately

did not lead to the system reboot (could be treated

as an action against the Challenge rules)

Attack phases

25Copyright © Last Stage of Delirium Research Group

 Finding information about the Challenge on a security

news portal

 Installation of Pitbull 3.0 MU4 on a local machine for the

“know your enemy” purposes

 System configuration and tuning in order to reflect the

challenge conditions

 Verification of the ldt bug on the testbed system

 Development of fully operational proof of concept code

for ldt bug

Phase 0 (09:00 CET, Friday)

26Copyright © Last Stage of Delirium Research Group

 Login to the webhack account through SSH

 Verification of user webhack privileges

 Verification of Pitbull settings for user webhack

 General look around the system

 local vulnerabilities

 ASN network protection

 Verification of the ldt bug on a challenge system

Phase 1 (18:00 CET, Friday)

27Copyright © Last Stage of Delirium Research Group

RR W

RESTRICTED

DAC

MAC

Sensitivity label

/www/xtype/htdocs/index.html

File system object:

R

Owner Group Other

owner: xtype

group: xtype

Classification

XTYPE

Compartments

Rights mask

Subject:
LSD hunter process

sl:

privs:

uid: webhack

PUBLIC WEBHACK

none

Phase 1: Initial Privileges

Access checks: READ / WRITE

MAC: compare SUB SL with OBJ SL

DAC:

WEBHACK ?? XTYPE

compartments disjoint

none

READ FAILED WRITE FAILED

28Copyright © Last Stage of Delirium Research Group

 Application of Solaris x86 ldt proof of concept code

to the challenge system

 Gaining standard root user privileges (uid=0)

 Playing with the new set of privileges (root has no

power in the system)

Phase 2 (20:00 CET, Friday)

29Copyright © Last Stage of Delirium Research Group

Phase 2:

/www/xtype/htdocs/index.html

File system object:Subject:
LSD hunter process

sl:

privs:

uid: root

PUBLIC WEBHACK

none

Gaining standard root user privileges

(uid=0)

RR W

RESTRICTED

DAC

MAC

Sensitivity label

R

Owner Group Other

owner: xtype

group: xtype

Classification

XTYPE

Compartments

Rights mask

Access checks: READ / WRITE

MAC: compare SUB SL with OBJ SL

DAC:

WEBHACK ?? XTYPE

compartments disjoint

none

READ FAILED WRITE FAILED

30Copyright © Last Stage of Delirium Research Group

 Preliminary attempts to bypass MAC protection

 Setting the classification component of the user

webhack’s effective SL to ”TOP SECRET”

 Getting the highest information access level in the

WEBHACK compartment

Phase 3 (21:00 CET, Friday)

31Copyright © Last Stage of Delirium Research Group

Getting TOP SECRET classification

/www/xtype/htdocs/index.html

File system object:Subject:
LSD hunter process

sl:

privs:

root

TOP SECRET WEBHACK

none

uid:

Phase 3:

RR W

RESTRICTED

DAC

MAC

Sensitivity label

R

Owner Group Other

owner: xtype

group: xtype

Classification

XTYPE

Compartments

Rights mask

Access checks: READ / WRITE

MAC: compare SUB SL with OBJ SL

DAC:

WEBHACK ?? XTYPE

compartments disjoint

none

READ FAILED WRITE FAILED

32Copyright © Last Stage of Delirium Research Group

 Setting the classification component of the user

webhack’s effective SL to ”TOP SECRET”

 Setting the compartments component of the user’s

SL to ALL

 Obtaining the highest information access level in

the protected system (read access to all its

objects)

 Writing to target objects is denied

Phase 4 (22:30 CET, Friday)

33Copyright © Last Stage of Delirium Research Group

/www/xtype/htdocs/index.html

File system object:Subject:
LSD hunter process

sl:

privs:

root

none

uid:

Getting TOP SECRET classification

in ALL compartments

Phase 4:

TOP SECRET ALL

RR W

RESTRICTED

DAC

MAC

Sensitivity label

R

Owner Group Other

owner: xtype

group: xtype

Classification

XTYPE

Compartments

Rights mask

Access checks: READ / WRITE

MAC: compare SUB SL with OBJ SL

DAC:

TS ALL > RESTRICTED XTYPE

RESTRICTED XTYPE !> TS ALL

subject and object SL are not equivalent

READ ACCEPTED WRITE FAILED

compare uid with object owner

check right mask

root != xtype (users differ)

other[READ]=R

READ ACCEPTED

34Copyright © Last Stage of Delirium Research Group

 Setting the classification component of the user

webhack’s effective SL to ”RESTRICTED”

 Setting the compartments component of the user’s

SL to XTYPE

 Obtaining read access level in the XTYPE

compartment

 Writing to target objects is still denied

Phase 5 (04:00 CET, Saturday)

35Copyright © Last Stage of Delirium Research Group

Getting RESTRICTED classification
in XTYPE compartment

Phase 5:

/www/xtype/htdocs/index.html

File system object:Subject:
LSD hunter process

sl:

privs:

root

none

uid:

RESTRICTED XTYPE

RR W

RESTRICTED

DAC

MAC

Sensitivity label

R

Owner Group Other

owner: xtype

group: xtype

Classification

XTYPE

Compartments

Rights mask

Access checks: READ / WRITE

MAC: compare SUB SL with OBJ SL

DAC:

RESTRICTED XTYPE = RESTRICTED XTYPE

subject and object SL are equivalent

compare uid with object owner

check right mask

root != xtype (users differ)

other[READ]=R, other[WRITE] = 0

READ ACCEPTED WRITE ACCEPTED

READ ACCEPTED WRITE FAILED

36Copyright © Last Stage of Delirium Research Group

 Setting the classification component of the user

webhack’s effective SL to ”RESTRICTED”

 Setting the compartments component of the user’s

SL to XTYPE

 Setting uid of a process to xtype user

 Obtaining full access level (read and write) in the

XTYPE compartment

Phase 6 (05:00 CET, Saturday)

37Copyright © Last Stage of Delirium Research Group

Getting RESTRICTED classification
in XTYPE compartment and uid=xtype

Phase 6:

/www/xtype/htdocs/index.html

File system object:Subject:
LSD hunter process

Access checks: READ / WRITE

MAC: compare SUB SL with OBJ SL

DAC:

sl:

privs:

RESTRICTED XTYPE = RESTRICTED XTYPE

subject and object SL are equivalent

none

uid:

RESTRICTED XTYPE

xtype

RR W

RESTRICTED

DAC

MAC

Sensitivity label

R

Owner Group Other

owner: xtype

group: xtype

Classification

XTYPE

Compartments

Rights mask

compare uid with object owner

check right mask

xtype = xtype (user is the owner)

other[READ]=R, owner[WRITE] = W

READ ACCEPTED WRITE ACCEPTED

READ ACCEPTED WRITE ACCEPTED

38Copyright © Last Stage of Delirium Research Group

 Setting ALL process privileges (minimum, maximum,

limited and effective sets)

 Obtaining full access level (read and write) to the

protected system, regardless of the DAC and MAC

settings

 Historically, this was the way how the Challenge

system was hacked :-)

Phase 7 (07:00 CET, Saturday)

39Copyright © Last Stage of Delirium Research Group

Setting all privileges for given processPhase 7:

/www/xtype/htdocs/index.html

File system object:Subject:
LSD hunter process

sl:

privs:

uid: root

PUBLIC WEBHACK

PV_ROOT* PV_SU*

RR W

RESTRICTED

DAC

MAC

Sensitivity label

R

Owner Group Other

owner: xtype

group: xtype

Classification

XTYPE

Compartments

Rights mask

Access checks: READ/WRITE

MAC: checking for privileges

DAC:

PV_ROOT* present

checking for privileges

PV_ROOT* present

READ ACCEPTED WRITE ACCEPTED

READ ACCEPTED WRITE ACCEPTED

40Copyright © Last Stage of Delirium Research Group

Defaced web page XTYPE

ATTENTION!!!

We would like to inform you that what had to be done has been done. This site has been modified by Last Stage of

Delirium (http://lsd-pl.net) during the Argus hacking contest. Thank you for your cooperation.

41Copyright © Last Stage of Delirium Research Group

ATTENTION!!!

We would like to inform you that what had to be done has been done. This site has been modified by Last Stage of

Delirium (http://lsd-pl.net) during the Argus hacking contest. Thank you for your cooperation.

Defaced web page (2) XCURSION

42Copyright © Last Stage of Delirium Research Group

 kernel memory protection overview

 how is Pitbull integrated with Solaris x86 kernel ?

 what is x86 ldt bug ?

 why does this bug affect Pitbull product ?

 brief description of how to successfully exploit x86

ldt vulnerability in Solaris 7/8 x86 operating system

enhanced with Argus Pitbull Foundation 3.0 MU4+

and Web Protection .comPack products

This part covers:

... and finally:

Technical details

43Copyright © Last Stage of Delirium Research Group

Pitbull protected kernel overview

All critical system actions

pass through Argus

Reference Monitor Module

At least system call layer is

intercepted

Theoretically Pitbull has a

possibility to control and

successfully block any

operation initiated by user

programs

system call interface

hardware

VFS framework

HAT

kernel

services

networking

threads

sched.

process

mgmt.

device drivers

virtual memory
monitor

44Copyright © Last Stage of Delirium Research Group

Process virtual address space

is divided to kernel and user

space

kernel data

kernel code

kernel memory:

file system cache,

pageable memory,

kernelmap, hat structs

libraries

heap

executable data

executable code

stack

kadb

kernel

user

0x00000000

0xffffffff

 No context switch occurs

when transferring control

from user to kernel space

 Kernel have direct access to

whole user memory

 Kernel can easily distinguish

to what memory space a

given address belongs to

Kernel virtual address maps

Advantages:

45Copyright © Last Stage of Delirium Research Group

Memory protection

In Solaris system, sensitive kernel data

and code is protected on a page level

basis

Process, while in kernel as well as in

user mode, uses segment selectors

that cover the whole 4GB virtual

address space:

KCSSEL,KDSSEL: RPL=0, DPL=0

UCSSEL,UDSSEL: RPL=3, DPL=3

kernel data

kernel code

libraries

heap

executable data

executable code

stack

kadb
DPL

base 31:24

Code Segment Descriptors

kernel memory:

file system cache,

pageable memory,

kernelmap, hat structs
kernel

user

base 23:16

base 15:00 segment limit

46Copyright © Last Stage of Delirium Research Group

Processes accessing kernel services

There are four main types of such descriptors:

 task gates connected with task management

 trap gates for exceptions handling

 interrupt and call gates usually used to provide interface

for accessing more privileged protection levels to user

applications operating at the lower ones

To provide sufficient level of control while accessing code

segments with different privilege levels, processors use

special set of descriptors, called gate descriptors

47Copyright © Last Stage of Delirium Research Group

x86 call gate mechanism

Process continues executing

procedure in the target segment:

GDT / LDT

Process in user mode:
...

lcall $0x17,$0x00000000

Processor executes

far inter-segment call instruction

index: 0x17>>3=2

0

2

DPL params

target selector offset 15:00

offset 31:16

Call Gate Descriptor

...

...

lret

cs eip virtual address

48Copyright © Last Stage of Delirium Research Group

ldt bug - sysi86() system call

User program calls:

sysi86(SI86DSCR,struct ssd*)
DPL params

target selector offset 15:0

offset 31:16

Call Gate Descriptor

LDT

0

8

DPL of destination segment

descriptor is not checked

Destination Code Segment Descriptor

GDT

0

43
KCSSEL=0x158, index 0x158>>3=43, DPL=0

DPL

base 31:24 base 23:16

base 15:00 segment limit

gatesel=0x44, index 0x44>>3=8, DPL=3

49Copyright © Last Stage of Delirium Research Group

Jumping to the kernel space

s.bo=0x12345678;

s.sel=0x44;

s.ls=KCSSEL;

s.acc1=GATE_UACC|GATE_386CALL;

s.acc2=8;

sysi86(SI86DSCR,&s);

cs eip virtual address

KCSSEL 0x12345678

DPL params

target selector offset 15:00

offset 31:16

Call Gate Descriptor

Installation of a call gate

Call through the gate

lcall $0x44,$0x00000000

Processor tries to execute

instruction at new virtual

address on most privileged

protection level - panic!

50Copyright © Last Stage of Delirium Research Group

Executing code on the kernel stack

pushl %ebp

movl %esp,%ebp

call <asmcode+8>

popl %esp

addl $0x0d,%esp

lcall $0x44,$0x00000000

leave

ret

getcontext(&uc);

adr=uc.uc_mcontext.gregs[ESP]+12+4+4-(8<<2);

kernel data

kernel code

executable data

executable code

kernel

user

nop

nop

lret $0x20

kernel memory

process stack

Portion of asmcode[] executed on level 3

and level 0

Calculating the destination code address

51Copyright © Last Stage of Delirium Research Group

Executing code in user space

pushl %ebp

movl %esp,%ebp

call <asmcode+8>

popl %esp

addl $0x0d,%esp

lcall $0x44,$0x00000000

leave

ret

adr=&asmcode[21]

kernel data

kernel code

executable data

executable code

kernel

user

nop

nop

lret $0x20

Portion of asmcode[] executed on level 3

and level 0

kernel memory

Destination code address is known

52Copyright © Last Stage of Delirium Research Group

What can be done from the kernel level ?

 crash the system

 enable/disable Solaris or Pitbull security settings

 obtain raw access to disk devices

 leverage process credentials

 and more ...

There are a lot of possible actions that can be

undertaken at the kernel level code:

At this point there are actually no active security

protections left...

53Copyright © Last Stage of Delirium Research Group

Finding process’ cred_t on kernel heap

cpu_t

kthread_t

cred_t

cpu_thread

t_cred

KGSSEL:0x00000000

ttoproc(curthread)-> p_cred

/* user id */

/* group id */

#ifdef ARGUS

/* Sensitivity Labels */

/* Information Label */

/* Integrity Label */

/* Privilege Vectors */

/* Capability Set */

...

#endif
The cred_t address is random for each

process in the system

It can be found by walking through KGSSEL

segment, the cpu_t and kthread_t structures

54Copyright © Last Stage of Delirium Research Group

setuid(getuid())

p_cred-> cr_uid

uid_t cr_uid /* effective user id */

gid_t cr_gid /* effective group id */

uid_t cr_ruid /* real user id */

gid_t cr_rgid /* real group id */

uid_t cr_suid /* "saved" user id */

gid_t cr_sgid /* "saved" group id */

Standard UNIX user/group identifiers

...

Solaris has support for credential

management and sharing

cred_t

 it is better to create copy of cred_t before

changing it

 cr_ruid cannot be directly modified as it will

result in credential index inconsistency

(will crash the system)

 cr_uid is changed

Modification: process user ID

55Copyright © Last Stage of Delirium Research Group

#define SC_32 32

typedef struct _sl_t{

short sl_format;

short sl_class;

uint32_t pad;

union{

uint32_t un_sl_comp[SC_32];

long align;

}sl_comp_un;

}sl_t;

cred_t

sl_t cr_sl

sl_t cr_cl_min

sl_t cr_cl_max

sl_t

 changing classification requires setting one single integer value (sl_class)

 assignment to different compartments requires appropriate bits setting in

sl_comp[] table

 correct ALL value must be selected according the system configuration

To take control over MAC sl_class and sl_comp changes are needed

Modification: Pitbull sensitivity labels

56Copyright © Last Stage of Delirium Research Group

Modification: Pitbull privileges

#define PV_32 4

typedef uint32_t pv_t[PV_32];

cred_t

pv_t cr_pv

pv_t cr_pv_max

pv_t cr_pv_lim

pv_t cr_pv_used

pv_t

Modification of privileges allows to

bypass MAC and DAC

 in order to grant process all privileges, all bits

in pv_t[] table must be set to 1,

 after exec() the Pitbull revokes all privileges

for the security reasons,

 (sic!) the only exceptions are PV_ROOT*

privileges, which are the most powerful and

are inherited

57Copyright © Last Stage of Delirium Research Group

 Specific to x86 architecture and OS protection

mechanisms provided by x86 family of processors

 A kernel level vulnerability, of which impact is very

similar to the ldt bug

 Proper exploitation will result in a code execution at

0 protection level of a processor

 The setcontext() system call erroneously allows to

set the CS code segment register of a given process

to a user supplied value

SCO OpenServer setcontext() vulnerability

58Copyright © Last Stage of Delirium Research Group

 The case study presented today is a good example of

complexity of modern protection as well as attack

techniques

 Existence of ldt kernel level vulnerability allowed to bypass

security of Solaris system enhanced with Pitbull Foundation,

which received various certifications (ITSec B1)

 This proves that there is no such thing like completely

secured system

 The other thing is the range of practical impact that kernel

level vulnerabilities might have

The Conclusions

59Copyright © Last Stage of Delirium Research Group

+ Interesting experience, possibility of participation in

great event,

+ An opportunity to meet interesting people,

+ Obviously the prize money (partly paid up to this day),

+ For Michael it was unforgettable bachelor party.

The Conclusions (LSD gains and losses)

- Long sleepless night,

- 16 liters of Pepsi drunk by 4 persons within 24 hours

may influence our health,

- An opportunity to meet interesting journalists.

60Copyright © Last Stage of Delirium Research Group

Thank you for your attention

Last Stage of Delirium

Research Group

http://lsd-pl.net

contact@lsd-pl.net

