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ABSTRACT

As the essence of communication speech intelligibility,
rather than more general speech quality, can be of paramount
importance when communications systems operate in high
noise environments. This paper considers applications where
the acoustic signal is degraded by noise so as to be effectively
lost and applications where it is simply not available. With
such applications in mind we report experiments to assess
the use of non-acoustic general electromagnetic motion sen-
sors (GEMS). Whilst GEMS signals are essentially immune
to background noise they are incomprehensible to the human
listener. We show that GEMS signals nonetheless contain
meaningful speech information within a usable bandwidth in
the region of 1 to 2 kHz and report the first comparison of
GEMS signals to acoustic signals in the context of automatic
speech recognition (ASR). For a small, isolated digit ASR
task in a speaker-dependent mode results show word accura-
cies of 77% are achieved using GEMS signals alone.

1. INTRODUCTION

This paper addresses the problem of speech communications
in situations where the importance of intelligibility exceeds
all other aspects of general quality. Some examples include
military, security and surveillance applications either for high
noise conditions, where the acoustic signal is essentially lost,
or for situations where the acoustic signal is inaccessible.
The importance of intelligibility, which is of course the very
essence of communication, has been recognised by the ITU
who have recently initiated a programme to extend the stan-
dard quality measure known as PESQ (perceptual evaluation
of speech quality) [1] to the measurement of intelligibility.

Under noisy conditions it is sometimes desirable to pro-
cess speech with the aim of improving intelligibility. Speech
enhancement, however, is a notoriously difficult task. Hu and
Loizou [2] performed an extensive comparison of speech en-
hancement algorithms reporting that almost none improves
intelligibility.

Instead of trying to recover intelligibility from the acous-
tic signal, an alternative approach is to augment the degraded
acoustic signal with other forms of speech representation, for
example visual speech, lip dynamics, or by using throat mi-
crophones as in the work of Graciarena et al [3]. All of these
approaches have been extensively reported. A lesser known
approach is the use of general electromagnetic motion sen-
sors (GEMS)! [4]. GEMS signals come from a low powered
radar device which reflects movements within the vocal tract

IThere is more than one definition of GEMS. Others include glottal elec-
tromagnetic micropower sensor and glottal electromagnetic sensor.

region. As with visual speech, GEMS signals are largely im-
mune to background acoustic noise [5, 6] making them es-
pecially appealing for high-noise applications and also as a
direct substitute for the conventional acoustic signal.

This paper assesses the use of GEMS-derived signals as
an alternative to acoustic signals and pertains to situations
where intelligibility is paramount. Here we assume applica-
tions where either the noise level is so high that the acoustic
signal is essentially lost or that it is inaccessible. In both
cases ‘speech’-to-text is required thus we report the first ex-
periments to assess the use of GEMS-derived signals for au-
tomatic speech recognition.

The remainder of the paper is organised as follows. In
the following section we illustrate an example GEMS sig-
nal. Section 3 reviews GEMS research published since the
original doctoral works of Burnett [7] and Gable [8]. Section
4 presents parallel ASR experiments which compare GEMS
and corresponding acoustic signals. Finally our conclusions
are presented in Section 5.

2. GEMS SIGNALS

GEMS signals come from a low powered radar device de-
veloped at the Lawrence Livermore National Laboratory
(LLNL) [4]. The sensors are pointed toward the throat and
the resulting GEMS signals reflect movements within the vo-
cal tract region.

Example GEMS and acoustic signals are illustrated in
Figure 1, top and bottom respectively, for the digit-string
utterance “2 1 5 4 6”. The SNR is in the order of 20 dB
and both signals are captured simultaneously, hence there is
a high degree of correlation. For each spectrogram the hor-
izontal axis indicates time between 0 and 5.3 seconds and
the vertical axis indicates frequency from 0 to 4 kHz. Pitch
harmonics are visible in the GEMS signal spectrogram of
Figure 1(a) although only in the band below 1 kHz. Energy
correlation (high energy is signified by darker colour) can
be seen between the GEMS and acoustic spectrogram, illus-
trated in Figure 1(c).

Being essentially immune to back ground noise note that
between spoken digits, for example at 1 second, the GEMS
signal energy is low whereas significant noise energy is seen
in the corresponding acoustic spectrogram. In the limits,
however, in high noise Lombard effects are likely to intro-
duce variation in the GEMS signals as well as in the acoustic
signals. These aspects remain topics for future research.

To the right of each spectrogram in Figure 1 are the corre-
sponding time waveforms for the single digit “2” between 0.2
and 0.8 seconds. They also show good correlation in terms of
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Figure 1: Example spectrograms and time waveforms of corresponding GEMS (top) and acoustic (bottom) signals for the
utterance “2 1 5 4 6” at approximately 20 dB SNR. The horizontal axis is time in seconds (0 to 5.3 seconds for spectrograms
(a) and (c), 0.2 to 0.8 seconds for time waveforms (b) and (d)). The vertical axes of the spectrograms (left) indicate frequency

up to 4 kHz and for the time plots (right) indicate amplitude.

energy and pitch peaks. GEMS signals are audible but to the
human listener they are incomprehensible. That is not to say,
however, that they do not convey speech information and,
given the appeal of GEMS signals for high noise-type appli-
cations and for cases where the acoustic signal is inaccessi-
ble, we seek in this paper to assess the use of GEMS-derived
signals for automatic speech recognition. First though, we
review related work.

3. PREVIOUS GEMS RESEARCH

Original work stems from the doctoral theses of Burnett [7]
and Gable [8]. Burnett shows that GEMS signals, while asso-
ciated with pitch, do not indicate vocal cord closure, but more
generally indicate the dynamics of the trachea wall. Burnett’s
original work has been extended more recently by the works
of Demiroglu and Anderson [9] and Quatieri ef al [6] who
both observe the presence of voice bars. Voice bars are low
frequency periodic energy observed during the closure inter-
val for voiced stops. They are detectable by conventional
acoustic microphones, but can be easily lost as a result of
background noise. Quatieri et al [6] shows that GEMS are
able to detect the presence of what appear to be weak erratic
pulses referred to as glottalisation. They show that glottalisa-
tion is partially prevalent in the acoustic signal, but because
of the weak nature not all the glottalisation pulses are ob-
served. An example of glottalisation is evident in Figure 1.
The GEMS signal in (b) shows a small increase in energy
between 0.6 and 0.7 seconds whilst the acoustic signal in (d)
continues to decay.

A strong link between pitch and GEMS is well estab-
lished and this is to be expected given the high dynamics of
the vocal cords, especially during voiced speech. However,
there is plenty of evidence to suggest other dynamic compo-
nents exist in the GEMS signals and that these components
might convey useful information. This raises the question of
whether or not the GEMS signals contain any useful infor-
mation beyond the obvious link to pitch.

Previous related work has suggested this to be the case.
However, the literature on the subject is, perhaps surpris-
ingly, little especially given the appeal of GEMS for high-
noise applications. Below we summarise published work
which has investigated the use of GEMS in four areas of re-
search.

Speaker recognition: Early work to investigate the speaker
information in GEMS signals was reported by Gable [8] in
2000 who, with Burnett [7], collected the Lawrence Liv-
ermore National Laboratory (LLNL) database. The LLNL
database is comprised of 15 male speakers with up to 4 ses-
sions. Gable combined GEMS and acoustic signals and in-
vestigated speaker verification in a text-dependent mode at
noise levels as low as -10 dB where the acoustic signal is
essentially lost due to noise. Campbell ez al [10] (2003) in-
vestigated speaker identification experiments using GEMS
among two other non-acoustic sensors. They report exper-
imental work performed on the LLNL and DARPA ASE pi-
lot speech database [10] which is comprised of 10 male and
10 female speakers. Speaker identification performance was
investigated using GEMS signals alone and also in combina-
tion with acoustic signals. They used both time domain fea-
tures and conventional cepstral features with various normal-
isation strategies and dimensionality reduction. Experiments
using GEMS signals alone showed 64% accuracy for a 1-
in-15 speaker identification task. The combining of GEMS
with acoustic signals under relatively low noise conditions
was shown not to offer any improvement in performance.
However, in high noise conditions, the use of GEMS signals
improved scores and time domain features were found to be
better than conventional cepstral coefficients.

Speech enhancement: In 2000 Ng er al/ [11] investigated
speech enhancement using two filters that fuse information
from acoustic and GEMS signals. The first filter, referred
to as a glottal windowing (GWIN) filter, implements a form
of comb filtering which retains only harmonics at specific
frequencies related to the excitation, as derived from GEMS
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signals. The second filter, referred to as a glottal correla-
tion filter (GCOR), is based on the spectral subtraction of
noise from the degraded acoustic signal enhanced by the
use of GEMS. The GEMS signals are used in two ways,
firstly to determine periods of noise that can be used to form
the noise estimate, and secondly as a noise free excitation
signal. Both filters are limited to voiced speech; unvoiced
speech is Wiener filtered. Assessment is performed on the
LLNL database in white noise conditions down to 3 dB.
The processed speech is reported to be of high quality. Raj
and Singh [12] reported some successful experiments using
GEMS signals in a speech enhancement mode, prior to auto-
matic speech recognition.

Speech recognition: In 2004 Demiroglu and Anderson [5]
reported a syllable based automatic speech recognition ex-
periment which combines acoustic and three GEMS features,
namely energy, delta and double delta. Using the DARPA
ASE pilot speech database they show an improvement in
ASR performance of 9% over an error rate of 40% in noisy
conditions when GEMS features are combined with acosutic
features. In clean conditions, however, the improvement over
the acoustic-only system is not significant with error rates of
8% with acoustic-only and combined features. Experiments
using GEMS-only features are not reported.

Speech coding: In 2006, Quatieri et al [6] investigated the
use of GEMS with other non-acoustic and acoustic signals
to improve intelligibility performance of the standard mixed
excitation linear predictive (MELP) coder [13] in various de-
graded conditions. Two sensor fusion procedures are pro-
posed that involve the use of GEMS, and for both procedures
GEMS are used to provide pitch information. Experiments
using the DARPA ASE pilot speech database show improve-
ments in intelligibility ranging from approximately 2% to 9%
depending on the noise environment and speakers used.

The potential of GEMS signals is thus clear. Whilst
the benefit of combining GEMS signals with conventional
acoustic signals has been demonstrated previously, with the
exception of Campbell’s speaker identification work [10],
there is no published literature which assesses their use as a
direct substitute. The contribution of this paper relates to the
first comparison of GEMS and acoustic signals when used
independently for automatic speech recognition.

4. ASR EXPERIMENTS

The objective of the experiments reported here is to com-
pare automatic speech recognition (ASR) performance using
GEMS signals to that using acoustic signals. Thus a series of
parallel experiments with corresponding acoustic and GEMS
signals are conducted individually with common configura-
tions across the two modes.

4.1 Database

Acoustic and GEMS signals were recorded simultaneously
from 4 speakers who read aloud the entries of a completed
Sudoku puzzle. Each speaker read the same 9-by-9 full ma-
trix of 81 digits once in 5 sessions in a more-or-less iso-
lated word manner. Each speaker therefore contributed 405
digits with 45 versions of each digit. With a sampling fre-
quency of 8 kHz in all cases, recordings were taken simulta-

# Filters (NF) | # Ceps (CC)
33 24
17 12
9 8
5 4

Table 1: The number of filters and cepstral coefficients used
for feature extraction.

neously from one conventional acoustic microphone and one
GEMS which captures two orthogonal signals, referred to as
gl (in-phase) and g2 (quadrature-phase) throughout the re-
mainder of the paper. Each recording thus produces a triplet
of signals resulting in a total of 1215 recordings per speaker.
Speech end-pointing is performed on the acoustic signal and
the same timings were used for the GEMS signals. The re-
sulting triplet of signals are therefore all of the same length.
We have not attempted to combine the two GEMS signals
and have instead assessed each of them independently.

4.2 Feature extraction

It is of interest to investigate suitable features for the GEMS
signals and the useful bandwidth. Based on the spectrograms
of Figure 1 this would appear to be in the region of 1 to
2 kHz thus here we investigate 4 different feature extrac-
tion parameterisations which correspond to different num-
bers of linear cepstral coefficients, CC, and filter banks, NF,
as illustrated in Table 1. Each row of Table 1 corresponds
to roughly halving NF and CC values. Similarly we assess
ASR performance using different bandwidths, namely 4, 2,
1 and 0.5 kHz which then correspond to different filterbank
widths when assessed in conjunction with each of the differ-
ent feature parameterisations. This arrangement is intended
to provide for a reasonably fair comparison of the GEMS
and acoustic signals given that they occupy different band-
widths and as such will have different optimal feature pa-
rameterisations. Feature extraction was performed using G.
Gravier’s SPro toolkit version 4.0 [14] which provides the
required functionality.

4.3 ASR configuration

The recogniser is that of the standard Aurora2 HTK refer-
ence system [15] which is modified for isolated rather than
connected digits. The same recognition system is used to
investigate acoustic and GEMS signals, the only difference
being the features. We refer to the GEMS ASR case as G-
ASR. Results are presented in terms of percentage word ac-
curacy and, motivated by previous work in speaker recog-
nition, we consider both speaker-independent and speaker-
dependent configurations which we investigate by changing
the training data as described below.

4.4 Speaker-independent recognition

For these experiments training is performed on data from 3
out of the 4 speakers and tested on data from the remaining
1 speaker in a round robin procedure. The averaged results
across the 4 speakers are shown in Figure 2 for both GEMS
signals, g1 and g2, and the corresponding acoustic signal, al.
The four plots correspond to the four NF and CC configura-
tions of Table 1, with 33 NF and 24 CC in the top left plot
(a), 17 NF and 12 CC in the top right plot (b), 9 NF and 8 CC
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Figure 2: Speaker-independent ASR results averaged over
4 test speakers for GEMS signals gl and g2 and the single
acoustic signal al for (a) 33 filters and 24 cepstral coeffi-
cients, (b) 17 filters and 12 cepstral coefficients, (c) 9 filters
and 8 cepstral coefficients and (d) 5 filters and 4 cepstral co-
efficients.

to the bottom left (c) and finally 5 NF and 4 CC to the bot-
tom right (d). The horizontal axes indicate the total width of
the filterbank and range between 0.5 and 4 kHz for each fea-
ture parameterisation considered. The vertical axes indicate
percentage word accuracy.

The best GEMS result is in the top left graph (NF=33,
CC=24) with a word accuracy of approximately 49% for gl
and 47% for g2 at a bandwith of 2 kHz. This corresponds
to 93% for the acoustic signal. For the other three config-
urations the highest scores for GEMS are all at 1 kHz with
the exception of gl at 2 kHz and 47% word accuracy in Fig-
ure 2(b) for NF=17 and CC=12. Decreasing the number of
filters, NF, and the number of ceptral coefficients, CC, has
little effect and the word accuracy remains at aproximately
40% for a bandwidth of 1 kHz in all cases. This observation
would seem to agree with the GEMS spectrogram of Figure
1 which similarly shows a bandwidth of approximately 1 to
2 kHz.

In conclusion, whilst the best score obtained with GEMS
signals is approximately 50% worse than that for the corre-
sponding acoustic signals, they are shown to contain mean-
ingful information with a useful bandwidth in the region of
1 to 2kHz. Note that these experiments relate to SNRs in the
order of 20 dB and above. For very high noise conditions the
acoustic signals will be effectively lost, whereas the GEMS
signals are essentially immune to noise.

Speaker | gl g2 al
1 74% | 72% | 97%
2 76% | 83% | 99%
3 2% | 77% | 94%
4 85% | T1% | 99%

Average | 77% | T7% | 97%

Table 2: Speaker-dependent results for NF=33 filters, CC=24
cepstra and 2 kHz bandwidth.

4.5 Speaker-dependent recognition

For these experiments the ASR structure remains the same as
that for the speaker-independent case, only we use speaker-
dependent training data. Now the ASR system is trained for
each speaker on 8 versions of each digit and tested on the
remaining 1 version for that speaker, in a round robin pro-
cedure. Experiments are repeated for each of the 4 speakers
using a bandwidth of 2 kHz and NF=33 and CC=24. Results
are shown in Table 2, for both GEMS signals, gl and g2, and
the corresponding acoustic signal, al.

The scores for GEMS signals are particularly interesting
and show reasonable performances ranging from 72% up to
85% across the 4 speakers with averages of 77% for both
GEMS signals gl and g2. Corresponding acoustic results are
all above 90% with an average of 97% across the 4 speakers.

It is well known that in higher noise conditions ASR per-
formance falls rapidly and previous research has shown how
GEMS signals can assist in offsetting this fall [5, 12]. The
results reported here suggest that in high noise conditions
where the acoustic signal is effectively lost, or for applica-
tions where the acoustic signal is inaccessible, a viable alter-
native is to replace the acoustic signals with GEMS-derived
signals. Word accuracies in the order of 75% are achiev-
able for a speaker-dependent, isolated digit ASR task and this
level of performance is essentially independent of SNR.

5. CONCLUSIONS

Previous work reports the use of GEMS signals for speech
and speaker recognition among other applications. The con-
tribution in this paper is the first side-by-side comparison of
GEMS signals to conventional acoustic signals when used
independently for automatic speech recognition (ASR), i.e.
when the GEMS signals are used as a substitute for acoustic
signals.

A series of parallel experiments show the useful fre-
quency range of GEMS signals to be in the order of 1 to
2 kHz. On a small isolated digit task, ASR results using
GEMS signals alone show word accuracies in the order of
50% and 75% in speaker-independent and speaker-dependent
modes respectively. These findings corroborate those of pre-
vious works and serve to demonstrate that GEMS signals are
of use, not only for augmenting the acoustic signal, but also
as a substitute. Features specific to GEMS remain to be in-
vestigated.

Even though ASR results using GEMS signals do not
compare favourably to those of acoustic signals (93% and
97% word accuracies for speaker-independent and speaker-
dependent modes respectively), unlike acoustic signals,
GEMS signals are essentially immune to background noise.
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Thus GEMS are of use for high noise applications and for
situations where the acoustic signal is inaccessible.

Finally, whilst our database is of similar size to those
used in all previous work, it is nonetheless acknowledged
that its size is small. The collection of a large, freely avail-
able database would help to stimulate greater effort in GEMS
research.
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