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A practical means for unobtrusive and ubiquitous detection and monitoring
of heart and respiration activity from a distance could be a powerful tool for
health care, emergency, and surveillance applications, yet remains a largely
unrealized goal. Without the need for contact or subject preparation (special
clothing, attachments, etc.), this could better extend health monitoring to the
chronically ill in routine life, allow wellness monitoring for a large population
without known predisposition for risk or harm, and provide alarm and data
in emergencies. Such technology could also be used to detect lost or hidden
subjects, to help assess emotional state, and to compliment more cumber-
some measurements as pre-screening. Doppler radar remote sensing of vital
signs has shown promise to this end, with proof of concept demonstrated for
various applications. Unfortunately, this principle has not been developed to
the level of practical application, mainly due to a lack of an effective way to
isolate desired target motion from interference. However, by leveraging recent
advances in signal processing and wireless communications technologies, this
technique has the potential to transcend mere novelty and make a profound
impact on health and welfare in society.

7.1 Introduction

Practical non-contact detection and monitoring of human cardiopulmonary
activity could be a powerful tool for health care, emergency, military, and
security applications. Doppler radar remote sensing of heart and respiration
activity has shown promise toward this end, with proof of concept demon-
strated for various applications [3, 12, 14]. By estimating the associated
Doppler shift in a radio signal reflected by the body, cardiopulmonary-related
movement can be discerned without physical contact. Through its non-invasive
nature, this approach is well suited to applications where it is important to
minimize disruption of the subject’s activity, particularly where prolonged
monitoring is needed. A robust Doppler radar system would be well suited
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to collection of long-term heartbeat interval data for heart rate variability
(HRV) diagnosis and prognosis [8]. Additional benefits of microwave Doppler
radar include the versatile ability to function at a distance through clothing,
walls, or debris. This allows the system to be applied both in medical health
care scenarios, where some degree of subject cooperation can be assumed,
and in emergency response or security applications, where subjects do not
or cannot cooperate. Alternative techniques for long-term medical monitor-
ing typically require direct contact (ECG and Holter monitors, piezoelectric
sensors), while minimally invasive techniques tend to require very accurate
control or placement (laser Doppler vibrometer), which might not always be
possible or desirable. The use of infrared (IR) body heat sensors in search and
rescue operations is limited due to poor IR propagation properties through
walls, rubble, and weather. While Doppler radar offers distinct advantages,
this approach has not been developed to the level of practical application,
mainly because there has been no genuine effective way to isolate desired tar-
get motion from other motion and other targets. Fortunately, through the
application of recent advances in wireless communications and signal pro-
cessing technologies, Doppler cardiopulmonary radar now has the potential
to transcend mere novelty and make a significant impact on health care and
national security.

The use of Doppler radar was demonstrated for detection of respiratory
rate in 1975 [10], and heart rate in 1979 [11], using commercially available
waveguide X-band Doppler transceivers. Our recent work to implement this
concept by leveraging telecommunications technology, includes the detection
of heart and respiration signals with existing wireless terminals [14, 15],
implementation of dedicated low-cost microwave Doppler radars [5–7], and
development of related software for automated rate detection [13]. Doppler
sensing with communications signals in the 800–2400MHz range has been
demonstrated with very promising results for both detection of surface and
internal heart and respiration motion [14]. Higher frequency signals like those
used for motion-controlled doors and traffic lights, in the 10GHz range, also
work well for detection of cardiopulmonary motion at the chest surface, even
through clothing [1]. While reliable heart and respiration rate extraction can
be performed for relatively still and isolated subjects [6], it is a major chal-
lenge to obtain useful data in the presence of random motion of the human
target, radar, peripheral human subjects, and other moving objects. Many
contact (such as ECG, EEG) and non-contact medical measurements (such
as fMRI) also suffer from motion artifacts due to random motion of the subject
during the measurements. Various DSP techniques are used to extract use-
ful data from such measurements [19]. The problem of background noise has
been a barrier to bringing Doppler vital signs sensing into practical, everyday
applications. We propose to explore promising new solutions to this problem,
taking advantage of recent developments in wireless communications. These
have the potential to not only improve the robustness of Doppler radar sens-
ing to practical levels, but to also make possible the gathering of additional
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Fig. 7.1. A Doppler radar system with one transmit and two receive antennas.
Each receive antenna is connected to a quadrature receiver chain to provide two
orthonormal baseband signals (I and Q). DC components are eliminated via a dc
canceller. Demodulated output results are compared with a wired finger pulse sensor
reference

information, such as determining the number of subjects in a particular envi-
ronment. The application of multiple input multiple output (MIMO) system
techniques to provide robust Doppler radar heart signal detection as well as
detection and count of multiple subjects will be discussed.

Multiple antennas can be used to detect multiple copies of the same signal
with different phase information, with coherent combining used to provide
a greatly improved estimate of desired Doppler motion. Figure 7.1 shows
the block diagram of experimental set-up with one transmit and two receive
antennas. Each receive antenna is connected to a quadrature receiver chain
to provide two orthonormal baseband signals (I and Q). DC components are
eliminated via a dc canceller. Demodulated output results are compared with
a wired finger pulse sensor reference. When more than one target is in view,
multiple transmitters and receivers providing multiple signal copies could be
used to distinguish between the different sources of Doppler motion, and iso-
late the desired signal. We will first discuss demodulation methods for recovery
of phase information in Doppler radar system, followed by signal processing
methods for heart signal detection and estimation, and finally separation of
multiple heartbeat signals.

7.2 Signal Model

In this section, we will discuss modeling of the signal. We assume a continuous
wave (CW) radar system transmitting a single tone signal at frequency ω. The
transmitted signal is

s(t) = cos (ωt+ φ(t)), (7.1)

where φ(t) is phase noise in the oscillator.
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This signal is reflected from a target at a nominal distance d, with a time-
varying displacement given by x(t). Suppose at first that the signal from the
subject arrives from a single path. The received signal at the kth antenna is
then

rk(t) = Ak cos
(
ωt− 4π

λ
(d+ x(t) − kτ) + φ

(
t− 2d

c
− kτ

)
+ ϕ0

)
+ wk(t)

τ = dA sinα (7.2)

Here dA is the inter-antenna spacing, α the angle of arrival, wk(t) the noise
at the antenna, and Ak is the received amplitude at the kth antenna, which
depends on the antenna pattern, e.g., if the antennas are omnidirectional,
Ak is independent of k, and ϕ0 some initial phase offset. To arrive at this,
we have used some key properties of x(t). First, x(t) is slowly varying, so
that x(t − d/c − kτ) ≈ x(t). Second, x(t) is small compared with d so that
φ(t−(2d−x(t))/c−kτ) ≈ φ(t−2d/c−kτ). At the receiver, rk(t) is multiplied
by cos(ωt+φ(t)) and the phase-shifted signal sin(ωt+φ(t)) and then lowpass
filtered resulting in the complex signal

rk(t) = Ak exp
(

j
(

4π
λ

(x(t) − kτ) + φ
(
t− 2d

c
−kτ

)
− φ(t) + ϕ

))
+ wk(t)

= Ck sk(τ) exp (jΔφk(t)) exp
(

j
4π
λ
x(t)

)
+ wk(t) (7.3)

Ck = Akejϕ

sk(τ) = e−j 4π
λ kτ

Δφk(t) = φ

(
t− 2d

c
− kτ

)
− φ(t)

ϕ =
4π
λ
d+ ϕ0

If x(t) is small compared to λ and Δφk(t) is small, we can use a first order
(i.e., linear) approximation for the complex exponential, so that

rk(t) ≈ Cksk(τ) + Cksk(τ)j
4π
λ
x(t) + Cksk(τ)jΔφk(t) + wk(t) (7.4)

So far we have assumed that the RF signal is only reflected by a single
object, the subject of interest, and that only the vital sign signal is returned.
However, there are multiple other reflections that must be taken into account.
The signal is reflected by various stationary objects (e.g., walls) (and poten-
tially moving objects, e.g., rustling leaves, although in many applications this
is less likely). These reflections results in a dc-offset, as well as some additional
noise. Thus, in most cases the dc of the signal contains no information and
can be removed. This turns out to be of practical value as well. The signal
due to the heartbeat is very small, and if the dc is not removed this gives
dynamic range problems with the quantizer. Additionally, the signal reflected
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off the body of the subject is also reflected by stationary objects, resulting in
multipath. In that case the received signal is (after dc-removal)

rk(t) = exp
(

j
4π
λ
x(t)

) M∑

i=1

Ck,isk(τi) exp (jΔφk,i(t)) + w̃k(t) (7.5)

where M is the number of multipath components. Each signal has its own
signal strength Ck,i, angle of arrival (delay) τi = dA sinαi, and phase noise
contribution Δφk,i. x(t). The signal x(t), of course, also experiences a different
delay through the different paths, but this delay is insignificant relative to the
bandwidth of x(t). The non-linear model for multipath is rather complex,
but if the linear model is valid, we get a simpler system model (again, after
dc-removal)

rk(t) ≈ x(t)
M∑

i=1

Ck,isk(τi)j
4π
λ

+ (w̃)k(t)

= vkx(t) + w̃k(t), (7.6)

where vk is a complex constant that summarizes all the factors affecting the
signal at the nth antenna.

7.2.1 Physiological Signal Model

The signal displacement generated by the subject consists of respiration and
heartbeat. The respiration is usually in the range 0.1–0.8 Hz and the heartbeat
in the range 0.8–2 Hz. While the respiration is a stronger signal than the
heartbeat, it is also more difficult to characterize and therefore to detect. In
the current method, we therefore remove most of the respiration by high pass
filtering. The heartbeat signal itself is a rather complicated signal. It is nearly
periodic, but the period can vary from one beat to the next; this is called heart
rate variability (HRV). HRV can be modeled as a random process [16] with
strong periodicity. We consider the filtered received signal: bandpass filtered
with a pass band of 0.8–2 Hz so that only the fundamental frequency of the
heartbeat is received. The resulting signal is modeled as

s(t) = (A+ α(t)) cos (ωt+ θ(t) + θ0). (7.7)

The amplitude variations α(t) and θ(t) are zero mean random processes mod-
eling the HRV. Notice that this is the same kind of model used in [22] but that
the frequency ω is unknown here. Dealing directly with the model (7.7) for
signal processing is complicated, since it is a non-linear function of a random
process θ(t) that is not completely characterized. We therefore must use some
approximation for θ(t). As θ(t) is rapidly varying (the time between heart-
beats can vary 10% from one heartbeat to the next), a linear approximation
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is not appropriate. Instead, we will use a piecewise constant approximation of
ϕ(t) (and α(t)) so that

s(t) = Ai cos(ωt+ θi), t ∈ [(i− 1)T0, iT0], (7.8)

where T0 is some suitably chosen interval that can be optimized for perfor-
mance, and Ai and ϕi are modeled as deterministic, unknown constants.

7.3 Single Person Signal Processing

7.3.1 Demodulation

Each antenna has two output signals, for a total of 2K signals. In a single
person system, the first step is to combine these 2K signal into a single signal
that best possible represents the heartbeat, a step we will call demodulation.
The purpose is both graphical display of the signal (i.e., similar to the usual
ECG signal), and to use in further signal processing. However, it should be
noticed that the demodulated signal is not necessarily a sufficient statistic, so
better performance can be obtained from using the 2K direct signals; this is
in essence using the full MIMO advantage. However, using a single signal can
considerably simplify signal processing.

There are two methods for demodulation. The first is linear demodulation.
A linear demodulator is of the form

x̂[n] =
K∑

k=1

ak�(rk[n]) + bk�(rk[n]) = dTr[n] (7.9)

where rk[n] is the sampled version of rk(t), d = [a1 b1 . . . aK bK ]T , and r[n] =
[�(r1[n]) �(r1[n]) . . . �(rK [n]) �(rK [n]) ]T. As criterion for performance we
will use mean square error (MSE)

min
d
E
[
(x̂[n]− x[n])2

]
. (7.10)

However, it can also be proven that the minimum MSE (MMSE) solution
maximizes the signal-to-noise ration (SNR) at the output. In [23] we have
proved that the optimum demodulator is projection onto the eigenvector cor-
responding to the maximum eigenvalue of the covariance matrix. This result
is not surprising if the linear model (7.6) is assumed, but [23] shows it is also
true for the non-linear model (without multipath).

The second method for demodulation is non-linear demodulation. This
is mainly relevant for a single antenna, although non-linear modulation out-
puts from multiple antennas could be combined. So, assume a single antenna
and let r[n] = r1[n] Clearly, from the model (7.5) the optimum non-linear
demodulator is given by
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x̂[n] = Arg(r[n] − c) λ
4π
. (7.11)

Here, c is unknown dc offset of the signal. So, to implement this estimator c
needs to be known, or estimated.

It is easy to see that, given c, the ML estimator of the remaining parameters
is

x̂(c)[n] = Arg(r[n]− c) λ
4π
, (7.12)

Â(c) =
1
N

N−1∑

n=0

�
{

(r[n]− c) exp
(
−j

4π
λ
x̂(c)[n]

)}
. (7.13)

The estimation problem for c can now be stated as:

ĉ = arg min
c∈R

d(c) (7.14)

d(c) =
N−1∑

n=0

∣∣∣r[n] − Â(c) exp(jx̂(c)[n])− c
∣∣∣
2

. (7.15)

Unfortunately, a closed form expression for c does not exist, and the MLE is
difficult to find numerically. In [17] we have developed a heuristic estimator
for k, which is almost as good as the MLE for reasonable MSE.

The data in [17] shows that linear and non-linear demodulation is almost
equivalent at low frequencies, such as the 2.4GHz we use for experiments, but
at higher frequencies, non-linear demodulation is better.

7.3.2 Detection of Heartbeat and Estimation of Heart Rate

In this section, we consider how to estimate the heart rate from the demod-
ulated wireless signal and how to detect if a heartbeat is present. The signal
after demodulation is still a very noisy signal. It does not have the well-defined
peaks known from ECG signals, and methods from ECG signal processing
therefore cannot be directly applied. We will first derive the maximum like-
lihood estimator (MLE) based on the model (7.8) for the heart rate, and
corresponding to this the generalized likelihood ratio test (GLRT).

MLE Based on Demodulated Data

Consider estimation of average heart rate from the demodulated data. In that
case the data is real, and we have a model

x[n] = s[n] + w[n], (7.16)

where w[n] is identically distributed zero mean real Gaussian noise with
unknown variance σ2. We assume the model (7.8), where T0 = NT . We con-
sider a window of data of length MN and divide this into M subwindows
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of length N . We can then write the received signal sm[n] during the mth
subwindow as

sm[n] = Am cos(ωn+ θm) = am cos(ωn) + bm sin(ωn), (7.17)

where the constant Am includes all scaling due to body reflections, wireless
propagation, demodulation, and heartbeat amplitude variations. For simplic-
ity we use ω ∈ [0, π] for the discrete-time frequency. We can write the received
signal during the mth subwindow as

xm[n] = sm[n] + w[n+mN ]. (7.18)

The joint density function for the observation vector is, under the assumption
of white Gaussian noise

fΦ(x) =
(
2πσ2

)−(MN/2)
exp

(
− 1

2σ2

M−1∑

m=0

N−1∑

n=0

(xm[n]− sm[n])2
)
, (7.19)

where Φ = [ω, α0, . . . , αM−1, β0, . . . , βM−1, σ
2] denotes the vector of unknown

parameters. Define the square error γ2 and γ2
m

γ2
m =

N−1∑

n=0

(xm[n]− sm[n])2, (7.20)

γ2 =
M−1∑

m=0

γ2
m. (7.21)

To maximize the log-likelihood function is equivalent to minimize the square
error γ2, the summation of γ2

m over m. The maximization results in [23]

ω̂ = argmax
ω

1
M

M−1∑

m=0

|Xm(ω)|2 , (7.22)

âm =
1
N
�{Xm(ω̂)}, (7.23)

b̂m =− 1
N
�{Xm(ω̂)}, (7.24)

σ̂2 =
1
MN

(
M−1∑

m=0

N−1∑

n=0

x2
m[n]− N

2

M−1∑

m=0

|Xm(ω̂)|2
)
. (7.25)

We notice that the ML estimator of the frequency is obtained from the com-
bination of the DTFTs in each interval. Each of these can be calculated using
FFTs, so the complexity of the algorithm is low.

For detection of heartbeat, we considerH1 the hypothesis that a heartbeat
is present, and H0 that no heartbeat is present. Since heartbeat frequency and
other parameter are unknown, this is a composite hypothesis test. A general
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method and in many cases optimum solution for this problem is the general-
ized likelihood ratio test (GLRT) detector [18]. The principle is to estimate
the unknown parameters under each of the hypothesis using the MLE, and
then calculating the resulting likelihood ratio. Above, we have estimated the
parameters under the H1 hypothesis. Under the H0 hypothesis, we only need
to estimate the noise variance:

σ̂2 =
1
MN

M−1∑

m=0

N−1∑

n=0

x2
m[n], (7.26)

fΦ(x;H0) =
(
2πθ̂20

)−(MN/2)

exp
{
−MN

2

}
. (7.27)

Now we can represent the generalized likelihood ratio for hypothesis H1 and
H0 as

LG(x) =
fΦ(x;H1)
fΦ(x;H0)

=
(
σ̂2

1

σ̂2
0

)−(MN/2)

. (7.28)

MLE Estimator Based on Direct Data

As mentioned, the demodulated data does not constitute a sufficient statistic.
We therefore consider ML estimation directly from the received data. Thus, we
utilize more directly the MIMO advantage. As for the demodulated case, we
divide the data into M windows of length N samples. The received signal at
the kth antenna during the mth window can then be written as

zk,m[n] = sk,m[n] + wk,m[n] = xk,m[n] + jyk,m[n], (7.29)

where (xk,m[n], yk,m[n]) is the received I andQ data, and wk,m[n] is a sequence
of independent, identically distributed zero mean circular complex Gaussian
noise with unknown variance σ2. Let Ak,m and Bk,m denote the magnitudes
for the I and Q channel data for the kth antenna. We can write these as:

Ak,m = Ck,m cos(ψk), (7.30)
Bk,m = Ck,m cos(ψk). (7.31)

In the multipath model, it is most reasonable to assume that the ψk is
independent between antennas. We can now write the received signal as

xk,m[n] = Ak,m cos(ωtm,n + θm) + �{wk,m[n]} (7.32)
= cos(ψk) (Ck,m cos(θm) cos(ωtm,n) (7.33)
−Ck,m sin(θm) sin(ωtm,n)) + �{wk,m[n]},

yk,m[n] = Ak,m cos(ωtm,n + θm) + �{wk,m[n]} (7.34)
= sin(ψk) (Ck,m cos(θm) cos(ωtm,n) (7.35)
−Ck,m sin(θm) sin(ωtm,n)) + �{wk,m[n]}. (7.36)
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It can be noticed here that ψk depends only on k while θm depends only
on m. This is the most accurate model, but it seems impossible to get explicit
expressions for the MLE estimator. We therefore consider two cases. First, we
assume that ψk also depends on m. It can then be proven [23] that we get the
following explicit solution:

ω̂ = argmax
ω

M∑

m=1

(
1
N

K∑

k=1

|Xk,m(ω)|2+|Yk,m(ω)|2+
1
N

√
g2m+4f2

m

)
,

(7.37)

σ̂2 =
M∑

m=1

(
K∑

k=1

N−1∑

n=0

x2
k,m[n] +

K∑

k=1

N−1∑

n=0

y2
k,m[n]

− 1
N

K∑

k=1

|Xk,m(ω̂)|2 + |Yk,m(ω̂)|2 − 1
N

√
g2m + 4f2

m

)
, (7.38)

where

fm =
K∑

k=1

�{Xk,m(ω)}� {Xk,m(ω)}+ �{Yk,m(ω)}� {Yk,m(ω)}, (7.39)

gm =
K∑

k=1

�{Xk,m(ω)}2 + �{Xk,m(ω)}2 −�{Yk,m(ω)}2 −�{Yk,m(ω)}2.

(7.40)

The estimate of σ2 can then be used in (7.28) to get the GLRT for this
case.

Second, we assume that θm depends also on k. It can then be proved [23]
that we get the following explicit solution:

ω̂ = argmax
ω

K∑

k=1

(
‖Xk(ω)‖2 + ‖Yk(ω)‖2

+

√(
‖Xk(ω)‖2 − ‖Yk(ω)‖2

)2

+ 4�{Xk(ω)Yk(ω)∗}2
)
,

σ2 =
K∑

k=1

γk,

γ2
k =

M−1∑

m=0

N−1∑

n=0

x2
k,m[n] +

M−1∑

m=0

N−1∑

n=0

y2
k,m[n],

− 1
N
‖Xk(ω)‖2 − 1

N
‖Yk(ω)‖2 ,

− 1
N

√(
‖Xk(ω)‖2 − ‖Yk(ω)‖2

)2

+ 4�{Xk(ω)Yk(ω)∗}2 , (7.41)
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where

‖Xk(ω)‖2 =
M−1∑

m=0

|Xk,m(ω)|2,

‖Yk(ω)‖2 =
M−1∑

m=0

|Yk,m(ω)|2,

Xk(ω)Yk(ω)∗ =
M−1∑

m=0

Xk,mYk,m(ω)∗. (7.42)

Again, the estimate of σ2 can then be used in (7.28) to get the GLRT for
this case.

What should be noticed is that although the solutions look complex, they
are expressed as simple combinations of discrete time Fourier transforms, and
therefore they can be calculated extremely fast using FFTs.

Figures 7.2 and 7.3 show the detection performance of the detectors in the
form of ROCs (receiver operating characteristic) based on measured data for
a number of subjects. Figure 7.2 compares the detector based on demodulated
data ((7.25) and (7.28)) with one based on direct data ((7.41) and (7.28)); the
figure confirms that using direct data is more efficient. Figure 7.3 compares
the performance of the direct data detector for various sizes of windows and
subwindows.
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Fig. 7.2. ROC curves for the GLRT either based on demodulated data (SVD) or
direct data (CMP)
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Fig. 7.3. Performance of the GLRT for direct data with different parameters

7.4 Multiple People Signal Processing

Consider the signal model (7.6). If there are d multiple sources, they add up
linearly, resulting in

rk(t) =
d∑

j=1

vk,jxj(t) + w̃k(t) (7.43)

In the sampled version, this can be written as the classical instantaneous linear
model:

r[n] = M x[n] + w[n].

As the data is not known, nor the mixing matrix, blind source separation
(BSS) methods are the natural choice. Note also that (1) the noise power is
of the same magnitude or higher than the signal power, (2) the received IQ
signal is complex, but the sources s[n] are real, so we apply real BSS, and we
work on:

y[n] =
[
�(r[n])
�(r[n])

]
=
[
�(M)
�(M)

]
x[n] +

[
�(w[n])
�(w[n])

]
,

y[n] = Mx[n] + w[n], (7.44)

where the size of the received signal is multiplied by two, thus allowing twice
as many independent beamformers.
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Fig. 7.4. Analytical representation of a finger pulse sensor signal after bandpass
filtering in the range 0.03–30 Hz. (a) Full version, (b) Filtered version

The aim of multiple people signal processing is now to separate the multiple
sources. Once they are separated, the single person signal processing from
Sect. 7.3 can be utilized.

7.4.1 Heartbeat Signal

As a model for the heartbeat, we consider (7.7). Because of the phase varia-
tions θ(t) the signal is not strongly periodic. However, the amplitude A+α(t)
is nearly constant, which means that x(t) has an analytical representation
which is almost a constant modulus signal. The analytical signal is obtained
by adding the signal and the quadrature of its Hilbert transform [2].

Figure 7.4 shows the analytical signal of an ECG signal from, and its
lowpass filtered version. The almost circular trajectory indicates that indeed
the heartbeat signals are nearly constant modulus, and that after lowpass
filtering, this property shows up even stronger.

In real-world applications, there might be many sources, but we are only
interested in those that are heartbeat and/or respiration signals. We therefore
need to use specific characteristics of these signals. One possibility is to use
the signal that is quasi-periodic, as we used in the single person detector in
Sect. 7.3. However, the signal is not very periodic, and we therefore believe
that the constant modulus property is a stronger indicator. For this reason,
we focus on BSS methods that use the constant modulus property.

7.4.2 Algorithm

Our algorithm is based on three steps:

(α) Use a band-pass filter over the range [0.75;2]Hz.
(β) Generate the analytic version of our signal by taking it and then adding

its Hilbert Transform, H{r(t)}, in quadrature:

ra(t) = r(t) + jH{r(t)},
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(γ) Use the ACMA algorithm on the data [21]. ACMA is a BSS algorithm that
search for the beamformers wi, such that the estimated sources x̂i = wHr
are constant-modulus: |x̂i| ≈ 1.

Step α removes the heartbeat harmonics, the respiration and the low
frequency interferences.

Doing these pre-processing steps insures that each source produces a rank-
one only matrix and is constant-modulus, so that the assumptions needed by
ACMA are respected.

The choice of the separation algorithm follows the next reasoning: RACMA
[20] is then not applicable in our case, since at the end of step β, the sources
are complex. ACMA [21] is the logical choice as it needs less samples than
any HOS-based method, as ACI [4] or EFICA [9], is computationally faster,
and our data is constant-modulus.

7.4.3 Results

As we do not have enough measurements with two subjects to draw statisti-
cally sound performance evaluations of our algorithm, we have to recourse to
semi-synthesized and full simulations in this section.

We compare our method, PP-ACMA, to either RACMA, ICA, or EFICA.
The later algorithms do not need the pre-processing to function, but we also
evaluate EFICA with the pre-processed data in order to have a comparison
that is fair to ACMA.

Simulations

To have better insight on the algorithm behavior, we conduct now the eval-
uation over fully simulated data, i.e., the heartbeat source signal are now
generated by the method proposed in [16] with different average rate (so dif-
ferent subjects). Note that we can tune the signal noise ratio (SNR), the
incoming average heart rate and time integration, and therefore fully explore
the limits of the algorithms. Once the separation algorithm has delivered out-
put signals, they are used to estimate the heart rate. The separation is declared
a success if both measured hearbeats are within 0.08Hz of their true values,
and the output SINR is above 3 dB, otherwise it is a failure. We also compare
to EFICA, which is either applied to the direct data or to the pre-processed
data.

First, we consider two sources with an SNR of −5 dB, and an integration
time of 6 s (so 120 samples). Figure 7.5 presents the success rate of the PP-
ACMA, ICA, EFICA directly on data (denoted EFICA,R), and EFICA on the
pre-processed data (denoted EFICA,C). We note that even two sources with
the same average heart rate, due to the difference in HRV, the separation is
still possible up to 50% of the cases with ACMA. In the other cases, ICA and
EFICA (R) behaves also quite well, but not with a perfect 100% as the ACMA.
Notice also that the pre-processed methods cannot work outside the frequency
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Fig. 7.5. Success rate of the algorithms as a function of average rate of the heartbeat
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Fig. 7.9. The two separated sources in the time domain. The solid curve shows the
reference measurements

range of the filters, but the frequency limits have been chosen according to
reasonable heartbeat rate. Finally, we note that EFICA-C is not reliable in
any case, this is due to the loss of diversity in the signal, which impairs the
high-order statistics.

Next, we keep the frequencies fixed to 0.9 and 1.2Hz, and we vary the
SNR and the time of observation. We note in Fig. 7.6 that thanks to the pre-
processing gain, acceptable success rate can be obtained till −15dB SNR for
PP-ACMA, and that 4 s is a minimum integration time (approximately four
cycles). While ACI and EFICA-R needs 5 dB more, but 3 s is already enough
for them. This counter-intuitive result can be explained by the fact that we
do not strictly compare the algorithm over the same signals: indeed, for the
PP-ACMA, the signal has been amputated from most of its harmonics and
its spectral diversity, that ICA and EFICA-R are still using. Next to it, in
a real scenario, where the pre-processing is mandatory, note that EFICA-C
under-performs severely.

From now, we just concentrate on our scheme for our specific applications.
We keep the first average frequency at 1.1Hz, and we vary the other average
frequency as well the time of integration. From Fig. 7.7, we confirm that given
enough times of integration it is possible to separate two sources with equal
average rate, as for instance for T = 9 s, the success rate is above 60%.
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Experimental Results

Finally, we will present some results from real measurements. The data is
from a single experiment with two persons and two antennas. The ACMA
algorithms was applied. Figure 7.8 shows the radial distribution after using
ACMA. As can be seen, the CM property is well satisfied. Figures 7.9 and
7.10 show the two separated signals in the time domain, respectively, fre-
quency domain. It can be seen that the two sources agree with the reference
measurements, although there is some leakage from the stronger source to the
weaker source.

7.5 Conclusion

In this chapter, we have outlined methods for signal processing of Doppler
signals. The main problems we have focused on is detection of a signal and
separation of multiple signals. We have outlined a number of methods for
detection and separation and shown the efficacy on real signals. The key tech-
nology we considered was using multiple antenna transmitters and receivers.
We first showed how this could be used for enhanced signal processing when
a single person is present. We then showed how this could be used to monitor
multiple persons.
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