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Abstract

Lock-in detection is frequently used to increase signal-to-noise ratio of weak signals obscured by
relatively strong background noise. Typically, one uses time-harmonic modulation of some exper-
imental parameter and filters the observable quantity at the same quantity. Interestingly, though,
filtering at higher harmonics of the modulation frequency yields additional information, whose exact
nature depends on the particular setup.

Here I discuss under which conditions one expects to measure with higher harmonics the original
signal or its derivative with respect to the modulating parameter.
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1 Lock-In Amplification

1.1 Overview

Fig. 1 depicts an experimental measurement employing a lock-in detection scheme. As an idealization,
we assume the wave generator produces a perfect sine wave, usually a voltage signal of frequency f and
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Figure 1: Principal experimental setup of lock-in detection. A wave generator is used to create a pure
sine wave of frequency f to influence an experimental parameter λ, which in turn causes periodic changes
in the observable A. In the lock-in amplifier, this observed signal is multiplied with a reference signal
derived from the wave generator’s wave as an integer harmonic nf to obtain a value for the signal Sn.

amplitude U0 around an average value 〈U〉

U(t) = 〈U〉+ U0 sin (2πft) , (1)

which is used in two ways.
Firstly, U drives some controllable experimental parameter λ with the exact same frequency f . Note

that, despite its harmonic driver, this parameter need not necessarily perform a pure harmonic oscillation
at f . It might contain also higher harmonics n×f . Secondly, U (or possibly a generated higher harmonic
of it) is used as a reference signal for the lock-in amplifier.

The observable A—viewed as a function of λ—is indirectly also a function of time,

A = A(λ) = A(λ(t)) . (2)

Like λ, A will be periodic in time, with the same frequency f that U dictates—with or without non-zero
contributions at higher harmonics.

1.2 Mathematical analysis of the lock-in operation

Mathematically, the lock-in amplifier may be described as a physical realization of a multiplication of
the reference and the observed signal and a subsequent averaging, i.e., integration of this product signal
over relatively long time, i.e.over many periods of the fundamental frequency, T = m/f , where m � 1
is an integer;

Sn =
1
T

∫ T

0

sin (2πnft + δφ) A(λ(t))dt . (3)

Here, δφ is the phase shift between the reference and the observed signal, due to, for instance, different
signal path lengths or delayed response in the action λ → A.

In order to facilitate evaluation of this integral, and to understand the significance of the final signal
Sn, we perform two steps to expand the experimental observable into relevant components:

• Expansion into a Taylor series of the experimental parameter λ. (This explains why sometimes
observation at the higher harmonics is equivalent to observation of higher derivatives.)

• Expansion into a Fourier series in time t. (This explains why sometimes observation at any higher
harmonics is equivalent to simple observation at the first harmonic.)
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Figure 2: Typical dependences of the observable A on the physical parameter λ. The case (a), on the one
hand, depicts the frequently encountered situation where an observable is strictly proportional over a
large range of values of the parameter λ. This case describes, for instance, optical scattering experiments
where the magnitude of the scattered light (A = Esca) depends linearly on the magnitude of the incident
light (λ = Einc). Here we may assume only A(1) is non-zero. Case (b), on the other hand, is the more
general case of a “smooth”, though not flat response curve. Around the set point λ0 the dependence is
linear only for very small variations of λ. For larger variations, we may need to keep higher orders of
the expansion A(ν>1). An example of this situation is the dependence of a observable current (A = I)
flowing through contacts attached to a sample that have been biased with a specific controllable voltage
(λ = V ).

1.2.1 Taylor Series of A(λ)

Expanding A(λ) into a general Taylor series around λ0 = λ(t = 0), we obtain

A(λ) =
∞∑

ν=0

1
ν!

A(ν) (λ− λ0)
ν

. (4)

Here, A(ν) = (∂/∂λ)ν
A|λ=λ0

stands as an abbreviation of the ν-th derivative of the observed quantity
A with respect to the controlled quantity λ at the value λ0. Often the dependence A(λ) will be linear
to a very good approximation over the extent that λ varies and we only need to care about the first
derivative, because ∣∣∣A(1)

∣∣∣ �
∣∣∣A(ν)λν−1

µ

∣∣∣ , (5)

for any ν > 1 and arbitrary µ.

1.2.2 Fourier Expansion of λ(t)

If we next expand the controllable parameter λ into its Fourier series,

λ(t) =
∞∑

µ=0

λµ sin(2πµft + δφµ) , (6)

we obtain, with the abbreviation sµ ≡ sin(2πµft + δφµ)

A(t) =
∞∑

ν=0

1
ν!

A(ν)

( ∞∑
µ=1

λµsµ

)ν

. (7)

(Notice how λ0 is eliminated by the interplay of Fourier and Taylor expansion so that the Fourier series
starts with µ = 1.)

Typically, the Fourier spectrum of the physical parameter will have only very few harmonics of
non-negligible magnitude (see Fig. 3) and this allows us to truncate the expansion at a reasonable low
harmonic. Rarely will we even need higher than second harmonics.
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Figure 3: Typical amplitude spectrum of a controllable physical experimental parameter λ. Often, not
even the lowest overtone frequency (2f) is significant.

1.3 Discussion of A(t)

With increasing order, these various contributions to the observable A become rapidly intractably com-
plicated. Explicitly, up to 3rd order, these terms are

A(t) = A(0) (8)
+ A(1) (λ1s1 + λ2s2 + λ3s3 + . . .) (9)

+
1
2
A(2)

(
λ2

1s
2
1 + 2λ1s1λ2s2 + . . .

)
(10)

+
1
6
A(3)

(
λ3

1s
3
1 + . . .

)
(11)

+ . . . . (12)

Nevertheless, we can appreciate their basic behavior and how they contribute to Sn by expanding the
products of sine functions into single sine functions using the algebraic identity

sin(x) sin(y) =
1
2

(
sin
(
x− y +

π

2

)
+ sin

(
x + y − π

2

))
. (13)

In the present case, we find a sum of simple sine functions, each with a difference or a sum frequency

2 sin(2πµ1ft + δφ1) sin(2πµ2ft + δφ2) = sin
(
2π(µ1 − µ2)ft + (δφ1 − δφ2) +

π

2

)
(14)

+ sin
(
2π(µ1 + µ2)ft + (δφ1 + δφ2)−

π

2

)
. (15)

Thus, we have

A(t) = A(0) (16)
+ A(1) (λ1s1 + λ2s2 + λ3s3 + . . .) (17)

+
1
2
A(2) 1

2
(
λ2

1s1+1 + λ2
1s1−1 + 2λ1λ2s1+2 + 2λ1λ2s1−2 + . . .

)
(18)

+
1
6
A(3) 1

4
(
λ3

1s1+1+1 + λ3
1s1+1−1 + λ3

1s1−1+1 + λ3
1s1−1−1 + . . .

)
(19)

+ . . . , (20)

where, e.g., s1+1−1 is an abbreviation of

sin
(
2π(1 + 1− 1)ft + (δφ1 + δφ1 − δφ1)−

π

2
(0 + 1− 1)

)
. (21)

To evaluate the final

Sn =
1
T

∫ T

0

sin (2πnft + δφ) A(λ(t))dt (22)
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we first take notice of how the integrand expands into a sum of individual sine functions

sin (2πnft + δφ) A(λ(t)) = A(0) (s̃n) (23)
+ A(1) (λ1s̃n+1 + λ1s̃n−1 + λ2s̃n+2 + λ2s̃n−2 + . . .) (24)

+
1
2
A(2) 1

2
(
λ2

1s̃n+1+1 + λ2
1s̃n+1−1 + λ2

1s̃n−1+1 + . . .
)

(25)

+
1
6
A(3) 1

4
(
λ3

1s̃n+1+1+1 + . . .
)

(26)

+ . . . , (27)

where, we have abbreviated, e.g.,

s̃n−1+2 = sin
(
2π(n− 1 + 2)ft + (δφ− δφ1 + δφ2)−

π

2
(0− 1 + 1)

)
. (28)

In general,

sin (2πnft + δφ) A(λ(t)) =
∑
{N}

CN sin (2πNft + ∆φN ) , (29)

where CN is a constant factor of the form A(ν)/ν!2µ, N is a particular, integer value for the sum of
various harmonics (n±

∑
j ±µj) and ∆φN is the corresponding sum of phases (δφ±

∑
j ±
(
δφj − π

2

)
).

Next we recall that almost all integrands yield vanishing integrals for sufficiently large T ,

lim
T→∞

1
T

∫ T

0

CN sin(2πNft + ∆φN )dt =

{
CN sin(δφN ) if N = 0
0 otherwise.

. (30)

Only those terms contribute, for which N = 0, that is,

n = ∓
∑

j

∓µj . (31)

This basic relation allows us to sift through all terms to identify those that actually do contribute
non-zero values.

1.3.1 Case n = 1

The most basic operation of a lock-in amplifier is the case where the fundamental frequency 1f is fed
into the reference input. We are now in a position to answer the question what will be observed as Sn=1

at the output.
Among the terms

∑∞
ν=1

1
ν!A

(ν)
(∑∞

µ=1 λµsµ

)ν

that contribute to Sn=1, we recognize immediately
the single term that involves the first derivative,

A(1)λ1s̃n−1 , (32)

which will contribute most dominantly. There are, however other terms, like

1
2
A(2) 1

2
(λ1λ2s̃n−1−2 + λ2λ3s̃n+2−3 + . . .) (33)

+
1
6
A(3) 1

4
(
λ3

1s̃n−1+1−1 + λ1λ
2
2s̃n−1+2−2 + . . .

)
(34)

+
1
24

A(4) 1
8
(
λ3

1λ2s̃n−1+2−1−1 + λ6λ1λ
2
2s̃n−6+1+2+2 + . . .

)
(35)

+ . . . , (36)

As was stipulated in subsection 1.2, we usually may ignore these higher order terms, as their amplitude
is comparatively small.
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1.3.2 Case n = 2

Another frequently encountered operation of a lock-in amplifier is the observation with the first harmonic
2f as reference input. Again, we recognize immediately the single term that involves the first derivative,

A(1)λ2s̃n−2 . (37)

Among the terms involving the second derivative,

1
2
A(2) 1

2
(
λ2

1s̃n−1−1 + λ2λ4s̃n+2−4 + λ3λ5s̃n+3−5 + . . .
)

, (38)

we expect the s̃n−1−1 term to be dominant, as all others involve amplitudes of higher harmonics (λµ>1)
as factors. Similarly, we may ignore all other terms involving even higher derivatives.

Now the interesting question arises, which of the two terms will actually dominate S2. The first-
derivative related

A(1)λ2s̃n−2

or the term

1
2
A(2) 1

2
λ2

1s̃n−1−1

that involves the second derivative? It depends on which of the two inequalities∣∣∣A(1)
∣∣∣� ∣∣∣A(2)λ1

∣∣∣
and

|λ1| � |λ2|

is more severe. In the most general situation, there is no unique answer. However, as we will discuss
in the next two subsections, we can identify two typical scenarios in which we are able to answer this
question.

1.4 Perfectly linear coupling of λ and A

If the relation of driving parameter and observable quantity is perfectly linear, as is explicitly the case,
for instance, in linear optics (see case (a) in Fig. 2), we have

A(λ) = A(0) + A(1)λ (39)

and all A(ν>1) ≡ 0. The only observed signal at the lock-in’s output is simply

Sn = sin (2πnft + δφ) A(λ(t)) (40)
= A(1)λns̃n−n (41)
= A(1)λn cos(δφ− δφn) . (42)

That is, regardless of the harmonic frequency nf we supply as reference, we always observe merely the
first derivative of the A(λ) relation.

1.5 Perfectly linear coupling of U and λ

If the relation of reference wave voltage and the driving parameter is perfectly linear, as is trivially the
case, for instance, if they are identical (see case (b) in Fig. 2), we have

λ(t) = λ0 + λ1 sin(2πft) (43)
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and all λµ>1 ≡ 0. As the observable is comprised of terms involving only λ1, we have

Sn = sin (2πnft + δφ) A(λ(t)) (44)
= A(0)s̃n (45)
+ A(1)λ1 (s̃n+1 + s̃n−1) (46)

+
1
2
A(2) λ

2
1

2
(s̃n+1+1 + s̃n+1−1 + s̃n−1+1 + s̃n−1−1) (47)

+
1
6
A(3) λ

3
1

4
(s̃n+1+1+1 + s̃n+1+1−1 + . . .) (48)

+ . . . . (49)

Thus we have

S1 ≈ A(1)λ1s̃n−1 = A(1)λ1 cos(δφ− δφ1) , (50)

S2 ≈ 1
2
A(2) λ

2
1

2
s̃n−1−1 = −A(2)λ2

1

4
sin(δφ− 2δφ1) , (51)

S3 ≈ 1
6
A(3) λ

2
1

4
s̃n−1−1−1 = −A(3)λ3

1

24
cos(δφ− 3δφ1) , (52)

and so on. That is, observation with a reference frequency of nf results mainly in measuring the n-th
derivative of the A(λ) relation.
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