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Abstract 
With the cost of drones decreasing and their presence in the world increasing, there needs 

to be a way to control their presence in restricted airspace. To solve this problem, our team 
designed an assembly to both locate an unwanted drone or drone pilot and jam the 
communication between drone and the drone controller. First the location was discovered using 
several SDRs to record signal strength at different locations. This would find either the drone or 
drone controller when other signals were not present on the same bandwidth. The SDR signal 
data was then processed to get the signal’s received signal strength (RSS) These results were 
then mathematically modeled with the path loss model, which turned the RSS values into a 
distance in meters. Then the recursive least squares algorithm transformed the distances from 
each SDR into a position in the space that corresponds to the drone or drone controller.  Finally, 
the Cramer Rao Lower Bound was used to estimate the amount of error possible in the position 
estimation. The jamming was achieved using a microcontroller to broadcast white Gaussian 
noise at the same frequency as the drone communication to render that communication useless. 
The location determining system was found to be within a meter of error on the xy plane, 
however, it had more error on the z axis as the SDRs were not at different enough z positions to 
sense the z position as accurately. The jamming system was designed and built using analog RF 
components, fed by voltages from the microcontroller. The effectiveness of the jamming system 
could not be fully tested as strict COVID-19 protocols limited access to diagnostic equipment.   

1 



 

 
Acknowledgements 

This project has three members; Nick Cauley, Ryan Crowley, and Mara Pranter. We 
would first like to thank our advisor, Professor Kaveh Pahlavan, for his guidance to create a 
project our team is proud of as well as advice that will aid us long beyond the scope of this 
project. We would also like to thank WPI’s Electronics Technician, William Appleyard, for all 
of his help in the construction of our project and the acquisition of components.   

2 



 

TABLE OF CONTENTS 

1. Introduction 6 
1.1. Project Description 6 
1.2.  Report Outline 6 

2. Theoretical Background 7 
2.1.  Localization 7 

2.1.1. Signal Processing 7 
2.1.2 Localization Setup 7 
2.1.3. Path Loss Model 8 
2.1.4. RLS Algorithm 8 
2.1.5. CRLB Error Analysis in 2D 9 
2.1.6. CRLB Error Analysis in 3D 1​0 

2.2. Jamming 1​0 
2.2.1 Frequency Considerations 1​1 

2.2.2 Jamming Scenario 1​2 
2.2.3 Software Considerations 1​3 

3. System Architecture 1​5 
3.1. Hardware Modules 1​6 

3.1.1. Localization Components 1​6 
3.1.2.  Microcontroller 1​6 
3.1.3. Jamming Components 17 

3.2. Software Modules 19 
3.2.1. Receiving and Processing 19 
3.2.2. Jamming 19 

4. Results and Discussion 2​1 
4.1. Localization Experiment 2​1 

4.1.1. Mathematical Modelling 2​1 
4.1.2. Error Estimation 2​3 

4.2.  Jamming Analysis 2​5 
4.2.1. Final Assembly Design 2​5 
4.2.2. Power Considerations 2​6 

5. Conclusions and Future Recommendations 28 
5.1. Positioning Portion of Assembly 28 
5.2. Jamming Portion of Assembly 28 
5.3. Complete Assembly 29 

 

3 



 

TABLE OF FIGURES 

F​igure 2.1 Path Loss Model 8 
Figure 2.2 RLS Algorithm in a 2D Space 9 
Figure 2.3 Drone Jamming Block Diagram 1​2 
Figure 2.4 Barrage Jamming Noise 1​4 
Figure 3.1 Assembly Block Diagram 1​5 
Figure 3.2 General Systems Overview 1​5 
Figure 3.3 Localization Hardware Overview Diagram 1​6 
Figure 3.4 Main Components Arduino MKR 10109 17 
Figure 3.5 GNU Radio Flowgraph to find RSS of Incoming Signals 19 
Figure 3.6 Software Flow Diagram 2​0 
Figure 4.1 Testing Configuration for Localization, 4 SDRs, 2 Signal Positions 2​1 
Figure 4.2 Controller at Position (3, 5, 0.53) RLS Algorithm 2​2 
Figure 4.3 Controller at Position(-2,3,0.98) RLS Algorithm 2​3 
Figure 4.4 Controller at Position (3, 5, 0.53) Path Loss Model 2​3 
Figure 4.5 Controller at Position(-2,3,0.98) Path Loss Model 2​4 
Figure 4.6 Top-Down Contour Map Using σ and α Values of the Signal Inside the Bounds 2​4 
Figure 4.7 Top-Down Contour Map Using σ and α Values of the Signal Outside the Bounds 2​5 
Figure 4.8 Final Jammer Assembly Design 26 
Figure 5.1 Final Jammer Assembly Opened 29 
Figure 5.2 Final Jammer Assembly Closed 3​0 

 

TABLE OF TABLES 

Table 2.1: ​Frequencies used by Popular Drone Brands 11 
Table 2.2: ​Frequencies used for Video by Popular Drone Brands 12 
Table 3.1: ​Component Voltage and Current Requirements 18 
Table 3.2: ​Component Specifications 18 
Table 4.1: Controller ​at Position (3, 5, 0.53) Distance from SDRs 22 
Table 4.2: Controller​ at Position (-2, 3, 0.98) Distance from SDRs 22 
Table 4.3: Controller Power at Drone vs Distance 27 
Table 4.4: Jammer Power at Drone vs Distance 27 

 

4 



 

ACRONYMS 

CRLB Cramer Rao Lower Bound 

DLVA Detector Logarithmic Video Amplifier 

FAA Federal Aviation Administration 

RF Radio Frequency  
 
RLS Recursive Least Squares 

RSS Received Signal Strength 

SDR Software Defined Radio 
 
UAV Unmanned Aerial Vehicle 

VCO Voltage Controlled Oscillator 

WPI Worcester Polytechnic Institute  

5 



 

1. Introduction 
Drones, also known as unmanned aerial vehicles (UAVs), are becoming more and more 

accessible as the market for them grows. In 2019, The Federal Aviation Administration (FAA) 
estimated that there were over 1.25 million drones flying in America, and they predict this 
number only will increase.​1​ This market growth has led to drones in general becoming cheaper to 
buy, as well as the expected capabilities of them to rise. This combination of lower cost, higher 
performance and availability is good for the consumer, but poses a massive risk as an increasing 
number of pilots, out of either negligence or maliciousness, are flying in restricted airspaces 
around the world.  This is a massive safety concern, as it could lead to drones interfering with 
aircraft, potentially causing deadly crashes.​2​ In 2017, a flight near Jean Lesage Airport in Canada 
collided with a drone.​3​ While tragedy was avoided in this incident, the potential for a disaster 
still looms. Due to the immense risk, airports likely shut down if a drone is flying nearby, 
possibly causing millions in damages for the airport and its travelers. In 2018, Gatwick Airport 
in the United Kingdom was shut down for a period of three days. It is estimated that this caused 
over $1.8 million in damages to the airport, not including the damages of passengers whose 
flights were delayed or canceled.​4​ There is a great need to create a system to prevent all of this 
damage from occurring.  

 
1.1. Project Description 
All of this damage can be easily caused with any consumer available drone. Our project 

is a system that can be implemented in airports, among other areas where drones should not be, 
to prevent the flying of drones in an area and locate the position of the pilot. Our project is an 
assembly of systems to locate a drone or its controller, and then jam the signals, preventing the 
drone from being operated.In the past, a WPI student team created and tested an Adversary UAV 
Localization system.​5​ Their work was used as a starting point for our project. The testing done in 
the previous project used a cellphone as a substitute for the drone signal. We improved their 
testing methodology by using a drone controller, providing a more realistic scenario. The biggest 
improvement on the past project is our addition of a jamming system, allowing the user of the 
assembly to prevent the drone from flying if it is located in restricted airspace. Our project's 
localization system finds the location of the drone or its controller by reading the signal strength 
with several receivers. Once the location of the drone is established, if it is determined that it 
should be jammed, the jamming system will generate a signal that overwhelms the drone and its 
controller’s communication, causing the drone to cease flight. A block diagram and general 
overview diagram can be found in Section 3, System Architecture in Figures 3.1 and 3.2. 
  

1.2. Report Outline 
This report is broken up into several main sections to aid the reader in understanding the 

various components and parts of our project. Section 2, Theoretical Background discusses the 
knowledge and theoretical information required for the reader to understand the detailed 
workings of the system. Section 3, System Architecture lays out the specific configurations of 
hardware and software that are used to receive, process, and jam drone signals.  
Section 4, Results and Discussion explains the processes used to test the system, and then 
analyzes the results of the tests. Section 5, Conclusions and Future Recommendations goes over 
the analyzed results, discussing what about our system worked and where it can be improved. 
Section 5 also gives recommendations for future advancements of this project.   
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2. Theoretical Background 
In this section, the theoretical background needed to create and understand this project is 

discussed. The first subsection discusses the theory behind localization of signals, specifically 
how they are received, processed, and the various equations, algorithms, and models that go 
along with it. The second subsection will provide background on the processes of jamming 
signals, from both a hardware and software perspective.  

 
2.1. Localization 
In order to best locate either the drone or the drone pilot there are four steps; finding the 

received signal strength (RSS), the path loss model, recursive least squares (RLS) algorithm, and 
error analysis. The received signal strength is put into the path loss model which calculates the 
distance between an access point (SDR) and the object (drone/drone pilot). Once there are 
calculated distances from each access point to the object, the RLS algorithm is used to position 
where in a 3D space the object is. Finally, the amount of error possible is estimated with the 
Cramer Rao Lower Bound (CRLB). 

 
2.1.1. Signal Processing 

Signal processing gives the RSS to begin the process of mathematically determining the 
location of the drone or drone pilot. In order to process the signals, one must first read the signal 
with a software-defined radio (SDR), The SDR itself can not process the signals; it depends on 
software from a separate device to process signals. The different levels of software that can 
process signals for SDRs are host, embedded, and programmable logic programs. For the 
purpose of the localization assembly, GNU Radio, an open source software that runs on the host 
level was selected due to its high level of documentation in this and similar use cases. GNU 
Radio allows the user to process signals by making a flowgraph of different signal processing 
blocks. This flowgraph then generates a Python script that can be run to process live signals from 
the SDR. Since GNU Radio is a host level software, it must be run on a computer connected to 
the SDR over an ethernet cord. An important part of the system is having several SDRs in 
different positions, all reading signals that get processed into RSS values by the host computer. 
To connect the several SDRs to one computer, a network switch can be used to join the SDRs 
together before connecting them with the computer.  
 

2.1.2 Localization Setup  
The physical setup of the localization system is heavily based on the system created by 

the Adversary UAV Localization project’s team.​5​ Their configuration can be described as several 
SDRs placed in different locations, all connected to a host computer. This setup allows the SDRs 
to get different RSS values from the same signal, allowing for a localization algorithm to locate 
the signal source. Our configuration is similar, pictured later in Section 4.1, Figure 4.1. The key 
part in both configurations is different locations of the SDRs, which allows for the 
aforementioned different RSS values. The more varied their positions, the more accurate our 
localization can be.  
 

7 



 

2.1.3. Path Loss Model 
The path loss model allows for the RSS values found by the SDRs to be converted into a 

distance in meters. The equation is as follows: 
                                               (2.1)                                    P 0αlog ( ) (σ) r = P 0 − 1 10

r
r0

+ X  
Where P​r​ is the RSS between the access point and object, P​0​ is the RSS at a distance r​0​, ɑ 

is the distance-power gradient, r is the distance between the access point and object, r​0​ is the 
reference distance, and X(σ) represents the shadow fading. When the path loss is graphed these 
variables are more apparent.  

  
Figure 2.1 Path Loss Model 

In the graph above, P​0​ is the Y intercept,  α is the slope of the line, X(σ) is the variance of 
the points. The points represent the distance (r) and the RSS (P​R​). Using this equation and 
graphing the α and σ are able to be easily calculated then later used in CRLB for error 
estimation. In order to calculate the distance (r)  quickly, it is assumed that X(σ) is negligible and 
α is 2. The P​0​ at r=1 is first calculated, this then allows for the distance to be calculated using: 

                                                          r 10 =  ( )20
P −P0 r

 (2.2) 
This equation let the team quickly calculate distances from the access points to the object 

to put into the RLS algorithm.  
 

2.1.4. RLS Algorithm 
The RLS algorithm takes each distance from every access point to the object and the 

position of each access point to determine the position of the object. This is done by creating a 
circle around the access point with a radius of the distance from the access point to the object. 
Where all of the circles from each access point overlay is where the object is. This would work 
perfectly if all of the distances from the access point to the object are completely accurate, 
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unfortunately in the real world as well as this application these distances are not entirely 
accurate. This means there needs to be an estimation of the position, this is done with the 
recursive least squares (RLS) algorithm. This is a method by which to minimize error by 
guessing a best fit and seeing how great the error squared is. Then the position where this error is 
the lowest is where the object is assumed to be. This can be demonstrated in two dimensions in 
the figure below.  

 
Figure 2.2 RLS Algorithm in a 2D Space 

In this team’s application the algorithm is moved into a 3D space, this means the circles 
are spheres and there needs to be four access points in order to estimate the object’s z position.  

 
2.1.5. CRLB Error Analysis in 2D 

To analyze the potential error of the localization system’s configuration, the Cramer Rao 
Lower Bound (CRLB) was calculated. CRLB is the theoretical minimum variance of a system. 
In the case of a localization system, it gives the standard deviation of localization error at a point 
in space. The lower the CRLB value is, the less likely it is for the system to have high error at 
that point. Calculating the CRLB for an entire space of points is important to get an estimate on 
the error of the system configuration.  

The equation for the CRLB in this localization system for 2D is derived from equation 
2.1, the path loss model. First the distance for each point from the SDR is calculated. This is 
repeated for each SDR in the system. The equation used is: 

 

                  ​(2.3)​6                       r            = √(x ) )point − xSDR
2 + (ypoint − ySDR

2  

 

The distance power gradient, α, is a constant calculated in the path loss model shown in 
section 2.1.2. It is multiplied by another distance based calculation that uses the distance, r, 
calculated in equation 2.3. This entire calculation is repeated for each dimension, twice in the 
case of a 2D space, for each SDR. The entire equation is: 
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                           ​(2.4)                         H[1] 0 ) / r     =  − 1 * α * (xpoint − xSDR
2  

                ​  ​  ​  ​        ​(2.5)                         H[2] 0 ) / r =  − 1 * α * (ypoint − ySDR
2  

 
These two arrays are then combined into a single matrix, H. The covariance matrix is 

then created using H and σ, the standard deviation of shadow fading found in the path loss 
model. The equation for this is: 

                                      ​(2.6)                                    Cov σ H )      =  2
* ( ′ * H −1  

 
The covariance matrix now contains the covariance of each point’s location error, σ​2​x​ and 

σ​2​y​. To find the standard deviation of the location error for a point, the CRLB, the following 
equation is used: 

                                       ​(2.7)​5                                      σ      
point =  √σ2

x + σ2
y

 
 

 
2.1.6. CRLB Error Analysis in 3D 

 
While the previous set of equations finds the CRLB in a 2D space, the localization 

system being implemented needs to work in 3D space. To accomplish this, another dimension 
was added to the equations. The 3D version of equation 2.3 is: 

 

       ​(2.8)              r      = √(x ) ) )point − xSDR
2 + (ypoint − ySDR

2 + (zpoint − zSDR
2  

 
Similarly, the 3D versions of the H matrix equations are as follows: 
 

           ​  ​              ​(2.9)                         H[1] 0 ) / r     =  − 1 * α * (xpoint − xSDR
2

 

               ​  ​  ​  ​        ​(2.10)                         H[2] 0 ) / r =  − 1 * α * (ypoint − ySDR
2  

                ​  ​  ​  ​     ​ ​  ​(2.11)                         H[3] 0 ) / r =  − 1 * α * (zpoint − zSDR
2  

 
The covariance matrix equation, 2.6, still works in 3D space with no modifications. The 

result does slightly change however. It still contains the covariances of each point’s location 
error, but has an extra dimension represented as σ​2​z​. ​Equation 2.7 changes slightly in 3D space, 
as it accounts for the new dimension in the covariance matrix, as shown below: 

 

                                   ​(2.12)                                 σ      
point =  √σ2

x + σ2
y + σ2

z

 
 

 
The result of these 3D equations is the standard deviation of location error in 3D space. 

To find the CRLB for every point in 3D space, a MATLAB script using the 3D CRLB equations 
was used to automate the process.  

 
2.2. Jamming 

 

10 



 

2.2.1 Frequency Considerations 
As one of the major objectives of the project is to jam drones within an area for safety 

reasons, it is important that the project identifies which drone frequencies necessary to jam. Due 
to the high potential for other RF signals coming in and out of the drone jammer’s range, it is 
important that specific RF frequencies be defined which we plan to jam. Otherwise, we could 
potentially interfere with other RF signals, which poses both a safety and legality risk. Table 2.1, 
shown below, has a wide variety of popular drone brands and the frequency (or frequencies) used 
for communication between the drone and its controller. 

 

 
Table 2.1: Frequencies used by Popular Drone Brands​7 

One key takeaway from Table 1 is that most common drone brands communicate with a 
frequency of 2.4 GHz, with 5.8 GHz and 433 MHz being less common frequencies used. This 
would imply that jamming the 2.4 GHz frequency would jam the majority of commercial drones. 
However, the more advanced drones (which tend to be a greater security threat) also send a video 
to the controller so that the user can see the surrounding area from the drone’s perspective. In 
some cases, it may be ideal to not only jam the signals from the controller to the drone, but also 
the video signals from the drone to the controller so the user doesn’t gain sensitive information 
even after the drone is jammed. Table 2.2, shown below, shows which frequencies common 
drone brands use to send video signals back to the controller. 
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Brand Frequency 

DJI Phantom 2.4 / 5.8 GHz 

Futaba 2.4 GHz 

Spektrum 2.4 GHz 

JR 2.4 GHz 

Hitec 2.4 GHz 

Graupner 2.4 GHz 

Yuneec 2.4 GHz 

Parrot AR2 2.4 GHz 

Immersion 433 MHz 

Brand Frequency 

DJI 2.4 GHz 

Immersion 2.4 GHz 



 

 
Table 2.2: Frequencies used for Video by Common Drone Brands​7 

One major outcome from Table 2.2 is that the video link is often done through the 5.8 
GHz band or 2.4 GHz band. Therefore, based on the results from these two tables, as well as 
some further research completed on drone brands and their frequencies, this project has 
determined that jamming the 2.4 GHz band will be sufficient for this application. A simple 
bandpass filter for the 2.4-2.5 GHz band will allow for the jamming assembly to only process 
signals within this band. This will be further detailed in Chapter 3, System Architecture. 
 

2.2.2 Jamming Scenario 
In order to understand the hardware and software that is necessary for a drone jamming 

assembly, it is important to first design and analyze a block diagram which shows each step in 
the process from the reception of a signal to the transmission of a high power signal meant to jam 
the drone’s communication with its controller. As identified in Section 2.2.1 the common drone 
frequencies which will be taken into account in the drone jamming assembly is 2.4 GHz. Shown 
below in Figure 2.1 is a top-level block diagram of how the RF drone jamming assembly will be 
designed to operate. 
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Yuneec 5.8 GHz 

Connex 5.8 GHz 

Boscam 5.8 GHz 



 

Figure 2.3: Drone Jamming Block Diagram 

The first part of the drone jamming assembly, the 2.0 to 6.0 GHz antenna, is used to both 
receive and transmit RF signals. The reason for the 2.0 to 6.0 GHz range is because this range 
covers all received signals to be analyzed.It is important that the antenna be able to perform both 
signal reception and transmission because when it is determined that a received signal is within 
either of the frequency ranges that needs to be jammed, a high power signal of the same 
frequency will be emitted to confuse the drone. In order for this to be accomplished, there needs 
to be a switch which transitions between the receive and transmit operation of the antenna. This 
switch will be controlled by the microcontroller.  

When the microcontroller is used in the receive mode, all signals received through the 
antenna will be sent to a Low Noise Amplifier. The purpose of this amplifier in the block 
diagram is to amplify any low-power signals while maintaining a negligent change to its 
signal-to-noise ratio. This electrical component amplifies the power of the signal while adding 
minimal amounts of noise to the system. This allows for received signals that are low in power to 
be more easily processed and analyzed at later components of the RF jamming assembly in 
Figure 2.1. 

A Detector Logarithmic Video Amplifier (DLVA) will be the next electrical component 
that takes in the RF signal. A DLVA converts the energy of the RF signal into a Direct Current 
(DC) Voltage (the detector portion), and then amplifies the signal through an amplifier with a 
logarithmic transfer function (the logarithmic video amplifier portion). By relating the RF power 
of each bandpass filter to a specific DC Voltage, the microcontroller can then determine if the 
signals are significant enough to be an actual drone signal as opposed to noise. This part in the 
process is crucial, as it links the RF signals to information that the microcontroller can process. 

The electrical component which will receive this outputted Voltage is a Voltage 
Controlled Oscillator (VCO). A VCO takes a specific DC Voltage input and produces an RF 
signal output that is determined by the Voltage of the input. The purpose of this electrical 
component is to allow for the microcontroller to send out a 2.4 GHz signal that will eventually be 
transmitted through the antenna. This ensures that the signal sent out matches the frequency of 
the signal it wishes to jam. 

Lastly, a High Power Amplifier will amplify the power of the RF signal outputted by the 
VCO. This electrical component ensures that the signal is of a high enough power to adequately 
jam the drone’s signals. If the power of the signal outputted by the jamming system is not 
significant enough, then the drone will still be able to communicate with its host controller 
without significant interruption. If the RF transmit/receive switch is turned to transmit mode, this 
high power signal will then be sent out to the surrounding environment through the antenna. This 
process will be followed whenever the jamming assembly is powered on. 

 
2.2.3 Software Considerations 

The barrage jamming technique was selected to be the method by which to jam the drone 
communication because it is able to fill an entire band of communication with noise making 
communication impossible. The barrage jamming technique is particularly useful as many drones 
will change frequencies as communication drops and some have complex linking procedures.​8 

The one possible problem with barrage jamming is that as the signal is spread over a band it 
loses strength. This is able to be countered by making sure the power is greater from the jammer 

13 



 

than the controller. This can be done by methods as simple as having the jammer closer to the 
drone than the controller.  The equation that describes barrage jamming output is as follows: 

 
                                       w[n]  y[n]   =  √ x[n] 2

P + j√ 2
P       (2.13) 

Where P is the effective radiated power in watts and x[n] and y[n] are uncorrelated 
sequences of zero-mean Gaussian random variables with unit variance. The real portion of this 
equation can be generated as graphed below, to output from the microcontroller to jam 
communications.  

 
Figure 2.4: Barrage Jamming Noise 
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3. System Architecture 
The overall system is broken into two main parts. First there is the location system which is 

responsible for finding either the drone or drone pilot. This is done with software defined radios 
(SDRs) which return the received signal strength which can then be mathematically transformed 
into a position in a 3D space. The second part of the system is the jamming device which uses 
barrage jamming software on a microcontroller and RF hardware to disrupt the signal between 
the drone controller and the drone. These systems are demonstrated visually below.  
 

 

Figure 3.1 Assembly Block Diagram 

 
Figure 3.2 General Systems Overview 
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3.1. Hardware Modules 
The categories of hardware used in the assembly can be grouped into three sections: 

localization, the microcontroller, and jamming. The localization hardware group contains the 
components used in receiving and processing the signals, and locating their source. The 
microcontroller links the localization and jamming systems together, feeding the jamming 
system appropriate voltages to match the signals frequency. The jamming group of components 
includes the RF hardware that makes up the jamming signal generating circuit.  

  
3.1.1. Localization Components 

The localization portion of the system uses various hardware to read and process the 
hardware. Figure 2.1 below shows an overview of the components and connections of the 
hardware used in the localization system.  

 
 

Figure 3.3 Localization Hardware Overview Diagram (power cords not shown) 
 
The system is made up of 4 radios connected by a network switch by ethernet cables. A 

laptop that is running signal processing software is also connected to the switch, Not pictured in 
the diagram are the power strip and extension cords used to get power to the radios and switch. 

 
3.1.2.   Microcontroller 

A microcontroller, allows this project to best accomplish the digital processing and 
creation of signals. This is because microcontrollers are fast and can easily be integrated with 
other circuitry. The microcontroller will be responsible for the following: 
❖ Switching the antenna between receiving and transmitting 
❖ Taking voltages from the RF circuits and converting it into digital data 
❖ Filter noise 
❖ Create a jamming signal and send the signal to the transmission portion of the RF circuit 

The details of how these tasks are tackled in the coding of the microcontroller is 
explored later in the Section 3.3 of this paper. The microcontroller being used is the Arduino 
MKR 1010. Below is a diagram of the board’s main components. 
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Figure 3.4 Main Components Arduino MKR 1010​9 

 
The analog signal from the RF drone detection circuitry will come in through pin A0. The 

outcoming barrage jamming signal will come out of DAC0.  
The microcontroller in this specific application has many necessary functions in order to 

properly determine the significance of all input signals, as well as how to react in all cases. At 
the input of the microcontroller is an Analog to Digital (A/D) converter, which takes the output 
of the DLVA and relates Voltage levels to specific binary representations. This allows for the 
microcontroller to perform the following functions: receive and transmit switch selection, filter 
switch selection, A/D signal detection, Digital to Analog (D/A) control, enabling jamming, 
power to the display, overall system battery percentage, and many others. If it has been 
determined that a signal is significant enough in power level to be jammed, this information will 
be received by the D/A converter, which takes a digital input from the microcontroller and 
produces an output Voltage. 

 
3.1.3. Jamming Components  

All of the components discussed from Section 2.2.2 need to be carefully ordered based on 
our project’s required specifications. One of the important concerns for the jammer assembly is 
the Voltage and current that each active component draws. This has an impact on which external 
power supplies are necessary to power the entire system for an adequate amount of time. Table 
3.1 below shows the Voltage and current levels required for operation by all components. 
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Table 3.1: Component Voltage and Current Requirements 

 
All ordered components can be powered by a 5V DC supply, which gives us the 

availability to power the entire circuit on one 5V power source. The total current required by all 
components (excluding the Arduino) is 354.5 mA, which can be powered by a USB cord 
connected to a laptop, which supplies 5V at 500 mA. The final conclusion from Table 3.1 is that 
all RF components can be powered by a single external laptop, with one USB cord powering and 
controlling the Arduino, and another powering all of the active RF components. 

Another consideration with respect to the ordered RF components is the RF specifications 
of each part. Table 3.1 highlights each of the main specifications of each component. 

 

 
Table 3.2: Component Specifications 

 
The one common specification of all RF components in the jamming assembly is the 

frequency range of each. As shown in Table 3.2 above, all components meet the desired jamming 
range of 2400 MHz to 2500 MHz. This means that all components throughout the assembly will 
be able to properly operate within the desired band. 

 

18 



 

3.2. Software Modules 
3.2.1.      Receiving and Processing 

As mentioned in section 2.1.1, to receive and process signals using SDRs a software is 
needed. The software used in this system is GNU Radio, ran on a host computer connected to the 
radios over ethernet. The GNU Radio flowgraph shown below in Figure 3.3 uses the SDR as a 
receiver tuned to a frequency range of about 2.4 - 2.45 GHz. It then takes the incoming signals, 
squares their magnitude, and uses that value in a logarithmic function to find the RSS. The 
flowgraph then writes the RSS to a log file, resulting in millions of data points in just a few 
seconds. This flowgraph was then repeated for the three remaining SDRs, each with their own 
log file. After generating and running the script from the flowgraph, a separate Python script was 
created to average the millions of RSS values for each SDR.  

 
Figure 3.5 GNU Radio Flowgraph to find RSS of Incoming Signals 

 
These scripts were used on the host laptop in the configuration shown in Figure 3.2. This 

connects the software to the localization hardware, completing the localization system.  
  

3.2.2. Jamming 
The software has various roles to fulfill in the jamming section of this project, these tasks 

are listed in the 3.1.1. microcontroller section of this paper. First switching the antenna between 
receiving and transmitting in order to both read the signal to the drone then properly jam it. The 
readings should then be processed into a digital format to work with. The data is then cleaned of 
any noise to isolate the important communication signal. Finally a pseudo-random signal, the 
barrage jamming noise,  is created to be broadcasted and jam the communication to the drone.  
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Figure 3.6 Software Flow Diagram 

 
The microcontroller will begin on the receiving setting in order to first find the drone 

signals to jam. Then the data will be cleaned in order to filter out the noise and only record what 
is important signal data. This can be done by testing and finding boundaries at which actual 
drone signals work at and removing signals that are not within those bounds. The transmission 
will then create a jamming signal that is random and at the same frequency to disrupt the signal 
to the drone. The microcontroller will use barrage jamming in order to render either the 2.4 GHz 
communications useless. Finally this signal is broadcasted continuously sending the data back 
into the RF circuits for amplification.  

The programming of the Arduino was done in MATLAB with the compatibility with 
Arduino and Simulink. This decision was made because there is a library in MATLAB, the 
Phased Array System Toolbox, which allows for barrage jamming noise to be calculated in one 
line of code. There will first be a switch case with the condition of finding a proper signal to 
change between receiving and transmitting functions. Once a signal is verified, the case switches 
to the transmission, where the barrage jamming signal will be created using the previous 
equation and then is transmitted back through the RF circuitry.  
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4. Results and Discussion 
 
4.1. Localization Experiment 
To test the localization portion of the system, 4 SDRs were placed in a 10 by 10 meter 

square at varying elevations. In order to test signals originating from outside the 10 by 10 
bounds, the total testing area was set at 14 by 14 meters. Figure 4.1 below shows the 
configuration of the test set up from a top down view. 

 
Figure 4.1 Testing Configuration for Localization, 4 SDRs, 2 Signal Positions 

 
After setting up the testing configuration, the first step was to measure P​0​, the signal 

strength of the controller 1 meter away individually for each SDR using the GNU Radio 
generated script from section 3.2.1. This step is used to get a reference strength to compare the 
RSS values to when the localization test begins. Once each SDR’s P​0​ was recorded, the 
controller was placed inside the 10 by 10 bounds. With the controller at this position, labeled 
Signal_1 in Figure 4.1, The GNU Radio script was run for approximately 5 seconds. Once over, 
the data for each SDR was averaged and used in the RLS algorithm. The controller was then 
moved to its position outside the bounds, labeled Signal_2 in Figure 4.1. The script was run 
again for approximately 5 seconds and the data was averaged and used in the RLS algorithm.  

 
4.1.1. Mathematical Modelling 

The first step in finding the location of the controller is determining the distance between 
the access points and the controller. This was done with the Equation 2.2 version of the path loss 
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equation. This distance was calculated quickly with a Python script as well as the actual distance 
between the object and the controller using trigonometry. The following calculated distances and 
errors are demonstrated in the tables below.  

 

Table 4.1 Controller at Position (3, 5, 0.53) Distance from SDRs 
 

Table 4.2 Controller at Position(-2,3,0.98) Distance from SDRs 
 
Next using these calculated distances they are plugged into a Matlab script that calculates 

the position using the RLS algorithm. These results are visually shown below in the following 
figures. The controller at position (3, 5, 0.53) was calculated to be at (3.57, 5.20, 2.44). The 
controller at position (-2, 3, 0.98) was calculated to be at (-1.85,3.41,1.52).  
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Controller  
(3,5,0.53) 

Calculated Distance (m) Error (m) 

SDR 1 (0, 0, 0.53) 5.86 -0.03 

SDR 2 (0, 10, 1.05) 6.84 -0.99 

SDR 3 (10, 10, 0.63) 7.65 0.95 

SDR 4 (10,0, 0.13) 9.11 -0.49 

Controller  
(-2,3,0.98) 

Calculated Distance 
(m) 

Error (m) 

SDR 1 (0, 0, 0.53) 3.81 -0.17 

SDR 2 (0, 10, 1.05) 6.45 0.83 

SDR 3 (10, 10, 0.63) 13.53 0.37 

SDR 4 (10,0, 0.13) 12.19 0.2 



 

Figure 4.2 Controller at Position (3, 5, 0.53) RLS Algorithm 

 
Figure 4.3 Controller at Position(-2,3,0.98) RLS Algorithm 

 
4.1.2. Error Estimation 

Another MATLAB script was able to take the calculated distances from the path loss 
model and the RSS values and graph them giving a line of best fit with the values of P​0​,  α, and 
X(σ). These values are then used in the CRLB to calculate how much error this precise system 
will produce.  
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Figure 4.4 Controller at Position (3, 5, 0.53) Path Loss Model 

 
Figure 4.5 Controller at Position(-2,3,0.98) Path Loss Model 

 
Two top-down contour maps of the CRLB data were simulated of this configuration. 

Figure 4.6 below is the contour map at the height of the signal inside the bounds using its σ and α 
values. At the exact position of the signal, the standard deviation of location error is 1.705 
meters. 

 
Figure 4.6 Top-Down Contour Map Using σ and α Values of the Signal Inside the 

Bounds  
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Figure 4.7 below is the contour map at the height of the signal outside the bounds at its 
elevation. This map was generated with the σ and​ ​α values of its respective signal. At the signal’s 
exact position, the standard deviation of the error is 2.13 meters. Overall, both maps show that 
the estimated error of our system is low, especially within the 10 by 10 meter square of the 
SDRs. This means that our system seems to be accurate at locating the position of the drone.  

     
     Figure 4.7 Top-Down Contour Map Using σ and α Values of the Signal Outside the Bounds  

 
4.2. Jamming Analysis 
 

4.2.1. Final Assembly Design 
After ordering all components and determining which inputs and outputs each component 

requires for the jamming assembly to operate properly, a final assembly design needs to be 
created as an outline for how the entire assembly needs to be controlled through wiring. This 
design was created and modified in Visio, and is shown in Figure 4.8 below. 
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Figure 4.8 Final Jammer Assembly Design 

 
All connections for the jammer assembly are accomplished through RG316 RF 

cable, a 5V power supply from the laptop, a common ground, control lines to and from the 
Arduino, and a laptop/Arduino connect (USB cord). As highlighted in section 3.1.2, all 
components are powered by a single external laptop. This saves money and wasted power, as we 
do not need to order rechargeable or disposable batteries to power the RF components. Another 
important aspect of this jammer design is the switch, which is used as both a power saving and 
safety aspect. When the laptop is plugged in, the switch in the off mode will not allow any power 
to be drawn from the laptop. Not only does this limit power usage to when the user intends to use 
the assembly, but it also allows the user to plug in the laptop in any environment without 
potentially unintentionally jamming signals. 

 
4.2.2. Power Considerations 

The power level of a signal determines which signal the receiving party (in our case, a 
drone) will be able to process. In theory, any jamming to signal (J/S) ratio greater than 0 dB will 
jam the drone. However, a J/S ratio of 6dB or greater will jam the drone with extremely high 
probability, and this is the ratio our jammer aims to meet. The power that our test drone, the 
Tinyhawk II, uses for communication was measured in a lab environment to be 19.4 dBm. The 
output power of the jammer assembly was determined from the component specifications in 
Table 3.2 to be 27.1 dBm. Tables 4.3 and 4.4 below show the controller power at the drone over 
distance and the jammer power at the drone over distance, respectively. The free space path loss 
(FSPL) equation used in determining the received power at specific distances is: 
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               F SP L (dB) 20log(d) 0log(f ) 0log(4pi/c)   =  + 2 + 2    ​(4.1)​7 

 
Where d is the distance in meters between the transmitted signal and where is is received, f is the 
frequency of the transmitted signal in Hertz (2,400,000,000 Hz), and c is the speed of light 
(3*10^8 m/s). 

 
Table 4.3: Controller Power at Drone vs Distance 

 

 
Table 4.4: Jammer Power at Drone vs Distance 

 
The major conclusion drawn from Tables 4.3 and 4.4 is that when the distances between 

the drone and controller and the drone and jammer are the same, the power of the jamming signal 
at the drone is 7.7 dB higher than the controller signal power. This is greater than 6 dB, which is 
the aim of our jamming assembly. Therefore, the drone jamming assembly is theoretically 
effective with high probability when the jammer and controller are equidistant from the drone.  
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5. Conclusions and Future Recommendations 
In this section, the conclusions drawn from the results of testing the system and analyzing 

the data are discussed. The three sections talk about the localization part of the assembly, the 
jamming part of the assembly, and the assembly as a whole. Also, future recommendations for 
building upon this project are given.  

 
5.1. Positioning Portion of Assembly 
In the positioning portion of this project, the most important thing is to make sure the 

final location estimated is as close to actual as possible. The RLS algorithm calculated the 
controller at position (3, 5, 0.53) to be at (3.57, 5.20, 2.44). The controller at position (-2, 3, 0.98) 
was calculated by RLS to be at (-1.85,3.41,1.52). Both of these calculations were within a meter 
of error on the xy plane, however, on the z axis the error was greater. This is due to the lack of 
variance of the heights of the SDRs. On the xy plane the SDRs were all 10 meters apart, 
however, on the z axis there was only a variance of one meter. This led to the ability to 
determine the z position as far worse than the x or y position. This could be fixed in future 
applications by increasing the difference in heights of the SDRs. Future projects could also find a 
way to determine if the signal is coming from either the controller or the drone itself to know 
which is being located.  

 
5.2. Jamming Portion of Assembly 
In the jamming portion of this project, the most important thing is to make sure the drone 

can be disabled and jammed. Although the power considerations, discussed in Section 4.2.2 
indicates that the jammer will disable the drone when the distance between the drone and jammer 
is equidistant to the drone and the controller distance. However, due to WPI team project 
COVID restrictions, we have not been able to test this theory with the designed jammer 
assembly. Future projects could design an automated antenna system that focuses the jamming 
signal in the direction of the drone. This better ties the localization section of this project to the 
jamming section, while also ensuring that the jamming signal is focused in the desired direction. 
Another consideration for future projects could be to find ways to increase the power level of the 
output jamming signal. This would increase the overall jamming range of the assembly, which 
would be beneficial in an application within a larger area of interest. 
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5.3. Complete Assembly 

 
Figure 5.1 Final Jammer Assembly Opened 

 
The Drone Jammer functionality as shown above in Figure 5.1 is composed of two 

primary functions, receive and jam. In theory, the controller frequency would be detected by the 
Drone Jammer, and if desired, the Drone Jammer would transmit a duplicated frequency in an 
effort to jam the drone. The transmission would need to be of higher power as seen by the drone, 
than the controller transmission. The idea behind this jamming technique is to provide a higher 
power level (greater than 6 dB) than the controller to “overpower” the drone and further confuse 
the drone by introducing Gaussian white noise. 

The receive function is used to detect that a drone and controller is in the local area. The 
omni-directional antenna (B01M3NVW22) is used to pick the controller radio signals out of the 
air and to translate it to a Voltage for detection. This omni-directional antenna has 9dBi of gain. 
The received signal is steered to the detection path via the Rx/Tx switch. The Rx/Tx switch 
(SKY12242_492LF) is specified to have 0.7 dB of loss. The RF signal then gets amplified by a 
low noise amplifier (B07B6P2B7H). This amplifier has a low noise figure of 2.1 dB and a high 
gain of 35dB. The signal is then passed through a RF bandpass filter (ZFBP-2400-S+) that 
passes signals from 2300 MHz to 2500 MHz and rejects RF signals that are out of this range. 
The controller itself has a specified frequency range of 2400 MHz to 2483.5 MHz. This device 
filters out non-desirable signals in the environment. The signal is then directed to the log video 
amplifier (AD8313) which translates RF input signals from -68.5 dBm to -0.5 dBm to an output 
Voltage of 0V to 5V that is linearly proportional to the RF input power range. The LVA output 
Voltage is fed to the Arduino that detects that a Voltage is present and in summary a drone 
controller is detected in the environment. 

If desired, the jam function could then be deployed. The Arduino would output a fixed 
Voltage to tune the Voltage controlled oscillator (HE6-YY2-HK935) to the specific controller 
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frequency (would have to be predetermined by measurement in the lab). The VCO outputs a 
Voltage range of 2300 MHz to 2650 MHz based on an input tune Voltage of 0V to 4.5V. The 
VCO output power is 6.0 dBm. The RF signal would then pass through a RF amplifier 
(139-ZX60-P105LN) with 20 dB of gain and 20.0 dBm of output power. The Rx/Tx switch 
would then steer the RF jam signal to the same antenna (bidirectional and now used for jamming 
functionality). The signal would then be sent back into the environment via the antenna and in 
theory would be received by the drone and would disable its functionality. 

The RF component building blocks were procured from various sources with 
performance, size, low 5V DC current, and standard SMA connectors being key decision factors. 
An Arduino Uno was selected as the controller for the Drone Jammer. A simple breadboard was 
used for component control and DC power supply interconnects. Two manual switches were 
incorporated, one to power on/off the box and the other as a spare. The RF component 
interconnects were made with short RG316 low loss RF cables with standard SMA RF 
connectors. The DC control and power supply lines were implemented with standard 22 gauge 
wire. Various wire colors were used to minimize errors; red for 5V, black for grounds, and 
yellow for control/data lines. The Drone Jammer has two connections to a laptop. One 
connection is to a USB port that provides 5V up to 500 mA to power the box (all components 
combined less than 350 mA) and the other connection is a separate USB port that communicates 
and controls the Arduino. A standard bud box was used to house the RF Jammer. 
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Figure 5.2 Final Jammer Assembly Closed 
 
Shown above in Figure 5.2 is the appearance of the Jammer Assembly when it is closed. 

The bud box was painted white and stickers were added for aesthetic. The top switch controls 
whether or not the power from the laptop is powering all of the active components. The bottom 
switch was added for potential future functionality if more features were to be added in the 
future, but for now is not connected to any other components.  

The COVID environment greatly limited the ability to debug and test the Drone Jammer. 
The WPI Engineering Laboratories and associated test equipment were not available for a 
majority of the term. The test equipment was limited to a simple multimeter in the home 
environment. The multimeter was initially used to “ohm out” the voltages, grounds, and control 
lines for potential shorts. There were no shorts or miss wires found in the fully assembled box, 
shown in Figure 5.1. Ideally, an RF generator source set at approximately 2400 MHz to 2500 
MHz with varying power levels would be used to test the detection function. The log video 
amplifier output would be monitored and plotted by the Arduino as a function of frequency and 
RF power level. Without test equipment, the detection testing was limited to turning on the drone 
controller and confirming that the log video out voltage as monitored and displayed by the 
Arduino increased and dropped as the drone controller was turned on and off. The actual 
modulation of the controller output signal and its exact frequency could have been measured in 
the lab with a spectrum analyzer but with no test equipment the detection testing was again 
limited to measuring an increase in input power level as detected by the log video amplifier. 

Jamming testing was limited to stepping the voltage controlled oscillator across its 
frequency range using a tunable voltage out of the Arduino and transmitting the signal out of the 
Drone Jammer box. An active drone was flown near the box to see if it negatively impacted the 
drone’s flight. Output frequencies were varied and the drone distance to the jammer was varied, 
but there were no negative impacts to the drone. It was noted that the home Wi-Fi was 
consistently disabled during the testing, but again the drone flight was not impacted. A spectrum 
analyzer measuring the output frequency and amplitude would have aided the testing and 
debugging of the box. An oscilloscope would have also aided in the debugging of the Drone 
Jammer, as we could have analyzed the Voltage levels at each step of the assembly over a time 
domain to discern any undesired responses. In conclusion, the assembly of the Drone Jammer 
was completed as designed, but due to COVID measures taken by WPI, it became increasingly 
more difficult to debug any issues within the complex system without adequate testing 
equipment available. 
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3D RLS MATLAB Script 
 
clc;clear;close all; 
  
% This Matlab code solve Example 7.2 in textbook 
known_references = [0, 0, 0.53;0, 10, 1.05;10, 10, 0.63;10, 0, 0.13]; 
initial_guess = [5, 5, 1]; 
distances = 
[3.8062735760120607,6.446638734864327,13.531107155919049,12.194574932461649]; 
  
figure(1); 
hold on 
grid on 
  
% Draw Spheres 
[X, Y, Z] = sphere; 
  
sphere1 = surf(X * distances(1) + known_references(1,1), Y * distances(1) + 
known_references(1,2), Z * distances(1) + known_references(1,3)); 
sphere2 = surf(X * distances(2) + known_references(2,1), Y * distances(2) + 
known_references(2,2), Z * distances(2) + known_references(2,3)); 
sphere3 = surf(X * distances(3) + known_references(3,1), Y * distances(3) + 
known_references(3,2), Z * distances(3) + known_references(3,3)); 
sphere4 = surf(X * distances(4) + known_references(4,1), Y * distances(4) + 
known_references(4,2), Z * distances(4) + known_references(4,3)); 
  
set(sphere1, 'FaceAlpha', 0.5); 
set(sphere2, 'FaceAlpha', 0.5); 
set(sphere3, 'FaceAlpha', 0.5); 
set(sphere4, 'FaceAlpha', 0.5); 
  
shading interp; 
  
i=1; 
temp_location(i,:) = initial_guess; 
temp_error = 0; 
  
for j = 1 : size(known_references,1) 
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    temp_error = temp_error + abs((known_references(j,1) - temp_location(i,1))^2 + 
(known_references(j,2) - temp_location(i,2))^2 + (known_references(j,3) - temp_location(i,3))^2 
- distances(j)^2); 
end 
  
estimated_error = temp_error; 
  
plot3(temp_location(i,1),temp_location(i,2),temp_location(i,3),'k*','MarkerSize', 10); %plot 
text(temp_location(i,1), temp_location(i,2)*(1 + 0.8), 'Initial Guess'); 
disp(['The initial location estimation is:', 
num2str([temp_location(i,1),temp_location(i,2),temp_location(i,3)])]); 
  
% new matrix = [ ]; 
while norm(estimated_error) > 1e-2 %iterative process for LS algorithm 
    for j=1 : size(known_references,1)  %Jacobian has been calculated in advance 
        jacobian_matrix(j,:) = -2*(known_references(j,:) - temp_location(i,:)); %partial derivative is 
i.e. -2(x 1-x) 
        f(j) = (known_references(j,1) - temp_location(i,1))^2 + (known_references(j,2) - 
temp_location(i,2))^2 + (known_references(j,3) - temp_location(i,3))^2 - distances(j)^2; 
    end 
  
    estimated_error = -inv(jacobian_matrix' * jacobian_matrix) * (jacobian_matrix') * f'; %update 
the U and E 
    temp_location(i+1,:) = temp_location(i,:) + estimated_error'; 
  
    plot3(temp_location(i+1,1),temp_location(i+1,2),temp_location(i+1,3),'k*','MarkerSize',10); 
%plot 
    dp = temp_location(i+1,:)-temp_location(i,:); 
 
quiver3(temp_location(i,1),temp_location(i,2),temp_location(i,3),dp(1),dp(2),dp(3),0,'Color','r','
LineWidth',2); 
    %text(temp location(i+1,1), temp location(i+1,2)*(1 + 0.005), num2str(i)); 
  
    i = i + 1; 
    lx=num2str(temp_location(i,1)); 
    ly=num2str(temp_location(i,2)); 
    lz=num2str(temp_location(i,3)); 
    err=sqrt(estimated_error(1)^2+estimated_error(2)^2+estimated_error(3)^2); 
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   disp(['The ',num2str(i-1), 'th estimated location is:','[',lx,',',ly,',',lz,']',' with an error of ', 
num2str(err)]); 
end 
  
plot3(known_references(:,1),known_references(:,2),known_references(:,3),'go','MarkerSize',10); 
  
for i=1:length(known_references) 
   dp = temp_location(end,:) - known_references(i,:); 
 
quiver3(known_references(i,1),known_references(i,2),known_references(i,3),dp(1),dp(2),dp(3),0
,'Color','g','LineWidth',2); 
end 
  
text(temp_location(end,1), temp_location(end,2)*(1 + 0.2),'Final Estimated Location'); 
%axis([1.1*min(temp location(:,1)),1.1*max(temp location(:,1)), 0.9*min(temp location(:,2)), 
1.1*max(temp location(:,2))]); 
title('Progress of LS Approach') 
xlabel('x coordinate in [m]'); 
ylabel('y coordinate in [m]'); 
zlabel('z coordinate in [m]'); 
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Path Loss Model MATLAB Script 
clc;close all; 
% Enter your distance in meter here and rss 
r=[5.0;6.5;8.0;9.5;11.0;12.5;14.0;15.5;17.0;20.0]; 
Pr=[-38.9459;-38.8443;-36.2157;-39.1163;-36.3094;- 
44.6655;-40.8041;-46.7637;-42.3983;-50.2684]; 
% Plot your Lp vs. Distance in dB 
r_dB=10*log10(r); % Careful! Change your distance in 10log(r) when plotting 
% Linear Fitting 
F1=fit(r_dB,Pr,'poly1'); 
%Plot your data with fitting 
plot(F1,r_dB,Pr); 
grid on 
xlabel('10*log10(r)'); 
ylabel('Received Signal Strength[dBm]'); 
val=coeffvalues(F1); 
disp('The Estimated Path Loss Model is:'); 
model1=['Pr=',num2str(val(2)),num2str(val(1)*10),'*log(r)']; 
disp(model1); 
disp('Mean value of shadow fading is:'); 
disp(mean(Pr+20+2*r_dB)); 
disp('Standard Deviation of shadow fading is:'); 
disp(std(Pr+40+2*r_dB)); 
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3D CRLB MATLAB Script 
%% 
% The simulation is based on Kobayashi's paper 'Signal Strength Based Indoor Geolocation' 
% The result can be validated by Fig. 3 in the paper 
% Calculation of CRLB is based on Equation (3.3d),(3.4e) and (3.4d) 
%% 
close all;clear all;clc;warning off; 
%% Initialization 
% Locations of Access Points 
% results 
APx(1)=0;APy(1)=0;APz(1)=0.53; 
APx(2)=10;APy(2)=0;APz(2)=1.05; 
APx(3)=0;APy(3)=10;APz(3)=0.63; 
APx(4)=10;APy(4)=10;APz(4)=0.13; 
%APx(5)=0;APy(5)=0;APz(5)=-7; 
%APx(6)=-5;APy(6)=5;APz(6)=5; 
SD=.98; % Standard Deviation of Shadow Fading 
NUM=4; % Number of Access Points 
% Locations of Receivers  
pace=.1; 
mx=-4:pace:10; 
my=-4:pace:10; 
mz=-4:pace:10; 
%nxyz=length(mx); 
for zi=1:length(mx) 
    for yi=1:length(mx) 
        for xi=1:length(mx) 
            for i1=1:NUM 
                alpha=2; 
                r(i1,xi,yi,zi)=sqrt((mx(xi)-APx(i1))^2+(my(yi)-APy(i1))^2+(mz(zi)-APz(i1))^2); % 
Distance Between Transmitter and Receiver 
                H1(i1,xi,yi,zi)=-10*alpha/log(10)*(mx(xi)-APx(i1))/(r(i1,xi,yi,zi))^2; % First Column 
of H Matrix 
                H2(i1,xi,yi,zi)=-10*alpha/log(10)*(mx(yi)-APy(i1))/(r(i1,xi,yi,zi))^2; % Second 
Column of H Matrix 
                H3(i1,xi,yi,zi)=-10*alpha/log(10)*(mx(zi)-APz(i1))/(r(i1,xi,yi,zi))^2; % Third Column 
of H Matrix 
            end 
            H(:,:,xi,yi,zi)=[H1(:,xi,yi,zi),H2(:,xi,yi,zi),H3(:,xi,yi,zi)]; 
            dddd = (H(:,:,xi,yi,zi))'*H(:,:,xi,yi,zi); 
            Covv(:,:,xi,yi,zi)=SD^2*dddd^(-1); % Covariance Matrix of Error Estimate 
            SDr(xi,yi,zi)=sqrt(Covv(1,1,xi,yi,zi)+Covv(2,2,xi,yi,zi)+Covv(3,3,xi,yi,zi)); % Standard 
Deviation of Location Error 
        end 
    end 
end  
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figure(1) 
[C h]=contourf(mx,my,SDr(:,:,1),20); 
h.LevelList=round(h.LevelList,1);  %rounds levels to first decimal place 
clabel(C,h); 
xlabel('X-axis(meter)'); 
ylabel('Y-axis(meter)'); 
title('Top View Cross Section of Contour at Z = 0') 
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