Effects of RF Interference

Aki Hekkala

Introduction

- GPS receivers vulnerable to RF interference
 - Intentional jamming and other interference
 - Can results in degraded navigation, reduces C/N_0
- Interference monitoring and mitigation features must be implemented
 - Military vs. commercial
 - Filtering and antenna implementations
 - Code correction methods

Types and Typical Sources (1/2)

Type Typical Sources

Wb Gaussian Intentional noise jammers

Wb phase/ TV's harmonics or near-band

frequency mod. microwave link transmitters

Wb-spread spect. Int. spread spectrum jammers

or near-field of pseudolites

Wb-pulse Radar

Types and Typical Sources (2/2)

Type Typical Sources

Nb phase/ AM stations' harmonics

frequency mod. or CB transmitter's harmonics

Nb-swept Int. CW jammers or

continuous wave FM station's harmonics

Nb-continuous wave Int. CW jammers unmodulated

or transmitter's carriers

Locations of antijam techniques

RF Interference Detector ①

- ullet Jamming-to-noise power ratio (J/N) meter
- Provides an instant warning of potential loss of signal integrity
- Implemented at AGC 1
- Based on the knowledge that GPS signals are well below the thermal noise level

- Protects receiver from high-powered transmitters that are out of GPS L-band
 - Risk to mix
- Drawback is insertion loss
 - 1 dB insertion loss adds 1 dB to NF and thus decrease tracking threshold 1 dB
- Should have sharp cutoff and deep stopband
 - Hard to implement?
- Downconverter with narrower bandwith

Pulse Interference Suppression

- High energy levels at low duty cycles
- Typical example is a radar transmitter
- Can also overpower the prefilter's ability to reject out-of-band interference
- Solution: limiter using diodes just ahead of the preamp

- Enhancement of the code and carrier tracking loops
- Implemented in the digital receiver channels and the receiver processor by narrowing the bandwiths

Narrowband Interfer. Processing

- Temporal filtering at the digital IF area for narrowband interferences
- Uses the J/N principle
 - Interfering signal is expected to be above the thermal noise level
- Wideband RF interference cannot be discriminated from thermal noise by temporal filtering

Antenna enhancements (5)

- Adaptive antenna arrays
- Effective and works for wideband interference
- Null toward the jammer
 - N-1 nulls for an N-element array
 - Low-noise preamplifier per every element
- Canceler
 - Reference antenna has the maximum toward the SVs
 - Sensing antennas have the maxima toward the jammers

A/D Conv. and Code Vulnerability

- Continuous wave interference may be dangerous
 - A/D converter may be captured
 - Disables the receiver to lower jamming levels
- C/A code vulnarable to CW interference
 - Could cause problems because of the leak-through phenomena

Interference reducing factors

- RF interference can only have the full effect if it is in the line of sight of the GPS antenna and obstructed
 - No foliage, buildings ecc.
- In commercial applications interference sources are at ground level while the antenna will be elevated
 - In the aviation applications additionally the body blocks

Analyzing the Effects

- Determine first unjammed C/N_0 for the SV signals
- Then tracking threshold for the receiver
 - Calculate effective C/N_0
- ullet Calculate J/S level at the receiver input
- Finally, the range and power combinations of the RF interference can be calculated

Unjammed C/N_0

$$C/N_0 = S_r + G_a - 10\log(kT_0) - N_f - L$$
 (dB-Hz)

where

 S_r = received signal power (dBw)

 G_a = antenna gain toward SV (dBic)

 $10 \log(kT_0)$ = thermal noise density (dBw-Hz)

k = Boltzmann's constant

 T_0 = Thermal noise ref. temperature 290 K

 N_f = noise figure

L = implementation losses

Tracking threshold C/N_0

$$[C/N_0]_{eq} = -10 \log \left[10^{-(C/N_0)/10} + \frac{10^{(J/S)/10}}{QR_c} \right]$$
 (dB-Hz)

where

```
C/N_0 = unjammed C/N_0 in 1-Hz bandwith (dB-Hz)

J/S = jammer-to-signal power ratio (dB)

R_c = GPS PRN code chipping rate (chips/sec)
```

Q = spread spectrum processing gain adjustment factor

Computing the J/S

$$J/S = 10 \log \left[QR_c \left(\frac{1}{10^{[C/N_0]_{eq}/10}} - \frac{1}{10^{(C/N_0)/10}} \right) \right]$$
 (dB)

where

```
C/N_0 = unjammed C/N_0 in 1-Hz bandwith (dB-Hz)
```

J/S = jammer-to-signal power ratio (dB)

 R_c = GPS PRN code chipping rate (chips/sec)

Q = spread spectrum processing gain adjustment factor

Exam questions

- Filtering and antenna implementations to suppress RF interference in GPS receivers
- Factors that reduce the effect of the interference (on the signal way, not in the receiver)