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Time Synchronization Attack in Smart Grid-
Part II: Cross Layer Detection Mechanism

Zhenghao Zhang, Matthew Trinkle, Aleksandar D. Dimitrovski, and Husheng Li,

Abstract—A novel time synchronization attack (TSA) on wide
area monitoring systems in smart grid has been identified in
the first part of this paper. A cross layer detection mechanism
is proposed to combat TSA in part II of this paper. In the
physical layer, we propose a GPS carrier signal noise ratio
(C/No) based spoofing detection technique. In addition, a patch-
monopole hybrid antenna is applied to receive GPS signal. By
computing the standard deviation of the C/No difference from
two GPS receivers, a priori probability of spoofing detection is
fed to the upper layer, where power system state is estimatedand
controlled. A trustworthiness based evaluation method is applied
to identify the PMU being under TSA. Both the physical layer
and upper layer algorithms are integrated to detect the TSA,thus
forming a cross layer mechanism. Experiment is carried out to
verify the effectiveness of the proposed TSA detection algorithm.

Index Terms—Time Synchronization Attack Defense, Trust-
worthiness evaluation, Cross Layer Detection, GPS Spoofing
Detection, Smart Grid

I. I NTRODUCTION

The security of smart grid has become an important research
topic [7] [15] [25], since the electricity system is closely
related to many critically important aspects of modern society.
The secure wide area monitoring system (WAMS) [5] has
become the key component in maintaining the reliability of
the entire power system. As a complex subsystem of the
smart gird, WAMS has faced many challenges on its security
due to its widely distributed monitoring devices and extensive
communication infrastructure [8].

In part I of this paper, we identified a novel potential attack
to WAMS in smart grid, namely the time synchronization
attack (TSA) through GPS spoofing. Furthermore, we have
analyzed and demonstrated the impact of TSA on three differ-
ent WAMS applications, which showed that TSA can confuse
the control center with a wrong system operation status by
introducing counterfeit time stamps to the true measurements.
Since the malicious attackers do not need to physically connect
to the monitoring device or the communication network,
TSA cannot be prevented by simply enhancing the firmware
of the monitoring devices. In addition, unlike a malicious
data attack [10] [14], TSA does not change the monitoring
data. Therefore, common defense methods for malicious data
attacks are not suitable to combat TSA.
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Motivated by the extreme importance of the security of
WAMS in smart grid, in part II of this paper, we study the
detection of TSA to ensure the reliability of the monitoring
system. In the physical layer of WAMS, TSA can be mitigated
by techniques of GPS spoofing detection, which can be imple-
mented in each individual GPS receiver [21]. These techniques
are based on the GPS signal parameters obtained directly from
the GPS receiver [11], such as its position solution [6] [18]
[24], the Doppler shift of the GPS satellites [3] [20], or the
SNR of the GPS signals [2].

An effective low-cost implementation of an anti-spoofing
technique can simply compare the position solutions from two
GPS receivers close to each other, since a spoofing signal
would cause both receivers to report the same position [24].
To that end, the receivers need to be sufficiently far away
from each other such that the two position solutions are easily
separated in the absence of a spoofer; meanwhile, they should
also be close enough such that they are affected by the same
spoofing signal. For closely spaced receivers, the phase of
the GPS signals at each receiver antenna can be used to
detect the presence of a spoofer. As the spoofer signal comes
from a particular direction, the phase shift between the two
antennas will be identical for all satellites, for the spoofing
signal, which is not true for real GPS signals coming from
different directions. This technique can be further improved
by predicting the expected phase shifts from the satellite orbit
models. However, this technique requires the GPS receiver to
measure and report the GPS carrier phase measurement, which
may not be valid in practice. Angle-of-arrival (AOA) based
spoofing detection (AOASD) [17] has been considered to be
among the most effective techniques to detect a GPS spoofing
attack. Typically, a GPS receiver receives navigation signal
from multiple GPS satellites which have different AOAs. In
a sharp contrast, counterfeit navigation signals from different
GPS satellites have the same AOA, since all the GPS signal
is transmitted by one GPS spoofer. However, the AOA based
techniques typically require an antenna array with dedicated
GPS receiver electronics to estimate the AOA of the GPS
signals, which significantly increases the size and cost of
device.

In this paper, we propose a cross layer detection mechanism
to protect WAMS against TSA. In the physical layer, we pro-
pose a Carrier to Noise Measurements (C/No) based spoofing
detection algorithm. The difference of the C/No obtained from
two GPS receivers is analyzed to detect the TSA. In particular,
we propose a monopole-patch hybrid antenna to detect a
spoofing attack. The monopole antenna is connected to one
GPS receiver and the patch antenna is connected to the other.
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Since the monopole and patch antenna have different radiation
patterns in elevation, the difference of the C/No measurements
between the two receivers will vary with the elevation angle
of the signal. The proposed system can thus discriminate the
elevation AOA between signals without requiring an expensive
multi-element antenna array. This technique is also expected
to be effective against a cooperative GPS spoofing attack,
as all the GPS spoofing signals are likely to come from the
same elevation angle near the horizon. Furthermore, the output
of the C/No based spoofing detection technique provides a
probability indicating whether the individual GPS receiver
is experiencing spoofing. Besides the physical layer TSA
detection, we also propose a trustworthiness framework based
TSA detection in the upper layer, based on Kalman filtering
and cross-check. Figure 1 provides an illustration of how
the trustworthiness of a set of monitoring devices could be
evaluated [12].

Fig. 1: Illustration of trustiness evaluation based on power
network modeling

As illustrated in Figure 1, the entire power network consists
of five generators (G1, G2, G3, G4, G5), eight buses and
three loads. There are five phasor measurement units (PMUs)
distributed in the power network serving as the monitoring
devices [4]. Assume that PMU-4 is suffering TSA from a
malicious attacker and that a transmission line fault occurs
between bus2 and bus3, which causes a disturbance in the
power network system. The distributed PMUs capture the
dynamic feature of the system and report to the control
center. Based on the time stamps attached to the measure-
ments sampled by the PMUs, the control center aligns the
measurements from different PMUs to infer the location of
the fault. However, the measurements from PMU-4 cannot
be aligned with those from other PMUs due to TSA. The
measurements from different PMUs are correlated according
to the interconnection of the entire network. Therefore, the
trustworthiness of each PMU can be evaluated based on the
system model and the system states. In this paper, we further
combine both detection schemes in the physical and upper
layers, thus forming a cross layer detection of TSA.

The remainder of this paper is organized as follows. Section
II provides the physical layer TSA detection algorithm. Section
III presents the trustworthiness evaluation mechanism based
on the interconnection modeling of the power grid. The

cross layer TSA detection algorithm is given in Section IV.
Conclusions and future work are provided in Section VI.

II. TSA DETECTION IN PHYSICAL LAYER

In this section we propose a simple spoofer detection
algorithm based on the Carrier to Noise Measurements (C/No)
[1] obtained from two closely spaced GPS receivers. This
technique could be implemented in an existing system by
simply logging the C/No measurements of the existing GPS
receiver and adding one more low cost GPS receiver module.

A. C/No based spoofing detection

This method uses the (C/No) measurement from two GPS
receivers connected to two antennas with different radiation
patternsG1(θ, φ) and G2(θ, φ) to implement a mono-pulse
system where the power ratio between two antennas is defined
as

Ri = 10 log10(
G1(θi, φi)

G2(θi, φi)
). (1)

Ri indicates the direction of arrival of theith GPS signal
arriving from azimuth directionθi and elevation directionφi.
For the spoofing signal, all GPS signals are coming from the
same direction asθ1 = θ2 = ... = θI and hence they should
have the same power ratio,Ri between the two antennas.
For the actual GPS signalsRi should differ for each satellite
as the signals come from different directions. As a result,
the standard deviation ofRi for all satellites observed at a
given time point will be used to determine the likelihood of a
spoofing signal. This technique could also make use of other
observables such as the satellite Doppler shift and the final
position solution to improve robustness.

The C/No based spoofing detection works as follows: At
each time point, the value ofRi for all observable GPS
satellites is estimated from the C/No values obtained from
the GPS receiver according to

Ri = (C/No)i,1(dB) − (C/No)i,2(dB), (2)

where(C/No)(i,m) is the carrier to noise ratio of theith GPS
signal from themth antenna in dB. The standard deviation
of Ri is then compared with a threshold to determine the
presence of a spoofing signal. The threshold is calculated from
the two probability density functions (PDFs) of the standard
deviation of theRi values when a spoofer is present and absent
to achieve a given false alarm rate. The two PDF’s of the
standard deviation ofRi for a signal present and absent were
obtained by conducting a field experiment.

B. Field experiment for PDF

An experiment was set up using two GPS receivers, one
connected to a patch antennas and one to a monopole antenna.
The C/No values of each receiver along with the satellite
elevation and azimuth angle were logged. The antenna gain
patterns are significantly different as the radiation pattern of
the patch has a maximum at 90 degrees elevation, while the
monopole has a minimum at this angle. The basic setup for
the spoofing experiment is shown in Figure 2.
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(a) C/No based detection experiment setup

(b) Monopole-patch hybrid antenna

Fig. 2: Basic setup for spoofing experiment.

The radiation patterns of the patch and monopole were
measured in an anechoic chamber and are shown in Figure
3. Note that the antenna patterns are expected to be relatively
uniform in azimuth, thus only the elevation cut is shown.
The monopole antenna has reasonably good gain at all low
elevation angles where it is most likely that a spoofer will
attack. The C/No measurements from both receivers were
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Fig. 3: Radiation patterns of the monopole and patch antenna

logged for approximately90 minutes at two different times
of the day. These measurements were then used to build up a
histogram of the C/No power ratios,Ri, which were used to
generated an estimated probability distribution (PDF) of the
standard deviation ofRi for the GPS signals with no spoofer
present.

A PDF of the standard deviation of theRi values observed
from a spoofing signal was also obtained by setting up the
antenna array in the Laboratory where the GPS receiver
was unable to track most of the real GPS signals, and then
introducing the spoofing signal by using a GPS repeater. The
GPS repeater was used to re-radiate the GPS signals inside

(a) Laboratory setup diagram

 

Spoofing Antenna  

Receiving Antenna  

GPS Receivers  

Laptop  

(b) Photo of the laboratory and devices

Fig. 4: Illustration of the experiment setup.

the Laboratory from a single antenna element, thus simulating
a real spoofing environment. The C/No values from the GPS
receivers connected to both antennas were logged to estimate
the PDF of the standard deviation of theRi. The basic setup
for the spoofing experiment is shown in Figure 4

The PDF of the standard deviation of theRi values for
each of the two time periods of the day, and the spoofing
signal, are shown in Figure 5. A non-central Chi distribution
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Fig. 5: Estimated PDF of the standard deviation of the power
ratio Rn between antennas for real GPS signals and spoofer
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was fitted to the GPS signal PDF’s and a chi distribution
to the spoofer PDF. The Chi distribution was chosen as the
test statistic is the standard distribution of a set of random
variables. It is clear from Figure 5 that the PDFs have a
better separation during the second time period. This is due
to a more favorable satellite geometry during this time period.
This suggests that the detection threshold and false alarm rate
should be adjusted based on the time of day. The satellite orbits
are predictable and repeat daily, allowing the receiver to build
up a PDF of the expected standard deviation of theRi test
statistic for the GPS signal only (no spoofer) case for each time
period of the day and hence determine the optimal threshold,
false alarm rate and probability of detection for that particular
period. The receiver operation character (ROC) curves for the
two 90 minutes periods over which the data was logged are
shown in Figure 6 and clearly show a much better detection
performance during the second time period indicating a more
optimal satellite geometry.
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Fig. 6: ROC curve for theRi test statistic in detecting a
Spoofer

In summary, the spoofing detection algorithm on the phys-
ical layer provides priori information of whether PMUn is
suffering from TSA, which is given by the likelihood ratio:

LPHY =
p(yPHY (n))|Tn = H1

p(yPHY (n))|Tn = H0
, (3)

wherep(yPHY (n)) = std([R1, R2, ..., Ri...RN ]); Tn = H1

and Tn = H denote the hypotheses of whether PMU
n is under TSA or not, respectively. The probability of
p(yPHY (n))|Tn = H1 and p(yPHY (n))|Tn = H0 can be
further used as the priori information for the trustworthiness
evaluation in the upper layer, which will be discussed in the
subsequent sections.

III. T RUSTWORTHINESSBASED TSA DETECTION

In this section, we discuss the TSA detection in the upper
layer, i.e., from the viewpoint of signal processing. We first
introduce the linear system model for the power grid. Then,
we propose a mechanism for evaluating the trustworthiness of
each monitoring device based on the linear system model.

A. Linear System Model

Generally, smart grid is a wide area interconnected nonlinear
system. However, for the purpose of designing a WAMS in a
smart grid, the dynamic feature of the entire power grid can
be modeled as a linear system around the equilibrium point,
given small perturbations [13] [16]. We will focus on linear
system model in this paper and extend to nonlinear case in
the future.

Mathematically, the linearized power system can be ex-
pressed as a state space model, which is given by

x(t+ 1) = Ax(t) +Bu(t) +w(t) (4)

y(t) = Cx(t) + v(t) (5)

where x is an N × 1 vector and represents the system
operation state of the power grid,y is an M × 1 vector
representing the monitoring measurements andu is the control
action taken by the control center. The matricesA, B, and
matrixC are specified in the linearized system model and the
monitoring mechanism, respectively. Bothw(t) andv(t) are
modeled as Gaussian noise. Note that the dynamics in power
grid are continuous in the time domain. Here we consider a
discrete time model for simplicity. We further suppose that
each dimension of the measurement vectory is monitored
by a monitoring device, e.g., PMU. It is easy to extend this
to the general case in which the monitoring measurements
have overlaps. Each monitoring device sends its measurements
along with their time stamps to the control center via a secure
communication network since they are distributed throughout
the entire smart grid. For the TSA on the monitoring devices,
we have following assumptions:

• For simplicity, we assume that there is at most one at-
tacker. The principle of the trustworthiness of the system
can be extended to the case of multiple attackers at the
cost of more computational cost.

• The malicious attacker cannot modify the monitoring
measurements; it can only trigger the monitoring device
to sample at an incorrect time period using GPS spoofing.
Therefore, the time stamps attached to those measure-
ments are incorrect.

• The control center misaligns the measurements from the
monitoring devices under TSA, which is equivalent to
shifting the measurements in the time domain.

We assume that the controller adopts the linear quadratic
regulation (LQR) control [9] in an infinite time horizon [23]
with the cost function given by

J = E[

inf
∑

t=0

β(t)(xT (t)Qx(t) + uT (t)Pu(t))], (6)

whereQ andP are both positive definite, andβ is a weighting
factor for each control time period. Based on the cost function
in 6, the LQR actionu(t) is given by

u(t) = −(BTSB+P)−1BTSAx̂(t), (7)

wherex̂(t) is the estimation of the system state, and the matrix
S satisfies the Algebraic Riccati Equation, which is given by

S = AT (S− SB(BTSB+P)−1BTS)A+Q. (8)
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B. Trustworthiness Evaluation

In this subsection, we propose a mechanism for evaluating
the trustworthiness of each monitoring device. The essential
reason that the control center can evaluate the trustworthiness
of each monitoring device is that the observations at different
PMUs are coupled and thus provide redundancies (similarly
to error correction codes in communications). Therefore, it
can predict the future state with some uncertainty. If the
report from a monitoring device significantly deviates from
the prediction, then this monitoring device will be considered
as unreliable and its reports will be ignored. Figure 7 illustrates
the mechanism of trustworthiness evaluation, in which the
monitoring device is a PMU that monitors the frequency of
the power grid.

Fig. 7: Illustration of trustworthiness evaluation

The system state prediction is obtained from the Kalman
filter [19]. At time t+1, we apply the system state prediction
x̂(t) and the measurementsy−n(t+ 1) to predict the system
statex̂(t+1), in whichy−n(t+1) denotes the measurements
excluding the one from PMUn. The Kalman predictor is given
by

x̂(t+ 1) = Ax̂(t) + L−n(t+ 1)[y−n(t)−C−nAx̂(t)], (9)

whereC−n denotes the matrixC excluding then-th row. The
covariance matrixL−n is given by

L−n(t+1) = Σ(t+1|t)CT
−n

[

C−nΣ(t+ 1|t)CT
−n + σ2

nI
]−1

,
(10)

whereΣ is the prediction covariance, which is given by

Σ(t+ 1|t) = AΣ(t|t)AT +BQBT (11)

whereσ2 is the noise variance in the observations. After we
obtain the system state prediction̂x(t + 1), the a posteriori
probability of the measurement from PMUn is given by

p(yn(t+ 1)|y−n(0 : t))

∼ N (cnx̂(t+ 1), cnΣ(t+ 1|t)cTn ), (12)

wherecn denotes then-th row of the observation matrixC.
We denote byTn = H1 the hypothesis that PMUn is an
unreliable monitoring device due to TSA, andTn = H0 as the

hypothesis that the measurement from PMUn is trustworthy.
Then, we define the trustworthiness level of PMUn at time
slot t as1−πn(t), whereπn(t) is the suspicious level, which
is given by

πn(t) , p(Tn = H1|y(0 : t)). (13)

In the next section, we will derive the trustworthiness evalua-
tion based on the system state prediction and the information
passed from the physical layer as prior information, which is
coined cross layer TSA detection. Hence, we ignore the details
of the Kalman filtering based trustworthiness evaluation since
it is only a special case of the cross layer detection.

IV. CROSSLAYER TSA DETECTION

In this section, we present the cross layer TSA detection
algorithm. Since both the spoofing detection mechanisms in
the physical layer (based on the two antennas) and the upper
layer (based on the Kalman filtering) are based on the prob-
abilistic framework, we can integrate the detection schemes
in the two layers to detect TSA. Based on the probabilistic
framework, the spoofing detection result from physical layer
can be regarded as the prior information for the upper layer
to evaluate the suspicious level. The challenge for computing
the suspicious level defined by (13) is the unknown attacking
strategy. We first assume that there must be an attacker. With
the physical layer’s detection as the prior information, wecan
derive (13), which is given by

πn(t) , p(Tn = H1|y(0 : t),yn
PHY (t)), (14)

whereyn
PHY (t) is the output of the physical layer detection

on time slott from PMU n. Applying the Bayes rule upon
(13), we have

πn(t)

=
p(y(0 : t),yn

PHY (t)|Tn = H1)

p(y(0 : t),yn
PHY (t))

×
p(Tn = H1)

p(y(0 : t),yn
PHY (t))

. (15)

We assume that the outputs of the physical layer’s detection
and the upper layer’s observation of PMU are independent of
each other, thus resulting in

πn(t)

=
p(y(0 : t)|Tn = H1)p(Tn = H1)

p(y(0 : t))p(yn
PHY (t))

×
p(yn

PHY (t)|Tn = H1)

p(y(0 : t))p(yn
PHY (t))

=
p(y(0 : t)|Tn = H1)

∑N

m=1 p(y(0 : t)|Tm = H1)
(16)

×
p(yn

PHY (t)|Tn = H1)

(p(yn
PHY (t)|Tn = H1) + p(yn

PHY (t)|Tn = H0))
.

The conditional distribution ofp(yn
PHY (t)|Tn = H1) and

p(yn
PHY (t)|Tn = H0)) are given by the curves in Figure 5.

Since we do not have the prior information about the attacker’s
TSA strategies, it is reasonable to assume that the PMU’s
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report under TSA in each time slot is independent. Therefore,
the first part of (16) can be decomposed into

p(y(0 : t)|Tn = H1)
∑N

m=1 p(y(0 : t)|Tm = H1)

=
1

1 +
∑

m 6=n

∏
t

s=0
p(y(s)|Tm=H1)∏

t

s=0
p(y(s)|Tn=H1)

. (17)

Since there is only one TSA attacker, the unknown TSA
strategies also make the observations at different PMUs in-
dependent, which provides the following approximation:

p(y(s)|Tn = H1) (18)

≈ p(yn(s)|Tn = H1)
∏

k 6=n

p(yk(s)|Tk = H0).

We further assume thatp(yn(s)|Tn = H1) is a constant
since we have no knowledge about the attacker’s strategy.
Substituting (18) into (16), we obtain

πn(t) =

∏t

s=0
1

p(yn(S)|Tn=H0)
∑N

m=1

∏t

s=0
1

p(ym(S)|Tm=H0)

ηnPHY (t), (19)

where

ηnPHY (t) (20)

=
p(yn

PHY (t)|Tn = H1)

(p(yn
PHY (t)|Tn = H1) + p(yn

PHY (t)|Tn = H0))
,

whereηnPHY (t) is the physical layer’s prior probability calcu-
lated using the curves in Figure 5 directly.

When it is possible that there is no attacker, the first part
of (16) can be modified as

p(y(0 : t)|Tn = H1)p(Tn = H1)

p(y(0 : t), H3) + p(y(0 : t), H4)
(21)

=
p(yn

PHY (t)|Tn = H1)

p(H3)/p(H4) +
∑

m 6=n

∏
t

s=0
p(y(s)|Tm=H1)∏

t

s=0
p(y(s)|Tn=H1)

,

where H3 and H4 denote the hypotheses that there is no
attacker and that there is one attacker, respectively.

V. EXPERIMENTSRESULTS

In this section, we conduct experiments to demonstrate
the proposed cross layer TSA detection algorithm. The TSA
detection reports in the physical layer are obtained from
the experiment setup in subsection II-B. The results of the
physical layer detection will be fed to the upper layer for
trustworthiness evaluation.

A. Upper Layer Linear System model

We adopt the linear model of power grid used in [13], in
which the system state matrixA is given by Eq. (13) in [13].
Since we discuss the discrete-time model in this paper, we
approximate the continuous-time state space model by setting
a small time step∆t. Therefore, the discrete-time state space
equation is given by

x(t+ 1) = (I−∆tA)x(t) + ∆tBu(t). (22)
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(a) Constant time label shift TSA
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Fig. 8: Suspicious level of different PMUs under different TSA
attack strategies

There are five PMUs in the system, and we only consider the
frequency measurement. Consequently, we set the observation
matrix as a5×5 identity matrix. We further assume that PMU
5 encounters TSA and other PMUs operate normally.

B. Upper Layer Evolution of Suspicious level

In Figure 8, we demonstrate the evolution of the suspicious
level when the attacker adopts different attack strategies. The
attacker launches TSA on PMU5 with attack frequency of
0.3, which means the attacker at each time slot launches TSA
with probability of 0.3. In Figure 8(a), the attacker modifies
the time stamps with a constant shift value, and in Figure
8(b), the attacker modifies the time stamps with a random shift
value. The simulations show that the suspicious level of PMU
5 increases significantly after some fluctuation regardless of
the strategies the attacker applies. The fluctuation in the initial
stages are due to the randomness in the Kalman filtering, since
it takes time for the Kalman filter to track the system state.
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C. Cross Layer TSA Detection

Then, we simulate the proposed cross layer TSA detection
algorithm. Figure 9 demonstrates that the suspicious levelof
the PMU under TSA increases faster when the physical layer’s
detection reports are used as the prior information.
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Fig. 9: The performance comparison of TSA detection with
physical layer prior and without physical layer prior

In Figure 10, we plot the cumulative distribution function
(CDF) curves of the time needed for detecting the TSA. This
further verifies that cross layer TSA detection can identify
TSA faster than the situation when only upper layer trustwor-
thiness evaluation is used. It should be noted that the detection
performance is improved regardless the attacker’s strategies.
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Fig. 10: CDF curves of the time of identification of TSA

The receiver operation character (ROC) curves are given
by Figure 11. In contrast to typical ROC curves, we study the
average TSA detection delay and the false alarm rate. The false
alarm rate is defined as the event that a PMU not suffering
from TSA is claimed to be under TSA. It is observed from
Figure 11 that, given the same detection delay, the proposed
cross layer TSA detection has lower false alarm rate compared
with the TSA detection without the collaboration between the
physical layer and upper layer.
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Fig. 11: ROC curves (detection delay and false alarm) for
different attack strategies

VI. CONCLUSION

In this paper, we have proposed a cross layer detection
mechanism to combat time synchronization attack in smart
grid. In the physical layer, we apply patch-monopole hybrid
antenna to receive GPS signal, which will be fed to two GPS
receivers. The difference of the C/No from the patch and
monopole is used to estimate the probability of being under
TSA. The experiment has shown that the standard derivation
of the difference of the C/No from two GPS receivers follows
different distributions. In the upper layer, we have applied the
Kalman filtering and cross check to evaluate the trustwor-
thiness of the reports. Furthermore we have fused the TSA
detection result in the physical layer, as prior information, with
the upper layer detection. Numerical results have demonstrated
that the cross layer detection scheme can effectively improve
performance, with faster detection speed or lower false alarm
rate.
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