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Microwave-Induced Auditory Effect in a 
Dielectric Sphere 

Abstract -The acoustic pressure wave generation inside an electromag- 
netically lossy dielectric sphere from an incident microwave pulse is 
analyzed rigorously. The pressure wave equation, derived by using the 
first-order approximation of a thorough formulation on microwave-induced 
thermoacoustic effect in dielectrics, is employed. The inhomogeneous 
hyperbolic type pressure wave differential equation is solved by employing 
a Green’s function theory approach. The inhomogeneous term of this 
equation is proportional to the time derivative of the absorbed power (P) 
per unit volume inside the sphere. The boundary conditions on the dielec- 
tric sphere-air interface are taken into account. The power P is computed 
by applying the exact M e  theory solution for the dielectric sphere. Two 
types of acoustic waves are derived inside the sphere: a) a transient burst 
type pressure wave, corresponding to the free-space contribution of Green’s 
function, and b) an infinite set of damped oscillations related to the normal 
acoustic modes of the spherical resonator. Numerical results are computed 
and presented for several cases. 

I. INTRODUCTION 
ICROWAVE pulses impinging on the heads of M mammalian animals and humans have been shown 

to generate audible sounds [1]-[4]. It has been shown that 
a conventional bone conduction mechanism is involved in 
sensing microwave pulses [5]-[7]. 

Several physical processes such as radiation pressure, 
electrostriction, and thermal expansion have been pro- 
posed in the past to explain the hearing of microwave 
pulses [7]-[lo]. Among these phenomena the thermoelastic 
expansion mechanism has found wide acceptance [11]-[13]. 

Recently the microwave-induced thermoacoustic effect 
in dielectrics and its coupling to external media has been 
analyzed by applying a thorough thermodynamical formu- 
lation [14]. Highly nonlinear differential equations have 
been derived in the general case. Assuming small ampli- 
tude waves and isotropic acoustic properties of the dielec- 
tric medium, the fundamental equations describing the 
coupling between electromagnetic and acoustic waves have 
been simplified considerably and linear equations have 
been obtained [14]. In the present paper the linear pressure 
wave equation is solved by applying a Green’s function 
approach when an arbitrary sphere of arbitrary size is 
illuminated by a microwave pulse. In this context the 
dielectric sphere is taken to be homogeneous in terms of 
the electromagnetic and acoustic properties. The proposed 
solution furnishes results that can be interpreted easily. It 
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Fig. 1. Illumination of a dielectric sphere from a microwave pulse 

is shown that two types of acoustic waves are generated, 
corresponding to a free-space transient acoustic pulse and 
an infinite summation of excited spherical cavity damped 
normal mode waves similar to those of [12] and [13]. 

11. FORMULATION OF THE ACOUSTIC FIELD 
BOUNDARY VALUE PROBLEM 

In Fig. 1 the geometry of the dielectric sphere il- 
luminated from a microwave pulse is given. The dielectric 
sphere electromagnetic properties are defined in terms 
of the complex relative permittivity cr  while the whole 
space is assumed to be nonmagnetic, with p = p o z  
4.rr X lo-’ (H/m) being the free-space permeability. The 
free-space (air regon) permittivity is c = co 2 10-9/(36.rr) 
(F/m). The radius of the dielectric sphere a is taken to be 
arbitrary in comparison with the incident wave free-space 
wavelength A. 

Following the [14, eq. (28)], the pressure field p = p ( r ,  t )  
induced inside and outside of the dielectric sphere satisfies 
the wave equation 

where c ( r )  is the velocity of the acoustic waves and, 
because of the spherical geometry, 

c1 for r < a  
c2 for r > a c ( r )  = 

where c1 and c2 are the acoustic wave velocities inside the 
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dielectric sphere and air regions, respectively. The right- 
hand side of (1) is the source term and P ( r , t )  is the 
average electromagnetic power converted into heat per 
unit volume (W/m3) inside the material medium. The 
losses inside the air region are neglible and therefore P = 0 
for r > a. In order to compute the power density P for 
r < a, the full-wave solution of the scattering of a plane 
electromagnetic wave is employed in Section IV of this 
paper. The proportionality constant C, appearing in the 
right-hand side of (1) is related to the thermodynamic 
quantities of the dielectric sphere and is given in [14]. In 
addition to (l), the pressure field p ( r ,  t )  on the r = a 
discontinuity spherical surface should satisfy the following 
boundary conditions (see [14, eq. (31)) 

P ( ‘ 9  ‘11 ,  = a -  = P  (‘3 ‘ ) I , = , +  (3) 

where plo and p2,  are the average mass densities of the 
dielectric and air media, respectively. 

In order to determine the pressure p ( r , t ) ,  a Green’s 
function approach will be employed. To this end, (1) is 
rewritten as follows: 

where 

The associated Green’s function G ( r ,  r ‘ / t  - t’) is re- 
quired to satisfy the differential equation 

G ( r ,  r ’ / t  - t ’ )  = - 6 ( r -  r’)6(t  - t ’ )  

(7) 

G ( r , r ’ / t - t ’ ) = O  for t< t ’ .  (8) 

and, according to the causality principle, 

In physical terms G ( r ,  r ’ / t  - t’) is the acoustic response 
observed at the point r and the instant t for an elementary 
excitation at the point r’ occurring at the instant t ’< t .  

The boundary conditions to be satisfied on the r = a 
spherical surface by the G ( r ,  r ’ / t -  t’) function will be 
specified in the course of the analysis. In order to proceed 
with the solution of (9, Fourier transformations of (5) and 
(6) are taken along the t time axis. Then, 

( v2  + K 2 ( r ) ) P w ( r )  = - V , ( r )  (9) 

The corresponding inverse Fourier transformations are 
written easily as follows: 

Assuming the Green’s function G,(r, r’) is known, the 
fundamental wave equation (9) can be solved. To this end, 
according to Green’s theorem, 

/// dr’( p,(r’)V ’G,,,(r, r’) - G,(r, r ’ ) V ’ ~ , ( r ’ ) )  
V 

= // d S , f i . ( P , ( R ) v G , ( r , R ) -  G , ( r A V P , ( R ) )  
S 

(14) 

where V is a volume enclosed inside a closed surface S,  R 
is the position vector, and ri is the outward unit vector on 
the surface S. The function p,(r’)  and G,(r, r’) and their 
first derivatives should be continuous inside the volume V. 
Applying (14) separately for the cases when V is the 
spherical volume of the dielectric medium and the infinite 
air region, using the radiation condition for IRI + + 00, 

substituting (9) and (lo), and adding the two integrals, the 
following relation is derived: 

If now, the boundary conditions to be satisfied at r’= a by 
the Green’s function are chosen such that 

“a;;; I / _ a -  = aGu;;; r’) l r , - a +  (16) 

(17) P ~ O G , ( ~ ,  r’) lr,= 0: - = ~2oGw(r, r’) lr*= a + 

( v 2 + K 2 ( r ) ) G , ( r , r ’ ) = - 6 ( r - r ’ )  (10) then the right-hand side of (15) is equal to zero and the 
following simple result is obtained: 

where 

volume since Vu( r’) = 0 for r’ > a. The real pressure field 
= / - r d t (  P ( r ’ t )  )e--’@*. (12) p ( r , t )  is derived from (18) by computing the inverse 

Fourier transform with the aid of the convolution theo- G ( r ,  
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rem: The notation r< and r ,  used in (24) is defined as 
follows: 

r< = min(r, r') 

r ,  = max(r, r' ) .  

This shows that the key point in computing the p ( r ,  t )  
pressure field is to obtain the Green's function G ( r ,  r'/ 
t - t ') satisfying the acoustic wave equation (10) and the 
boundary conditions (16) and (17) on the r'= a spherical 
surface. This subject is treated in the next section. 

Finally the coefficient c m  is 

1 for m = O  
cm={2 form=1,2;..  . 

The solutions of (22) and (23) can be written in terms of 
spherical waves in the following form: 

111. DIELECTRIC SPHERE ACOUSTIC GREEN'S FUNCTION 
The source point r' (see (7) and (10)) being always 

inside the dielectric sphere, only the case when r' < a will 
be treated here. Then for r < a, inside the dielectric sphere 
region, the Green's function can be split into two terms: 

Gu(r,r ' )  =GLo)(r,r')+GL1)(r,r') ( O < r < c u )  (20) 

where GLo)(r, r ' )  is the solution of the inhomogeneous 
wave equation 

( v 2  + K ; ) G L O ) ( ~ , ~ ' )  = - ~ ( r -  r') (21) 
with K~ = w/cl and 0 < r < + 00. Notice that GLo)(r, r') is 
the free-space acoustic Green's function. The second term 
in (20) is needed to satisfy the appropriate boundary 
conditions given in (16) and (17) and can be interpreted as 
the reaction of the surface discontinuity at r =a. It is 
evident from (10) and (21) that 

( V ~ + K ? ) G : ~ ) ( ~ , ~ ' )  = O  ( ~ < r < c u ) .  (22) 

In the region r > a, outside of the sphere, 

G,( r ,  r') = GL2)(r, r') 

and 

( v + K ;  ) G:~) (  I, r') = o (23) 
where x2 = o / c 2  and GL2)(r, r') should satisfy the radia- 
tion conditions for r + + m. 

The solution of (21) is well known and can be written 
either in a closed form or as an expansion into spherical 
waves [15] (both given here): 

G(')( r ,  r') = 
e-j~,lr-r'l 

4nlr - r') 

.P,"(COS e )  P,"(COS e') COS ( m (cp - cp')) (24) 
where ( r ,  8, cp) and (r', e', cp') are the spherical coordinates 
of the observation r and source r' points, respectively. The 
j , ( . )  and hi2 ) ( - )  are the spherical Bessel and Hankel 
(second kind) functions, respectively, and P,"(.) is the 
associated Legendere polynomial of nth degree and mth 
order. 

j K 1  +m 

4a  n - O m = O  
G?)(r ,  r') = - - cma,(2n +1) 

 cos e)  cos e') cos (m ('p - cp')) (25) 
jK2 +m 

477 n = O r n = O  
GL2)(r, r') = - - crnb,(2n + 1) 

.P,"(COS e )  P,"(COS e') COS ( m  (cp - cp')) . (26) 

Notice that the radial wave functions jn(K, r )  and 
h(n2)(~2r)  are dictated by the requirement of a finite value 
of the field at r = 0 and the radiation condition at r + + 00. 

In order to determine the unknown a ,  and b, coefficients, 
the boundary conditions given in (16) and (17) should be 
satisfied. Then employing the orthogonality properties of 
the p,"(cosO) and cos(m'p), sin(mcp) functions [15] and 
after a lengthy algebra, it is found that 

a, = 
h L(2)( K1a) h '," ( K2a) K l & o  - h i2)( Kla) h ;(2)( K 2.) PloK 2 

h i(2)( ~ 2 a )  j ,  ( K P )  ~ 2 ~ 1 0  - x h P' ( ~ 2 " ) ~ 1 ~ 2 o  . 
(27) 

The b, expansion coefficient is not given here, since in the 
following analysis the GLo) and GS') functions will be 
employed exclusively. 

IV. COMPUTATION OF THE p ( r ,  t ) PRESSURE FIELD 
FOR r < a 

In order to determine the p ( r ,  t )  pressure field inside 
the dielectric sphere given in (19), in addition to the 
Green's function G ( r ,  r' / t  - t'), it is required to know the 
source term V(r ,  t )  defined in (6).  Then it is necessary to 
compute the absorbed power per unit volume by using the 
well-known formula 

CJ 
P ( r ,  t )  = - E ( r ) . E * ( r )  2 (28) 

where CJ = - wc,Im(c,) is the electrical conductivity of the 
dielectric medium and E ( r )  is the complex (phasor) elec- 
tric field inside the sphere r < a. The E ( r )  can be com- 
puted easily by using the well-known Mie theory of 
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scattering of a plane wave [16] from a dielectric sphere. To 
this end assume an incident plane wave propagating along 
the z axis and polarized linearly parallel to the x axis. 
Then the incident electric field is 

(29) E ( r )  = ~~e-JkozeJ‘%‘ 
inc 

where U is the wave amplitude, wo the electromagnetic 
field angular frequency, and k ,  = w& is the free-space 
propagation constant. Substituting into (28) the expression 
for the electric field as given by the Mie solution and 
rearranging the terms, it is found that 

E ( r ) . E * ( r )  = IE(r)I2 

U 2  

kolcrl 
= (cos2 cpFl( r ,  e) + sin2 F2( r ,  e)) (30) 

where the functions Fl( r, e) and F2( r, e) are infinite series 
and their expressions are given in the Appendix. For 
pulsed microwave signals, in determining the V( r ,  t ) source 
function the envelope of the incident pulsed wave should 
be taken into account. If the pulse duration Tp is very 
large in comparison with the microwave signal period 
(To = 2a/w0 e q), the absorbed power per unit volume 
can be computed by multiplying (28) by the pulse envelope 
shape II(t/T,). The ideal pulse envelope function n ( x )  is 
defined as follows: 

1 f o r O < x < l  
0 otherwise. 

Then the source function V(r ,  t )  by employing (6) can be 
written as follows: 

+ sin2cpF2(r, e))( 6 (  t )  - 6( t - T,) )  (32) 

where the derivative of the unit step function is used twice. 

A .  Free-Space Term Contribution p,,(r, t) 

transform (13), 
Following (24) and the definition of the inverse Fourier 

G(’)(r, r ’ / t  - t’) 

1 +m =-1 dw 
8 a 2  --oo ( r  - r’( 

(33) - - 
4 a J r  - r’I 

Then on substituting (32) and (33) into (19) it is found that 

( cos2 cpFl( r ,  e) + sin2 cpF2 ( r ,  e)) 
4a1r - r’I p o ( r ,  t )  = Q O  u ( r ’ 4  /// a) dr’ 

( S (  t - ? ) - S i  t - Tp- - I r  - (34) 
C1 

~ 
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where 

couu2 
Q o =  m’ 

The integrals in (34), because of the a(.) functions 
appearing under the integral sign, can be reduced to two- 
dimensional integrals. Indeed, by choosing as an origin the 
specific observation point r’ = r and remembering that 
only the points lr’l< a should be taken into account, the 
three-dimensional integral in (34) is reduced to surface 
integrals to be computed over two spherical or spherical 
cap surfaces. These two surfaces correspond to the geomet- 
ric loci defined by conditions (35) and (36), respectively, 
and are illustrated in Fig. 2. Of course the additional 
condition Ir’l < a should also be satisfied. Therefore, it is 
evident that for sufficiently large t >> T , Po(r, t )  = 0 and 
there is no contribution from the Gi6(r/r’)  term. This 
shows that the rising edge of the pulse at t = 0 will excite 
an acoustic phenomenon starting at t = 0 and lasting until 
t = t M  = ( a  + Irl)/cl while the corresponding time period 
for the falling edge will be from t = Tp to t = 
t M  + Tp. In Fig. 2 the surfaces contributing to the Po(‘, t )  
pressure field are illustrated at different characteristic time 
instants. Therefore, instead of (34), the Po(‘, t )  field is 
computed from 

(35) 

where 

@(e’, cp’, r’) = cos2 cp’~,( r’, e’) + sin2cp’~,( r’, e’) 
and the s and s surfaces are defined in Fig. 2. 

B. Cavity Mode Contributions P, (r, t)  

On substituting (32) into (19), inserting for G ( r , r ’ /  
t - t’) = G(’)(r ,  r ’ / t  - t’), and introducing the inverse 
Fourier transformation given in (13), it is found that 

.(e~wtu(t)- ~ J ~ ( ‘ - T ~ ) U  ( t -.,I> 
*GL1)(r, r’)(cos2cp‘Fl(r’,e’)+sin2cp’F2(r’, e’)). 

The expression for GL1)( r ,  r’) has already been determined 
and is given by (25) and (27). To this end substituting (25) 
into (36), the integration over the cp’ variables can be 
performed easily. Furthermore the integral for the w vari- 
able can be determined by using contour integration the- 

(36) 
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ory. Examination of the a, = a,(w) dependence to the w 
complex variable shows that there are an infinite number 
of poles corresponding to the roots of the equation h ( z) 

and 

(42) 

Notice that when the external dielectric medium is air, 
because p20 << plo and c2 < cl, the right-hand side of (37) 
is a perturbation term. Therefore an iterative procedure 
starting from the zeroth-order solution 

j,( 7) = o  

can be employed. The integer I = 1,2, . . denotes the 
order of the root for a specific integer n. When A c  f 0, the 
roots of (37) are complex numbers and always lm(w,,) > 0. 
Furthermore it can easily be shown that if w = wflI is a root 
of (37), then w = - w t  is also a root. The integrand 
function of (36) vanishes when (01 + + 00 and Im(o) > 0. 
Therefore a complex contour integration procedure can be 
applied to compute the integral over the w variable, lead- 
ing to the result 

Qo 
p l ( r , t )  = - ( 2 n  + 1 ) I u  I" ~fr'dB'r'~sin8' 

2% n = O  r ' = O  8 = 0  

* { P~o)(cos6)P, (o) (cos8' ) (Fl (r ' ,8 ' )+  F 2 ( r ' , 6 ' )  
(b) 

wr wr' (4 
Fig. 2. Spherical surfaces S ,  and S ,  showing the contributions to the P(W, f )  = - a&( ,)L( i) 

p,,(r, t )  field at three different instants. Assuming the microwave pulse 
starts at t = 0 and lasts until r = Tp,  the three cases are (a) 0 < t < Tp; . ( e l a r u ( t )  - e A - T p ) u  
(b) T, < t < t,,,; and (c) t,,, < t < t,,, + T,. 

where 

c2 P20 

c1 PlO 

A =-- 

(37) (43) 

V. NUMERICAL RESULTS AND DISCUSSION 
Numerical computations have been performed by apply- 

ing the analytical results given in (35) and (41) for the 
po( r, t )  and pl( r, t )  contributions, respectively. In both 
cases, the two-dimensional integrals encountered are com- 

(38) 
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puted numerically by utilizing a multisegment 12 point 
Gaussian quadrature formula. Extensive convergence tests 
have been performed to ensure convergence. 

The computations are carried for a dielectric sphere of 
a = 7 cm radius, and the incident pulse carrier frequency is 
taken to be (00/27r) = 432 MHz with a Tp =10 ps pulse 
width. The complex relative permittivity of the sphere is 
taken to be equal to that of water e,. = 78 - j1.25 at this 
frequency. The acoustic properties of the material and air 
media are defined in terms of the propagation frequencies 
c1 = 1510 m/s and c2 = 373 m/s, respectively. The propor- 
tionality constant C, in (1) is found to be [14] Co= 
2114.036. Finally the average mass densities of the material 
and air media are taken to be plo z lo3 kg/m3 and p20 = 

1.295 kg/m3, respectively. 
In Fig. 3 the variation of the Po(', 1 )  free-space contri- 

bution is presented on the surface of the dielectric sphere 
at two different observation points. The transient phenom- 
enon lasts 102.7 ps from the beginning of the microwave 
pulse. There is a significant difference between the two 
waveforms. 

In order to determine the acoustic cavity mode contribu- 
tions, the complex o = on/ (n = 0,1,2, . . ; 1 = 1,2, . . . ) 
roots of (37) should be determined in the first place. In 
Fig. 4 the spectra of the complex o = on/ resonance fre- 
quencies are presented on a complex plane. The lowest 
mode is found to be very close to the resonance frequency 
of the stress-free surface sphere, that is, 

(44) 
re1 

wo1= - 

which is in agreement with the predictions of Lin [17]. 
Furthermore if the lowest mode is considered separately, 
the corresponding damped wave packet from (41) and (42) 
is determined to be proportional to 

a 

- (e-"L~~p sinrp,, -sin( 'pol - w&Tp)) sinwtlt] (45) 

where t > Tp, wol = + jail, and 'pol is a phase constant. 

Then computing the amplitude of this waveform by apply- 
ing standard trigonometry rules, it is found that the ex- 
pression 

determines the dependence of the wave amplitude on the 
incident pulse width. Therefore when Tp + 0 the induced 
amplitude is zero. Provided that oil w& when w&Tp = T 

the dominant acoustic mode amplitude takes it peak value. 
If the acoustic losses were also incorporated in the analy- 
sis, then ail would be significantly larger than those 
presented in Fig. 4. In this case when w&Tp >> 1 the wave 
amplitude becomes independent of the pulse width Tp. 
Observe that in qualitative terms, the result present in (46) 
for the dependence of the dominant mode amplitude on 
the incident pulse width is in very good agreement with the 
experimental results obtained by Chou and Guy [3]. Notice 
that the incident microwave peak power hearing threshold 
is proportional to the inverse of the quantity given in (46). 
Therefore, for narrow incident pulses, higher peak powers 
are needed to cause acoustic sensation, while when Tp is 
sufficiently large the acoustic threshold is almost indepen- 
dent of the pulse width (see [3, table I]). 

The pressure waveforms of the cavity mode contribu- 
tions have been also computed by including all the signifi- 
cant mode amplitudes. In Fig. 5 the variation of the 
pl(r, t )  pressure is presented at three specific points. The 
observed waveforms are very similar with those given in 
[13, fig. 31. 

VI. CONCLUSIONS 
The microwave-induced auditory effect in a dielectric 

sphere has been analyzed in detail. It is shown that an 
impinging pulse modulated microwave signal induces two 
types of pressure waves inside a dielectric sphere, namely a 
transient-type short-duration acoustic wave and a set of 
resonance modes belonging to the spherical acoustic reso- 
nator. The properties of these waves are investigated thor- 
oughly. 



1424 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 10, OCTOBER 1988 

5 

Fig. 5. Variation of the cavity mode PI(‘, t )  contribution with time at 
three points of the dielectric sphere. 

APPENDIX 
EXPRESSIONS FOR THE Fl( r ,  e )  AND F2( r ,  e )  FUNCTIONS 

L n = 1  J 

f3 ( n  , r ,  e)  = d,P,“(cos 8) sin Oj, ( m u - )  

mKj;( mKr) + - 
r 

P,‘(COS e )  
- 

sin 8 
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