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Abstract
A generalized theoretical model for evaluating the amplitudes of the sound
waves generated in a spherical head model, which is irradiated by microwave
pulses, is developed. The thermoelastic equation of motion is solved for a
spherically symmetric heating pattern of arbitrary form. For previously treated
heating patterns that are peaked at the sphere centre, the results reduce to those
presented before. The generalized model is applied to the case in which the
microwave absorption is concentrated near the sphere surface. It is found
that, for equal average specific absorption rates, the sound intensity generated
by a surface localized heating pattern is comparable to that generated by a
heating pattern that is peaked at the centre. The dependence of the induced
sound pressure on the shape of the microwave pulse is explored. Another
theoretical extension, to the case of repeated pulses, is developed and applied
to the interpretation of existing experimental data on the dependence of the
human hearing effect threshold on the pulse repetition frequency.

1. Introduction

The absorption of pulsed microwave energy can produce an auditory sensation in human
beings, which manifests itself as a clicking, buzzing or hissing sound. Although the hearing
effect has been experienced by radar operators since the introduction of radar systems, the first
systematic experimental study of this effect has been performed by Frey (1961, 1962). The
thermoelastic expansion mechanism, first proposed by Foster and Finch (1974), is responsible
for the hearing effect. The absorption of the microwave energy produces a rapid thermal
expansion, resulting from a small temperature rise, of the order of 10−6 ◦C. This launches a
thermoelastic wave of acoustic pressure that travels to the inner ear. Detailed reviews of the
results of human, animal and modelling studies, which support this explanation of the hearing
effect, have been presented by Chou et al (1982) and Elder and Chou (2003).

A mathematical technique for solving the thermoelastic equation of motion analytically
for a homogeneous spherical head model has been presented by Lin for two types of boundary
conditions: (a) free boundary, so that the normal stress vanishes at the sphere surface (Lin
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1977a); (b) rigidly constrained boundary, so that the displacement vanishes at the sphere
surface (Lin 1977b). Lin has used a specific spherically symmetric heating pattern, which is
peaked at the sphere centre. The same technique has been employed by Shibata et al (1986) for
a modified specific heating pattern, which was also spherically symmetric and centrally peaked.
Here we present a general analytic solution, which is applicable to an arbitrary spherically
symmetric heating pattern. We demonstrate that for the specific, centrally peaked heating
patterns treated before, our generalized solution reduces to the known results. Our generalized
solution enables us to investigate other cases, such as that of a surface concentrated heating
pattern, which has not been treated before. This is of practical interest, since for high enough
frequencies the absorption of the electromagnetic energy occurs mainly near the surface of the
sphere.

Moreover, in all previous theoretical models only a single rectangular microwave pulse
was assumed. Here we extend the treatment and examine the effect of using other pulse
shapes (half-sine and sawtooth). We also treat the case of repeated pulses, and investigate the
dependence of the threshold for the effect on the pulse repetition rate.

We note that the thermoelastic expansion mechanism is of interest not only in relation to
the hearing effect. It has recently been applied as an ingredient of a new imaging technique,
called thermoacoustic tomography, in which pulsed microwave radiation is used to irradiate the
sample. Absorbed microwave energy causes thermoelastic expansion, which induces acoustic
waves that propagate in the sample. These waves are detected by an ultrasonic transducer that
is scanned around the object to reconstruct the microwave energy deposition in the tissue (Ku
and Wang 2000, Jin and Wang 2006).

2. Theoretical formulation

2.1. Temperature rise

The most general spherically symmetric absorption pattern inside a sphere of radius a can be
written in terms of its Taylor expansion in the form

I (r, t) = f (t)

∞∑
n=0

In

( r

a

)n

. (1)

Here I(r, t) is the absorbed power density at radial distance r from the sphere centre at time t, In

is the nth Taylor expansion coefficient and f(t) represents the pulse shape (usually assumed to be
rectangular). The temperature rise θ (r, t) resulting from the absorption of the electromagnetic
wave follows from the heat conduction equation (Carslaw and Jaeger 1959)

∇2θ(r, t) − 1

κ

∂θ(r, t)

∂t
= −I (r, t)

K
, (2)

where κ and K are the thermal diffusivity and conductivity of brain matter, respectively. The
temperature decay processes are slow, and can be neglected for the short pulse durations
considered here (tens of microseconds). Thus, the spatial derivatives in equation (2) can be
neglected, reducing it to the form

∂θ(r, t)

∂t
= κ

K
I (r, t). (3)

This can be integrated, yielding

θ(r, t) = 1

ρch

Ft (t)

∞∑
n=0

In

( r

a

)n

. (4)

Here ρ and ch are the density and specific heat of brain matter, respectively, and ρch = K/κ .
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Ft(t) is the integral over the pulse shape

Ft(t) =
∫ t

0
f (t ′) dt ′. (5)

2.2. Solution of the thermoelastic equation of motion

For the spherically symmetric case, the thermoelastic equation of motion is given by (Love
1944)

∂2u

∂r2
+

2

r

∂u

∂r
− 2u

r2
− 1

c2
l

∂2u

∂t2
= 3λ + 2μ

λ + 2μ
α

∂θ

∂r
, (6)

where u(r, t) is the radial displacement, cl = [(λ + 2μ)/ρ]1/2 is the acoustic wave velocity,
λ and μ are the Lame coefficients and α is the coefficient of linear thermal expansion. The
initial conditions are

u(r, 0) = ∂u(r, 0)

∂t
= 0. (7)

For the case of a spherically symmetric temperature distribution, the normal component of the
stress tensor is given by Landau and Lifshitz (1986)

σrr(r, t) = (λ + 2μ)
∂u

∂r
+

2λ

r
u − (3λ + 2μ)αθ. (8)

For a stress free surface this has to vanish at r = a, yielding the boundary condition

(λ + 2μ)

(
∂u

∂r

)
r=a

+
2λ

a
u(a, t) − (3λ + 2μ)

α

ρch

Ft (t)

∞∑
n=0

In = 0. (9)

For a constrained surface the boundary condition is given by

u(a, t) = 0. (10)

In view of the linearity of the equation of motion (6), we solve it now for one term of the series
(1), and perform the summation over n later. Defining

Fn
r (r) = d

dr

[( r

a

)n]
(11)

vn = 3λ + 2μ

λ + 2μ
α

In

ρch

, (12)

we obtain from equation (6)

∂2u

∂r2
+

2

r

∂u

∂r
− 2

r2
u − 1

c2
l

∂2u

∂t2
= vnF

n
r Ft . (13)

First, we solve this equation for the case of a step function, Ft(t) = 1 for t > 0, denoting
the corresponding solution ũ(r, t), and then extend the solution to various pulse shapes using
Duhamel’s theorem.

We write ũ(r, t) in the form

ũ(r, t) = ũs(r) + ũt (r, t) (14)

so that from equation (13) we obtain

d2ũs

dr2
+

2

r

dũs

dr
− 2

r2
ũs = vnF

n
r (15)
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and

∂2ũt

∂r2
+

2

r

∂ũt

∂r
− 2

r2
ũt − 1

c2
l

∂2ũt

∂t2
= 0. (16)

The boundary conditions at the sphere surface are

ũt (a, t) = ũs(a) = 0 (17)

for a constrained surface, and

(λ + 2μ)

(
dũs

dr

)
r=a

+
2λ

a
ũs(a) − (λ + 2μ)vn = 0 (18)

(λ + 2μ)

(
∂ũt

∂r

)
r=a

+
2λ

a
ũt (a, t) = 0 (19)

for a free surface.
The general solution of equation (15) can be written in the form

ũs(r) = ũsp(r) +
D1

r2
+ D2r, (20)

where ũsp(r) is a particular solution of equation (15)

ũsp(r) = vna

n + 3

( r

a

)n+1
. (21)

From the requirement that ũs(r) should be finite at r = 0, it follows that D1 = 0. The
coefficient D2 is obtained from the boundary conditions (17) or (18), yielding the following
general solutions of equation (15)

ũc
s (r) = vn

n + 3

[( r

a

)n

− 1
]
r (22)

for a constrained surface, and

ũf
s (r) = vn

n + 3

[( r

a

)n

+ γ
]
r (23)

for a free surface. Here

γ = 4μ

3λ + 2μ
. (24)

The solution of equation (16) has the form (Lin 1977a)

ũ
j
t (r, t) =

∞∑
m=1

Bj
mnj1

(
kj
mr

)
cos

(
ωj

mt
)
, (25)

where jn denotes a spherical Bessel function of order n, j = c, f for constrained and free
surfaces, respectively, and

ωj
m = kj

mcl. (26)

From the boundary conditions (17) and (19) it follows that kc
m is the mth root of

tan(kca) = kca (27)

and k
f
m is the mth root of

tan(kf a) = 4μkf a

4μ − (λ + 2μ)(kf a)2
. (28)

The vibrational frequencies, defined by equation (26), depend only on the sphere size and
elastic properties, and not on the heating pattern. The latter determines the relative amplitude
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Figure 1. The frequencies of the two lowest acoustic modes, m = 1, 2, for free and constrained
surface boundary conditions, as a function of the sphere radius.

of excitation of the various vibrational modes. The frequencies of the two lowest order
modes, m = 1, 2, for both free and constrained surfaces, are shown in figure 1. In all of our
numerical calculations we employ the brain matterparameters given by Lin (1977a, 1977b) for
the thermal and elastic properties of the sphere. From figure 1 it follows that the microwave
hearing effect arises from the excitation of the fundamental mode, m = 1. This is because for
human head sizes, of radius of about 7 cm, the higher order modes will usually be above the
high-frequency auditory limit.

Imposing the initial conditions (7), the coefficients B
j
mn are found to have the form

Bc
mn = 2vn

(n + 3)j0
(
kc
ma

)
j2

(
kc
ma

)
[

�n

(
kc
m

)
an+3

− 1

kc
m

j2
(
kc
ma

)]
(29)

Bf
mn = −2vn

(n + 3)
{[

j1
(
k

f
ma

)]2 − j0
(
k

f
ma

)
j2

(
k

f
ma

)}
[

�n

(
k

f
m

)
an+3

+
γ

k
f
m

j2
(
kf
ma

)]
, (30)

where �n(k) is defined as the integral

�n(k) =
∫ a

0
xn+3j1(kx) dx, (31)

which can readily be performed analytically.

2.3. Solution for different pulse shapes

Having obtained the solution ũ(r, t) for the case of a step function, we can now apply Duhamel’s
theorem (Churchill 1958)

u(r, t) = ∂

∂t

∫ t

0
F(t − t ′)ũ(r, t ′) dt ′ (32)

to obtain the solution for any pulse shape.
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2.3.1. Rectangular pulse. For a rectangular pulse of unit amplitude and width τ , and for a
constrained surface, equation (32) yields

uc(r, t) =
∞∑

n=0

{
vn

n + 3

[( r

a

)n

− 1
]
rt +

∞∑
m=1

Bc
mnj1

(
kc
mr

) sin
(
ωc

mt
)

ωc
m

}
(33)

for 0 < t < τ , and

uc(r, t) =
∞∑

n=0

{
vn

n + 3

[( r

a

)n

− 1
]
rτ +

∞∑
m=1

Bc
mnj1

(
kc
mr

) sin
(
ωc

mt
) − sin

(
ωc

m(t − τ)
)

ωc
m

}
(34)

for τ < t. Here we have reintroduced the summations over n.
The corresponding solution for a free surface is

uf (r, t) =
∞∑

n=0

{
vn

n + 3

[( r

a

)n

+ γ
]
rt +

∞∑
m=1

Bf
mnj1

(
kf
mr

) sin
(
ω

f
mt

)
ω

f
m

}
(35)

for 0 < t < τ , and

uf (r, t) =
∞∑

n=0

{
vn

n + 3

[( r

a

)n

+ γ
]
rτ +

∞∑
m=1

Bf
mnj1

(
kf
mr

) sin
(
ω

f
mt

) − sin
(
ω

f
m(t − τ)

)
ω

f
m

}
(36)

for τ < t.
Having solved for the displacement, we use equation (8) and obtain the radial stress

σ j
rr (r, t) =

∞∑
n=0

[
vnG

j
n(r)t +

∞∑
m=1

Bj
mnk

j
mLj

m(r)
sin

(
ω

j
mt

)
ω

j
m

]
(37)

for 0 < t < τ , and

σ j
rr (r, t) =

∞∑
n=0

[
vnG

j
n(r)τ +

∞∑
m=1

Bj
mnk

j
mLj

m(r)
sin

(
ω

j
mt

) − sin
(
ω

j
m(t − τ)

)
ω

j
m

]
(38)

for τ < t. Again, j = c, f for constrained and free surfaces, respectively. The functions G and
L are defined by

Gc
n(r) = −4μ(r/a)n + 3λ + 2μ

n + 3
(39)

Gf
n (r) = 4μ

n + 3

[
1 −

( r

a

)n]
(40)

Lj
m(r) = (λ + 2μ)j0

(
kj
mr

) − 4μ

k
j
mr

j1
(
kj
mr

)
. (41)

2.3.2. Sawtooth pulse. The pulse is defined by

f (t) = βt (42)

for 0 < t < τ , and zero otherwise. Again, we apply (32) to obtain the displacement. From this,
the radial pressure is found, using equation (8), yielding

σ j
rr (r, t) =

∞∑
n=0

{
β

2
νnG

j
n(r)t

2 +
∞∑

m=1

Bj
mnk

j
mLj

m(r)
β(

ω
j
m

)2

[
1 − cos

(
ωj

mt
)]}

(43)
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for 0 < t < τ , and by

σ
j
rr (r, t) =

∞∑
n=0

{
β

2
vnG

j
n(r)τ

2 +
∞∑

m=1

Bj
mnk

j
mLj

m(r)
β(

ω
j
m

)2

× [
cos

(
ω

j
m(t − τ)

) − cos
(
ω

j
mt

) − ω
j
mτ sin

(
ω

j
m(t − τ)

)]} (44)

for τ < t.

2.3.3. Half-sine pulse. The pulse is defined by

f (t) = sin
(π

τ
t
)

(45)

for 0 < t < τ , and zero otherwise. For the radial pressure we obtain the result

σ j
rr (r, t) =

∞∑
n=0

τ

π

{
vn

[
1 − cos

(π

τ
t
)]

Gj
n(r) +

∞∑
m=1

Bj
mnk

j
mLj

m(r)V
(
ωj

m, τ, t
)}

(46)

for 0 < t < τ , and

σ j
rr (r, t) =

∞∑
n=0

τ

π

{
2vnG

j
n(r) +

∞∑
m=1

Bj
mnk

j
mLj

m(r)
[
V

(
ωj

m, τ, t
)

+ V
(
ωj

m, τ, t − τ
)]}

(47)

for τ < t, where

V (ω, τ, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(π/τ)2

ω2 − (π/τ)2

[
cos

(π

τ
t
)

− cos(ωt)
]
ω �= π

τ

1

2
ωt sin(ωt) ω = π

τ
.

(48)

2.4. Repeated pulses

As long as temperature decay processes may be neglected, which will be the case for a small
number of pulses, and not too long intervals between them, the theory can be generalized by
a simple superposition of the effects of the separate pulses. Thus, for the general spherically
symmetric model, treated in section 2, the radial pressure resulting from N consecutive pulses
will be given by

σ j
rr (r, t) =

∞∑
n=0

{
NvnG

j
n(r)Ft (t) +

∞∑
m=1

Bj
mnk

j
mLj

m(r)

×
[
NFt(t) + ωj

m

N−1∑
l=0

∫ t−lT

0
sin(ωj

m(t ′ − t + lT ))Ft (t
′)dt ′

]}
(49)

at the end of the irradiation, i.e., for t > [(N − 1)T + τ ]. Here T is the time between the
beginnings of two consequent pulses, so that the pulse repetition frequency (PRF) is equal to
1/T. Performing the integration over t′ and the summation over �, the following results are
obtained from equation (49) for the three pulse shapes defined in section 2.3.

(a) Rectangular pulses

σ j
rr (r, t) =
∞∑

n=0

{
NvnG

j
n(r)τ +

2

cl

∞∑
m=1

Bj
mnL

j
m(r) sin

(
ω

j
mτ

2

)
Re

[
exp

(
iωj

m(t − τ/2)
)
WT

N

(
ωj

m

)]}
,

(50)
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where

WT
N (ω) = 1 − exp(−iNωT )

1 − exp(−iωT )
. (51)

(b) Sawtooth pulses

σ j
rr (r, t) =

∞∑
n=0

{
Nβ

2
vnG

j
n(r)τ

2 +
β

cl

∞∑
m=1

B
j
mn

ω
j
m

Lj
m(r)

[
2 sin

(
ω

j
mτ

2

)

× Im
(
exp

(
iωj

m(t − τ/2)
)
WT

N

(
ω

j
m

)) − ω
j
mτ Im

(
exp

(
iωj

m(t − τ)
)
WT

N

(
ω

j
m

))]}
.

(52)

(c) Half-sine pulses

σ j
rr (r, t) = 2

∞∑
n=0

[
N

π
vnG

j
n(r)τ −

∞∑
m=1

(π/τ)(
ω

j
m

)2 − (π/τ)2
Bj

mnk
j
mLj

m(r) cos

(
ω

j
mτ

2

)

× Re
(
exp

(
iωj

m(t − τ/2)
)
WT

N

(
ω

j
m

))]
.

(53)

3. Comparison with previous analytic models

In previous analytic models (Lin 1977a, 1977b, Shibata et al 1986) the spherically symmetric
absorption pattern was assumed to exhibit an absorption peak in the centre of the head and to
have the form

I (r, t) = f (t)I0

[
η +

sin(Nπr/a)

(Nπr/a)
(1 − η)

]
. (54)

Lin (1977a, 1977b ) used (54) with N = 6 and η = 0, which has the drawback that the absorbed
power is negative in some regions of the sphere. Moreover, even the total absorbed power
(obtained by integrating (54) over the sphere volume) is negative. Shibata et al (1986) have
modified Lin’s model by adding the uniform heating term, with η �= 0. They used the values
η = 0.4 and N = 4, for which the absorbed power is always positive. Also, their choice of η

and N yields an absorption pattern which provides a good approximation to that obtained from
the exact electromagnetic calculation (Mie theory) for the case of a sphere of radius 0.07 m,
which is irradiated by a plane wave of frequency 918 MHz. They have also demonstrated that
the introduction of the uniform heating term significantly affects the waveform of the radial
stress. We will therefore use the modified Lin model, represented by equation (54), with η =
0.4 and N = 4, as a test case for our general formulation.

The general solution of the equation of motion (6), with the absorption pattern (54) has
been derived by Shibata et al (1986), using the mathematical techniques presented by Lin
(1977a, 1977b). They have solved only for the case of a free surface, and we add here the
solution for the case of a constrained surface, which we derived by a similar method. For a
rectangular pulse of unit amplitude and width τ , the solution for the displacement has the form

uj (r, t) = u0S
j (r)t +

∞∑
m=1

Aj
mj1

(
kj
mr

) sin
(
ω

j
mt

)
ω

j
m

(55)

for 0 < t < τ , and

uj (r, t) = u0S
j (r)τ +

∞∑
m=1

Aj
mj1

(
kj
mr

) sin
(
ω

j
mt

)
− sin

(
ω

j
m(t − τ)

)
ω

j
m

(56)
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for τ < t. Here

u0 = 3λ + 2μ

λ + 2μ
α

I0

ρch

(57)

Sf (r) = 1 − η

Nπ

[
aj1(Nπr/a) − (−1)N

Nπ

4μ

3λ + 2μ
r

]
+ η

λ + 2μ

3λ + 2μ
r (58)

Sc(r) = 1 − η

Nπ

[
aj1(Nπr/a) +

(−1)N

Nπ
r

]
(59)

Af
m = 2u0a[

j1
(
k

f
ma

)]2
− j0

(
k

f
ma

)
j2

(
k

f
ma

)
×

{
(−1)N

(Nπ)2
(1 − η)

[
4μj2

(
k

f
ma

)
(3λ + 2μ)k

f
ma

− k
f
maj0

(
k

f
ma

)
(
k

f
ma

)2 − (Nπ)2

]
− η

λ + 2μ

3λ + 2μ

j2
(
k

f
ma

)
k

f
ma

}
(60)

Ac
m = (−1)N

(Nπ)2

2u0a(1 − η)

j0
(
kc
ma

)
j2

(
kc
ma

)
[

j2
(
kc
ma

)
kc
ma

+
kc
maj0

(
kc
ma

)
(
kc
ma

)2 − (Nπ)2

]
. (61)

The radial stress is given by

σ j
rr (r, t) = u0H

j(r)t +
∞∑

m=1

Aj
mkj

mLj
m(r)

sin
(
ω

j
mt

)
ω

j
m

(62)

for 0 < t < τ , and by

σ j
rr (r, t) = u0H

j(r)τ +
∞∑

m=1

Aj
mkj

mLj
m(r)

sin
(
ω

j
mt

) − sin
(
ωc

m(t − τ)
)

ω
j
m

(63)

for τ < t. Here

Hf (r) = 4μ(1 − η)

[
(−1)N+1

(Nπ)2
− a

Nπr
j1(Nπr/a)

]
(64)

Hc(r) = (1 − η)

[
(−1)N

(
1

Nπ

)2

(3λ + 2μ) − 4μa

Nπr
j1(Nπr/a)

]
− η(λ + 2μ). (65)

In order to check the validity of our solutions for the general model (1), we expanded the
modified Lin model absorption pattern (54) in a Taylor series. Comparing the solutions (33)–
(36) of the general model with the corresponding direct solutions (55) and (56), we note that
the calculated coefficients have to obey the relations∑

n

Bmn = Am. (66)

We have checked this numerically for the case of a free surface. We have found that for the
dominant modes (m values up to 10) equation (66) is satisfied to better than 0.2%, when the
Taylor expansion is performed up to n = 32. This confirms the validity of the solution of the
general spherically symmetric model, as developed in section 2.
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Figure 2. Acoustic pressure, at the head centre, of the fundamental mode as a function of pulse
width for different models having the same average SAR of 0.4 W kg−1.

4. Application to a surface concentrated heating pattern

We now apply the general model developed in section 2 to the case in which the absorption of
the electromagnetic energy occurs mainly near the surface of the sphere. This is the case for
a sphere of radius 0.1 m, and an incident wave frequency of 2450 MHz. We have calculated
the absorption pattern for this case, using the Mie theory, and found that the best way to
approximate it by a single term spherically symmetric function is to assume that

I (r, t) = f (t)I6

( r

a

)6
. (67)

For an incident wave of amplitude 1 W m−2, averaging over the exact heating pattern along
the three axes, we find that the optimal value of I6 is 19 W m−3. Of course, the exact heating
pattern is not spherically symmetric, because the absorption near the front surface of the
sphere is higher than that near the back surface. However, by using the approximate pattern
(67) we will be able to compare the hearing effect due to a surface concentrated heating
pattern to the corresponding effect due to a centrally concentrated absorption pattern, equation
(54). In order to compare the results obtained with the heating pattern (54), for a sphere of
radius 0.07 m, with those obtained with (67), for a sphere of radius 0.1 m, we normalize the
amplitudes of the incident waves for the two cases so that they will yield the same average
specific absorption rate (SAR), assumed to be equal to 0.4 W kg−1. The dependence of the
sound pressure amplitude of the fundamental acoustic mode, at the centre of the head, on the
pulse width is shown in figure 2.

The observed oscillatory behaviour of the pressure as a function of the pulse width has
been observed experimentally by Tyazhelov et al (1979). The oscillatory behaviour has first
been predicted by Lin (1977a, 1977b); however according to his model the first peak occurs
at a pulse width of about 6 μs. Experimentally, the first peak occurs at 50 μs (Tyazhelov
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Figure 3. Acoustic pressure, at the head centre, of the fundamental mode as a function of pulse
width for three different pulse shapes. The incident wave frequency is 2450 MHz.

et al 1979), which agrees well with our calculation for the modified Lin model (full curve of
figure 2). Also, our results demonstrate that, for equal average SAR, the pressure generated by
a surface localized heating pattern (2450 MHz) is comparable to that generated by a heating
pattern that is peaked at the sphere centre (918 MHz). An interesting difference between the
two cases is that for the 2450 MHz case the maximum pressure obtained for a constrained
surface is higher than that calculated for a free surface, whereas for the 918 MHz case the free
surface yields the larger maximum pressure.

A comparison of different pulse shapes is presented in figure 3. This was calculated for
the 2450 MHz case, at the centre of a sphere of radius 0.1 m, with a constrained surface, and
an incident power density of 10 W m−2. The rectangular pulse yields the highest maximum
pressure, while the sawtooth pulse yields the lowest one. We note that, unlike the cases
of the rectangular and the half-sine pulses, for the sawtooth pulse the amplitude of the first
acoustic mode does not reduce to zero at higher pulse widths. This is due to the fact that
the vanishing of the amplitude results from a destructive interference effect for certain pulse
lengths. For the sawtooth pulse, since the pulse amplitude increases over the pulse duration,
even when the destructive interference effect operates, it cannot completely annul the acoustic
wave amplitude. We also note that the pulse width which maximizes the pressure depends on
the pulse shape, being equal to 47.9 μs for the rectangular pulse, to 62.3 μs for the sawtooth
pulse and to 65.5 μs for the half-sine pulse.

5. Calculations of PRF dependence

Measurements of the dependence of the hearing effect on the pulse repetition frequency (PRF)
have been performed by Tyazhelov et al (1979). In their experiments, rectangular pulses of
800 MHz microwaves were coupled via a wave guide from the generator to the parietal area
of the head of human observers. Their results for the perceptual threshold as a function of the
PRF are shown in figure 4. The two sets of data refer to two observers with high-frequency
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Figure 4. Dependence of the hearing threshold on the pulse repetition frequency. The vertical
bars represent the experimental data of Tyazhelov et al (1979). The curves have been calculated
from the modified Lin model, for two rectangular pulses of 20 μs width.

auditory limits (HFAL) of 14 kHz and 17 kHz. The theoretical results have been obtained by
applying equation (50) to the modified Lin model (54), with two rectangular pulses of 20 μs
width, and using the free surface boundary conditions. The calculated curves show the ratio
of the acoustic pressure induced at the sphere centre at a PRF of 10 kHz to the corresponding
pressure at other PRF, expressed in dB. The experimental data have also been normalized
to their value at a PRF of 10 kHz. It can be seen that our calculation yields a satisfactory
agreement with the experimental data, especially as regards the main feature, i.e., the broad
threshold increase around a PRF of about 7 kHz.

6. Conclusion

A generalized analytic model, applicable to an arbitrary microwave absorption pattern of
spherical symmetry, has been developed. Whereas in previous analytic models only heating
patterns that are peaked at the sphere centre have been considered, we have applied our
generalized model to calculate the sound intensity induced by a heating pattern that is
concentrated near the sphere surface. We have found that when heating patterns of equal
SAR are compared, surface localized and centrally localized patterns yield comparable sound
pressures. Another new feature of our model is the allowance for different microwave pulse
shapes. This has been applied for comparing the pressure induced by the standard rectangular
pulse with those due to the sawtooth pulse and the half-sine pulse. Furthermore, we have
extended the theory to the case of repeated pulses, and have found that the calculated
dependence of the induced pressure on the pulse repetition frequency provides the first
theoretical interpretation of some of the features observed experimentally by Tyazhelov
et al (1979).
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