
Open Source ECG Analysis Software
Documentation

Patrick S. Hamilton

E.P. Limited

 i

Copyright © 2002 Patrick S. Hamilton

For information on obtaining the most recent version E.P. Limited’s Open Source ECG Analysis
Software, visit or web site (http://www.eplimited.com/).

Permission is granted to make and distribute verbatim copies of this guide provided
that the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this guide
under the conditions for verbatim copying, provided also that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this guide into
another language, under the above conditions for modified versions.

 ii

Table of Contents
1.0 Introduction .. 1
2.0 Software Overview... 3

2.1 File Listing ... 3
2.2 File Dependencies .. 4
2.3 Beat Detection and Classification API ... 4

2.3.1 BeatDetectAndClassify ... 5
2.3.2 ResetBDAC... 5
2.3.3 QRSDet ... 5

3.0 Beat Detection .. 6
3.1 The Filters .. 6
3.2 Detection Rules .. 6
3.3 Threshold Estimation ... 7
3.4 Detection Delay.. 8
3.5 A PIC16F877 QRS detector ... 8

3.5.1 Algorithm Modifications for PIC implementation. ... 9
3.5.2 Implementation and Testing .. 9

3.6 Beat Detection and EC13 ... 10
3.6.1 EC13 QRS Detector Requirements ... 10
3.6.2 EC13 Testing... 10
3.6.3 Algorithm Modifications for EC13 ... 11

3.7 Beat Detection Performance... 11
4.0 Beat Classification.. 13

4.1 Beat And Signal Features ... 13
4.1.1 Beat width.. 13
4.1.2 Rhythm Classification ... 14

4.2 Beat Matching .. 15
4.2.1 Beat Comparison ... 15
4.2.2 Rules for Matching Beats .. 15
4.2.3 Combining Similar Templates and Eliminating Templates... 16

4.3 Dominant Normal Beat Selection... 16
4.4 Dominant Rhythm .. 17
4.5 Beat Classification.. 17

4.5.1 Type Classification.. 17
4.5.2 Post Classification ... 17
4.5.3 Beat Classification... 18

5.0 Adapting Beat Detection and Classification for Different Sample Rates................................. 19
5.1 Performance at Different Sample Rates ... 19
5.1 Optimization at Different Sample Rates... 20

6.0 Easytest & Bxb... 21
References .. 23
Appendix A: Database Results.. 24
Appendix B: Database Results with QRSdet2. ... 28
Appendix C: PIC 16F877 QRS detector results .. 31

 iii

1.0 Introduction
Computer analysis of ECG signals is common today. Devices on the market that analyze ECGs,
such as patient monitors, stress test systems, and Holter analysis systems, do a good job of
detecting beats and classifying arrhythmias. However, new companies are constantly emerging
and applying new technologies, such as PDAs, in an effort to make smaller and cheaper ECG
analysis systems. Other companies are using ECG gating to improve imaging of the heart. Each
new company that produces a product that requires ECG analysis must implement their own ECG
analysis software, duplicating the efforts of every other company. Similarly, researchers who need
ECG analysis to explore new diagnostic methods, such as the analysis of heart rate variability,
must also implement their own versions of basic ECG analysis functions. Thirty years of research
on computer analysis of ECG signals has produced a great many methods for detecting beats and
classifying ECG signals, but there is still a significant effort required to go from theory to
implementation.

In an effort to reduce this industry and research wide duplication of effort, E.P. Limited, with
support from the National Heart Lung and Blood Institute (NHLBI) of the National Institutes of
Health (NIH), has been developing and is now releasing open source software for ECG analysis.
We have developed C functions that implement the most basic ECG analysis operations, detection
and classification of individual beats. By building on this open source software we hope that new
companies will be able to bring reliable systems to market more quickly, and researchers will be
able to spend more time exploring new diagnostic techniques rather than implementing beat
detectors.

This is our fifth software release and includes C implementations of three variations of our
beat detector and a C implementation of a beat classifier. The beat classifier and two of the beat
detector implementations can easily be adapted for different sample rates. One beat detector has
been written for implementation on processors with limited available memory. Finally, we have
included some programs to facilitate the testing of beat detection and beat classification software.

In releasing this software as open source code, we hope that others will make improvements
on it and make those improvements available. To be realistic, we do not expect that companies
will make an effort to release modifications that they make to this software. On the other hand, we
believe that this software presents significant opportunities for students and others in an academic
environment to build on our work and make the results of their work available as open source
code. With this in mind, we would like to suggest areas where our algorithms might be improved
or extended. These areas represent opportunities for course projects, undergraduate theses, or
Masters theses.

Some possible improvements or extensions of the beat detection algorithm are:

• The QRS detector only uses a single channel of information (on the MIT/BIH database

the second channel is often too noisy to be of much help), can it be made more robust if it
uses two or more ECG channels as input?

• The QRS detector has not been tested in noisier environments. Can performance be
improved with noisier signals (as might occur during exercise or stress testing) by
making stronger assumptions about rhythm?

• As is, the QRS detector has a variable, sometimes long, delay. How well can a QRS
detector perform if the delay is restricted to be 0.25 s or less?

• The QRS detector filters were designed to be efficient, requiring only shift and add
operations rather than multiplications of any precision. If processing power is not a
significant problem, are there better filters that use less restricted filter coefficients?

 1

Though the code for the QRS detection software has been developed and improved over the

course of roughly 15 years, the beat classification software has only been under serious
development for a little more than one year. The performance of the classification software is as
good as or better than the performance reported for other algorithms on the same data [1-5], but it
is still “tuned” to the data from the MIT/BIH and AHA databases. The following are some areas
where the algorithm could be improved:

• Significant improvements could be made in the software’s ability to recognize and

compensate for noise.
• The algorithm only uses a limited set of features to recognize whether or not a beat is

ventricular and completely ignores the T-wave region of the beat. A more complete
feature set might allow more accurate classification of ventricular beats.

• The algorithm only uses information from a single channel of ECG data.
• The algorithm has only been tested on half hour records. Longer records will tend to use

up the available beat templates with minor beat variations and noisy beats. We do not
know how this will affect performance on a long record.

• The algorithm does not recognize Ventricular Fibrillation or Flutter (as on 207)

Further development of this software requires that the developer continually test the software

against as large a database of ECG data as possible. It is not of much use to improve the
performance on one record if it requires sacrificing performance on all the others. Luckily, it has
never been easier or less expensive to test ECG analysis software on MIT/BIH data and data from
supplemental databases. ECG data and open source software for accessing this data are available
on line at www.physionet.org. In this release, we have provided two example programs (easytest
and bxb) to facilitate testing beat detection and classification software with MIT/BIH formatted
data.

The following documentation provides an overview of the software included in this release
and documents the general theory of operation for the various software components. If anything
seems unclear you can always refer directly to the source code. We would appreciate any
improvements to, comments about, corrections to, or suggestions regarding this documentation or
software. We will make an effort to test and incorporate all future improvements in the
distribution software.

 2

http://www.physionet.org/

2.0 Software Overview
Our software implements the basic ECG analysis functions of beat detection and classification as
C functions. This release includes three versions of our beat detector. Two are general-purpose
beat detectors, where one represents a more efficient version with slightly different performance
characteristics. The third beat detector is more computationally efficient, uses very little memory,
and is embedded in a program that performs beat detection on a PIC processor. The beat detector
functions are independent of the beat classification functions and may be used alone in
applications that do not require beat classification.

2.1 File Listing
All the files required for detecting and classifying beats and this documentation should be
included in the file osea121.zip (Open Source ECG Analysis 1.21). The code is written in C and
the files are .cpp files so that our complier (Turbo C++ V 4.5) treats them as C++ files (the only
C++ feature we actually use is the // comment). We wrote the Picqrs.c to be compiled with the
CCS C compiler for PIC processors. The following is a list of the files that make up the open
source ECG analysis software release:

QRS Detection Files:

Qrsdet.cpp Original QRS detection functions.
Qrsdet2.cpp Simplified and improved QRS detector functions.
Qrsfilt.cpp Filter functions for QRS detection.
Qrsdet.h General parameters definitions associated with QRS detection.
Picqrs.c A PIC based QRS detector.

Beat Classification Functions:
Analbeat.cpp Functions for extracting beat features.
Analbeat.h Function prototypes associated with analbeat.cpp.
Bdac.cpp API function for beat detection and classification.
Bdac.h General parameters associated with the beat classification software.
Classify.cpp Functions for classifying beats.
Match.cpp Functions for matching beats to previously detected beat types.
Match.h Function prototypes associated with match.cpp.
Noisechk.cpp Functions for detecting low frequency noise.
Postclas.cpp Functions associated with post classification.
Rythmchk.cpp Functions for classifying R-to-R intervals.
Rythmchk.h Function prototypes associated with rythmchk.h.

Test programs:

Easytest.cpp Example program that creates MIT/BIH format annotation files from
ECG data using the beat detection and classification software.

Bxb.cpp Example program that compares annotation files to evaluate beat
detection and classification performance.

Documentation:

Osea3.pdf This document.

 3

Database I/O:
Wfdb.lib Library of database interface functions needed for easytest.cpp and

bxb.cpp.
Wfdb.h Header file for functions and structures in wfdb.lib
Ecgcodes.h ECG classification code definitions.

2.2 File Dependencies
Fig. 1 illustrates the file dependencies for the beat detection and analysis files. BDAC contains
the function BeatDetectAndClassify, which serves as the interface between input data and beat
detection and classification. BeatDetectAndClassify takes sample-by-sample data as input and
passes it to the QRS detection functions in QRSDET or QRSDET2. The QRS detection function
uses filter functions in QRSFILT. When a beat is detected, BeatDetectAndClassify waits until the
end of the beat, checks for low-frequency noise, and passes the beat, R-to-R interval, and noise
level to the function Classify in the file CLASSIFY.

Classify decides whether a beat is a normal beat or a ventricular beat. Classify uses functions
in MATCH to compare new beats to templates
of previously recorded beats. Functions in
RYTHMCHK, classify the beats R-to-R interval
as either a normal R-to-R interval, a premature
R-to-R interval, or an R-to-R interval that
represents a compensatory pause. Functions in
ANALBEAT determine the onset and end point
of the QRS complex and the associated
isoelectric level. Functions in POSTCLAS
attempt to more accurately reclassify previous
beats. Classify uses this information on whether
the beat matches previous beats, whether or not
the R-to-R interval appears premature, whether
the beat is narrow or wide, and whether this type
of beat has previously appeared to be ventricular
or normal to classify the beat. Classify returns
its classification to BDAC which, in turn, returns
the classification to the calling program.

BDAC

QRSDET or QRSDET2

QRSFILT

NOISECHK

CLASSIFY

MATCH
RYTHMCHK
AN ALBEAT
POSTCLAS

Fig. 1 Overview of ECG analysis software file
and functional depend encies.

2.3 Beat Detection and Classification API
There are only two functions required for using the beat detection and classification software,
BeatDetectAndClassify and ResetBDAC. The first function provides the interface to the beat
detection and classification software and the second allows the static variables required for beat
detection and classification to be reset. If your application does not require beat classification, the
function QRSDet can be used to interface directly to the QRS detection portion of the software.

The following are function definitions for BeatDetectAndClassify, ResetBDAC, and
QRSDet. For details on using BeatDetectAndClassify, refer to easytest.cpp. We have included
easytest.cpp in this software distribution as an example program that uses BeatDetectAndClassify
to generate annotation files from MIT/BIH arrhythmia database records.

 4

2.3.1 BeatDetectAndClassify
Syntax:

int BeatDetectAndClassify(int ecgSample, int *beatType, int *beatMatch) ;

Description:
BeatDetectAndClassify implements a beat detector and classifier. ECG samples are passed
into BeatDetectAndClassify one sample at a time with ecgSample. When a beat has been
detected and classified the detection delay is returned and the beat classification is returned
through the pointer *beatType. The index of the template that the beat was matched to is
returned through the pointer *beatMatch (used for debugging). The calling function must
allocate space for beatType and beatMatch.

Returns:

BeatDetectAndClassify returns 0 if no new beat has been detected and classified. If a beat has
been classified, BeatDetectAndClassify returns the number of samples since the approximate
location of the R-wave. If a beat has been classified, *beatType is set to 1 (NORMAL), 5
(PVC), or 13 (UNKNOWN) to indicate the beat classification. The index of the previous beat
template that the beat most closely matches is returned in *beatMatch.

2.3.2 ResetBDAC
Syntax:
 void ResetBDAC(void) ;

Description:

ResetBDAC resets static variables used in beat detection and classification. ResetBDAC
should be called before beginning to process a new ECG record with BeatDetectAndClassify.

2.3.3 QRSDet
Syntax:

int QRSDet(int ecgSample, int init) ;

Description:

QRSDet implements a modified version of the QRS detection algorithm described in:

Hamilton, Tompkins, W. J., "Quantitative investigation of QRS detection rules using the
MIT/BIH arrhythmia database", IEEE Trans. Biomed. Eng., BME-33, pp. 1158-1165,
1987.

Consecutive ECG samples are passed to QRSDet in ecgSample. QRSDet contains a number
of static variables that it uses to adapt to different ECG signals. These variables can be reset
by passing a non-zero value in init.

Returns:

When a QRS complex is detected QRSDet returns the detection delay.

 5

3.0 Beat Detection
 ECG

Low-pass Filter
(~16 Hz cutoff)

High-pass Filter
(~ 8 Hz cutoff)

|d[]/dt|

80 ms Moving
Average

Peak
Detection

Fig. 2 : Beat detection operations

Detection
Rules

QRS Detections

QRSFilt.cpp

QRSDet.cppFig. 2 shows the basic operations of the beat detection
algorithm. The beat detection algorithm can be broken down
into two sections, the filters and the detection rules.
Consequently, the implementation is broken down into two
files QRSFilt.cpp which contains the filter implementations
and QRSDet.cpp which contains the detection rule
implementation. Our present release contains three versions
of our QRS detector. All three versions use the same filters
and differ primarily in the details of the detection rules and
code implementations.

3.1 The Filters
We filter the signal to generate a windowed (time limited)
estimate of the energy in the QRS frequency band. We do this
by:

1. Low pass filtering,
2. High pass filtering,
3. Taking the derivative,
4. Taking the absolute value of the signal, and
5. Averaging the absolute value over an 80 ms

window.

The final filter output produces what might be called a lump
every time a QRS complex occurs. T-waves generally
produce smaller lumps than QRS complexes.

These operations are implemented with the functions lpfilt, hpfilt, deriv1 or deriv2, abs, and
mvwint in QRSFilt.cpp. The high pass, low pass, and derivative combine to produce a bandpass
filter with a pass band from 5 to 11 Hz, roughly the bandwidth that contains most of the energy in
the QRS complex. The theory and implementation of these filters are detailed in [6], [7], and
Biomedical Digital Signal Processing [8]. However, there are errors in the filter descriptions in
[6]. In [6] and [7], the filtered signal was squared rather than rectified. This operation caused the
QRS detector to be somewhat gain sensitive. In this implementation we have used the absolute
value, reducing the gain sensitivity and slightly improving the performance of the algorithm.

The averaging window was chosen to be roughly the width of a typical QRS complex. In the
original algorithm this window was 150 ms wide to allow for the wide QRS complexes produced
by Premature Ventricular Contractions (PVCs). Since then, it has been shown that a narrower
window produces better results [9].

3.2 Detection Rules
After the signal has been filtered, QRSDet detects peaks in the signal. Each time a peak is
detected it is classified as either a QRS complex or noise, or it is saved for later classification. The

 6

algorithm uses the peak height, peak location (relative to the last QRS peak), and maximum
derivative to classify peaks.

The following is an outline of the basic detection rules for the algorithm.

1. Ignore all peaks that precede or follow larger peaks by less than 200 ms.
2. If a peak occurs, check to see whether the raw signal contained both positive and

negative slopes. If not, the peak represents a baseline shift.
3. If the peak occurred within 360 ms of a previous detection check to see if the

maximum derivative in the raw signal was at least half the maximum derivative of
the previous detection. If not, the peak is assumed to be a T-wave.

4. If the peak is larger than the detection threshold call it a QRS complex, otherwise
call it noise.

5. If no QRS has been detected within 1.5 R-to-R intervals, there was a peak that was
larger than half the detection threshold, and the peak followed the preceding
detection by at least 360 ms, classify that peak as a QRS complex.

The rules as outlined above are implemented in QRSDET and detailed in [6] and [7].

However, in exploring simpler implementations, we found that the using slope to discriminate T-
waves from QRS complexes did not improve performance, so this feature (rule 3) of the algorithm
has been eliminated in QRSDET2 and the PIC implementatation.

3.3 Threshold Estimation
The detection threshold used in 4 and 5 above is calculated using estimates of the QRS peak

and noise peak heights. Every time a peak is classified as a QRS complex, it is added to a buffer
containing the eight most recent QRS peaks. Every time a peak occurs that is not classified as a
QRS complex, it is added to a buffer containing the eight most recent non-QRS peaks (noise
peaks). The detection threshold is set between the mean or median of the noise peak and QRS
peak buffers according to the formula:

Detection_Threshold = Average_Noise_Peak + TH*(Average_QRS_Peak Average_Noise_Peak)

where TH is the threshold coefficient. Similarly, the R-to-R interval estimate used in 5 is
calculated as the median or mean of the last eight R-to-R intervals.

Originally, we estimated average QRS peak values, noise peak values, and average R-to-R
intervals using the median of the last eight values. When we recently implemented a simpler QRS
detector using the mean of the previous eight values rather than the median, we found that using
mean estimates improved the QRS detector performance. However, when coupled with the beat
classification software, using means to estimate average peak values and R-to-R intervals
produced a slight decrease in the performance of the beat classifier (12 more incorrect
classifications on the MIT/BIH data and 5 on the AHA data). In this release, the functions in
QRSDET use median and functions in QRSDET2 use mean for average peak values and R-to-R
interval estimation.

The beat detector must begin with some initial threshold estimate. In order to make an initial
estimate, we detect the maximum peaks in eight consecutive 1-second intervals. These eight
peaks are used as are initial eight values in the QRS peak buffer, we set the initial eight noise
peaks to 0, and we set the initial threshold accordingly. We initially set the eight most recent R-
to-R intervals to 1 second.

It is possible (but rare) for a string of large ventricular beats to cause the detection thresholds
of the beat detector to increase so much that low amplitude normal beats that follow are ignored.

 7

In practice this only occurred on one AHA record and none of the MIT/BIH records. To avoid
this problem,when no beats are detected for eight seconds, the detection thresholds are reset in the
same way that they were initialized.

3.4 Detection Delay
When a beat is detected by QRSDet, QRSDet returns the number of samples that have occurred
since QRS complex occurred. QRSDet does this because the detection delay will vary. If a peak
is detected using rule 4 above, the detection delay will be roughly the sum of the filter delays, the
moving window integration width, and the 200 ms delay required for rule 1 for a total delay of 395
ms. If the peak is found using rule 5 (also called a search back detection), the delay will be this
delay plus half the average R-to-R interval. Consequently, the detection delay can easily vary,
depending on heart rate and detection rule, from 395 ms to as much as 1 second.

Many ECG monitoring applications require shorter detection delays than our QRS detector.
The relatively long, variable, detection delay can be a problem for some applications. For
example, the heart beat indication for a patient monitor should coincide more closely (roughly
0.25 s) with the pulse that can be felt at the wrist.

The algorithm will produce a fixed delay if the search back detections are eliminated by
simply not reporting detections that result from search back. If this is done and the detection
threshold is adjusted, the algorithm will still have QRS detection sensitivities and positive
predictivities near 99.7%.

With the search back detections disabled the algorithm will have a fixed detection delay of
395 ms. The majority of this delay occurs because after each peak is detected the algorithm waits
200 ms to insure that the peak is not followed by a larger peak within the QRS refractory period.
Earlier versions of the algorithm simply ignored all peaks for 200 ms following a QRS detection.
This allowed large P-waves (primarily on record 108) to be detected as QRS complexes, and the
following QRS complexes were ignored because they occurred within the 200 ms refractory
blanking period.

In order to revert to simple 200 ms blanking following a QRS detection, include the
statement:

#define POST_BLANK

at the top of qrsdet.h.
Ignoring search back detections and reverting to simple 200 ms blanking following a QRS

detection reduces the detection delay to 195 ms at the expense of reduced sensitivity and positive
predictivity. With the detection threshold adjusted to minimize the number of false detections, the
sensitivity drops to 99.2% and the positive predictivity drops to 99.5%. A better approach to the
design of a short detection delay algorithm would be to use the full algorithm to set thresholds for
a simple, short delay detection scheme.

3.5 A PIC16F877 QRS detector
We were curious about whether we could fit our QRS detector into a microcontroller with limited
resources such as the PIC16F877. Our algorithm was originally developed [6] to run on a Z80
processor running at 4 MHz, the filters are implemented so that they only require shift and add
operations rather than multiplications of any precision, so we had little doubt whether the
algorithm would be efficient enough to run in realtime. Lack of RAM in the microcontroller
turned out to be a more critical limitation, necessitating some algorithm modifications. In the
process of investigating the effect of simplifying the QRS detector, we discovered a simplified

 8

version of the QRS detector actually performed better than the previous version of the detector.
We incorporated these simplifications into a QRS detector that is not specific to the PIC16F877 in
QRSDET2.CPP.

3.5.1 Algorithm Modifications for PIC implementation.
The PIC16F877 can only access 368 bytes of on board RAM. Because of this limited amount of
RAM there is no memory space in the 16F877 for the buffer of previous derivative values
necessary for distinguishing T-waves. After removing the T-wave discrimination, we discovered
that the beat detector performance on the MIT/BIH and AHA databases actually improved as long
as noise detections in the T-wave range (between 200 and 360 ms following a QRS) were not used
as search back candidates.

We also found that performance improved when the algorithm used the mean QRS peak,
noise peak, and RR interval rather than the median of these values for threshold calculation and
search back. Though it was possible to implement an efficient running median, it was much easier
to implement mean calculations on the 16F877. We had not examined the assumption that median
was better than mean for some time, and, apparently, algorithm changes that we have made in the
interim have made median calculation unnecessary.

Finally, we modified the filter and QRS detector implementations to make the PIC based QRS
detector more efficient. Array operations are not executed very efficiently with the 16F877 and
the CCS C compiler, and we found that the code executed much faster when we avoided the use of
arrays whenever possible.

3.5.2 Implementation and Testing
We implemented a version of our QRS detector on a PIC 16F877 processor running at 3.6864
MHz. The source code for this implementation is contained in PICQRS.C. We input ECG
samples to the PIC using its asynchronous serial port at 19.2 kbaud, and the QRS detector returned
detections using the same serial port. This allowed us to directly test the PIC-based detector with
data from the MIT/BIH arrhythmia database. Implementing a useful hardware beat detector would
require substituting A-to-D input from an ECG amplifier for the serial input data.

When implemented with the CCS PCM C compiler (version 3.093) the QRS detector program
required 290 bytes of RAM (79% of available RAM) and 2721 bytes of ROM (33% of available
ROM).

We were able to transmit ECG data and receive output from the PIC QRS detector at an
average rate of 631 samples per second. Considering that the processed data was actually sampled
at 200 samples per second, this indicates that the 16F877 was able to process ECG data three
times faster than real time. However, this processing rate was probably more limited by our
transmission strategy than by processing time. To allow Windows to run while we were running
data through the processor we transmitted bursts of 35 samples every 50 ms. The typical
processing time for a single ECG sample was 1.09 to 1.18 ms. So, a 16F877 running at 3.6864
MHz and sampling data every 5 ms. would only use approximately 23% of its processing power
for beat detection.

The following tables list our test results using the PIC based algorithm. Rather than test the
PIC based algorithm directly on the PIC processor (which would have required roughly eight
hours for the MIT/BIH data), we ran the PIC C code on a PC. Before testing we ran the PIC and
the PC side by side on select records to confirm that the two implementations produced identical
beat detections.

The performance of the PIC based detector is comparable to that of other variations of our
QRS detector, achieving a sensitivity and positive predictivity of 99.80 on the MIT/BIH ECG

 9

data. The algorithm produced a significant number of false detections on record 7210 of the AHA
database. The annotations on this record place the detection marks early on the beat, while our
algorithm places detection marks on the end of the beat. Because the beats are wide, a significant
number of late detections produced both false negative and false positive detections. Disregarding
these detections, the performance of the algorithm was in line with our previous algorithm
versions.

3.6 Beat Detection and EC13
The Association for the Advancement of Medical Instrumentation (AAMI) has developed a
standard for the performance of cardiac monitors, heart rate meters, and alarms. This standard is
known as ANSI/AAMI EC13:1992 (American National Standard: Cardiac Monitors, Heart Rate
Meters, and Alarms) and is available from AAMI (www.aami.org). EC13 addresses a wide range
of issues such as patient electrode connections, devise labeling, defibrillator overload protection,
and display bandwidth. A portion of the standard specifies minimum performance standards for
QRS detection in these devices.

While our original beat detector worked well on the MIT/BIH database and the AHA
database, until recently, we had never checked to see whether it met all the requirements of EC-13.
When we tested the algorithm against the EC13 requirements, we found that the algorithm
required a few adjustments, but these adjustments did not significantly affect the database
performance of the algorithm.

3.6.1 EC13 QRS Detector Requirements
The EC13 standard specifies a representative QRS and T-wave waveform and requires that QRS
detectors reliably detect:

• QRS complexes with amplitudes ranging from 0.5 to 5 mV and widths ranging from 70
to 120 ms;

• QRS complexes in the presence of 100 uV peak-to-peak 60 Hz noise; and
• QRS complexes in the presence of 0.1-Hz, 4 mV peak-to-peak triangle waves.

EC13 specifies that QRS detectors should not detect:
• QRS complexes with amplitudes of less than 0.15 mV, and
• 1 mV QRS complexes with widths less than 10 ms.

Additionally, EC13 specifies that QRS detectors should accurately detect QRS complexes at rates
as high as 250 beats-per-minute (bpm), and should not report heart rates lower than 250 bpm when
rates as high as 300 bpm occur. Finally, manufactures should test the detectors tolerance for tall
T-waves and report the amplitude of the tallest T-wave, following a 1mV, 100 ms QRS complex,
that does not produce a false detection.

3.6.2 EC13 Testing
We generated a set of MIT/BIH database files with the test waveforms specified by EC13, and
tested our beat detector on these waveforms. These files are:

Ec13_1 – EC13_27: Simulated ECGs with amplitudes from 0.5 to 5 mV, widths
from 70 to 120 ms, and rates from 30 to 200 bpm.

EC13_28: Simulated ECG at 300 bpm.
EC13_29: Simulated ECG with QRS amplitude of 0.5 mV, QRS width of

100 ms, rate of 80 bpm, and 60 Hz noise with a p-p of 400 uV.

 10

EC13_30: ECG with a QRS amplitude of 0.5 and width of 100 ms and 4
mV p-p triangle wave with a frequency of 0.1 Hz.

EC13_31-EC13_39: ECG with amplitude of 0.15 mV; widths of 70, 100 and 120
ms; and rates of 30, 80, and 200 bpm.

EC13_40,EC13_41: ECG with a QRS amplitude of 1 mV and a QRS width of 10
us at 30 and 200 bpm.

EC42: ECG with QRS amplitude of 1 mV, QRS width of 100 ms,
and a T-wave that increases from 0.2 to 1.2 mV in amplitude.

These files are available on in a separate download from our source code. We simulated these
signals at a sample rate of 1000 Hz to facilitate down sampling to lower sample rates, and tested
our algorithm at a sample rate of 200 Hz.

3.6.3 Algorithm Modifications for EC13
We ran the simplified algorithm (QRSDET2) on the EC13 test records. The algorithm had no
trouble reliably detecting all the QRS complexes at rates of up to 200 bpm. The algorithm passed
the drift tolerance test (triangle wave noise) and the 60 Hz noise tolerance tests without
modification. In fact the algorithm tolerates 60 Hz noise with peak-to-peak amplitudes as large as
1 mV. Because the tall T-wave test allows the T-wave to gradually increase from 0.2 mV to 1.2
mV, the algorithm adapts to the changes in T-wave amplitude and ignores simulated T-waves as
large as 1.2 mV. The algorithm, however, required modifications to reliably detect QRS
complexes at 300 bpm. The algorithm also required modifications to avoid detecting low
amplitude and narrow QRS complexes.

At 300 bpm, there is only 200 ms between QRS complexes, so beats fall within the blanking
window of surrounding beats. The algorithm would detect one QRS complex, but ignore the next
because it occurred within 200 ms, thus skipping every other beat. The resulting heart rate would
be reported as 150 bpm, violating the EC13 specification. To avoid this problem, we reduced the
blanking interval from 200 ms to 195 ms.

Our original algorithm had no lower limit on acceptable beat amplitudes. EC13 specifies a
lower limit on beat amplitudes to prevent ECG monitors from reporting beat detections when only
noise is present but the patient’s heart is not beating. Similarly, narrow pulses, as might be
produced by a pacemaker are attenuated by the beat detection filters, but they can still produce
large enough lumps in the filtered signal to cause beat detections. The 150 mV QRS, 80 ms, QRS
complexes produced peaks in the filtered signal of 4 with an input resolution of 5 uV/LSB. The
10 ms, 1 mV QRS complexes produced peaks in the filtered signal of 7 with an input resolution of
5 uV/LSB. We set the lower detection threshold limit to 7 so that the algorithm would ignore
these signals.

After modifying the algorithm to pass the EC13 requirements we adjusted the detection
threshold coefficient to minimize the total false negative and false positive detections on the
MIT/BIH database. With a threshold coefficient of 0.3125, the algorithm had a sensitivity of
99.77% and a positive predictivity of 99.79%. Without modification, the algorithm’s sensitivity
and positive predictivity were 99.81% and 99.81%, only slightly better than the performance for
the EC13 conforming algorithm.

3.7 Beat Detection Performance
When applied to channel 1 of the MIT/BIH arrhythmia database with the data resampled at 200
samples-per-second and a 5-minute interval for initialization, the detector produces 235 false
positive detections and 176 false negative detections. This represents a sensitivity of 99.74% and

 11

a positive predictivity of 99.80% . Similarly, the beat detector had a sensitivity of 99.74% and a
positive predictivity of 99.76% when tested on the AHA ECG database. When QRS detection is
performed as part of beat classification, the results are slightly different because, as part of beat
classification, the beat classification software makes a more careful estimate of the fiducial mark
or R-wave location.

This QRS detector has been tuned to 200 sample-per-second data from the MIT/BIH
database. How it performs on other ECG databases depends on the database, but it should work
very well under normal conditions. The algorithm has not been rigorously tested under the type of
noise conditions that might occur during a stress test. It is my experience that under noisy
conditions, algorithms perform better if they rely more heavily on the assumption that the R-to-R
interval is regular. Because this assumption is not true for many of the MIT/BIH database tapes,
this algorithm only makes loose assumptions about regularity.

 12

4.0 Beat Classification
When a beat is detected it is classified as either a Premature Ventricular Contraction (PVC), a
normal beat, or an unknown beat type. As mentioned previously a PVC represents any beat of
ventricular origin, a normal beat is any contraction of non ventricular origin, and the unknown
classification is used when the beat classifier has not been running long enough to make a
decision.

Our beat classification strategy is probably the same as that used for most commercial
arrhythmia detection systems. When a beat is detected it is characterized by a number of features
such as width, amplitude, and R-to-R interval. The beat is also compared to previously detected
beat types. If the beat closely matches a previously classified beat type, the beat takes on the
classification of its matching type. Otherwise, the beat is classified based on its beat features, the
features of the beat type that the algorithm judges to be the dominant normal type, and the general
signal conditions. The following documentation details the beat features used for classification,
our methods for matching beats to previously detected beat types, our rules for selecting the
dominant normal beat types, and the classification rules that we use.

4.1 Beat And Signal Features
Our beat classification algorithm only uses a small number of features to characterize individual
beats. These include width, rhythm classification, similarity to the dominant beat shape, and noise
content. The width and rhythm classification are considered relative to the width and rhythm
classification that applies to the dominant beat type. Beat widths and polarities are estimated by
the function AnalyzeBeat in analbeat.cpp, rhythm classification is handled by the function
RhythmChk in rythmchk.cpp, low-frequency noise is estimated by the function NoiseCheck in
noisechk.cpp, high-frequency noise estimation is handled by HFNoiseCheck in classify.cpp, and
shape similarity is handled by either DomCompare or DomCompare2 in match.cpp

4.1.1 Beat width
Beat width refers the width of the QRS complex. Width is a fundamental feature used for
classifying beats. Normal beats tend to be narrower (less than 100 ms) than ventricular beats, and
ventricular beats tend to be wider.

We estimate the QRS onset and offset points two different ways. First we search out from the
fiducial point (detection point from the beat detector) until we find a region that precedes the QRS
complex and a region that follows the QRS complex where at least 5 samples are within a 100 uV
range. This gives us a first estimate of the QRS onset and offset. We then estimate QRS onset
and offset based on the slopes of the QRS complex.

In obtaining a slope based estimate, we first search the QRS complex for maximum and
minimum slopes. We use ¼ of the smaller magnitude of the maximum positive and maximum
negative slopes as a slope threshold. Searching out from the center of the QRS complex we
estimate onset and offset points as points where at least three samples have slopes with
magnitudes that are less than the slope threshold.

 If the isoelectric onset and offset estimates are within 25 ms of the slope based onset and
offset estimates, we use the isoelectric onset and offset estimates, otherwise we use the slope
based onset and offset estimates. Finally, if the offset is significantly lower that the onset, we
search for a maximum slope between the offset point and the end of the beat and move the offset
to a point where the slope is half that value.

 13

4.1.2 Rhythm Classification
During a regular rhythm, ventricular beats often occur prematurely. Actually, the coupling
interval between a normal beat and a ventricular beat tends to be fixed for ventricular beats that
originate from a given site. If the normal R-to-R interval is less than the coupling interval, the
ventricular beats do not tend to occur because the normal contraction occurs first. If the normal R-
to-R interval is longer than the coupling interval, the ventricular beat occurs earlier than a normal
beat would have occurred.

As a feature of each beat, we characterize the interval from the previous beat to the present
beat as either NORMAL, PVC, or UNKNOWN. A classification of NORMAL indicates that the
beat was either part of a regular rhythm, or it was a normal beat that followed a ventricular beat.
A rhythm classification of PVC indicates that the beat was either a premature contraction
following a normal contraction or a ventricular beat that is part of a string of ventricular beats. A
rhythm classification of UNKNOWN indicates that the present rhythm is so irregular that it is
unclear whether the present beat is premature or not.

In the function that classifies R-to-R intervals, intervals are actually characterized as NN for
two consecutive normal beats, NV for a normal beat followed by a ventricular beat, VN for a
ventricular beat followed by a normal beat, VV for a pair of ventricular beats, and QQ for an
interval where it is not clear from the rhythm what either beat represents. NN and VN intervals
are represent NORMAL intervals, NV and VV intervals represent PVC intervals, and QQ intervals
represent UNKNOWN intervals.

We consider a string of beats to be part of a regular rhythm when at least four intervals occur
where each pair of consecutive intervals matches. For rhythm classification we consider that two
intervals match when they are within 12.5% of the average of the two intervals.

We consider an interval to be an NV interval when the interval follows an NN interval and is
less than 75% of the preceding interval.

Following an NV interval, the next interval is classified as VV if it matches the previous NV
interval. The next interval is classified as VN if it is longer than the previous interval.

Our rhythm classification function also recognizes VN and NV intervals when they are part of
a bigeminal rhythm (ventricular beats alternating with normal beats). The classification function
assumes that bigeminy is occurring when over six intervals alternate intervals match but
consecutive intervals do not match. The shorter intervals are then classified as NV and the longer
intervals are classified as VN.

Finally, the rhythm classification function recognizes the rhythm pattern NNVNNNV when
the previous interval was classified as QQ. This pattern is characterized two matching NN
intervals, two matching NV intervals that are shorter than the NN intervals, and two VN intervals
that are longer than the NN intervals.

The rhythm classification could be extended to recognize other complex rhythm patterns in
the QQ state (such as NNVNNV), this would allow more rapid initialization of the rhythm
classification when PVCs are occurring frequently, but it has the potential to produce false rhythm
classifications during irregular rhythms such as atrial fibrillation of flutter.

4.1.3 Low Frequency Noise
We try to characterize the lower frequency noise by examining the signal between the end of the
T-wave of the previous beat and the beginning of the P-wave of the beat being classified. Low
frequency noise generally results from movements that deform the electrode or the skin around the
electrode.

We estimate the end of the T-wave as the beginning of the first isoelectric segment that
follows the fiducial point by at least 300 ms.. We estimate the beginning of the P-wave as the first

 14

isoelectric segment that is at least 250 ms before the fiducial mark. If we find an isoelectric
segment at 250 ms, we search inward from there to find the isoelectric region that is closest to the
onset of the QRS complex.

If there is space between the T-wave of the previous beat and the P-wave of the present beat,
the noise in the segment is characterized by the maximum and minimum signal values divided by
the segment length. If the segment is longer that 250 ms the noise measurement is made using
only the 250 ms that precedes the P-wave.

4.1.4 High Frequency Noise
High-frequency noise is generally produced by muscle contractions close to the electrodes. We
characterize the high-frequency noise surrounding a QRS complex beat by the maximum signal
level of a bandpass filtered version of the beat outside the QRS complex.

4.2 Beat Matching
The file match.cpp contains the functions that handle matching beats to previously detected beats.
Functions in match also handle storage of beat features that are associated with different beat
types.

4.2.1 Beat Comparison
Beat matching is done by comparing beats sample point by sample point after aligning the beats
and removing any constant difference between beats. In the present implementation, we represent
beats with 100 sample long buffers of data that have been down sampled from 200 samples-per-
second to 100 samples-per-second by averaging consecutive samples. The detection point as
indicated by the QRS detector is 400 ms (FIDMARK) from the beginning of the buffer. Though
we represent beats with 1000 ms sample buffers, we only compare 300 ms (MATCH_LENGTH)
of data centered on the detection point.

The functions CompareBeats and CompareBeats2 compare pairs of beats to each other. In
CompareBeats the second beat is scaled so that its amplitude (max – min) matches the first beat.
CompareBeats then calculates the point-by-point sums and absolute differences for the two beats
for five different relative shifts and saves the sum and difference for the relative shift that
produced the smallest total difference. We use the ratio of the sum of the absolute differences to
the sum of the absolute sums as indication of the similarity between beats. The similarity metric is
also divided by the MATCH_LENGTH so that it is insensitive to changes in MATCH_LENGTH.

CompareBeats2 differs only slightly from CompareBeats. CompareBeats2 does not scale
the second beat before comparing beats. In this way the similarity measure returned by
CompareBeats is blind to amplitude differences between beats, but the similarity measure
returned by CompareBeats2 takes amplitude differences into account.

4.2.2 Rules for Matching Beats
The rules for deciding whether a beat matches any of the previously encountered beat types are
implemented in Classify. The function BestMorphMatch (morph is short for morphology here)
compares a new beat to templates of all the preceding beats and returns the index of the template
that best matches the new beat. BestMorphMatch initially compares the new beat to all
templates using CompareBeats. If the beat closely matches two different templates,
BestMorphMatch matches the new beat to the template which produced the best match with
CompareBeats2.

 15

BestMorphMatch also returns the two similarity indexs for the two beats. If the match
indexes are small enough and the beat is not premature, the new beat is considered to be of the
same type template indicated.

When a beat matches a template the function UpdateBeatTypes is called to average the new
beat into the template. UpdateBeatTypes performs an interative average by adding 7/8ths of the
template to 1/8th of the new beat. If, however, the new beat is the only second beat, half the
template is added to half the new beat. I tried combining 3/4ths of the template with 1/4th of the
new beat for the third and fourth beats, but this hurt performance of the algorithm.

UpdateBeatTypes also calculates the beat width and polarity for the new average template
and stores the type of beat that preceded the new beat.

If either match index is too large or the beat is premature and the amplitude sensitive match is
too large, the new beat is considered to be a new beat type and the new beat is used to start a new
beat template. However, if the beat is judged to be both noisy and regular a new beat type is not
initialized because we assume that it is just a normal beat that would have matched if it weren’t for
the noisy conditions.

4.2.3 Combining Similar Templates and Eliminating Templates
Memory limits can produce problems for beat classification algorithms that use template
matching. Low levels of noise can cause multiple beat types and templates to be created for what
are actually beats of the same type. This can quickly use up whatever space was allocated for beat
template storage. If space is allocated for a large number of templates, comparing beats to a large
number of possible matches can significantly eat into available processing time.

In an effort to reduce the number of redundant templates that are created, BestMorphMatch
also detects when two templates are similar enough that they can be combined to reduce memory
usage. If a new beat closely matches two different beat types, BestMorphMatch compares those
two types to each other. If the two types match closely enough, they are combined, freeing up
memory for a new template type.

If the maximum number of beat types has already been detected and a new beat is detected
that does not match any of the beat types, the new beat is substituted for the beat type that has
been detected the fewest number of times. If two beats types have been detected an equal number
of times, the new beat is substituted for the beat type that was least recently detected.

4.3 Dominant Normal Beat Selection
New beats are classified as NORMAL or PVC largely based on how they compare to the
dominant normal beat type. Dominant beat selection is handled primarily by the function
DomMonitor in classify.cpp. DomMonitor keeps track of the beat types, rhythm classifications,
and beat classifications for the most recent 180 beats.

In deciding which is the dominant normal beat, DomMonitor uses a simplified set of rules to
classify beats. The rules that DomMonitor uses are biased in favor of misclassifying some normal
beats in order to be sure that ventricular beats are not classified as normal. DomMonitor classifies
beats as normal if:

• The rhythm is NORMAL, the beat width is less than 120 ms, and there have been at least
two in a row of this type; or

• The previous beat was within the P-R interval of this beat and the one before that was the
same type (this rule allows for accidental detections of P-waves on 108).

DomMonitor chooses the dominant normal type as the beat type with the most beats

classified as normal out of the last 180 beats. If there aren’t any beat types that have had at least

 16

half of their beats classified as normal in the last 180 beats, or the most frequently occurring beat
type in the last 180 beats occurred at least twice as often as the most frequently occurring normal
beat type, DomMonitor selects as dominant the type that has occurred most frequently since the
beginning of the record.

4.4 Dominant Rhythm
DomMonitor also characterizes the general rhythm. If the rhythm is regular, than the premature
occurrence of a beat indicates that the beat is abnormal. However, if the dominant rhythm is
irregular (as occurs during atrial fibrillation of flutter) than the relative prematurity of a beat does
not tell us much about whether or not the beat is normal. DomMonitor classifies the dominant
beat type as regular if at least 60 (IRREG_RR_LIMIT) of the last 180 (DM_BUFFER_LENGTH)
R-to-R intervals were classified as UNKNOWN (QQ).

4.5 Beat Classification
Beat classification is handled by the function Classify in classify.cpp. After a beat has been
matched (or not matched) to a beat type it is classified as NORMAL, PVC, or UNKNOWN. If the
type that the beat was matched to has been classified as NORMAL or PVC, the beat takes on the
classification of its type. If the beat type has not been classified, but the three of the last four or
six of the last eight of this type were classified as PVCs by post classification, then the beat is
classified as a PVC. Otherwise, the beat is classified according to its features relative to the
features of the dominant normal beat.

4.5.1 Type Classification
When a beat is matched to a type that does not have a classification yet, Classify attempts to
classify the type. A type is classified as NORMAL if:

• There have been at least four in a row and the width for the QRS is less than 20 ms wider
than the dominant type; or

• No dominant type has yet been found and there have been at least six in a row; or
• The beats of this type are NORMAL rhythm beats in bigeminy.

Types are only classified as PVC if they occur as the premature beats in a bigeminal rhythm.
If a beat type has occurred at least 10 times in the last 180 beats, none of the beats appear to

be normal (regular with width less than 130 ms), and the type has previously been set to
NORMAL, DomMonitor resets the type classification to UNKNOWN.

4.5.2 Post Classification
Post classification attempts to more accurately classify beats types and rhythms by using
information from the following beat. It is easier to detect a premature R-to-R interval followed by
a compensatory pause than it is to decide whether a given interval is premature. A running record
of the post classifications for the last eight beats of each beat type is used to determine a post
classification for that beat type. This classification may change whenever a new beat of a given
type is detected.

A beat is considered by post classification to have a PVC type rhythm if the preceding R-to-R
interval is less than 87.5% of the R-to-R interval that preceded it and the following R-to-R interval
is 12.5% larger than the R-to-R interval that preceded the interval that preceded the beat. If a beat

 17

has a PVC type rhythm and is preceded and followed by the dominant beat type, it is post
classified as a PVC. Also, if a beat is significantly different in shape (amplitude sensitive
similarity index > 2.5) and it is preceded and followed by the dominant beat type, it is classified as
a PVC.

4.5.3 Beat Classification
If a beat is does not match a previously classified type it is classified according to a set of rules
that are part of the function TempClass. The rules in TempClass are arranged in an if-else
structure as follows:

• If no dominant beat type has been identified, classify the beat as UNKNOWN;
• If the dominant rhythm is normal, the dominant beat type doesn't vary much, this beat is

premature and looks sufficiently different than the dominant beat classify as PVC;
• Else, if the beat is sufficiently narrow (< 90 ms), classify as NORMAL;
• Else, if the beat cannot be matched to any previously morphology and it is not

premature, consider it NORMAL (probably noisy);
• Else, if the maximum number of beat types have been stored, the beat is not regular or

premature and only one beat of this morphology has been seen, call it normal (probably
noisy);

• Else, if this beat looks like the dominant beat and the rhythm is regular, call it
NORMAL;

• Else, if the post classification rhythm is normal for this type and its shape is close to the
dominant shape, classify as NORMAL;

• Else, if the beat is not premature, it looks similar to the dominant beat type, and the
dominant beat type is variable (noisy), classify as NORMAL;

• Else, if this beat is significantly different from the dominant beat, there have previously
been matching beats, the post rhythm classification of this type is PVC, and the
dominant rhythm is regular, classify as PVC.

• Else, if the beat is wide (> 110 ms), wider than the dominant beat (at least 40 ms),
doesn't appear to be noisy, and matches a previous type, classify it as a PVC.

• Else, if the dominant rhythm is regular and this beat is premature then classify as PVC.
• Else, if the beat is regular and the dominant rhythm is regular call the beat NORMAL.
• Else, if the beat is wider than the dominant normal beat type, wider than 100 ms , and

significantly different from the dominant beat, call it a PVC.
• Else, if the beat is sufficiently narrow (< 100 ms), call it NORMAL.
• Else, if the beat isn't much wider (< 20 ms) than the dominant beat classify it as

NORMAL.
• Else, if the beat is similar to the dominant beat, call it NORMAL.
• Else, if the beat is noisy, we can't trust our width estimate and we have no useful rhythm

information, so guess NORMAL.
• Else, classify it as a PVC.

When a rule indicates that a beat or beat type should be similar to normal, this means that the
amplitude sensitive similarity index for the beat compared to the dominant beat is must be below a
given threshold.

 18

5.0 Adapting Beat Detection and
Classification for Different Sample Rates
As of release 1.2, two #define statements allow the beat detection and beat classification functions
to be changed to accommodate different sample rates. The SAMPLE_RATE constant defined in
qrsdet.h specifies the base sample rate for the software. This is the rate at which data should be
passed to QRSDet or BeatDetectAndClassify. The BEAT_SAMPLE_RATE constant defined in
bdac.h specifies the sample rate for the beat templates used for beat classification.

In our original implementation, the base sample rate was set to 200 samples-per-second and
the beat sample rate was set to 100 samples-per-second. Comparing beats at a lower temporal
resolution reduced the processing time required for classification without significantly changing
the classification performance. We down sampled beats before classifying them by averaging
pairs of beat samples. Down sampling is taken care of by the function DownSampleBeat in
bdac.cpp.

If you wished, for example, to run the beat detection at 250 samples-per-second and the beat
classification at 125 samples per second, you would change SAMPLE_RATE to 250 and
BEAT_SAMPLE_RATE to 125. Because the beat sample rate is half the base sample rate,
DownSampleBeat would not need to be changed. If, on the other hand, you wanted to run the beat
detector at 1000 samples-per-second because that was the base sample rate for your system, but
you still wanted to classify beats using 100 samples-per-second beat templates, you would have to
change SAMPLE_RATE to 1000, leave BEAT_SAMPLE_RATE at 100, and modifiy
DownSampleBeat to average 10 consecutive samples of the input beat to produce a single sample
of the output beat.

5.1 Performance at Different Sample Rates
We have designed the software so that all filter lengths and time related constants scale with
sample rate changes so that the constants and filter lengths are equivalent to the constants and
filter lengths in the original 200/100 samples-per-second implementation. Ideally,
implementations at other sample rates would perform the same as the 200/100 samples-per-second
implementation, but round off approximations in constants and filter lengths result in slight
differences in performance. Table 1 lists the sensitivities and positive predictivities for beat
detection and beat classification on the MIT/BIH database and the AHA database (through 7210)
for three combinations of base rate and beat rate. Table 2 lists the sensitivities and positive
predictivities for beat detection alone on a wider range of sample rates. Performance differences
only seem significant when the base sample rate is dropped as low as 100 or 125 SPS.

TABLE 1: Beat Detector and Classifier Performance at Different Sample Rates
 MIT/BIH Database AHA Database
Base
Rate

Beat
Rate

QRS
Sens.

QRS
+Pred.

PVC
Sens.

PVC
+Pred.

QRS
Sens.

QRS
+Pred

PVC
Sens.

PVC
+Pred.

200 100 0.9975 0.9981 0.9371 0.9664 0.9977 0.9979 0.9343 0.9787
250 125 0.9974 0.9981 0.9359 0.9597 0.9975 0.9979 0.9287 0.9784
300 150 0.9974 0.9979 0.9303 0.9665 0.9976 0.9979 0.9284 0.9833

TABLE 2: Beat Detector Performance at Different Sample Rates

 MIT/BIH Database AHA Database

 19

Sample Rate QRS Sens. QRS +Pred. QRS Sens. QRS +Pred.
100 0.996856 0.997905 0.995839 0.996423
125 0.997426 0.998257 0.99666 0.996788
150 0.997458 0.998016 0.997429 0.997652
175 0.997601 0.998093 0.997119 0.997268
200 0.997426 0.998071 0.997397 0.997588
225 0.997228 0.997994 0.997268 0.997769
250 0.997502 0.99806 0.997087 0.9973
300 0.99736 0.998016 0.99745 0.997897
325 0.997448 0.997874 0.997578 0.997684
360 0.997535 0.998038 0.997503 0.997865

5.1 Optimization at Different Sample Rates
In generalizing the QRS detection filters in qrsfilt.cpp, we substituted division operations for some
operations that had been implemented as shifts. In a processor with limited power, this will slow
the execution of the filter functions. In lpfilt, the division in:

output = y0 / ((LPBUFFER_LGTH*LPBUFFER_LGTH)/4);

only serves to scale the filter output, substituting the shift operation that provides the closest
approximation to this operation will speed the operation up without a significant change in
performance. Similarly, in hpfilt the operation:

z = data[halfPtr] - (y / HPBUFFER_LGTH);

can be speeded up by choosing HPBUFFER_LGTH to be the closest power of 2 to the optimal
buffer length. This would allow the division to be implemented with a shift operation.

The algorithm may be tuned for better performance with different base frequencies by
experimenting with different values for the many constants used in classification. At a given base
frequency, there may be constant values and filter lengths that were not possible to use with a base
sampling frequency of 200 samples-per-second, but it is hard to say whether this type of tuning
actually represents an improvement in the algorithm performance.

 20

6.0 Easytest & Bxb
We have included the source code for two applications that we have used to test our beat detection
and classification software, easytest.cpp and bxb.cpp.

Easytest uses the beat detection and classification functions to analyze records from either the
MIT/BIH database or the AHA database and creates an annotation record for each file containing
the beat detections and classifications for that record. The annotation files produced by easytest
have the extension “.ate” (atest) and are copied into the same directory as the database files.

Bxb.cpp is a modified version of the bxb.c distributed as a utility application with the WFDB
library on physionet.org. The original bxb.c uses a command line interface and compares beat-by-
beat annotations in two annotation files. Our version of bxb does not take any input and compares
“.ate” (generated by easytest) and “.atr” annotation files for all records in the MIT/BIH database or
35 minute files through 7210 in the AHA database.

Bxb creates two output files, adstat.txt and testrpt.txt. Adstat.txt contains a summary listing
of the results for each file in the format:

<record> <QRS TP> <QRS FN> <QRS FP> <PVC TP> <PVC FN> <PVC FP>

testrpt.txt contains a more detailed record of the types of detection errors for each record.
Easytest requires the following files to be compiled and linked together:

Easytest.cpp
Bdac.cpp
Classify.cpp
Rytmchk.cpp
Noisechk.cpp
Match.cpp
Postclas.cpp
Analbeat.cpp
Qrsfilt.cpp
Qrsdet.cpp
Wflib.lib

Wflib.lib is a library of functions for accessing the database files. I used Turbo C++ to compile
this library from the WFDB source code available on www.physionet.org. You may wish to
compile your own WFDB library from more recent versions of the source code. Bxb only requires
the files bxb.cpp and wflib.lib.

Both easytest and bxb were written to run on a PC under windows and look for MIT/BIH
database files in the directory “c:\mitdb\”. Easytest and bxb look for AHA database files in the
directory “c:\AHA Database\.” You may either create these directories and copy the database files
into them, or you can change the define statements at the top of easytest and bxb to the names the
directories containing database files on your system. Note that the directory names in the define
statement need double backslashes because they are C strings, and the “c:\AHA Database\”
directory is represented as “c:\\AHAdat~1\\” because of the way windows represents directory
names containing spaces and more than eight characters.

Easytest and bxb are configured to analyze the MIT/BIH data. If you comment out the line:

#define MITDB

 21

http://www.physionet.org/

in easytest and bxb and recompile, easytest and bxb will analyze the AHA data.

 22

References
[1] Moody, G.B., Mark, R.G., “Development and evaluation of a 2-lead ECG analysis program,”

Computers in Cardiology. 1982; 39-44.
[2] Forbes, A.D., Helfenbein, E.D., Heumann, J.M., Jimison, H.B., Lindauer, J.M., Platt, J.S.,

“Ambulatory arrhythmia analysis: a dual-channel, Baysian approach,” Computers in
Cardiology. 1985; 373-375.

[3] Hu, YH., Palreaddy, S., Tompkins, W.J., “A patient-adaptable ECG beat classifier using a
mixture of experts approach,” IEEE Trans. Biomed Eng., BME-44, pp. 891-899, 1997.

[4] Wieben, O., Tompkins W.J., Afonso, V.X., “Classification of PVCS with a fuzzy logic
system,” Proceedings-19th International Conference-IEEE/EMBS, pp. 65-67, 1997.

[5] Afonso, V.X., Wieben, O., Tompkins, W.J., Nguyen, T.Q., Luo, S., “Filter bank-based ECG
beat classification,” Proceedings-19th International Conference-IEEE/EMBS, pp. 97-100,
1997.

[6] J. Pan and W.J. Tompkins, “A real-time QRS detection algorithm,” IEEE Trans. Biomed. Eng.,
vol. BME-32, pp. 230-236, 1985.

[7] P.S. Hamilton and W.J. Tompkins, “Quantitative investigation of QRS detection rules using
the MIT/BIH arrhythmia database,” IEEE Trans. Biomed Eng., vol. BME-33, pp. 1157-1165,
1986.

[8] Tompkins WJ (ed.). Biomedical Digital Signal Processing: C-Language Examples and
Laboratory Experiments for the IBM PC. 1993. Englewood Cliffs, NJ: PTR Prentice Hall.

[9] J. L. Urrusti and W. J. Tompkins, “Performance evaluation of an ECG QRS complex
detection algorithm,” Proc. Annual International Conference of the IEEE Engineering
inMedicine and Biology Society, pp. 800–801, 1993.

 23

Appendix A: Database Results
Table A1 presents the QRS detection and beat classification performance for the open source ECG
analysis software on individual records from the MIT/BIH arrhythmia database. The base sample
rate was 200 Hz and the beat sample rate was 100 Hz for the results shown in A1. QTP, QFN, and
QFP represent QRS complex True Positive, False Negative, and False Positive detections.
Similarly VTP, VFN, and VFP represent True Positive, False Negative and False Positive
detections for classification of ventricular beats.

Though ventricular classification results are shown for records that include paced beats (102,
104, 107, and 217) the totals for ventricular classifications do not include these records. Also,
though the beat detector only requires eight seconds to initialize and the classifier generally only
requires six normal beat detections before beginning beat classification, results in TABLE A1
allowed for a 5 minute learning period.

TABLE A1: MIT/BIH Arrhythmia Database Results

Record QTP QFN QFP VTP VFN VFP
100 1901 1 0 1 0 0
101 1523 0 2 0 0 2
102 1820 1 0 3 0 0
103 1728 1 0 0 0 0
104 1856 1 2 0 1 2
105 2153 2 42 18 11 38
106 1694 2 0 455 5 1
107 1783 1 0 49 8 0
108 1475 5 71 4 9 11
109 2098 1 0 28 4 0
111 1775 1 0 1 0 4
112 2110 1 0 0 0 0
113 1505 1 0 0 0 0
114 1602 2 2 30 0 5
115 1636 1 0 0 0 0
116 1996 21 4 97 1 2
117 1283 1 0 0 0 0
118 1916 0 0 11 2 0
119 1660 1 0 364 0 0
121 1558 2 0 1 0 0
122 2053 1 0 0 0 0
123 1266 3 0 0 3 0
124 1365 2 0 33 14 0
200 2164 4 1 669 31 2
201 1479 42 0 196 2 41
202 1866 5 0 13 2 12
203 2449 32 19 253 120 32
205 2199 2 0 62 3 0

 24

207 1591 1 2 93 16 3
208 2415 22 5 803 21 2
209 2518 1 1 0 1 5
210 2184 20 3 140 25 5
212 2284 1 0 0 0 0
213 2697 3 0 184 11 3
214 1877 1 1 200 12 0
215 2794 1 0 128 3 1
217 1841 4 1 119 21 0
219 1772 1 0 45 6 0
220 1693 1 0 0 0 0
221 2016 4 0 313 3 0
222 2108 8 12 0 0 10
223 2197 2 0 403 52 3
228 1702 1 13 298 4 2
230 1858 1 0 1 0 0
231 1277 1 0 0 0 0
232 1485 0 2 0 0 5
233 2559 2 0 679 13 4
234 2291 0 0 3 0 0

TOTAL: 91072 212 183 5526 374 193

Table A2 lists the beat detection and beat classification results for the non-paced records in the
first 70 records of the AHA ECG database. These results were obtained using a base sample rate
of 200 Hz and a beat sample rate of 100 Hz.

TABLE A2: AHA ECG Database Results

Record QTP QFN QFP VTP VFN VFP
1201 1621 1 0 0 0 0
1202 2594 1 1 0 0 1
1203 2180 0 1 0 0 0
1204 2950 24 8 0 0 38
1205 2552 1 1 0 0 116
1206 2121 1 1 0 0 0
1207 1535 0 1 0 0 0
1208 2447 1 0 0 0 0
1209 3580 2 2 0 0 16
1210 1987 5 87 0 0 25
2201 2874 1 1 73 0 0
2203 2412 1 1 13 0 0
2204 3412 98 34 37 1 13
2205 1627 0 13 58 1 5
2206 1611 1 1 269 0 3
2207 3286 1 1 276 0 0

 25

2208 2853 1 0 308 0 0
2209 2413 1 2 144 0 0
2210 2534 2 4 79 0 5
3201 2173 2 2 26 0 0
3202 2942 1 1 59 0 0
3203 1949 0 2 30 5 3
3204 1876 1 1 72 7 0
3205 1781 2 1 6 8 4
3206 3244 1 1 113 0 0
3207 2322 2 1 25 2 0
3208 2423 1 0 115 0 0
3209 2583 1 1 61 1 0
3210 2449 22 1 81 0 1
4201 1931 1 1 441 0 0
4202 2370 6 2 106 14 1
4203 2581 0 1 21 453 0
4204 2257 0 3 109 0 2
4205 1439 12 1 134 12 0
4206 1946 0 2 156 0 5
4207 3516 2 3 639 3 1
4208 1876 1 1 25 0 0
4209 2366 5 0 823 4 1
4210 2905 1 1 586 98 2
5201 2079 177 1 57 178 5
5202 2349 2 1 161 3 3
5203 2371 1 0 4 0 0
5204 2286 1 1 360 0 0
5205 1805 0 1 314 2 0
5206 2067 0 3 44 1 1
5207 2921 2 1 46 0 0
5208 1844 1 1 34 1 0
5209 2163 1 1 11 0 0
5210 2015 1 1 355 0 3
6201 2499 1 0 41 5 0
6202 1952 1 1 235 2 4
6203 2696 2 1 153 4 3
6204 2249 1 1 127 9 0
6205 2293 1 1 204 0 0
6206 2775 7 1 357 3 2
6207 2043 1 0 463 0 0
6208 2357 1 1 47 4 0
6209 2495 5 6 743 7 5
6210 3287 2 0 382 12 1
7201 3158 4 2 638 12 0
7202 2127 0 0 217 2 0

 26

7203 2531 1 1 139 31 1
7204 1925 1 1 40 2 0
7205 2436 1 6 143 25 3
7206 3107 1 1 1882 2 0
7207 2339 1 5 93 0 5
7208 1558 7 1 34 7 0
7209 2863 33 11 1590 48 10
7210 1741 13 2 16 2 5

TOTAL: 93518 473 238 13815 971 293

 27

Appendix B: Database Results with QRSdet2.

TABLE B1: QRSDet2 MIT/BIH Arrhythmia Database Results

Record QTP QFN QFP VTP VFN VFP
100 1901 1 0 1 0 0
101 1523 0 1 0 0 1
102 1820 1 0 3 0 0
103 1728 1 0 0 0 0
104 1855 2 3 0 1 3
105 2152 3 47 17 12 38
106 1695 1 1 457 3 1
107 1784 0 0 49 8 0
108 1473 7 53 9 4 20
109 2098 1 0 28 4 0
111 1775 1 0 1 0 4
112 2110 1 0 0 0 0
113 1505 1 0 0 0 0
114 1599 5 2 30 0 5
115 1636 1 0 0 0 0
116 1997 20 1 97 1 1
117 1283 1 0 0 0 0
118 1916 0 1 11 2 0
119 1660 1 0 364 0 0
121 1558 2 0 1 0 0
122 2053 1 0 0 0 0
123 1269 0 0 3 0 0
124 1366 1 0 34 13 0
200 2165 3 2 665 35 2
201 1494 27 0 197 1 59
202 1866 5 0 13 2 12
203 2450 31 14 250 123 26
205 2199 2 0 62 3 0
207 1591 1 0 102 7 3
208 2423 14 6 816 8 3
209 2518 1 2 0 1 5
210 2158 46 3 121 44 5
212 2284 1 0 0 0 0
213 2698 2 0 185 10 3
214 1877 1 1 200 12 0
215 2794 1 0 128 3 1

 28

217 1842 3 0 121 19 0
219 1773 0 0 45 6 0
220 1693 1 0 0 0 0
221 2016 4 0 313 3 0
222 2108 8 42 0 0 15
223 2197 2 0 403 52 3
228 1702 1 5 298 4 2
230 1858 1 0 1 0 0
231 1277 1 0 0 0 0
232 1485 0 4 0 0 6
233 2559 2 0 679 13 4
234 2291 0 0 3 0 0

TOTAL: 91074 210 188 5534 366 219

TABLE B2: QRSDet2 AHA Database Results.

Record QTP QFN QFP VTP VFN VFP
1201 1621 1 1 0 0 1
1202 2594 1 1 0 0 1
1203 2180 0 1 0 0 0
1204 2947 27 4 0 0 37
1205 2553 0 1 0 0 117
1206 2121 1 1 0 0 0
1207 1535 0 1 0 0 0
1208 2447 1 0 0 0 0
1209 3580 2 3 0 0 10
1210 1983 9 122 0 0 40
2201 2874 1 1 73 0 0
2203 2412 1 1 13 0 0
2204 3402 108 39 37 1 11
2205 1627 0 15 58 1 5
2206 1611 1 1 269 0 3
2207 3286 1 1 276 0 0
2208 2853 1 0 308 0 0
2209 2413 1 2 144 0 0
2210 2534 2 5 79 0 6
3201 2173 2 2 26 0 0
3202 2942 1 1 59 0 0
3203 1949 0 3 30 5 3
3204 1876 1 1 72 7 0
3205 1781 2 1 6 8 4
3206 3244 1 1 113 0 0
3207 2322 2 2 25 2 1
3208 2423 1 0 115 0 0

 29

3209 2582 2 2 61 1 1
3210 2449 22 2 81 0 2
4201 1931 1 1 441 0 0
4202 2371 5 4 108 12 2
4203 2581 0 1 21 453 0
4204 2257 0 2 109 0 1
4205 1439 12 1 134 12 2
4206 1946 0 9 156 0 11
4207 3516 2 4 639 3 1
4208 1876 1 3 25 0 1
4209 2366 5 0 823 4 1
4210 2905 1 1 586 98 2
5201 2072 184 1 51 184 5
5202 2349 2 1 161 3 3
5203 2371 1 0 4 0 0
5204 2286 1 1 360 0 0
5205 1805 0 1 314 2 0
5206 2067 0 7 44 1 5
5207 2921 2 1 46 0 0
5208 1844 1 1 34 1 0
5209 2163 1 1 11 0 0
5210 2015 1 1 355 0 1
6201 2499 1 0 41 5 0
6202 1952 1 1 235 2 4
6203 2696 2 1 153 4 3
6204 2249 1 1 127 9 0
6205 2293 1 1 204 0 0
6206 2775 7 0 357 3 1
6207 2042 2 0 462 1 0
6208 2357 1 1 47 4 0
6209 2495 5 6 742 8 4
6210 3288 1 0 382 12 1
7201 3159 3 2 641 9 0
7202 2127 0 0 217 2 0
7203 2531 1 1 139 31 1
7204 1925 1 1 40 2 0
7205 2436 1 10 152 16 2
7206 3107 1 1 1882 2 0
7207 2339 1 6 93 0 6
7208 1564 1 1 40 0
7209 2884 12 11 1612 26 10
7210 1752 2 1 16 2 162

TOTAL: 93502 457 301 13849 937 471

1

 30

Appendix C: PIC 16F877 QRS detector
results

TABLE C1: PIC QRS Detector MIT/BIH database results.

Record QTP QFN QFP

100 1901 1 0
101 1523 0 2
102 1820 1 0
103 1728 1 0
104 1849 8 2
105 2149 6 52
106 1695 1 0
107 1782 2 0
108 1474 6 71
109 2098 1 0
111 1775 1 1
112 2110 1 0
113 1505 1 0
114 1602 2 1
115 1636 1 0
116 1993 24 2
117 1283 1 0
118 1916 0 0
119 1661 0 0
121 1558 2 0
122 2053 1 0
123 1269 0 0
124 1366 1 0
200 2164 4 1
201 1494 27 0
202 1866 5 0
203 2457 24 19
205 2199 2 0
207 1592 0 2
208 2425 12 6
209 2518 1 3
210 2193 11 3
212 2284 1 0
213 2699 1 0
214 1877 1 1
215 2794 1 0

 31

217 1841 4 1
219 1773 0 0
220 1693 1 0
221 2020 0 0
222 2099 17 5
223 2198 1 0
228 1702 1 6
230 1859 0 0
231 1277 1 0
232 1485 0 2
233 2559 2 0
234 2291 0 0

TOTAL: 91105 179 180

TABLE C2: PIC QRS Detector AHA database results.

Record QTP QFN QFP
1201 1621 1 1
1202 2594 1 1
1203 2180 0 1
1204 2956 18 15
1205 2553 0 1
1206 2121 1 1
1207 1535 0 1
1208 2448 0 0
1209 3580 2 2
1210 1989 3 63
2201 2874 1 1
2203 2413 0 4
2204 3401 109 53
2205 1627 0 10
2206 1612 0 1
2207 3286 1 1
2208 2845 9 9
2209 2414 0 2
2210 2534 2 27
3201 2173 2 2
3202 2942 1 1
3203 1949 0 3
3204 1877 0 1
3205 1781 2 1
3206 3244 1 1
3207 2322 2 5
3208 2423 1 0
3209 2583 1 1

 32

 33

3210 2449 22 3
4201 1931 1 1
4202 2368 8 2
4203 2581 0 1
4204 2257 0 3
4205 1439 12 1
4206 1945 1 2
4207 3516 2 4
4208 1877 0 3
4209 2366 5 1
4210 2906 0 1
5201 2083 173 3
5202 2350 1 1
5203 2372 0 0
5204 2286 1 1
5205 1805 0 1
5206 2067 0 2
5207 2921 2 1
5208 1844 1 1
5209 2163 1 1
5210 2016 0 1
6201 2499 1 1
6202 1952 1 1
6203 2696 2 1
6204 2250 0 1
6205 2293 1 1
6206 2775 7 1
6207 2043 1 0
6208 2358 0 1
6209 2497 3 4
6210 3288 1 0
7201 3160 2 2
7202 2127 0 0
7203 2532 0 1
7204 1925 1 1
7205 2436 1 5
7206 3107 1 2
7207 2339 1 5
7208 1560 5 1
7209 2789 107 108
7210 1752 2 3

TOTAL: 93512 525 382

	Table of Contents
	1.0 Introduction
	2.0 Software Overview
	2.1 File Listing
	2.2 File Dependencies
	2.3 Beat Detection and Classification API
	2.3.1 BeatDetectAndClassify
	2.3.2 ResetBDAC
	2.3.3 QRSDet

	3.0 Beat Detection
	3.1 The Filters
	3.2 Detection Rules
	3.3 Threshold Estimation
	3.4 Detection Delay
	3.5 A PIC16F877 QRS detector
	3.5.1 Algorithm Modifications for PIC implementation.
	3.5.2 Implementation and Testing

	3.6 Beat Detection and EC13
	3.6.1 EC13 QRS Detector Requirements
	3.6.2 EC13 Testing
	3.6.3 Algorithm Modifications for EC13

	3.7 Beat Detection Performance

	4.0 Beat Classification
	4.1 Beat And Signal Features
	4.1.1 Beat width
	4.1.2 Rhythm Classification
	4.1.3 Low Frequency Noise
	4.1.4 High Frequency Noise

	4.2 Beat Matching
	4.2.1 Beat Comparison
	4.2.2 Rules for Matching Beats
	4.2.3 Combining Similar Templates and Eliminating Templates

	4.3 Dominant Normal Beat Selection
	4.4 Dominant Rhythm
	4.5 Beat Classification
	4.5.1 Type Classification
	4.5.2 Post Classification
	4.5.3 Beat Classification

	5.0 Adapting Beat Detection and Classification for Different Sample Rates
	5.1 Performance at Different Sample Rates
	
	
	MIT/BIH Database
	AHA Database

	5.1 Optimization at Different Sample Rates

	6.0 Easytest & Bxb
	References
	Appendix A: Database Results
	Appendix B: Database Results with QRSdet2.
	
	
	
	
	TABLE B1: QRSDet2 MIT/BIH Arrhythmia Database Results

	Appendix C: PIC 16F877 QRS detector results

