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Abstract 
 

Existing studies on speaker identification are mostly 
performed on telephone and microphone speech data, 
which are collected with subjects close to the sensor. For 
the first time, this study reports long range standoff 
automatic speaker identification experiments using laser 
Doppler vibrometer (LDV) sensor. The LDV sensor 
modality has the potential to extend the speech acquisition 
standoff distance far beyond microphone arrays to enable 
new capabilities in automatic audio and speech 
intelligence, surveillance, and reconnaissance (ISR).  Five 
LDV speech corpuses, each consists of 630 speakers, are 
collected from the vibrations of a glass window, a metal 
plate, a plastic box, a wood slate, and a concrete wall, 
using Polytec LDV model OFV-505.  The distance from the 
LDV sensor to the vibration targets is 50 feet. State of the 
art i-vector speaker identification experiments on this LDV 
speech data show great promise of this LDV long range 
acoustic sensing modality. 
 

1. Introduction 
Acoustic ISR applications require high signal to noise 

ratio (SNR) speech signal acquisition from uncooperative 
individuals at long distance, in covert mode, and sometimes 
without directly line of sight to the subject.  Existing 
standoff speech acquisition method uses microphone array 
to enhance SNR, but still has very limited range due to the 
quick drop of speech pressure as it propagates through the 
air. In addition, the speech signals acquired by the standoff 
microphone array are contaminated by acoustic noise near 
the signal source, or near the sensor, or along the path 
between the sensor and the source. Furthermore, when the 
speaker is inside a building or vehicle without direct line of 
sight, the microphone array often can’t collect usable 
speech. As such, most reported studies on microphone 
array speaker identification had very limited range and 
accuracy. For example, McCowan used microphone array 
to speaker distance of 70cm in a conference room setting 
[1]. Wang studied microphone array to speaker distance up 
to 3 meters [2]. Mematollahi gave an overview of distant 

speaker recognition, where different datasets and 
technologies were reviewed for this interesting 
non-intrusive speaker identification application domain. 
Equal Error Rate (EER) around 10% were achieved at 6 
feet microphone to source distance [3]. 

LDV provides an alternative means of distant speech 
acquisition based on Doppler effect. The voice source 
signal can cause vibrations of any surrounding objects. 
Such vibrations are usually at a micrometer or even 
nanometer scale.  The displacement and speed of these 
small vibrations can be captured using a LDV, which is 
detailed in section 2.1.  The captured vibrations thus 
represent the voice source, similar to electrical signals 
generated by microphone membrane vibration.  In contrast 
to microphone speech, the LDV captured vibration signal 
can be very close to the voice source, thus the SNR is not 
impacted much by the noise close to the LDV sensor and 
only impacted by noise close to the source. The LDV 
speech sensing modality is thus much less sensitive to 
environmental noise and can acquire better quality data at a 
much longer standoff distance.   In addition, the laser can be 
chosen at the infrared range, offering covert operation 
capability.  Furthermore, the voice of a subject inside a 
building can still cause micro-vibrations on window, 
blinds, wall, etc, thus LDV is capable of ‘listening’ without 
direct line of sight to the voice source.  

The idea of sound vibration measurement from a 
distance using infrared beam and laser is not new. In fact, 
LDV has found many applications in aerospace, acoustic, 
architecture, and automotive, to name just a few.  Perhaps 
the most well-known use of laser microphone is in the 
spycraft, dating from early 1960s to the more recent capture 
Osama bin Laden [12][13].  In the field of biometrics, LDV 
was applied to short range standoff cardiac biometric 
identification [14].        

However, there is no published work on using LDV for 
long range standoff automatic speaker identification.   
Existing preliminary studies using LDV for speech sensing 
has limited to audio event detection [4] and as an aid for 
speech detection [5].  In this work, we report a large scale 
speech vibration data acquisition using LDV from five 
different targets at 50 feet distance. Automatic speaker 
identification experiments are conducted to show the 
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promise of LDV long range standoff voice sensing 
modality for ISR applications. 

The rest of the paper is organized as follows: Section 2 
details the first large scale LDV speaker recognition data 
acquisition from five different vibration materials. Section 
3 characterizes these LDV speech data. Section 4 describes 
different LDV speaker identification experimental setups 
and results. Section 5 discusses the current research and 
future directions. Section 6 concludes this work. 

2. Standoff LDV Speech Data Collection 
As LDV is a relatively new modality for the speech 

community, a short introduction of its principle of 
operation is first given in section 2.1. This is followed by 
some details of the LDV system used in this study, 
described in section 2.2.  As no public LDV data exists for 
speaker identifications study, a LDV speech corpus is 
developed based on TIMIT speech corpus, detailed in 
section 2.3. 

2.1.  LDV Fundamentals 
The basic LDV principle of operation is illustrated in 

Figure 1. The LDV sensor head generates a laser source 
signal at frequency 𝑓𝑓0, which first passes through a beam 
splitter and then a Bragg cell to have frequency shifted by 
𝑓𝑓𝑏𝑏 [6]. The laser beam coming out of the LDV sensor head 
at frequency 𝑓𝑓0 + 𝑓𝑓𝑏𝑏  travels through the air, till it hits a 
vibrating surface.  The wavelength of laser beam can be 
chosen depending on the application. For example, infrared 
laser can be used for covert operation.  For ultra-long 
standoff range applications, a long range focal lens can be 
added to the sensor head, as shown in Figure 1. 

 
Figure 1: LDV Principle of Operation. 

The motion of the vibration surface causes a Doppler 
shift, 𝑓𝑓𝑑𝑑, to the laser beam, given by  
                     𝑓𝑓𝑑𝑑 = 2 ∗ 𝑣𝑣(𝑡𝑡) ∗ cos(𝜃𝜃)

𝜇𝜇
                                      (1) 

, where 𝑣𝑣(𝑡𝑡) is the vibrating velocity, 𝜃𝜃  is the angle 
between the laser beam and viberating surface, and 𝜇𝜇 is the 
laser wavelength. As such, the laser should be 
perpendicular to the surface to achieve the maximum 
dynamic range. Light scatters from the vibrating surface, 
but only some portion of it is reflected back into the sensor 
head, which is sensed by a photo detector and eventually is 
used to decode the 𝑓𝑓𝑑𝑑.  The strength of the returned signal 
thus depends on the reflective property of the target.  To 

achieve very good signal return, a retro-reflective tape can 
be put on the vibrating surface.  The photo detector can 
sense the frequency-modulated signal at frequency 𝑓𝑓𝑏𝑏+𝑓𝑓𝑑𝑑, 
with carrier frequency 𝑓𝑓𝑏𝑏 and modulation frequency 𝑓𝑓𝑑𝑑 . 
This modulated signal is further fed to a demodulator to 
extract signal of interest, i.e., the speed and displacement of 
the vibration. This vibration represents the speech source 
signal.  

2.2. PolyTec LDV Data Acquisition System 
This study uses a LDV sensor head, model OFV-505, from 
Polytec. The sensor head, with dimension of 4.7 x 3.1 x 
13.6 (inch) and weight 3.4kg, offers a visible laser beam at 
wavelength 633 nm. The measurable vibration bandwidth 
is 0.05Hz to 1MHz and the best resolution can be down to 
0.05 µm/s.  The laser energy is less than 1 mW and is 
eye-safe [7]. The maximum achievable standoff distance is 
about 300 meters, if used with a super long range focal lens 
and a good reflective surface. In this pilot study, data 
collections are performed at 50 feet distance and no long 
range focal lens is used.   

The output of the LDV sensor head is connected to a 
modular vibrometer controller, i.e., Polytec model 
OFV-5000. It has four internal slots for velocity and 
displacement decoders. In this experiment, the decoded 
analog velocity output from the decoder is directly fed into 
a laptop audio input through a BNC connector. The 
OFV-5000 data collection sensitivity was set to 0.2 mm/s/v. 
The controller tracking speed is set to slow and the 
bandpass frequency range is set to 100Hz to 5 kHz.  

2.3. LDV Speech Corpus Development 
Although this paper reports standoff LDV speaker 
identification, the corpus was designed with both speaker 
ID and speech recognition applications in mind. As the 
TIMIT corpus offers a very balanced phoneme text and a 
large pool of 630 subjects [8], it was chosen to create the 
first LDV counterpart datasets.  The conceptual setup of the 
data acquisition system is shown in Figure 2. The laptop 
plays the whole TIMIT corpus sentence by sentence using a 
Harman/kardon speaker. The played speech wave causes 
vibration of a surrounding target. The vibration of the 
surrounding target is captured by the standoff polytec LDV 
sensor system at 50 feet distance. The decoded speed of 
vibration analog signal is recorded by the laptop’s sound 
card and saved as 16 Khz wave file.  

To study the feasibility of speaker identification using 
LDV based on vibration from various targets, this data 
collection experiment considered five targets: a glass 
window, a metal plate, a large plastic box, a wood slate, and 
a concrete basement wall. The sound level of speaker was 
at normal 50~60 dB range. The distance from the speaker to 
vibrating source is about 3 to 6 feet. The distance varied for 
different targets to avoid LDV signal saturation.  For all 
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target types, a retro-reflective tape is applied to the LDV 
targeting spot and the LDV sensor head to target distance is 
fixed at 50 feet.  The use of retro-reflective tape is feasible 
for audio surveillance application of a known area.  For ISR 
application to inaccessible area, more advanced LDV 
models that do not need retro-reflective tape should be 
used.  This experiment was conducted in a basement and 
contains occasional background noise from heating system, 
water heater, and human walking on the floor above.   

 

 
Figure 2: Automatic LDV dataset collection system. 
 

3. LDV Speech Signal Characterization 

3.1. LDV Speech Signal and Spectrum 
The acquired LDV signal represents the underlying speech 
waveform.  Each vibrating material functions as a new type 
of acoustic transducer, similar to the microphone 
membrane. However, each material type has very different 
vibrating characteristic and frequency response, causing 
very different LDV speech spectrum. The speech contents 
are intelligible in all cases.  Figure 3 illustrate a 
comparison of the original TIMIT microphone speech and 
LDV speech collected from five different targets, 
representing the same utterance in TIMIT corpus 
(TRAIN/DR1/FCJF0/SA1.wav).  The plots show that the 
original TIMIT microphone speech spectrum is impacted 
differently by each target material and often results in loss 
of spectrum contents.  

3.2. LDV Speech Feature Extraction 
As the LDV speech signal are intelligible and representing 
voice signature similar to microphone speech, the standard 
Mel-Frequency Cepstral Coefficient (MFCC) is used in this 

study as a baseline to extract feature for gender and speaker 
recognition.   
 

 
Figure 3: Microphone and LDV speech signals and spectrogram 
plots show different transducer effect.  

4. Standoff Speaker Recognition Experiment 

4.1. Same Material Recognition Experiment 
As shown in session 3.1, the transducer effects of different 
target material are very different.  The first experiment is to 
demonstrate speaker recognition feasibility using LDV 
speech, with training and testing data from the same type 
of material.  The KALDI speech recognition toolkit is used 
to conduct i-vector based gender and speaker recognition 
experiments [9][10].     Specifically, for each material type, 
the collected LDV TIMIT dataset is used to build models 
in following steps:  
1. MFCC features are extracted with delta feature added, 

mean normalized, and unvoiced frames are removed. 
2. Use the original training and testing data partition in 

the TIMIT dataset for this experiment. 
3. Build a gender-independent universal background 

model (UBM) with 1024 mixture of Gaussian using 
the training data. Start with a diagonal model and then 
train a full covariance model. 

4. Partition the data into male and female subset for both 
training and testing set. Adapt the gender independent 
GMM to build gender-dependent full covariance 
UBM. 

5. Gender identification experiment is run on the full test 
set, including both male and female subjects, 
consisting of 1680 tests, based on likelihood ratio on 
the two gender-dependent UBMs. 

6. Build i-vector extractor using male subjects’ training 
data. The i-vector dimension is kept at 400. 

7. For each male subject in the test set, the first 8 
utterances are used to create a single i-vector model, 
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representing that subject. The rest two utterances are 
used to create two test i-vectors.  

 
Without loss of generality, speaker recognition 
experiments are only conducted on male subjects’ data. 
The full 112 male subjects in the test set are use in all the 
speaker authentication experiments. Two types of tests are 
performed: 
1. Conduct speaker authentication experiment by 

computing the cosine distance of each test i-vector 
against all speaker models in the test set. For the total 
112 male subjects in the test set, 25,088 (=112*2*112) 
total cosine similarity scores are generated to compute 
final EER. 

2. Linear Discriminative Analysis (LDA) is further 
applied to the i-vectors to reduce the i-vector 
dimension to 50.  This step further enhances speaker 
authentication accuracy. The cosine distance is then 
applied to the dimension-reduced i-vectors and the 
EER are computed the same way. 

 
The gender recognition and speaker authentication 

EERs for each target material are reported in Table 1.  The 
accuracies using TIMIT microphone speech under the 
same parameter settings are also included in last row of 
Table 1 for comparison. Although the standoff LDV 
recognition results are not in par with close-talk 
microphone data, these results show great promise of using 
LDV for long range standoff speaker recognition 
applications. It also shows that LDA on i-vector helps with 
the recognition accuracy in most cases. 

Table 1: Gender Identification and Speaker 
Authentication EER (%) using LDV Speech Collected 
from Five Different Targets and the Original TIMIT 

Microphone Speech Data (last row). 

Vibrating 
Material 

Gender ID Speaker 
Authentication 

i-vector LDA 
Glass Window 2.7 12.1   9.4 

Metal Plate       16.1 13.4  9.8 
Plastic Box 4.6  7.6   6.3 
Wood Slate 5.4  9.8   8.5 

Concrete Wall 12.4 10.7  10.7 
LDV Average 8.2 10.7  8.9 
Microphone  1.3 1.8   0.9 

4.2. Mixed Data Recognition Experiment 
Previous same material recognition experiment shows that 
the LDV speech data does not perform as good as the 
original TIMIT microphone speech data.  This could due to 
a few factors: 1) The TIMIT data was collected in a 
well-controlled noise free environment, while these LDV 
datasets are collected in a low noise environment. 2) The 
targets selected are common real-life objects and are not 

good vibrators compared with microphone membrane. 
This results in much lower signal dynamic range, 
especially for the concrete wall case. 3) The transducer 
effects of these targets results in information loss at various 
frequency range, as shown in Figure 1.  

The goal of this experiment is to leverage LDV data 
collected from all targets to enhance gender identification 
and speaker authentication accuracy for testing data from a 
specific target.  The experimental set up is similar to 
section 4.1.  The major difference is that the training data 
from five material are mixed together to train one i-vector 
model and one LDA model. The trained model is then 
applied separately to the same five test sets defined in 
section 4.1.  

In addition, we applied Probabilistic Linear 
Discriminative Analysis (PLDA) algorithm to learn a 
speaker discriminative transfer while coping with noise 
and five different transducer effects from these five 
different materials. The idea is to gain performance by 
learning the speaker information embedding dimensions in 
the i-vector space [11].   

The results of this mixed data training are shown in 
Table 2. Compared with results in Table 1, the gender 
identification EER was reduced by 18.3%, relatively.  
Note, 1024 mixtures of Gaussian was used in both 
experiments.  Increasing the number of Gaussian mixture 
may further help accuracy as there are richer statistics to be 
modeled in this mixed data case.  On average, the mixing 
of training data helps the i-vector and i-vector+LDA 
speaker authentication accuracy. 

The PLDA on i-vector further improves the LDA based 
EER by 20%, relatively.  The PLDA system achieves an 
average EER of 6.4% on the standoff LDV speech data. 
These results brings LDV based long range standoff 
gender and speaker recognition EER closer to a practical 
useable range for intelligence, surveillance, and 
reconnaissance applications. 

Table 2: Gender Identification and Speaker 
Authentication EER (%) by Mixing LDV Speech Collected 
from Five Different Targets. The last row show relative 

average EER reduction compared with Table 1. 

Vibrating 
Material 

Gender 
ID 

Speaker Authentication 
i-vector LDA PLDA 

Glass Window 4.9   9.8  6.7 5.4 
Metal Plate   12.5 11.2  12.5 9.8 
Plastic Box 3.2 4.9   4.9 3.6 
Wood Slate 3.4 8.5  5.4 4.0 

Concrete Wall 9.4  9.8   10.7 9.4 
LDV Average 6.7 8.8 8.0 6.4 

EER Reduction 18.3 17.8 10.1 N/A 
 

The corresponding Detection Error Tradeoff (DET) curves 
for these five datasets are plotted in Figure 4, showing the 
tradeoff between the False Rejection Rate (FRR) and False 
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Acceptance Rate (FAR).  The results show that the metal 
plate LDV data performs worse than the concrete wall LDV 
data. This appears to be counter intuitive.  Further analysis 
on the LDV audio from metal target shows echo noise in 
some cases. This could due to the fact that the small metal 
plate was attached a water pipe, which introduced acoustic 
echoes not shown in other target cases.  

 
Figure 4: Standoff speaker authentication DET curve using LDV 
speech from five different targets. All results are based on PLDA 
algorithm with mixed training data collected from 50 feet 
distance.  
 

4.3. Cross Material Recognition Experiment 
Although the results of previous sections showed great 
promise of using LDV for long range standoff gender and 
speaker recognition, these studies assume a pre-defined 
vibrating targets. In real-world open field applications, the 
LDV system may not encounter the exact same vibrating 
target, and even the same type of material may not be 
available to acquire the data.   The real application would 
require the system to work with arbitrary vibrating target 
available surrounding the subject, which may have a very 
different transducer effect on the LDV speech.  Instead of 
collecting data from an exhaustive list of common targets, it 
will be ideal to have the algorithm provides reasonable 
good performance for a completely new object. The 
purpose of this across material recognition experiment is to 
provide such a baseline for further research in this 
direction.   

In this setting, the gender and speaker recognition are 
conducted on each type of targets, but the models are 
trained on the rest four other types of material.  This 
represents an extreme case where the testing target is a new 
material, thus provides a lower bound on the performance 
achievable on a new target.  All parameter settings are the 
same as the previous two experiments.  

The cross material recognition experimental results are 
summarized in Table 3.  The last row show the absolute 

ERR degrades in all case, compared with mixed-trained 
results shown in Table 2. It is worth to mention that the 
PLDA algorithm significantly helps the LDV speaker 
recognition even under this unforeseen transducer effect 
testing condition. The final 10% EER serves as a 
performance lower bound, giving us some confidence to 
apply this LDV technology in an uncontrolled standoff 
speaker recognition settings. Note that the gender 
recognition is still based on the simple GMM likelihood 
ratio test and could poetically perform much better with 
i-vector, i-vector with LDA, and i-vector with PLDA 
technologies. 

Table 3: Gender Identification and Speaker 
Authentication EER (%) when Models Are Trained 

with LDV Speech Collected from Other Four 
Different Targets. The last row show absolute 
average EER increase compared with Table 2. 

Vibrating 
Material 

Gende
r ID 

Speaker Authentication 
i-vector LDA PLD

A 
Glass Window 22.5 20.5 15.6 8.0 

Metal Plate   24.9 19.2 17.0 15.6 
Plastic Box 4.1 13.4 8.9 7.1 
Wood Slate 11.5 18.3 10.3 8.9 

Concrete Wall 12.1 21.9 19.2 10.3 
LDV Average 15.0 18.6 14.2 10.0 
EER Increase 8.3 9.8 6.2 3.6 

 

5. Discussions and Future Research 
This research provides the first comprehensive LDV 
speech corpus for long range standoff audio ISR research.  
The proposed algorithmic approaches show that LDV 
speaker recognition accuracy is close to an applicable 
range for ISR applications.  Future LDV data collection 
effort should further extend the standoff range to 100 feet, 
200 feet, and beyond. In addition, data should be collected 
in a complete uncontrolled outdoor environments under all 
weather conditions.  

Algorithmically, future researches are needed to further 
address LDV specific signal processing and feature 
extraction approaches to improve this MFCC feature 
baseline.  In the LDV speaker model domain, advanced 
approach in deep neural network may further improve 
performance. In addition, domain transfer and cross view 
approaches may be applied to better leverage correlation 
between the LDV and microphone speech data corpus. 

From an application domain perspective, the developed 
technologies in speaker recognition can be applied to other 
domains, such as long range standoff automatic speech 
recognition, language identification, and vehicle 
classification based on vibration signals [15].  These have 
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important applications in civil surveillance, military ISR, 
and forensics.  
     From a system deployment perspective, a multi-model 
system is needed to integrate many other sub-system 
components, including automatic human subject 
localization, fast laser auto-focusing, best vibrating surface 
selection, real-time moving subjects tracking, 
environmental acoustic noise and air turbulence mitigation. 
These challenges are all need to be addressed for a fully 
functional long range acoustic LDV ISR system. 

6. Conclusions 
For the first time, this study proves the feasibility of 

automatic gender and speaker identification using LDV at a 
standoff range of 50 feet. Algorithmic advances show 
applicable performance under a loosely controlled setting 
from various vibrating surfaces. Further research are 
warranted for a fully functional long rang acoustic ISR 
system.  
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