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ABSTRACT 
 
 
 Propellant storage in space missions could be more efficient with the ability to 
control the bubbles within the storage tanks. One of the effective options is to control 
bubbles using acoustic fields.  
 
 The following work entails the study of the behaviour of a wall of a cubic test 
cell containing fluid media when subjected to acoustic fields of different parameters. 
These studies are characterized by the change in the wall displacement, using a 
Laser Doppler Vibrometer, a piezoelectric, a shaker and the acquisition instruments. 
Following these experiments, calculations are carried out to observe its 
displacements. These results are checked for reliability and repeatability using a 
shaker at low frequencies to confirm the correct performance of the Laser Doppler 
Vibrometer. A large part of this experiment, using the test cell, is carried out using 
different fluid media; Air, distilled water and a mix of both. 
 
 The results observed from the experimental study can be reviewed in three 
different parts. The first one, regarding the displacement, which is bigger in the face 
wall than in the back wall of the test cell and the maximum displacement is done 
above the focus of the vibration source. The second one, regarding the attenuation of 
the acoustic wave, it is observed that the attenuation coefficient is not constant along 
the test cell. The third one is with regards to the frequency applied in the acoustic 
field, where the resonant frequency of the test cell generates more displacement of 
the walls than the resonant frequency of the piezoelectric used.  
 
 The results obtained in this document are important for the future of long term 
storage of propellant in aerospace vehicles, especially in rigid tanks with a mixture 
liquid-gas submitted to vibrations. Also, they serve as an additional reference to the 
future work and development of space storage systems. 
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INTRODUCTION 
 
 

Laser Doppler Vibrometry is a non-destructive and non-contact method useful 
in the testing of mechanical properties in a wall separating two media [1]. This is an 
experimental method to study how mechanical energy, when transferred to different 
media, affects the receiving surface. This experiment will utilize this LDV technology 
coupled with the use of acoustic fields. Acoustics is the study of mechanical waves in 
gases, liquids, and solids originated from a sound. The acoustic wave is generated 
by the propagation of a mechanical perturbation, which in turn generates an acoustic 
field within a closed structure. 
 

Controlling bubbles within a fluid medium can help scientists improve the 
performance of many aerospace systems. Research has been done over the years 
to try to improve system applications such as fuel storage for rockets, for the 
continuity of human life in a space environment to be possible. One possibility to 
control bubble flow is to use acoustic fields. Nevertheless, these acoustic fields have 
effects on the surrounding environment as well. This document explains the 
experimental study that was carried out in order to analyse, using Laser technology, 
the effects of acoustic fields of various magnitudes, on a surface which contains a 
fluid media within it.  

 
To address the requirement of the effect of acoustic fields on surfaces 

containing fluids, research has to be done in this field of aerospace technology. This 
master thesis presents an experimental study which involves the transfer of 
mechanical energy from an acoustic field to the aluminium wall of an object under 
different conditions of fluid media.  
 

The goal of this project is to experimentally study the various effects that 
acoustic fields of varying parameters have on a defined test cell containing fluid 
media of different volumes, using Laser Doppler Vibrometry, in order to use this data 
in future scientific research involving acoustic behaviour on a rigid body containing 
fluids. 

 
The outline of the present work is divided into 4 chapters. In Chapter 1, the 

introduction to the topic and the different concepts applied are explained. This 
chapter is divided in two main parts. The first one related to the acoustic field, its 
principle and general applications. The second one is related with the principle of a 
Laser Doppler Vibrometer (LDV). The relation between both these parts is that an 
LDV can measure the displacement created on a surface due to the propagation of 
an acoustic wave, which is the main purpose of this work. 

 
In Chapter 2, the experiment is outlined, starting with the different devices 

used, and followed by the experimental set-up. In this case, there are two 
experimental set-ups which belong to two similar studies; one is related with a 
shaker, for low frequencies, and the second one uses a test cell, where when 
connected to a piezoelectric, an acoustic field is generated and passed through it. 
Due to the similarity of both experiments, after the experimental set-up, the 
experimental procedure and analysis of both cases are explained. 
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In Chapter 3, the results obtained from the experiments are presented and 

discussed. In this chapter, the information is divided into two main parts. The first part 
regards the study at low frequencies, corresponding to the shaker measurements. 
The second part regards high frequencies, corresponding to test cell measurements. 
 

Finally, in Chapter 4, all the main results obtained along the course of the 
experiments are reviewed and summed up in the conclusions. Furthermore, future 
lines of investigation regarding an acoustic field, and the use of an LDV to help 
understand its effects are outlined. 
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Chapter 1 
 

ACOUSTIC FIELDS AND THE LDV 
 
 

This chapter will outline the working principles of both, the acoustic field and the 
LDV. As can be seen later in this document, these two phenomena will work in 
cohesion with each other to complete the experiment.  
 
 

1.1. Acoustic Field 

 
Acoustics is known as the study of mechanical waves in gases, liquids, and 

solids originated from a sound. In this definition, the study of 
vibrations, ultrasound and infrasound are explained, which are named differently 
depending on their characteristics. The acoustic wave is generated by the 
propagation of a mechanical perturbation, which in turn generates an acoustic field 
within a closed structure. 

 
This section will explain, in detail, the definition of an acoustic wave, Bjerknes 

forces, and finally end with some applications of acoustic fields. 
 
 

1.1.1. Acoustic Wave 

 
As mentioned before, an acoustic wave is an oscillation of pressure, 

displacement and density which propagates through a solid, liquid, or gas due to a 
mechanical perturbation. This wave can be defined by its wavelength, its frequency 
and its amplitude of propagation.  
 

When the oscillation of an acoustic wave stays in the same position, it is called 
stationary wave, because it does not transport mass. In a contrary case, the wave is 
called a progressive wave. The variation of displacement with time that is followed by 
the acoustic wave is defined as: 

 

     (1.1) 
 

 
The displacement is done along the direction of the movement of the wave 

and produces a change in the acoustic pressure and density of the media. The 
acoustic pressure wave is phased at 90º with respect to the acoustic displacement 
wave. For that reason, the acoustic pressure obtained by an acoustic wave is defined 
as: 
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    (1.2) 
 
 

Where „ ‟ is the change in pressure with respect to the equilibrium position 

and „ ‟  is the maximum value of this change. This amplitude of pressure is related 

with the maximum amplitude of displacement „ ‟ by the density „ ‟ and the 

propagation velocity „ ‟.  
 

      (1.3) 
 
 

1.1.2. Bjerknes Forces  

 
Bjerknes proposed some forces based on the law of buoyancy for the bubble, 

which can be applied to the acoustic field inside a closed environment. The proposal 
states that the buoyancy is equal to the product of the acceleration of the translator 
motion, multiplied by the mass of water inside the closed structure [2]. This is known 
as the Bjerknes force on an air bubble, which is composed of by the volume of the 
bubble „ ‟ and the pressure gradient of the field applied „ ‟. Hence, the 
Bjerknes force is commonly expressed as: 
 

    (1.4) 
 
 

However, when a stationary acoustic field is applied, this primary Bjerknes 
force can produce two opposite phenomena on the bubble; the first one being the 
attraction of the bubble towards the pressure antinode and the second one, 
repulsion. The bubble will be attracted toward the pressure antinode when it is driven 
above its natural resonance frequency. Otherwise, the bubble will move towards the 
pressure node. Also, the secondary Bjerknes forces, which takes effect between two 
nearby bubbles, can also be influenced by some boundary conditions of 
neighbouring oscillating bubbles [3][6].  
 
 

1.1.3. Applications 

 
The amount of fields where acoustics can be applied is quite extended. Some 

examples include location purposes, as SONAR in submarines, or medical 
examinations, to get images of a fetus from a mother‟s womb. 

 
Regarding the study of fluids, which has become important in recent years 

owing to the increasing number of applications in this field, research and 
experimentation has been made. One example is the work done by Xi et al [4] who 
studied the interactions between bubbles and a surface experimentally and 
analytically. From this work they observed that the bubble trajectory depends on the 
acoustic pressure amplitude and the initial bubble size. Furthermore [3], they 
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continued to study a multi-bubble transport method by using an acoustic standing 
wave, from where, they observed the influence of primary Bjerknes force, secondary 
Bjerknes force, and buoyancy force on the bubble translation depends on the 
position of the target bubble in the acoustic field. 
 

Related with boiling, Douglas et al. [5] studied that enhancement of a bubble 
detachment process also suppresses the transition to film boiling. In microgravity 
conditions, some experiments have been done, such as one from Sitter et al. [6], who 
study the interaction between an acoustic field and a pool boiling system in normal 
gravity and microgravity, from which they observed that the acoustic force on a 
bubble plays the role of buoyancy in microgravity. 
 

Another interesting application and investigation done with both fields, fluids 
and acoustics, is the one from Asaki et al [7], where they trap a 5 mm air bubble, 
approximately, into a concrete location, within a steady wave, creating a stable 
levitation. Then, using an LDV, they measure the shape oscillations of the bubble in 
the levitator. This is an example of how two different areas, such as, in this case, 
acoustics and an LDV, can be a perfect conjunction for an experiment of this kind. In 
this direction, within the next sections, the principle of the LDV is explained. 

 
 

1.2. Laser Doppler Vibrometer (LDV) 

 
A Laser Doppler Vibrometer (LDV) has been developed with the aim of 

measuring the velocity and displacement of moving surfaces using a non-destructive 
and non-contacting method. Therefore, it has become a very useful laboratory tool 
for this purpose: detects the vibrations of the moving surface of an object. As 
explained in section 1.1, the wave of an acoustic field generates a vibration in the 
surfaces to which it is applied. This vibration can be analysed using an LDV device. 
In this section, the principle of the LDV and some applications are explained.  
 
 

1.2.1. Principle 

 
An LDV is an instrument for non-contact measurement of surface vibrations 

based on laser interferometry [8]. Its technology is based on the Doppler effect, in 
which it senses the frequency shift of back scattered light from a moving surface [9]. 
In other words, the light scattered from a moving object is frequency shifted with 
respect to the incident light [10] to calculate the velocity of the displacement of the 
moving surface. 
 

The Doppler effect is the apparent change in the frequency of a wave caused 
by the relative motion between the source of the wave and the observer. This 
phenomenon is observable when an ambulance passes close with its siren blaring. 
At the beginning, the listener can hear the high pitched siren as it approaches, and 
as it is moving away, the siren pitch changes the sound and it starts to lower. As can 
be observed in Figure 1.1, this phenomenon is caused due to the changing distance 
between the source of the waves and the observer. 
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Figure 1.1 The Doppler effect. 

 
 

To be able to determine the velocity of an object, the frequency shift has to be 
measured at a known wavelength. This is done in the LDV by using a laser 
interferometer [9]. 
 

The interferometer compares characteristics of an object beam with that of an 
internal reference beam which, in the case of an LDV, are the frequency and the 
phase. The frequency difference is proportional to the instantaneous velocity and the 
phase difference is proportional to the instantaneous position of the object [8]. The 
optical interference can be observed when two coherent light beams are made to 
coincide [8]. More details of the optical configuration of the interferometer from the 
LDV used are explained in section 2.1.3. 
 
 

1.2.2. Applications 

 
The LDV technology is widely used for different applications and fields. The 

primary applications of the LDV have been in the metal industries. One example is in 
the steel industry, where the biggest application is for measuring the length of hot 
steel for cut-to-length applications and the quality assurance on bar and structural 
steel rolling mills [10]. Nevertheless, nowadays the use of this device has been 
extended in other fields, such as scientific, medical, security and art.  
 

One important application is the aerospace and automotive field. LDV 
technology is used in order to check structural dynamics, quantifications of vibrations 
and fatigue of the materials and the components of the different vehicles. These tests 
are also applied on architecture, where the LDV is used for a structural analysis of 
the buildings, bridges and roads.  
 

Another application is related with acoustics; for example, in speaker design 
and musical instruments, which analyse the performance of new devices. There is a 
new application in the field of music and art, from the importance to correct and 
determine the state of conservation of artworks. This is an example of the work of 
Esposito (see [11] and [12]) and also Collini et al [13], where they propose this 
technology to analyse the preservation state of art, being helped by an acoustic 
sound (speakers). 



Acoustic fields and the LDV   7 

  
Regarding the mechatronics field, due to the presence of small components, 

which requires precision analysis, the LDV is a perfect in situ diagnostic method for 
structural health monitoring of Plasma Facing Components, to identify specific 
damage mechanisms including cracking and erosion, especially in elevated 
temperatures and also in the presence of high magnetic fields and neutrons. This 
example is of the work of Luna Innovations (see [14]). 
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Chapter 2 
 

EXPERIMENTS USING AN LDV 
 
 

As introduced in Chapter 3, acoustics is the study of a wave, which is 
propagated along an environment. This wave generates a movement depending on 
the environment in which is performed. If this wave is generated inside a test cell, its 
walls, as well as its contents, are going to be subjected to a vibrating movement.  

 
An LDV is a device which computes the velocity and displacement of a vibrating 

object at the level of μm, which cannot be recorded or analysed by a high speed 
camera. For that reason, an LDV is the best tool to measure the vibrating movement 
of the walls of an object, on which vibrations are generated due to an acoustic field. 

 
Nevertheless, before measuring the vibrating movement of the vibrating object 

due to an acoustic field, it is necessary to check the performance of the LDV with an 
object whose displacement can be recorded by a high speed camera. A shaker has 
been used at low frequencies to this purpose. Following this, a quite similar 
experiment has been done using a test cell at high frequencies. Therefore, in this 
chapter, the different devices and equipment used for both studies, followed by the 
experimental set-ups are introduced. Furthermore, the experimental procedure for 
the experiments and the experimental analysis in each experiment, with the different 
cases are studied. 
 
 

2.1. Experimental equipment  

 
 
2.1.1. Shaker 
 

The V200 Series electro-dynamic vibration generators are miniature units 
designed to reproduce a vibration environment under laboratory conditions. This 
device performs an oscillatory movement which can measure and calculate its 
displacement. The useful Frequency Range is 5-13000 Hz [15]. The reference object 
used is a screw of 3 grams in weight, to be able to record the movement using the 
camera and measure the velocity using the LDV. In Figure 2.1, the shaker used with 
a Laser beam focused on the screw head is shown. 
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Figure 2.1 Shaker with a Laser beam focused on the screw head. 

 
 
2.1.2. Test Cell 
 

The inner dimensions of the test cell used are 9x9x9cm, wherein the water is 
filled. The walls are 11x8cm. The Test Cell is connected to a Piezoelectric with epoxy 
glue. The Piezoelectric is the device which generates the acoustic field inside the test 
cell and it has a radial resonance frequency of 53 kHz, and a lateral resonance 
frequency of 680-750 kHz. A picture of the Test Cell is shown in Figure 2.2.  
 

 

 

Figure 2.2 Test cell. 

 
 
2.1.3. Laser Doppler Vibrometer 
 

The Laser Doppler Vibrometer is used to measure the displacement of the 
walls of the test cell, generated by the piezoelectric and the screw head from the 
shaker. The model used in this experiment is a Polytec Laser Doppler Vibrometer 
which consists of a Controller OFV-3001 and a Sensor Head OFV-303. 
 

The sensor head emits a beam of Helium-Neon (He-Ne) laser, focused on the 
object of study. The beam is then scattered back from the surface and coupled back 
into the interferometer, on the sensor head [8]. The laser in the sensor head needs a 
time period of 20 minutes to achieve certain optimum stability, and to make the first 
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measurements in thermal equilibrium with the LDV surroundings [8]. A schematic 
connection of signals in the sensor heads are shown in Figure 2.3. 
 
 
 

 

Figure 2.3 Signals from the laser beam emitted and received at the sensor head OFV-303 
[8]. 

 
 

In this system, velocity and displacement measurements are carried out by the 
LDV using a modified Mach-Zehnder interferometer; a device used to determine the 
relative variations between two parallel beams split from a single source. The He-Ne 
laser beam is send to the first beam splitter, BS1, which splits the beam into two 
different paths: the object beam and the reference beam [8]. The optical configuration 
in the sensor head is shown in Figure 2.4. 

 
 

 

Figure 2.4 Optical configuration of the interferometer in the sensor head OFV-303 [8]. 
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As can be seen in Figure 2.4, along one of the paths, called the object beam, 

the beam passes through a second beam splitter, BS2, and then, towards the λ/4 

plate, to be focused by the lens on the object, and further scattered back from there. 
The beam splitter BS2 also redirects the object beam to the beam splitter, BS3, with 

the help of the λ/4 plate.  

 
The second path of the originally split object beam, called the reference beam, 

is redirected through a prism and send to the Bragg cell, to give information about the 
direction of the velocity of the object that is being measured. Furthermore, this Bragg 
cell will also shift the frequency of the laser beam when the object is moving towards 
the interferometer, due to Doppler effect [9]. On the other side, the Bragg cell also 
receives the redirected beam from the splitter BS3 which comes from the beam 
splitter BS2. Since these two beams are symmetrical, the optical path difference 
between the object beam and the reference beam vanish within the interferometer. 
The resulting path difference is equal to twice the distance between the beam splitter 
BS2 and the object (because of the distance travelled by the beam).  

 
After this, the beam that passes through the Bragg cell, is sent to beam splitter 

BS3, to be redirected to reach the detector. The resulting interference signal of the 
object beam and reference beam is converted into an electrical signal in the detector 
and subsequently decoded in the controller [8]. 
 

On another side, the main function of the controller is to use the signal from 
the sensor head to process it and decode it. The controller takes the signal from the 
interferometer and it demodulates them. The information extracted from the signal 
can be divided in two different parts which give different information. The first one, 
proportional to the instantaneous velocity, belongs to the frequency of the signal. The 
second one, proportional to the displacement of the object, belongs to the phase of 
the signal. The information is available at the front of the controller as an analogue 
voltage which can be processed externally with an oscilloscope [8]. 
 

The controller is operated via a menu on the display of the controller. Mean, 
velocity decoder, velocity range and velocity filter can be selected according to the 
most appropriate situation of the object under study. This menu also has secondary 
functions such as filters to improve and display different settings, in order to be more 
user friendly [8]. 
 
 

2.1.4. Structure 

 
The structure has been designed to have more accurate data, to mitigate the 

error, to reduce the fluctuations of the data obtained from the LDV and to have 
repeatability in the measurements. The structure also reduces the noisy signal from 
the LDV considerably. It is divided into three parts; the base, the support for the 
sensor head of the LDV and the vibrating object support which, in this case, is the 
test cell and the shaker. Figure 2.5 shows the different parts of the structure. 
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The base is the lower part of the structure which connects and gives stability 
to the support of the laser with the support of the object to be analysed. This part of 
the structure ensures the distance between the object and the LDV, which has to be 
at least 45 cm. 
 
 
 

 

Figure 2.5 Structure build for the experiment. 

 
 

The vibrating object support is made up of three columns to have more 
stability. It is attached to the columns as is shown in Figure 2.6. The columns are 
movable to right and left and, in the case of the test cell, it can move up and down. 
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Figure 2.6 Vibrating object support. 

 
The support of the sensor head is shown in Figure 2.7 and is constructed with 

4 columns of Bosch Aluminum profiles attached to the base of the structure and 
further, with 2 transversal tubes. This part of the structure was made in order to 
arrest any movement in the measurements from the sensor head of the LDV. 
 
 

 

Figure 2.7 Sensor head support with Bosch tubes. 

 

2.1.5. Camera and backlight 

 
The camera used is a High Speed camera model Redlake Motion – XTRA 

HG-SE. The camera records 4 seconds videos at a frequency of 1000 
frames/second. In order to be able to observe the videos from the camera, a 
backlight is also used in the experiment. This backlight is composed by an array of 
LEDs. In Figure 2.8, these devices with the shaker used in the experiment for the 
experimental set-up are shown. 
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2.1.6. Data acquisition instrument: Oscilloscope 

 
In order to read the information obtained from the LDV, a Tektronix TDS 

2022B oscilloscope is used. This oscilloscope is composed of by 2 channels.  
 
 

2.1.7. Input control devices: Waveform generator and Amplifier 

 
Two input control devices are used in order to apply a voltage to the vibration 

object. The first one is a waveform generator, which is a model Agilent 33210A with 
10 MHz function/arbitrary. The second one is a Falco systems amplifier, DC – 5 MHz 
High Voltage Amplifier WMA-300 model, which takes the voltage generates by the 
waveform generator and amplifies it.  
 
 

2.2. Experimental set-ups 

 
In order to know more about the performance and functionality of the Laser, a 

study of the measurements at low frequencies from a shaker has been done. The 
objective of this study is to check the good performance of the laser. After that, the 
measurements with the laser have been done at high frequencies with the test cell. 
For that reason, the experimental set-up of both experiments, low frequencies and 
high frequencies, is very similar. The only difference is that the shaker base is not 
meant to be movable, while that of the test cell is. Also, in the shaker study, some 
videos are taken, to be compared with the data obtained from the LDV.  Despite 
those differences being minimal, in this subsection, the experimental set-up is divided 
in two parts: the shaker set-up and the test cell set-up. 
 
 

2.2.1. Low Frequencies vibration: Shaker 

 
The experiment consists of the shaker described in section 2.1.1, connected to 

a waveform generator which, at the same time, is connected to an amplifier (see 
section 2.1.7). They generate the voltage needed in order to make the reference 
object of the shaker move. The movement is recorded by a Redlake high speed 
camera. In order to maximize the image contrast, an array of LEDs is added to the 
background. As a result of the light, the images recorded have a white background 
that contrasts with the black of the shaker and its reference object. Figure 2.8 
presents the elements of the shaker, the high speed camera and the backlight from 
the experimental set-up. For more information about the camera and the backlight 
see section 2.1.5. 
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Figure 2.8 Shaker, high speed camera and backlight. 

 
 

On the other hand, the measurement of the velocity on the head of the shaker 
screw has been carried out using a Polytec single point LDV, explained in detail in 
section 2.1.3. The laser beam from the sensor head of the LDV is focused on the 
head of the screw of the shaker. The reflected signal comes back to the sensor head 
of the LDV to be processed and converted into a voltage, displayed on a connected 
Tektronix oscilloscope (see section 2.1.6). Hence, this oscilloscope gives the 
information from the velocity of the object in volts. Figure 2.9 shows the experimental 
set-up described for the shaker study. 
 
 

 

Figure 2.9 Experimental set-up of the shaker study. 
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2.2.2. High Frequencies vibration: Test cell 

 
The experimental set-up of the test cell is similar to the set-up described in the 

section above (see section 2.2.1). Their two differences being, firstly the 
measurement of the movement from the surface of the walls of the test cell, instead 
of a reference object (shaker screw), and secondly, the video recorder set-up is not 
applied, due to walls generating movements so small that it is unable to be recorded.  
 

The test cell, explained in detailed in section 2.1.2, is connected to a 
Piezoelectric which generates an acoustic field inside of it. To apply the acoustic 
field, a waveform generator is connected to an amplifier (see section 2.1.7) and then 
connected to the piezoelectric, which is then attached to the outer side wall of the 
test cell. From the moment the waveform generator and the amplifier are switched on 
with the desired frequency and voltage, the acoustic fields start to play.  
 

The measurement of movement of the walls has been carried out using the 
same set-up of the LDV used in the shaker (see section 2.1.3) connected to a 
Tektronix oscilloscope (see section 2.1.6). In that case, the laser beam is focused on 
the wall of the Test Cell. Figure 2.10 shows the experimental set-up of the Test Cell. 

 
 

 

Figure 2.10 Experimental set-up of the test cell study. 

 
 

2.3. Experimental Procedure 

 
As mentioned in section 2.1, the study of the shaker has been performed in 

order to check the good procedure of the performance of the LDV. For that reason, 
as observed in the experimental set-up, the experimental procedure is also quite 
similar between both studies. Besides that, the conditions from both devices are 
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different. In this section the procedure used in the experimental studies and the 
conditions applied in both cases are introduced.  
 
 
2.3.1. Procedure and conditions of the shaker 
 

The study of the shaker has two different parts. The first part is related with the 
image acquisition of the screw of the shaker and the second part is related to the 
data acquisition from the LDV. The conditions measured from the shaker of both 
parts are the same, in order to be able to compare them. Those conditions measured 
in the shaker are shown in Table 1. They have been chosen in order to be able to 
record the movement using a Redlake high speed camera (see section 2.1.5). 
 
 

Table 1 Frequencies and Amplitudes used in the study of the shaker. 

Frequency (Hz) 25 50 75 100 125 150 

Amplitude (V) 1 3 6 1 3 6 1 3 6 1 3 6 1 3 6 1 3 6 

 
 

First, the waveform generator and the amplifier are switched on, to generate 
the vibrational movement of the shaker screw. The frequency and amplitude to be 
studied is selected on the display of the waveform generator. With the high speed 
camera and the backlight on, a video of 4 seconds (with a frequency of 1000 frames 
per second acquisition) is taken for each case. From the frames of the video, images 
are extracted in order to analyse them. The analysis of these frames is explained in 
detailed in section 2.3.1.  

 
The processes of the LDV and of the shaker, which is connected to the 

waveform generator and the amplifier, are quite similar; they are switched on, with 
the required frequency and amplitude selected. The controller has to be switched on 
20 minutes before starting the measurements, in order to be thermally stabilized with 
the environment. With the velocity range and velocity filter appropriated for the 
measurements, the sensor head is switched on, and a laser beam is focused on the 
shaker. Furthermore, the laser beam has to be focused on the surface of the object, 
until achieving a fully lighted signal on the display of the sensor head. This signal 
corresponds to the signal-to-noise ratio, which is maximum if the signal level is full 
[8]. The data of the velocity is displayed on the oscilloscope in voltage, which is 
written down in Microsoft Excel with all the details of the measurements (frequency, 
amplitude).  

 
For measurements in other conditions, the frequency and amplitude from the 

waveform generator, the procedure of both data acquisitions, video and LDV have to 
be changed. The only difference is that once the controller has been switched on for 
the first time, and after the 20 minutes of warming has been achieved, the next 
measurements can be performed automatically after the first one.  
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2.3.2. Procedure and conditions of the Test Cell 
 

The procedure to take the measurements of the velocity of the walls of the test 
cell is very similar to the procedure used in the shaker. The only difference being that 
no video has been recorded for the test cell, and therefore, the image acquisition 
procedure has not being performed. Only the LDV movement measurement has 
been performed. This is because the small displacement of the walls could not be 
captured by the camera. Apart from this, the conditions of the test cell are different.  
 

Tests have been performed at 53 kHz, at the radial resonance frequency of 
the piezoelectric, for the two sides of the Test Cell; the face, to which the 
piezoelectric is attached, and the back. The amplitudes applied from the waveform 
generator have been from 1V to 6V. The conditions inside the test cell performance 
are three: full of distilled water, half full of distilled water with half full of air, and empty 
of distilled water and hence full of air. These different conditions are summarized in 
Table 2. 
 
 

Table 2 Conditions used in the study of the shaker. 

Frequency (kHz) 53 

Amplitude (V) 1 2 3 4 5 6 

Inside Conditions Empty of water Half of water Full of water 

Side Face Back 

 
 

The different conditions measured have been applied and repeated across 
both walls of the test cell, in order to have a map of the displacement on the two 
sides (face wall, where the piezoelectric is located, and back wall on the other side). 
A grid has been marked on both walls. The aim of this grid is to measure inside the 
square for the different cells and therefore, having all the conditions measured inside 
every point of the grid. Figure 2.11 shows the grid and the nomenclature used to do 
the measurements. 
 
 

 

Figure 2.11 Grid used in the test cell measurements. 
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2.4. Analysis 

 

2.4.1. Video processing 

 
Each video recorded during the experiment was stored on a computer. There, 

all the frames of each video were also ripped and stored.  From the frames of the 
video files, the images of the vibrating object (the shaker screw) are extracted in 
order to be analysed with ImageJ, to find the maximum displacement, in mm, of the 
vibrating screw between the minimum and maximum point of the movement. To 
extract the distance in mm, ImageJ allows you to change the scale from pixels to 
mm. Figure 2.12 shows the visible displacement of the head of the shaker in Image J 
and how it is measured. 
 
 

 

Figure 2.12 Visible displacement between the heads of the shaker screw in ImageJ. 
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2.4.2. Velocity measurement 

 
The LDV can provide information related to the velocity and the displacement 

of the object under investigation independently [8]. Despite this, the measurements 
taken in this experimental study are only with regards to the velocity of the different 
surfaces.  

 
As mentioned before in section 2.2.1, the LDV sends information about the 

velocity in terms of voltage to the oscilloscope, which displays it. This information can 
be converted to velocity (mm/s), with the velocity range applied at every case, and 
afterward, to displacement according to: 
 

          (2.1) 
 
 

Where, „ ‟ is the velocity once converted to mm/s, „ ‟ is the frequency from 

the vibrating object generated by a waveform generator, and „ ‟ is the surface 
displacement. 

 
In Figure 2.13, the display of the oscilloscope used is shown. From the signal 
received, the voltage peak-to-peak was taken. For example, in this case (movement 
of the shaker at 150Hz and 6V) the value obtained from the LDV is 3,92V. This 
measure has been converted to velocity, with the velocity range used and selected in 
the controller as 125mm/s/V. Then, applying Equation 1, and using the frequency of 
the object, the displacement is calculated, which in this case is 0,52mm.  
 
 

 

Figure 2.13 Tektronix TDS 2022B oscilloscope display response from the LDV of the shaker 
head at 150Hz and 6V showing measurements. 

 
 
In order to be able to compute all the measurements and convert them from 

voltage to velocity-displacement, the conversion has been automated with Microsoft 
Excel. All the results of the measurements of, both, the shaker and the test cell are 
introduced in Chapter 3. 
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Chapter 3  
 

EXPERIMENTAL RESULTS 
 
 

This chapter details the experimental results obtained from both studies 
described in Chapter 2. The purpose of the study of the shaker, which was performed 
at low frequencies, is to check that the procedure of data acquisition from the LDV 
can be considered as both quantitative and qualitative, and therefore reliable.  

 
Once this study has been performed, a study of high frequencies with the test 

cell, the object which generated vibrations due to an acoustic field applied on it, has 
also been done. The following sections will outline the studies of both, the shaker and 
the test cell, performed in the laboratory. 
 
 

3.1. Low frequencies: study of the Shaker 

 
As mentioned in the experimental set-up (see section 2.1.5) the shaker study 

has two parts, intended to be compared between them; the recorded videos and the 
LDV data. The results obtained from the different videos can be observed in Table 3, 
where the values from the recorded videos are detailed after having been processed. 
 

Once the analysis of the videos (see section 2.3.1) has been performed for 
each case, detailed in Table 1 from section 2.3.1, the displacement, in mm, obtained 
for the head of the shaker is shown in Table 3.  
 
 

Table 3 Displacement from the different videos at different frequencies and amplitudes. 

Frequency (Hz) Amplitude (V) Displacement (mm) 

25 

1 0,243 (± 0,09) 

3 0,445 (± 0,09) 

6 0,879 (± 0,09) 

50 

1 0,232 (± 0,09) 

3 0,650 (± 0,09) 

6 0,991 (± 0,09) 

75 

1 0,216 (± 0,09) 

3 0,771 (± 0,09) 

6 1,219 (± 0,09) 

100 

1 0,232 (± 0,09) 

3 0,782 (± 0,09) 

6 1,181 (± 0,09) 
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125 

1 0,223 (± 0,09) 

3 0,444 (± 0,09) 

6 0,671 (± 0,09) 

150 

1 0,108 (± 0,09) 

3 0,344 (± 0,09) 

6 0,447 (± 0,09) 

 
 

In Table 3, it can be observed that as the amplitude is increased, the 
displacement of the shaker increases. Furthermore, at around 100 Hz, the 
displacement is much higher than at any other conditions. This is due to the 
performance of the shaker, which has a higher displacement around this frequency 
[15]. 
 

On another hand, using the same frequencies and amplitudes, the LDV part of 
this experiment has been carried out 5 times, spread out along time and, after 
analysing all the measurements, Table 4 has been obtained. In Table 4, what is 
observed is the average displacement between these 5 different measurements of 
each condition. 
 
 

Table 4 Average displacement in mm from oscilloscope data. 

Frequency (Hz) Amplitude (V) Average displacement (mm) 

25 

1 0,150 (± 0,004) 

3 0,552 (± 0,006) 

6 1,225 (± 0,034) 

50 

1 0,159 (± 0,003) 

3 0,562 (± 0,019) 

6 1,082 (± 0,011) 

75 

1 0,173 (± 0,003) 

3 0,744 (± 0,009) 

6 1,257 (± 0,018) 

100 

1 0,210 (± 0,004) 

3 0,774 (± 0,007) 

6 1,281 (± 0,041) 

125 

1 0,146 (± 0,002) 

3 0,504 (± 0,026) 

6 0,793 (± 0,032) 

150 

1 0,086 (± 0,001) 

3 0,320 (± 0,003) 

6 0,528 (± 0,020) 
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Comparing the results from both measurements and the analysis of the 

difference between them can be observed in Table 5, where this phenomenon is 
witnessed. 
 
 

Table 5 Comparison of the displacement from the information of the Laser and that of the 
image processing. 

Frequency 
(Hz) 

Amplitude 
(V) 

Laser  
displacement (mm) 

Video  
displacement (mm) 

Difference 
Difference 

(%)  

25 

1 0,150 (± 0,004) 0,243 (± 0,09) 0,093 61,99% 

3 0,552 (± 0,006) 0,445 (± 0,09) 0,107 19,42% 

6 1,225 (± 0,034) 0,879 (± 0,09) 0,346 28,27% 

50 

1 0,159 (± 0,003) 0,232 (± 0,09) 0,073 46,13% 

3 0,562 (± 0,019) 0,650 (± 0,09) 0,088 15,65% 

6 1,082 (± 0,011) 0,991 (± 0,09) 0,091 8,43% 

75 

1 0,173 (± 0,003) 0,216 (± 0,09) 0,043 24,89% 

3 0,744 (± 0,009) 0,771 (± 0,09) 0,027 3,62% 

6 1,257 (± 0,018) 1,219 (± 0,09) 0,038 3,04% 

100 

1 0,210 (± 0,004) 0,232 (± 0,09) 0,022 10,27% 

3 0,774 (± 0,007) 0,782 (± 0,09) 0,008 1,04% 

6 1,281 (± 0,041) 1,181 (± 0,09) 0,100 7,82% 

125 

1 0,146 (± 0,002) 0,223 (± 0,09) 0,077 52,96% 

3 0,504 (± 0,026) 0,444 (± 0,09) 0,060 11,85% 

6 0,793 (± 0,032) 0,671 (± 0,09) 0,122 15,34% 

150 

1 0,086 (± 0,001) 0,108 (± 0,09) 0,022 25,85% 

3 0,320 (± 0,003) 0,344 (± 0,09) 0,024 7,62% 

6 0,528 (± 0,020) 0,447 (± 0,09) 0,081 15,32% 

 
 

From this comparison, the reliability of the procedure used for the LDV data 
acquisition is checked, in order to study the test cell displacement properly. This 
means that it is possible to trust the procedure used to obtain the data from the LDV. 
Nevertheless, the system will always have some error in the measurements, 
computed as noise, which, in this case, corresponds to an average of around 15% of 
the LDV measurement. 
 
 

3.2. High frequencies: study of the Test Cell 

 
 

As showed in Table 2, the test cell is subjected to different conditions. Further, 
a frequency study of two different cells of the grid is also performed. This study, 
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followed by the results obtained from the displacement and the attenuation, are 
detailed in the following subsections. 
 
 

3.2.1. Displacement 

 
Applying the experimental procedure and analysis explained in sections 2.3 

and 2.4 respectively, the first observations made in the displacement study is that the 
test cell is affected at every point analysed,  i.e. each cell of the grid. 
 

The first observation from the displacement of the walls computed is that it 
tends to increase as far as the amplitude of the waveform generator is increased. 
This means that at 6V; the maximum voltage that can be applied by the waveform 
generator with the amplifier connected to it (see section 2.2), the displacement is 10 
times bigger than the displacement of the walls at 1V. The noise computed in all the 
cases is around 0,002 μm. 

 
Within these terms, if the displacement is compared with the amplitude 

observed, it is observed that the displacement is more lineal on the face of the 
piezoelectric than on the back, and the displacements obtained on the face side are 
almost twice of those obtained on the back. These phenomena are shown in Figures 
3.1-3.6, where the evolution of the displacement as far as the amplitude in increased, 
for six different conditions: face-empty, face-half, face-full, back-empty, back-half and 
back-full, is shown.  

 
The face and the back refer to the wall which holds the piezoelectric (face) and 

also the other side (back). The other conditions refer to how much distilled water the 
test cell contains: without water (empty), full of water, half full of water. For more 
details about the conditions see section 2.3.2 and Table 2. 
 
 

 

Figure 3.1 Displacement (μm) as a function of the amplitude (V) applied at 53kHz for the 
face of the test cell while empty. 
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Figure 3.2 Displacement (μm) as a function of the amplitude (V) applied at 53kHz for the 
face of the test cell while half full of water. 

 
 

 

Figure 3.3 Displacement (μm) as a function of the amplitude (V) applied at 53kHz for the 
face of the test cell while full of water. 

 
 

 

Figure 3.4 Displacement (μm) as a function of the amplitude (V) applied at 53kHz for the 
back of the test cell while empty. 
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Figure 3.5 Displacement (μm) as a function of the amplitude (V) applied at 53kHz for the 
back of the test cell while half full of water. 

 
 

 

Figure 3.6 Displacement (μm) as a function of the amplitude (V) applied at 53kHz for the 
back of the test cell while full of water. 

 
 

Therefore, comparing the displacement of every cell at the different amplitudes 
and conditions, a different behaviour is observed. In this case, more displacement in 
the corners of the test cell (A1, A3, C1 and C3) is received. Also, generally, there is 
more displacement in the face part, especially when it is empty. There is more 
displacement in the back part only when it is full, and only in one corner of the test 
cell. This is due to the fluid within it, which transports the acoustic field. In the rest of 
the cases, the bigger displacement corresponds to the face-empty condition. 

 
This behaviour is observed in Figures 3.7-3.12, where the displacement of 

each cell for the different conditions (face-empty, face-half, face-full, back-empty, 
back-half and back-full) for the different amplitudes, all at 53 kHz is shown. In order 
to understand the legend of the Figures 3.7-3.12, Table 6 details the number given to 
each cell. 
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Table 6 Numbers given to each cell of the grid of the test cell applied in Figures 3.7-3.12. 

CELLS 

A1 1 A2 4 A3 7 A4 10 

B1 2 B2 5 B3 8 B4 11 

C1 3 C2 6 C3 9 C4 12 

 
 

 

Figure 3.7 Displacement (μm) of each cell (see Table 6) of the test cell at different conditions 
at 1V. 

 

 

 

Figure 3.8 Displacement (μm) of each cell (see Table 6) of the test cell at different conditions 
at 2V. 
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Figure 3.9 Displacement (μm) of each cell (see Table 6) of the test cell at different conditions 
at 3V. 

 
 

 

Figure 3.10 Displacement (μm) of each cell (see Table 6) of the test cell at different 
conditions at 4V. 

 
 

 

Figure 3.11 Displacement (μm) of each cell (see Table 6) of the test cell at different 
conditions at 5V. 
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Figure 3.12 Displacement (μm) of each cell (see Table 6) of the test cell at different 
conditions at 6V. 

 

 
From Figures 3.7-3.12, it can be observed that the cells that have more 

displacement are those with the conditions of face empty, especially for A2 and B2, 
which are very close to the source of the vibration (piezoelectric). Nevertheless, in 
general, the face-empty condition has the most displacement in almost all the cells, 
with only two exceptions; in the case of back-full, which can be observed in a corner 
of the test cell and in face-half condition, which is in B1 and B4, the middle part of the 
test cell. 

 
Apart from these figures, to be able to observe the distribution of the 

displacement along the wall is very important at any condition. For this purpose, a 
displacement map of the wall for all the conditions has been generated from the 
measurements of each cell. These displacement maps show the distribution of the 
displacement along the wall of the test cell, for the different cells giving a 2D image of 
the different displacements with a scale of colours. The displacement maps for 6V of 
the distribution along the walls of the test cell are displayed in Figures 3.13-3.15, 
taking into account that the data displayed corresponds to the centre point of each 
cell but is only represented by the corner points. The displacement maps at different 
amplitudes are presented in the Annex of this document.  
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Figure 3.13 Displacement maps in μm of the face and back walls of the test cell empty of 
water at 6V. 

 

  

Figure 3.14 Displacement maps in μm of the face and back walls of the test cell half full of 
water at 6V. 

 

  

Figure 3.15 Displacement maps in μm of the face and back walls of the test cell full of water 
at 6V. 
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From the displacement maps, showed in Figures 3.13-3.15, the following 
behaviours are generally observed. On one side, the face side, vibrational 
displacement is seen highly concentric to the top of the source of the vibrations, 
which corresponds to the cell B2. This behaviour is especially observed when the 
test cell is empty.  

 
On the other side, some displacement with the increase in water is observed 

on the back side. Therefore, higher amounts of water forces displacement to occur 
concentrically to one side, very close to the source of the vibration, which in this case 
corresponds to the cell A3. 

 
Comparing both sides, different patterns are observed from the displacement 

maps. However, it must be taken into account that when comparing both sides, the 
exact opposite must not be compared. Instead, what must be compared are the 
opposing corner ends. For example; face side A1 with back side C1, face side B1 
with back side B1 and face side C1 with back side A1. The direct comparison of that 
will be observed in the following section 3.2.2.  

 
Besides, from the displacement maps at different amplitudes presented in the 

Annexes, it is observed that the behaviour of the walls is generally similar in all the 
amplitudes, with the only difference being an increase in magnitude of displacement 
when the amplitude is increased. This is particularly observed at 1V. In this case, the 
displacement observed is largely smaller than in the case of 6V, and, due to the fact 
that all the cases use the same legend, almost no displacement is observed on the 
back wall. In this last case, a small displacement is observed when the test cell is full 
of water, due to it being affected with a heavier fluid medium inside. 

 
 

3.2.2. Attenuation 

 
 

The attenuation is a gradual loss in intensity through a medium and it affects 
the propagation of waves. In this case, the acoustic attenuation is calculated in order 
to know the difference between the acoustic wave which affects the face wall, where 
the vibrating source is situated, and the opposite. 

 
The acoustic attenuation can be expressed as the division between the 

pressure „ ‟ at a given point by the pressure at the beginning, which is proportional to 

the distance „ ‟ and the attenuation coefficient „ ‟. 

 

     (3.1) 
 
 
As mentioned in section 1.1.1, the amplitude of the acoustic pressure is 

related with the amplitude of the acoustic displacement of the acoustic wave. This 
relationship is also introduced in Equation 1.3. Therefore, interpreting Equation 3.1 
describes that, if the differences between the displacement of the back wall and the 
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face wall for all is constant, the test cell has an expected attenuation, generated by 
the medium containing the test cell.  

 
Following the method of comparison of both corner ends, as described before, 

is shown in Tables 7-9, where the difference between the corresponding cells, 
computing the division between them, and using Equation 3.1 for the calculation of 
the attenuation factor α for the different conditions of the medium within the test cell, 
and the different amplitudes at 53 kHz is detailed. The cells have been ordered in a 
numerical order.  

 
   

Table 7 Attenuation coefficient for empty test cell. 

Empty 

1V 2V 3V 4V 5V 6V 

Cell  α Cell α Cell α Cell α Cell α Cell α 

C3b/A3f 2,52E-05 B2b/B2f 2,17E-05 B2b/B2f 2,05E-05 B3b/B3f 2,32E-05 B3b/B3f 2,74E-05 B3b/B3f 2,75E-05 

B2b/B2f 2,23E-05 C3b/A3f 1,75E-05 B3b/B3f 1,77E-05 B2b/B2f 1,91E-05 B2b/B2f 1,90E-05 B2b/B2f 1,89E-05 

A4b/C4f 1,62E-05 B3b/B3f 1,52E-05 C2b/A2f 1,38E-05 C2b/A2f 1,34E-05 C4b/A4f 1,44E-05 C2b/A2f 1,55E-05 

B3b/B3f 1,38E-05 A4b/C4f 1,48E-05 A4b/C4f 1,37E-05 C4b/A4f 1,32E-05 C2b/A2f 1,36E-05 C4b/A4f 1,53E-05 

A3b/C3f 1,17E-05 C2b/A2f 1,43E-05 C3b/A3f 1,34E-05 A4b/C4f 1,23E-05 A4b/C4f 1,17E-05 A4b/C4f 1,16E-05 

C2b/A2f 1,05E-05 A3b/C3f 1,04E-05 C4b/A4f 1,20E-05 C3b/A3f 1,22E-05 C3b/A3f 1,12E-05 C3b/A3f 1,06E-05 

C4b/A4f 6,61E-06 C4b/A4f 9,38E-06 A3b/C3f 9,23E-06 A3b/C3f 7,22E-06 A3b/C3f 6,80E-06 B1b/B1f 5,31E-06 

A2b/C2f 5,80E-06 B1b/B1f 4,60E-06 B1b/B1f 3,64E-06 B1b/B1f 4,71E-06 B1b/B1f 4,92E-06 A3b/C3f 5,25E-06 

B1b/B1f 3,74E-06 A2b/C2f 3,51E-06 A2b/C2f 3,20E-06 A2b/C2f 2,32E-06 A2b/C2f 1,67E-06 A2b/C2f 1,99E-06 

A1b/C1f 1,86E-06 C1b/A1f 1,51E-06 C1b/A1f 6,57E-07 C1b/A1f 5,15E-07 C1b/A1f 9,04E-07 C1b/A1f -2,24E-07 

C1b/A1f -1,74E-06 A1b/C1f -2,00E-06 A1b/C1f -2,00E-06 A1b/C1f -1,83E-06 A1b/C1f -1,69E-06 A1b/C1f -1,56E-06 

B4b/B4f -1,93E-05 B4b/B4f -1,96E-05 B4b/B4f -1,37E-05 B4b/B4f -9,84E-06 B4b/B4f -1,03E-05 B4b/B4f -8,90E-06 

 
 

Table 8 Attenuation coefficient for half full test cell. 

Half 

1V 2V 3V 4V 5V 6V 

Cell α Cell α Cell α Cell α Cell α Cell α 

C2b/A2f 1,48E-05 C2b/A2f 3,49E-05 C2b/A2f 2,12E-05 C2b/A2f 2,29E-05 B4b/B4f 2,28E-05 B4b/B4f 2,38E-05 

B4b/B4f 9,75E-06 B1b/B1f 1,28E-05 B4b/B4f 1,82E-05 B4b/B4f 2,20E-05 C2b/A2f 1,79E-05 C2b/A2f 1,63E-05 

B1b/B1f 8,99E-06 B4b/B4f 1,18E-05 B1b/B1f 1,60E-05 B1b/B1f 1,52E-05 B1b/B1f 1,22E-05 B1b/B1f 1,16E-05 

B3b/B3f 2,58E-06 A1b/C1f 4,91E-06 B2b/B2f 5,32E-06 B2b/B2f 6,15E-06 B2b/B2f 7,21E-06 B2b/B2f 6,96E-06 

A3b/C3f 6,29E-07 B3b/B3f 3,63E-06 A1b/C1f 5,03E-06 B3b/B3f 5,09E-06 B3b/B3f 4,21E-06 B3b/B3f 4,14E-06 

B2b/B2f -7,96E-08 B2b/B2f 2,22E-06 B3b/B3f 4,40E-06 A1b/C1f 2,01E-06 A1b/C1f 2,73E-06 A1b/C1f 2,48E-06 

A1b/C1f -1,97E-06 A3b/C3f 1,79E-07 C4b/A4f 9,13E-07 C4b/A4f 1,03E-06 C4b/A4f 1,53E-06 A2b/C2f 2,19E-06 
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C4b/A4f -2,25E-06 C4b/A4f -1,20E-06 A3b/C3f 7,96E-07 A3b/C3f 3,02E-07 A4b/C4f 2,03E-07 C4b/A4f 1,53E-06 

A2b/C2f -2,45E-06 A2b/C2f -5,66E-06 A4b/C4f -1,53E-06 A4b/C4f 0,00E+00 A3b/C3f -2,45E-07 A4b/C4f -2,66E-07 

A4b/C4f -5,43E-06 A4b/C4f -6,14E-06 A2b/C2f -2,08E-06 A2b/C2f -1,72E-06 A2b/C2f -2,24E-06 A3b/C3f -4,36E-07 

C3b/A3f -7,77E-06 C3b/A3f -7,13E-06 C3b/A3f -1,05E-05 C3b/A3f -1,55E-05 C1b/A1f -1,87E-05 C3b/A3f -1,69E-05 

C1b/A1f -1,20E-05 C1b/A1f -1,52E-05 C1b/A1f -1,77E-05 C1b/A1f -1,99E-05 C3b/A3f -2,27E-05 C1b/A1f -2,25E-05 

 
 

Table 9 Attenuation coefficient for full test cell. 

Full 

1V 2V 3V 4V 5V 6V 

Cell α Cell α Cell α Cell α Cell α Cell α 

B4b/B4f 1,03E-05 B4b/B4f 1,17E-05 B4b/B4f 1,25E-05 C2b/A2f 1,39E-05 C2b/A2f 1,51E-05 C2b/A2f 1,62E-05 

B1b/B1f 8,39E-06 B1b/B1f 1,11E-05 B1b/B1f 1,15E-05 B4b/B4f 1,23E-05 B2b/B2f 8,21E-06 B2b/B2f 8,83E-06 

A2b/C2f 7,95E-06 C2b/A2f 9,19E-06 C2b/A2f 1,15E-05 C3b/A3f 2,70E-06 B1b/B1f 7,96E-06 B1b/B1f 7,47E-06 

C2b/A2f 7,29E-06 B2b/B2f 6,28E-06 B2b/B2f 6,77E-06 B3b/B3f 1,74E-07 C1b/A1f 6,96E-06 C1b/A1f 4,59E-06 

B2b/B2f 6,07E-06 A2b/C2f 5,42E-06 C1b/A1f 5,06E-06 B1b/B1f 8,58E-06 A2b/C2f 3,71E-06 A2b/C2f 3,56E-06 

C1b/A1f 4,22E-06 C1b/A1f 5,02E-06 A2b/C2f 3,97E-06 B2b/B2f 7,50E-06 C3b/A3f 3,05E-06 C3b/A3f 2,92E-06 

C3b/A3f 1,00E-06 C3b/A3f 2,50E-06 C3b/A3f 2,34E-06 C1b/A1f 7,42E-06 B3b/B3f -3,94E-07 B3b/B3f -8,68E-07 

B3b/B3f -8,58E-07 A1b/C1f -5,72E-06 B3b/B3f -9,71E-07 A2b/C2f 3,36E-06 B4b/B4f -8,83E-07 A4b/C4f -1,39E-06 

A1b/C1f -5,52E-06 B3b/B3f -3,42E-07 A1b/C1f -4,95E-06 A4b/C4f -8,48E-07 A4b/C4f -2,28E-06 A1b/C1f -4,07E-06 

C4b/A4f -6,31E-06 C4b/A4f -8,54E-06 A4b/C4f -5,96E-06 A1b/C1f -5,26E-06 A1b/C1f -5,57E-06 B4b/B4f -4,88E-06 

A3b/C3f -9,50E-06 A3b/C3f -9,96E-06 A3b/C3f -1,07E-05 A3b/C3f -9,19E-06 A3b/C3f -8,71E-06 A3b/C3f -9,26E-06 

A4b/C4f -1,03E-05 A4b/C4f -1,06E-05 C4b/A4f -1,57E-05 C4b/A4f -2,33E-05 C4b/A4f -2,29E-05 C4b/A4f -2,43E-05 

 
 

From Tables 7-9, the following can be observed. First of all, the attenuation is 
bigger when the test cell is full of water. That is due to the density of the fluid phase 
between the walls of the test cell. The amount of mass of water situated between the 
walls generates acoustic waves that would need to propagate with more effort in 
order to reach the other wall with maximum effectiveness. 
 

Secondly, in the „empty‟ case, the smaller attenuation factor is in cell B2 and 
B3, where the vibrating source is located. These cells compute the maximum 
displacement on the face walls, as can be seen in the displacement maps of section 
3.2.1. In the cases of half and full of water, the area with the minimum difference is 
on one side (back C2/face A2) and B4, which are related with the maximum face 
displacement in those conditions, especially in the case of C2/A2. 

 
Bigger attenuation factors in the case of an empty test cell are observed in the 

cell B4, just under the vibrating source, while in the cases of half and full, the 
maximum differences correspond to the corners of the test cell, especially C1/A1, for 
the half case, and C4/A4 for the case of full case. 
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As can be seen, in general, the difference between both displacements, the 
face wall and back wall, is not constant along the test cell, and hence the test cell has 
an unpredicted attenuation, which does not correspond to the maximum 
displacement obtained in the wall observed from the displacement maps.  

 
The attenuation coefficient for water is 0,0022 dB/(MHz·cm) [16]. The 

attenuation coefficient computed at Tables 7-9 has been calculated from the values 
of displacement in μm. For that reason, converting to μm, the attenuation coefficient 
for water is 2,2 x 10-7 dB/(MHz·μm). The attenuation coefficient for the air at 20ºC is 
1,64 x 10-4 dB/(MHz·μm) [17]. Comparing these values with the obtained attenuation 
coefficients from Table 7-9, confirms the absence of a specific attenuation 
phenomenon. 

 
 

3.2.3. Frequency 

 
Despite all the measurements carried out before being performed at 53 kHz, a 

frequency study of two points of the test cell has also been performed. The main 
purpose of this frequency study is to observe the evolution of the displacement of the 
test cell as the frequency changes.  

 
In order to do that, two points of the test cell have been chosen, and the 

evolution as a function of the frequency applied to the vibrating source has been 
measured.  The ranges of frequencies measured are detailed in Table 10. The points 
chosen are: a corner of the test cell (C1/A1) and the location of the vibrating source 
(B3). The point C1/A1 follows the method of comparison of both corner ends, 
introduced before. Figure 3.16 shows where the analysis of the frequency took place. 
The part in purple corresponds to cell B3. The part in orange corresponds to C1/A1. 

 
 

Table 10 Range of frequencies in kHz measured. 

Frequencies (kHz) 

5 6 7 8 9 10 15 20 25 30 35 40 45 47 49 50 51 52 53 54 

55 57 60 65 70 75 80 85 90 95 110 120 130 135 140 150 160 170 190 200 

High frequencies (kHz) : 660 680 700 730 750       
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Figure 3.16 Positioning scheme of the frequency study of the test cell. Purple is for the cell 
B3 in the centre of the piezoelectric, and in orange, the cell C1/A1 in a corners of the test 

cell. 

 
 

Figures 3.17-3.22 show the evolution of the displacement, in μm, as a function 
of the frequency applied for the cell B3, indicated in purple in Figure 3.31, on both 
sides with different media. The frequency is from 5kHz to 200kHz and it is expressed 
in a logarithmic scale. 

 
 

 

Figure 3.17 Displacement in μm as a function of the frequency in kHz applied in logarithmic 
scale for B3 cell in face empty conditions. 
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Figure 3.18 Displacement in μm as a function of the frequency in kHz applied in logarithmic 
scale for B3 cell in face half full of water conditions. 

 
 

 

Figure 3.19 Displacement in μm as a function of the frequency in kHz applied in logarithmic 
scale for B3 cell in face full of water conditions. 

 

Figure 3.20 Displacement in μm as a function of the frequency in kHz applied in logarithmic 
scale for B3 cell in back empty conditions. 
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Figure 3.21 Displacement in μm as a function of the frequency in kHz applied in logarithmic 
scale for B3 cell in back half full of water conditions. 

 
 

 

Figure 3.22 Displacement in μm as a function of the frequency in kHz applied in logarithmic 
scale for B3 cell in back full of water conditions. 

 
 

Observing the evolution of the displacement as the frequency changes at B3 
from Figures 3.17-3.22, where the vibration source is located, some patterns are 
observed. The first observation is related with the low frequencies, from 5 kHz to 20 
kHz, in which the vibrating source, in this case the piezoelectric, is audible to human 
ears. At this region, the maximum displacements are observed.  

 
After this, the region where the vibration source is no longer audible starts and 

some displacement can be observed. The displacements observed here are between 
0,05 μm to 0,43 μm for both sides at half and empty conditions. However, at full 
conditions, the displacements observed are between 0,015 μm to 0,32 μm. This is 
due to the heavier fluid medium contained in the test cell; Water. The Figure 3.23 
shows the evolution of the frequency, specifically at 30-60 kHz region, for B3 cell, for 
the conditions of face-empty. The Figures corresponding to all the other conditions 
measured are located in the Annexes of this document.  
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Figure 3.23 Displacement in μm as a function of the frequency at 30-60 kHz region for B3 
cell at face empty conditions. 

 
 
From Figure 3.23, inside the evolution of the frequency within this region of 30-

60 kHz, it is observed that the maximum displacement is not situated at the radial 
resonance frequency of the piezoelectric, which corresponds to 53 kHz. 

 
This behaviour ends around 85 kHz, wherein all cases, a minimum 

displacement of the walls are measured. After that point, there is an increase in the 
displacement around 130 kHz. This increase of displacement becomes more notable 
at the face side, which has a peak of 0,28 μm in full and half, and 0,4 μm in empty 
condition, than at the back side, which has a maximum of 0,16 μm. However, in the 
case of half filled, the displacement is very similar on both sides. The only difference 
is that at the back side, the maximum peak of that region advanced to 120 kHz, while 
on the face side, it is still at 130-135 kHz. 

 
Computing the frequency at which the acoustic wave propagates along the 

test cell, the following formula is applied: 
 

      (3.2) 
 
 
Where the frequency „ ‟ is the result of the division between the velocity of the 

acoustic wave, „ ‟, and the wavelength „ ‟. Being that the wavelength is proportional 
to the length of the test cell, which in this case is 9 cm (see section 2.1.2), the 
frequency of the test cell at the conditions of empty and full of water has been 
calculated.  

 
In the case of empty of water, which contains air, and assuming a wave 

velocity of 340 m/s, the frequency obtained is around 3,8 kHz. In that condition, in 
Figure 3.17, a tendency to have a peak of displacement around 3 kHz can be 
observed. On the other hand, in full of water conditions, and assuming a wave 
velocity of 1400 m/s, the frequency obtained is around 15,5 kHz. From Figure 3.19 
the same behaviour is observed; the maximum displacement is found to be around 
15 kHz. In the case of half full of water, the behaviour of the maximum displacement 
is not able to be compared with the frequency due to the conditions of having two 
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phase flows in the same container. This phenomenon shows that the resonant 
frequency of the test cell and the medium container is more relevant than the 
resonant frequency of the piezoelectric, to study the displacement evolution as a 
function of the frequency. 
 

Regarding the corner side of the test cell (C1/A1), where, in Figure 3.16, it is 
highlighted with orange, the same measurements have been taken. Nevertheless, 
from the measurements of the evolution of the displacement as a function of the 
frequency and the amplitude applied, the figures can be found in the Annexes of this 
document. Also, the evolution of the frequency, specifically at the 30-60 kHz region, 
for this case, in a corner side of the test cell is included in the Annex. 
 

From the figures referring to the evolution of the displacement at the corner of 
the test cell, some differences are observed, compared with the ones from the cell 
B3. At the corner, for low frequencies, from 5 kHz to 20 kHz a big displacement does 
not exist, and the maximum displacement happens between 30-60 kHz for all the 
cases.  In the figures which show that region, where the radial frequency of the 
piezoelectric is placed, it can be observed that the maximum displacement is very 
similar, and is 0,21 μm, despite the case of the face empty condition in C1, where 
this value is bigger. 
 

Also, in the evolution of the frequency, at around 125-130 kHz, the 
displacement of the wall increases in all conditions, the case of empty being the one 
that achieve more displacement, followed by the half and the full conditions. 

 
The high frequency study, which correspond to the surroundings of the lateral 

resonance frequency of the piezoelectric, 680-730 kHz, has been measured but not 
computable due to the noise added to the system for environmental reasons.   
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Chapter 4 
 

CONCLUSIONS AND FUTURE LINES 
 
 

After the experimentation and observations, it is clear that acoustic fields do 
indeed have an effect on the outer surfaces of the object under the influence of an 
acoustic field. Therefore, when attempting to control bubbles in aerospace 
applications, both without and under the influence of microgravity, it was important to 
have performed these tests in order to check the behaviour of the surface of an 
object under the effects of an acoustic field. This section will entail the summary of all 
the observations made in these series of experiments.  
 

The goal of this project was to experimentally study the various effects that 
acoustic fields of varying magnitudes have on a defined test cell containing fluid 
media of different volumes, using very high precision Laser Doppler Vibrometry, in 
order to use this data in future scientific research involving acoustic behaviour on a 
rigid body containing fluids. In order to accomplish this goal, an experiment has been 
designed, built, carried out and analysed using an LDV, a vibration-free structure, a 
test shaker, a test cell, a source of vibration (piezoelectric) and the output 
instruments. 
 

From the study of the shaker, the reliability of the procedure of acquisition of 
the data from the LDV was checked. This meant that it was possible to trust the 
procedure used in order to obtain the data from the LDV even if there was some error 
in the measurements, the noise, which was around 15% of the measurement. 
 

From the study of the test cell, observations were found and divided into three 
sections; displacement, attenuation and frequency.  
 

Regarding the displacement, the first observation was an increase in 
magnitude of displacement of the walls when there was an increase in the applied 
amplitude. Here, the noise computed in all the cases was found to be around 0,002 
μm. Furthermore, the displacement was more linear on the face of the piezoelectric 
than on the back, and the displacements obtained on the face side were almost twice 
of those obtained on the back. More displacement in the corners of the test cell was 
received. Also, generally, there was more displacement in the face part, especially 
when it was empty due to the fluid within it. 
 

An analysis of the displacement maps were carried out to get clearer image of 
the displacement at the different cells of the walls for the different conditions 
analysed. On the face side, vibrational displacement was seen highly concentric to 
the top of the source of the vibrations, especially when the test cell was empty. 
However, the back side showed some displacement with the increase in water and 
higher amounts of water forced displacement to occur concentrically to one side, 
close to the source of the vibration.  
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The next experimentation done was a calculation of the attenuation, in order to 
see if the wave transmitted was received effectively by the other wall, when passing 
through the medium between them, and to compute the coefficient of this loss.  The 
observations were that the attenuation was bigger when the test cell was full of water 
because of the density of the fluid phase between the walls. Although, when the test 
cell was empty, the minimum difference between the back and the face was seen 
located at the point of the vibrating source. The attenuation coefficient was not 
constant along the test cell, and hence the test cell had an unpredicted attenuation, 
which did not correspond to the maximum displacement obtained in the wall.  
 

Regarding the frequency study and how it affected displacement in two points 
of the test cell, the centre and a corner, four distinct observations were made. Firstly, 
when measuring the displacement at the centre of the test cell, there was a range of 
frequencies that caused a large displacement, and during this range, a loud audible 
sound was produced by the piezoelectric. This maximum displacement at this region 
of frequencies did not appear when the measurement was taken at the corner of the 
test cell. The second observation showed that many peaks of displacement were 
generated around the region of radial resonance, although, this displacement was 
not maximum at the theoretical value of 53 kHz. The third observation showed slight 
displacements around the same region, 120-130 kHz, for both measurements; the 
centre and the corner. Finally, the fourth observation shows that the resonant 
frequency of the test cell and the medium container is more relevant than the 
resonant frequency of the piezoelectric, due to maximum displacements around the 
resonant frequency of the test cell calculated for different media is observed. 
 

As can be seen from the observations above, the object subjected to 
vibrations was clearly affected, even in the slightest, by the acoustic field. This could 
be characterized by the fluid media within the object, the shape of the object, the 
material characteristics of the object and the characteristics of the acoustic field itself. 
These points could serve as parameters to be taken into account for future 
experiments to control bubbles with an acoustic field in aerospace research. That 
means experiments carried out with a test cell of different shape and size, different 
fluids within in it, like oils, spirits and maybe coagulants.  
 

Furthermore, these experiments could be expanded to a large scale 
investigation in microgravity using prototype propellant storage containers, for real 
life implementation in aerospace exploration and future space missions.   
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ANNEX 

 
 

Displacement maps 
 

Displacement maps in μm at different conditions of the test cell (empty, half 
and full of water), at different amplitudes (from 1V to 5V) in the face and the back 
walls of the test cell. 

 
 
Face – empty – 1V    Back – empty – 1V 

  
 
 
Face – half – 1V    Back – half – 1V 
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Face – full – 1V     Back – full – 1V 

  
 
 

Face – empty – 2V    Back – empty – 2V 

  
 
 

Face – half – 2V    Back – half – 2V 
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Face – full – 2V    Back – full – 2V 

  
 
 

Face – empty – 3V    Back – empty – 3V 

  
 
 

Face – half – 3V    Back – half – 3V 
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Face – full – 3V    Back – full – 3V 

  
 
 

Face – empty – 4V    Back – empty – 4V 

  
 
 

Face – half – 4V    Back – half – 4V 
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Face – full – 4V    Back – full – 4V 

  
 
 

Face – empty – 5V    Back – empty – 5V 

  
 
 

Face – half – 5V    Back – half – 5V 
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Face – full – 5V    Back – full – 5V 
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Frequency evolution at 30-60kHz region in B3 cell 
 

Displacement in μm as a function of the frequency applied in the piezoelectric 
from 30 kHz to 60 kHz at different conditions (empty, half and full of water), at 
different amplitudes (from 1V to 6V) in the face and the back walls of the B3 cell from 
the test cell. 
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Frequency evolution in C1/A1 cell 
 

Displacement in μm as a function of the frequency applied in the piezoelectric 
from 5 kHz to 200 kHz at different conditions (empty, half and full of water), at 
different amplitudes (from 1V to 6V) in the face and the back walls of the C1/A1 cell 
from the test cell. 
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Frequency evolution at 30-60kHz region in C1/A1 cell 
 

Displacement in μm as a function of the frequency applied in the piezoelectric 
from 30 kHz to 60 kHz at different conditions (empty, half and full of water), at 
different amplitudes (from 1V to 6V) in the face and the back walls of the C1/A1 cell 
from the test cell. 
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