

2C43 PLANAR TRIODE

The 2C43 is a triode of lighthouse construction designed for use as a Class C radio-frequency amplifier or pulsed oscillator at frequencies as high as 3370 megacycles.

The radio-frequency cathode connection is made through a disk-type capacitor which is incorporated in the tube. This results in a low-impedance radio-frequency path from cathode to the external circuit.

The envelope construction results in low losses, provides convenient contact surfaces, and enables the tube to fit easily into coaxial circuits.

ELECTRICAL

s

ABSOLUTE-MAXIMUM VALUES

RADIO-FREQUENCY POWER AMPLIFIER AND OSCILLATOR— CLASS C

Frequency	Megacycles
DC Plate Voltage	Volts
DC Plate Current	Milliamperes
DC Cathode Current	Milliamperes
Plate Dissipation	Watts
Heater-Cathode Voltage	
Heater Positive with Respect to	
Cathode	Volts

PLATE-PULSED OSCILLATOR

Cathode Heating Time, minimum60	Seconds
Frequency	Megacycles
Peak Positive-Pulse Plate Supply	
Voltage	Volts
Duty Factor of Plate Pulse0.006	
Pulse Duration10	Microseconds
Plate Current	
Average During Plate Pulse2.75	Amperes
Cathode Current	
Average During Plate Pulse	Amperes

GENERAL

MECHANICAL

Mounting Position—Any Net Weight, approximate......1 Ounce Cooling—Convection and Conduction

MAXIMUM RATINGS

Heater Negative with Respect to	
Cathode90	Volts
Cathode-Cathode RF Connection Voltage Cathode RF Connection Positive with	
Respect to Cathode90 Cathode RF Connection Negative with	Volts
Respect to Cathode90	Volts
Envelope Temperature at Hottest Point. 175	С
Plate Dissipation	Watts
Cathode	Volts
Cathode	Volts
Respect to Cathode	Volts
Respect to Cathode90	Volts
Envelope Temperature at Hottest Point. 175	С

Supersedes ET-11463 dated 9-57

tions.

CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS

Heater Voltage	Volts
Plate Voltage	Volts
Cathode-Bias Resistor	Ohms
Amplification Factor	
Transconductance	Micromhos
Plate Current	Milliamperes

PUSH-PULL CW OSCILLATOR, VALUES FOR TWO TUBESFrequency350MegacyclesHeater Voltage5.85.8Volts

ilcater vortage	0.0	10100
DC Plate Voltage	470	Volts
Grid Resistor	1000	Ohms
DC Plate Current	38	Milliamperes
Power Output, approximate4.7	9.0	Watts

PUSH-PULL RADIO-FREQUENCY POWER AMPLIFIER-CLASS C-PLATE MODULATED, VALUES FOR TWO TUBES

• • • • • • • • • • • • • • • • • • • •	
Frequency	Megacycles
Heater Voltage	Volts
DC Plate Voltage	Volts
Grid Resistor	Ohms
DC Grid Voltage	Volts
DC Grid Current, approximate40	Milliamperes
DC Plate Current	Milliamperes
Driving Power, approximate	Watts
Power Output	Watts
-	

* The equipment designer should design the equipment so that the heater voltage is centered at a value suitable for the application. Heater voltage variations about the center value should be kept as small as practical and should not, in any case, exceed $\pm 5\%$. The optimum center value of heater voltage depends on the cathode current and on the other

Absolute-Maximum ratings are limiting values of operating

and environmental conditions applicable to any electron

tube of a specified type as defined by its published data

and should not be exceeded under the worst probable condi-

acceptable serviceability of the tube, making no allowance

for equipment variations, environmental variations, and the

effects of changes in operating conditions due to variations

in the characteristics of the tube under consideration and of

The tube manufacturer chooses these values to provide

PUSH-PULL FREQUENCY TRIPLER, VALUES FOR TWO TUBES

Megacycles
Volts
Volts
Ohms
Volts
Milliamperes
Milliamperes
Watts
Watts

PLATE-PULSED OSCILLATOR

Frequency	Megacycles
Pulse Duration	Microseconds
Pulse Repetition Rate1000	Pulses per Second
Peak Positive-Pulse Plate Supply	
Voltage	Volts
Grid-Bias Resistor	Ohms
Plate Current	
Average	Milliamperes
Average During Plate Pulse	Amperes
Power Output	
Average During Plate Pulse	Kilowatts

parameters of circuit design and operation. For specific recommendations, contact your General Electric tube sales representative.

- [†] Heater current of a bogey tube at Ef = 6.3 volts.
- ‡ Without external shield.

all other electron devices in the equipment.

The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any tube under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of the tube under consideration and of all other electron devices in the equipment.

elements. In the absence of an express written agreement to the contrary, General Electric Company assumes no liability for patent infringement arising out of any use of the tubes with other devices or elements by any purchaser of tubes or others.

The tubes and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of tubes by General Electric Company conveys any license under patent claims covering combinations of tubes with other devices or

NOTE 1

Glass shall not protrude beyond edge of plate terminal or grid RF connection.

NOTE 2

Plate terminal and grid RF connection to be concentric with respect to the cathode RF connection within 1/64 inch (runout 1/32 inch, maximum).

BASING DIAGRAM

TERMINAL CONNECTIONS

Pin	Connection
1	Internal Connection
2	Heater
3	Cathode
5	Cathode
7	Heater
8	Cathode

RECEIVING TUBE DEPARTMENT

