I See Airplanes: How to build your own radar system

Eric Blossom eb@comsec.com

More fun with GNU Radio...

What is radar?

- "Radio Detection and Ranging"
- Watches the reflection of radio waves off of objects and figures out:
 - How far away
 - Velocity of object
 - Bearing (direction) to object
 - Type of object (classification)

A bit of history

- First radar 1904 Christian Helsmeyer:
 Spark gap; 40 50 cm; detected ships
- First unambiguous bistatic detection:
 - Sept 1922, Holt & Young, 50W 60 MHz
 - Observed reflections from trees and wooden steamer (boat)
- UK 1935 "Daventry experiment"
 Demonstrated aircraft detection
- WWII, ...

Airport surveillance radar

Busted!

Radar configurations

- Monostatic
- Bistatic
- Multi-static (networked)

Bistatic radar

- Transmitter & Receiver are at different locations.
- Original motivations:
 - Avoiding anti-radiation missles
 - Remote target illumination

Bistatic triangle

Bistatic doppler

Bistatic radar equation

 $P_r = \frac{P_t G_t A_r \sigma}{\left(4\pi\right)^2 R_t^2 R_r^2}$

Passive radar

- A subclass of of Bistatic Radar
- Use somebody else's transmitter!

The basic idea

- Use other people's transmitters
- Use multiple coherent receivers
- One or more Tx and/or Rx locations
- Watch reflections
- Do a bunch of math
- Detemine position and velocity

Choice of transmitter

- Don't control signal, but know the general characteristics
- Obvious choices:
 - Broadcast FM (100 kHz wide)
 - Analog and/or digital TV (6-8 MHz wide)
 - GSM cellular / UMTS
- Other choices:
 - High power satellites (DBS)
 - GPS satellites
 - Existing radar transmitters
 - Primary and/or secondary surveillance

Existence proofs:

- Lockheed "Silent Sentry"
- Manastash Ridge Radar

Lockheed "Silent Sentry"

Manastash Ridge radar

- University of Washington
 - Prof John Sahr & students
 - Interested in ionospheric phenomenon
- Very simple
- Two locations separated by 150 km
- Takes advantage of mountains
- GPS synced time references
- Sees stuff up to 1200 km away!

What we chose

- FM broadcast
 - About 100 MHz (3m wave length)
 - Bandwidth about 100 kHz
 - Theoretical distance resolution 3 km
 - (but see also "super-resolution" techniques)
- Why:
 - Simplest h/w that could possibly work.
 - Need to sample multiple antennas coherently.
 - Bandpass sampling eliminates requirement for coherent analog LO

Universal Software Radio Peripheral (USRP)

- 4 12-bit 64 MS/sec A/Ds
- 4 14-bit 128 MS/sec D/As
- Altera Cyclone FPGA
- USB 2 interface to PC
- Pluggable RF daughterboards
- See http://ettus.com for info

USRP block diagram

Bandpass sampling

- Nyquist sampling criterion:
 Need 2x the bandwidth of interest
- USRP samples at 64 MS/s
- spectrum "folding" every Fs/2 (32 MHz)
- therefore, folds at 96 MHz, middle of FM band.
- Requires bandpass filter to avoid aliasing. Either:
 - 87 95 MHz or
 - 97 107 MHz

Experimental setup

- Simplest thing that could possibly work
- 2 directional antennas
 - 1 pointed at Tx about 45km away
 - 1 pointed about 120° away (towards airport approach)
- 2 broadband LNA's
- 1 USRP with 2 "Basic Rx" d'boards

Procedure

- Watch for nearby airplanes
- Collect the data
- Run the analysis software
- Plot the range/doppler graph

Airplanes?

xv

- 0 ×

Hmmm...

- Could be h/w or s/w or both...
- Could be RF/Analog
 - Filtering
 - Gain
 - Antennas
 - Direct path overwhelming reflection (not enough dynamic range)
- Could be signal processing s/w
 - Is it working?

Simulate!

- Simulate the FM transmitter
- Simulate the radar reflections
 - Geometry (Tx, Rx, targets: pos & velocity)
 - Propagation delay
 - Doppler shift
- Run analysis s/w on reference signal and simulated returns.

I see (simulated) airplanes!

Next steps

- Quantitative analysis using simulator:
 - What RF performance do we require for s/w to be able to detect targets?
 - How small (big?) of an object should we expect to see at a give distance
- Design & build low-loss bandpass filters

 Probably helical filters
- Antenna ideas:
 - Dipoles in front of metal screen
 - "Corner reflectors"

And then...

- Determine angle of arrival
 - Interferometry / phased array
 - Watch multiple Tx's in different locations
 - Use multiple Rx's in different locations
- Target tracking (multiple targets)
- Nice real-time application with GUI
- Try it with digital TV signals
 Theoretical ~50 m resolution

Resources

- The code is in GNU Radio CVS
- http://www.gnu.org/software/gnuradio
- Mailing list: discuss-gnuradio@gnu.org

Beyond this point: Radio frequency fields at this site may exceed FCC rules for human exposure.

CAUTION

For your safety, obey all posted signs and site guidelines for working in radio frequency environments.

> In accordance with Federal Communications Commission rules on radio frequency emissions 47 CFR 1.1307(b)