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Abstract 

In passive coherent locators (PCL) systems, noise and the precision of 

direction of arrival (DOA) estimation are key issues. This thesis addresses the 

implementation of sophisticated DOA estimation methods, in particular the 

multiple signal classification (MUSIC) algorithm, the conventional beam forming 

(CBF) algorithm, and the algebraic constant modulus algorithm (ACMA). The 

goal is to compare the ACMA to the MUSIC, and CBF algorithms for application 

to PCL. 

The results and analysis presented here support the use of constant 

modulus information, where available, as an important addition to DOA 

estimation. The ACMA offers many simple solutions to noise and separation 

related problems; at low SNR levels, it provides much more accurate estimates 

and yields reasonable separation performance even in the presence of 

challenging signals. Differential ACMA, which allows the simple digital removal 

of the direct signal component from the output of a sensor array, is also 

introduced. 
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THE ANALYSIS OF SOPHISTICATED 

DIRECTION OF ARRIVAL ESTIMATION METHODS IN 

PASSIVE COHERENT LOCATORS 

Chapter 1  -  OVERVIEW 

1.1  Introduction 

PCL systems are a form of radar receiver, which exploits the ambient 

radiation in the environment to detect, track and identify objects. PCL systems 

are described in the literature as “bistatic” or “multistatic”. A bistatic radar has 

its transmitter and receiver separated by distance comparable to the expected 

range of the object. A multistatic radar is an extension of bistatic radar, which 

uses two or more receiving antennas with one transmitting antenna. 

PCL systems are passive RF sensors. Thus, they do not radiate energy. 

Since both amplitude and phase of the received signal are measured and 

processed, PCL has a coherent operation. Bistatic radar-object-parameter 

measurements apply PCL such as range, Doppler, direction-of-arrival (DOA). 

These are similar to monostatic radars. Multistatic measurements, such as time 

difference of arrival (TDOA) and differential Doppler (DD), are used together 

with bistatic measurements. PCL uses the emitter of opportunity; therefore, 

waveform is constrained to whatever is offered by the non-cooperative 

transmitter. The location of the receiver is limited to areas of co-illumination and 

reception. The receivers will typically use state-of-the-art computing technology 

to exploit sophisticated signal processing and estimation algorithms to determine 
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the location, bearing, and velocity of the object. PCL technologies and systems 

are only now becoming serious candidates for operational use because PCL 

systems need such complex digital processing techniques. 

PCL systems may be categorized into three groups; narrow band PCL, 

which uses just the narrow video or audio carrier of a TV waveform, allowing 

Doppler and/or DOA measurements, wide band PCL, which uses the broader-

band modulation spectrum of an FM waveform, allowing range and/or DOA 

measurements, pulsed PCL, which uses waveforms from pulsed radars. 

The main advantage of the PCL system is the passive operation. Most 

current radars are operating in active mode. Thus, they are vulnerable to ESM 

intercept and location techniques, anti-radiation missiles (ARM), and electronic 

counter measurement (ECM). Passive surveillance and reconnaissance sensor 

configurations, such as PCL, offer improved robustness against conventional 

countermeasures. PCL has the ability to perform covert surveillance, 

reconnaissance, and even weapon guidance in surface-to-surface, ground-to-air, 

air-to-surface, space-borne, and air-to-air applications without alerting the 

objects under observation. Recent emphasis in RCS reduction techniques, based 

on shaping and smart material technology suggests the use of bistatic or 

multistatic, semi-active low-probability of intercept (LPI) and passive sensor 

configurations for improved object detection, especially for air objects due to 

operating frequency, and/or due to the advantage of forward-scatter geometry 
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at any frequency. More importantly, PCL has potentially lower cost and is 

friendlier to the environment than high frequency active radars. 

1.2 Problem 

One of the key issues in PCL systems is noise. Harmonics from the 

transmitter(s) of opportunity, Galactic noise, interference from other transmitters 

within line-of-sight, and multipath, especially due to ground effect, degrade PCL 

system performance. Thus, thermal noise-limited detection ranges are 

significantly decreased. A DOA estimation algorithm, which is able to bias out 

noise to some degree, will be helpful in increasing the detection ranges. 

Another problem lies in the precision of DOA estimation. In a two-

element interferometer system, the difficulties of accurately estimating phase at 

low signal-to-noise ratios (SNR), and the effects of multipath propagation cause 

large error variance in DOA profiles. The DOA change rate is slower for the 

objects at longer ranges than the objects at closer ranges, and the small changes in 

DOA will be swamped by noise. These problems result in insufficient 

information in Doppler and DOA profiles, which, with typical measurement 

errors, will degrade the accuracy of object state estimate [1]. Thus, a high-

precision DOA estimation algorithm is a necessity. 

A two-element interferometer is the simplest and cheapest means of 

direction finding. If more channels are available, additional sensors can be 

arrayed, and other direction finding techniques such as conventional 
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beamforming, adaptive beamforming and super-resolution can be used. These 

techniques provide better performance at the expense of complexity. 

This thesis addresses implementation of the MUSIC algorithm, the CBF 

algorithm, and the ACMA for applications to PCL systems. 

 
Figure 1. DOA Change for Objects at Different Ranges 
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1.3 Summary of Current Knowledge 

There are several methods of finding DOA, such as interferometer, 

Doppler, differential Doppler, TDOA. Griffiths and Long, and Howland used 

phase interferometry for DOA measurements with two simple Yagi antennas 

[2:11]. They had problems for DOA measurements for off-boresite signals. 

Howland used the Cramèr-Roa lower bound (CRLB) to quantify the 

performance of the system. In his system, Howland managed to detect almost all 

objects seen by SSR but tracked only one-third of them. Howland concluded that 

objects might be lost in CFAR or Kalman filtering or by having ambiguous or too 

inaccurate bearing estimates [1]. 

The Silent Sentry system uses a horizontal linear phased array antenna 

to collect object echo. System integrates FM and TV tracks by extracting the 

TDOA and Doppler measurements for each detected object by using 

beamforming techniques [3]. It combines sophisticated signal processing 

techniques with radar up-to-date achievements. 

Beamforming techniques try to separate super-positions of source signals 

from the outputs of a sensor array. “The objective of blind beamforming is to do 

this without training information, relying instead on various structural 

properties of the problem” [4:1]. DOA estimation methods exploit either 

parametric structure of the array manifold or properties of the signals such as 

being non-Gaussian, or cyclo-stationary. In these kinds of methods, the 

estimation of the signals’ waveform is done by multiplying a weight matrix by 
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the received data matrix. A well-studied example of the first type is the 

estimation of signal parameters via rotation invariance technique (ESPRIT) 

algorithm, which is based on a constant delay and attenuation between any two 

adjacent samples in a uniformly sampled time and space series [5:503]. A 

representative of the second type is ACMA, which gives algebraic expressions 

for the separation of sources based on their constant modulus property, valid for 

phase-modulated sources. Alle-Jan showed that two properties could be 

combined into a single algorithm [4:1-4]. 

Leshem introduced a Newton scoring algorithm for the maximum 

likelihood separation and DOA estimation of constant modulus signals, using a 

calibrated array. “The main technical step is the inversion of the Fisher 

information matrix, and an analytic formula for the update step in the Newton 

method, based on initialization with a sub-optimal method” [6:1]. Leshem 

presented the computational complexity of the algorithm and demonstrated its 

effectiveness by simulations [6]. 

Trump and Ottersten analyzed least square based algorithms and 

proposed a weighted least square algorithm. They proved the asymptotic 

efficiency of the proposed algorithm and provided CRLB [7:3-24]. 

MUSIC and ACMA algorithms offer solutions for the problems related 

with the noise level and DOA precision; however, they have never been used in 

PCL systems before. This thesis combines the current knowledge about digital 

beamforming techniques and PCL together. 
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1.4 Assumptions 

In this thesis, a narrow band PCL system using FM signals is studied. 

Noise standard deviation for the real part and for the imaginary part is set to 

2
1 . The total power of the noise therefore equals one. There are tests using 

both uncorrelated-white, and colored noise. A passive receiver being a linear 

array antenna, which has uniformly spaced 16-isotropic-element, is simulated. 

Initial object directions and coordinates are fixed. Objects fly at constant 

speed within a single coherent processing interval (CPI). In a single CPI, there 

are N snapshots. The object signals correspond to Swerling cases 1,3 and 5 in 

radar theory [8:373-440]. Our object signals are reflected constant source signals. 

The noise power is assumed one. The power of each object signal is, therefore, 

determined by a given SNR value. 

The array is assumed to be calibrated so that the array response vector 

a(θ) is a known function. 

It is further assumed that all signals have constant modulus, i.e., for all t, 

 si(t)  = 1. Unequal signal powers are absorbed in the gain matrix B. 

Chapter 3 includes detailed explanation of assumptions. 

1.5 Scope 

The goal of this research is to compare the ACMA, MUSIC, and CBF 

algorithms for applications to PCL systems. Narrow band PCL systems that use 

FM signals are studied using both uncorrelated-white, and colored noise. 

Comparison is based on error expected values, variances, and success rate. If 
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DOA estimation error for both objects is less than or equal to 1.5°, it is called 

success. 

1.6 Approach/Methodology 

Acquiring signals at the antenna system output is the first step. The 

received object signals are simulated with an SNR value related to a unit 

variance noise signal. This may be used for a uniform linear array with isotropic 

elements. The sampling interval equals two times bandwidth. The object and 

noise signals are summed to form the output signal. SNR is the ratio of the signal 

power to the noise power for each object signal, at each antenna element, during 

each time snapshot. 

1.6.1 DOA Estimation with MUSIC and CBF 

To estimate DOA using MUSIC and CBF, the following steps are followed: 

• Estimation of the signal correlation matrix, 

• Estimation of the output DOA spectrum, 

• Estimation of the DOA. 

1.6.1.1 Estimation of the signal correlation matrix 

The correlation matrix estimate is based on the maximum likelihood (ML) 

estimate. This is, basically, the calculation of the maximum-likelihood 

correlation-matrix-estimate of the received signals from different channels. 

1.6.1.2 Estimation of Output DOA-spectrum 

The output is a quadratic measure of signal presence in different 

directions. The output can be either a power spectrum or a pseudo spectrum. 
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1.6.1.3 Estimation of the DOA 

Peaks of the DOA-spectrum give the DOA estimate. 

1.6.2 DOA Estimation with ACMA 

To estimate the DOA using ACMA, the following steps are followed: 

• Blind source separation, 

• Estimation of the array response for each signal, 

• Estimation of the DOA for each signal. 

1.6.2.1 Blind Source Separation 

ACMA provides blind estimation of the signal separation using the 

constant modulus property [9]. 

1.6.2.2 Estimation of the array response for each signal 

ACMA provides the estimate of the array response for each separated 

signal. 

1.6.2.3 Estimation of the DOA for each Signal 

A one-dimensional projection of each array response estimate onto the 

known array response gives the estimation of the DOA for the corresponding 

signal. 
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Chapter 2  -  LITERATURE REVIEW 

2.1  Introduction 

Recent improvements in semiconductor technology and signal/image 

processing permit a major advance in sensor technology that will significantly 

improve military capability. There are numerous research activities in detection 

and tracking of objects using passive sensors; however, literature is limited in 

this area, since it is new and most countries prefer to keep the related works 

secret. Therefore, this literature review is organized to give as much information 

as possible about PCL and its connection to radar. 

One of the main concerns in PCL systems is to increase the precision of 

DOA estimation. The first published work on DOA estimation appeared in the 

1960s. Since then, many papers have been published, and the theory and 

applications have been advanced. This literature review is organized as follows: 

a brief discussion of bistatic radar to introduce the reader to the concept of PCL, 

definition, implementations, and origin of PCL systems, summary of some 

known PCL systems, article reviews on DOA estimation techniques, and 

conclusion. 

2.2 Bistatic Radar 

“Radar is an electromagnetic system for the detection and location of 

reflecting objects such as aircraft, ships, spacecraft, vehicles, people, and the 

natural environment” [10:1]. The transmitting antenna radiates electromagnetic 



 11

energy into space, and this energy is intercepted by a reflecting object and 

reradiated in many directions. The receiving antenna collects the re-radiation 

directed back towards the radar to deliver to a receiver, where it is processed to 

detect the object and to determine its location. In the early 1900s, Christian 

Hulsmeyer, a German physicist, assembled a simple form of today’s 

sophisticated monostatic (single site) pulse radar. 

In 1904, Hulsmeyer obtained the first patent in the radar area. In 1922, S. 

G. Marconi urged the radio detection of objects in his speech before the Institute 

of Radio Engineers. In the autumn of 1922,  

A. Hoyt Taylor and Leo C. Young of the U.S. Naval Research Laboratory in 
Washington, D.C. accidentally observed a fluctuating signal at their receiver 
when a ship passed between the receiver and transmitter located on opposite 
sides of the river. This was called a CW wave-interference system but today, 
it is known as bistatic CW radar. [10:15] 

In order to establish a long-range warning system, most of the countries 

that responded to the heavy military bomber aircraft threat, which appeared in 

the late 1920s and early 1930s, examined several possible detection sensors 

including sound locators and infrared. Attempts were also made to detect the 

spark-plug ignition noise radiated by the aircraft engine. “The bistatic CW radar 

then followed from the accidental detection of aircraft, ships, or other objects as 

they passed between the transmitter and the receiver of a radio system” [10:15]. 

In the early history of radar, detection of aircraft and other objects by using the 

CW wave-interference (bistatic radar) method occupied a significant place. There 

were about 200 bistatic radars deployed before and during the World War II 
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[11:1]. Most of these radars were operating at low frequencies. The invention of 

the high-power microwave cavity magnetron at the University of Birmingham in 

England during the early World War II made the radar method truly useful. This 

invention made monostatic (single site) pulsed radars more popular since they 

are much easier to deploy, operate, and maintain. Figure 2 illustrates a typical 

monostatic radar operation. 

 
Figure 2. Typical Monostatic Radar Operation. 

Monostatic radar is radar that has transmitting and receiving antennas at 

the same site. Some of these radars have a single antenna that performs both 

transmission and reception. Monostatic radars are easier to deploy, operate, and 

maintain when compared with the other types of radars. 

Bistatic radar is “a radar operating with separated transmitting and 

receiving antennas” [11:1]. Figure 3 illustrates typical bistatic operation. The 

distance between the transmitting and receiving antennas is sometimes included 

in the definition, but it is not specified how far they must be separated. Although 
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there are restrictions on the separation distance of the transmitting and receiving 

antennas, the main point is that they must be sited at different locations. A 

bistatic radar net operates with several bistatic radars linked to a single center to 

provide integrated object data. An extension of bistatic radar is called multistatic 

radar, which uses two or more receiving antennas with one transmitting antenna. 

“A multistatic radar is a special case of radar net; both process object data from 

multiple sites at a central location” [11:4]. A radar net is formed by combining 

several monostatic radars. In both cases, the independent measurements from 

receiving subsystems of each radar site are collected and processed non-

coherently at a central location. 

 

Figure 3. Typical Bistatic Radar Operation. 

By the time, radars have become more sophisticated. The rapid advances 

in digital technology have made many theoretical capabilities practical with 

digital signal processing and digital data processing, such as object recognition 

[8:5]. The following section describes PCL, briefly. 
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2.3 Passive Coherent Locator 

PCL systems are more like bistatic or multistatic systems with some 

differences. PCL system is a candidate to be passive radar. Willis describes PCL 

as “a bistatic radar, bistatic radar net or multistatic radar that uses commercial 

broadcast transmitters, typically TV or FM transmitters, as the source of 

illumination”. Figure 4 illustrates typical PCL operation. 

 
Figure 4. Typical PCL Operation. 

On February 26 of 1935, Arnold Wilkins and Watson-Watt conducted an 

experiment as an initial demonstration of “Detection and Location of Aircraft by 

Radio Means.” This experiment, known as the “Daventry Experiment,” was 

configured as a forward-scatter fence [11:26]. Their plan for the demonstration 

was to position a receiver at a suitable distance away from the BBC Empire short-

wave radio transmitter at Daventry and its main beam, and to fly a Heyford 
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bomber up and down the beam observing any fluctuations in the received signal 

caused by interference between the direct signal and the signal reflected from the 

aircraft [11: 9; 1:1]. This work may be considered an early demonstration of PCL. 

PCL systems may be categorized into three groups; narrow band PCL, 

which uses just the narrow video or audio carrier of a TV waveform, allowing 

Doppler and/or DOA measurements, wide band PCL, which uses the broader-

band modulation spectrum of a FM waveform, allowing range and/or DOA 

measurements, pulsed PCL, which uses waveforms from pulsed radars. 

2.3.1 Characteristics of PCL 

There are two modes of radar operation, active and passive modes. In the 

active mode, an electromagnetic signal is transmitted, and the radar receives the 

reflected signal and then it is processed. In the passive mode, the radar 

transmitter is silent, and the radar only listens [12:22]. PCL systems do not 

radiate energy, they only listen. Since both amplitude and phase of the received 

signal are measured and processed, PCL has a coherent operation. Bistatic radar 

object parameter measurements apply PCL such as range, Doppler, DOA. These 

are similar to monostatic radars. Multistatic measurements, such as time 

difference of arrival (TDOA) and differential Doppler (DD), are used together 

with bistatic measurements. PCL uses the emitter of opportunity; therefore, 

waveform is constrained to whatever is offered by the non-cooperative 

transmitter. The location of the receiver is limited to areas of co-illumination and 

reception. The receivers will typically use state-of-the-art computing technology 
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to exploit sophisticated signal processing and estimation algorithms to determine 

the location, bearing, and velocity of the object. PCL technologies and systems 

are only now becoming serious candidates for operational use because PCL 

systems need such complex digital processing techniques. 

In the 1950s, an international committee allocated the frequency band 

common to every country. This was needed, since communication and 

broadcasting systems were increasing and the frequency spectrum had become 

crowded. Even today, number of these systems continues to grow. Now there are 

over 55,000 TV and FM broadcast stations throughout the world. Therefore, it is a 

good idea to deploy a system that re-uses these unattended radiations in the 

means of passive radar. 

PCL has potentially lower cost and is friendlier to the environment than 

high frequency active radars. 

2.3.2 Summary of Known PCL Systems 

PCL became open to the public 16 years ago; below is a summary of some 

known PCL systems. 

2.3.2.1 TV-Based Bistatic Radar I 

The first experiment related to PCL systems, known to the public, was 

demonstrated by Griffiths and Long, in 1985. They conducted experiments in the 

London area using, “illuminator of opportunity,” the Crystal Palace transmitters, 

which transmit four TV channels, as shown in Table 1. The basic configuration 

was bistatic and the system was designed to detect aircrafts. Two channels were 
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used; one channel with 10-element Yagi antenna for the reference signal, and the 

other channel with a vertical array of four 17-element Yagis for radar echo 

signals. For sync-plus-white experiments, Channels 26 and 33 were used and for 

pulsed sideband experiments, Channel 4 was used. This was a non-real time 

system. Moving target indicator (MTI) was first tested [2]. 

Table 1. Crystal Palace Transmission 
 

 

 

 

 

Griffiths and Long concluded; 

In spite of the problems encountered, bistatic radar based on illuminators of 
opportunity has substantial attractions. While television transmissions are in 
several ways not ideal for this purpose, and require substantial processing to 
extract target echoes, a system of adequate dynamic range using real-time 
cross correlation would represent an intriguing prospect.  [2:657] 

2.3.2.2 Silent Sentry 

The Silent Sentry (SS) was originated in 1980 when IBM decided to get 

into the radar business. Then IBM’s project group on SS was sold to Lockheed 

Martin. SS is an all-weather, passive surveillance technology. There are several 

models. The SS system is a receiving system that exploits transmissions from 

multiple commercial FM radio and TV stations to passively detect and track 

airborne objects in “real-time.” The system has two configurations: the Fixed Site 

 Channel Number Vision Carrier 
MHz 

ITV 23 487.25 

BBC 1 26 511.25 

Channel 4 30 543.25 

BBC 2 33 567.25 
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System (FSS) and the Rapid Deployment System (RDS). Studies on SS were kept 

secret until 1998. The first prototype was tested in March 1999. A horizontal 

linear phased array antenna collects the object echoes. There are additional 

receiving antennas for reference signals. System basic configuration, then, is 

bistatic net. System integrates FM and TV tracks by extracting the TDOA and 

Doppler measurements for each detected object. SS can provide 3D object 

tracking [3]. 

SS system is the only marketed system at $3-5M per basic unit. SS seems to 

be a new step in the technology. It combines sophisticated signal processing 

techniques with radar up-to-date achievements. It is not a stand-alone system, 

yet it can fill the gaps of recent air defense structures. 

Table 2. Performance of A Mid-Range System Configuration 
System Parameter Value 

∗ Detection Range 220 km 

Range Depth Coverage 150 km 

Azimuth Coverage 60° to 130° 

Elevation Coverage 50° 

Target Tracking Update Rate 8 per second 

Target Capacity 200+ 

Power requirements 10 kW 

Footprint (excluding antenna) 27 square feet 

∗  Value based upon an RCS=10 m2 @ 100 MHz, Pd > 0.95, FAR < 10-3 
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2.3.2.3 TV-Based Bistatic Radar II 

In 1998, Howland [1] demonstrated that a object’s location and velocity 

could be estimated from bearing and Doppler shift of the echo. The system was 

using a non-cooperative TV transmitter as the illuminator for a bistatic 

configuration with 156 km baseline. Howland developed a signal-processing 

scheme, which allowed detecting and tracking the airborne objects to a range of 

260 km using only sound or vision carrier of a terrestrial TV signal. In this case, 

the TV signal was vision carrier of Channel 4 transmitted from Crystal Palace TV 

transmitter, operating at 543 MHz. This was a two-channel system with eight-

element Yagi on each. Object echo signals on each channel were down-converted 

to baseband through a low-noise UHF/VHF down-conversion unit and HF 

digital receivers, and processed using fast Fourier transform (FFT) to estimate the 

Doppler and bearing. The system was using two distinct tracking phases: the 

first using the Kalman filter based tracking scheme, associated Doppler and 

bearing plots; the second using extended Kalman filter, determined the location 

and velocity of the object. Howland used the Cramèr-Roa lower bound (CRLB) to 

quantify the performance of the system. The system provided three degrees of 

bearing accuracy. The results were checked using data from secondary 

surveillance radar (SSR) and it was found that Howland managed to detect 

almost all objects seen by SSR but tracked only one-third of them. Howland 

concluded that objects might be lost in CFAR or Kalman filtering, or having 
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ambiguous or too inaccurate bearing estimates. The work ended, but Howland 

has been studying a new system with an array antenna. 

2.3.2.4 Manastash Ridge Radar 

Sahr [13] demonstrated a new method for radar remote sensing of the 

upper atmosphere using commercial FM broadcast near 100 MHz. His system 

operation was bistatic with 100 km baseline. He built an instrument at the 

University of Washington to study high-latitude plasma irregularities in the 

region E. He used separate receivers for scattered signal and reference signal. 

Time and frequency synchronization issue was solved by using GPS receivers, 

which provide one-pulse-per-second that promises a range resolution of 15 m 

and Doppler velocity accuracy of 1 m/s. Collected data from the receivers were 

passed through fast internet service and then were processed at a central 

location. The system was not designed for detecting aircrafts but detection of 

some nearby flying aircraft was reported. System, also, detected meteors. This 

radar is still operating and research continues. 

2.3.3 Disadvantages, Limitations and Technical Issues in PCL 

Since PCL systems use the transmitter of opportunity, there is no control 

over the high-average-power transmitter. Generally, waveforms are sub-optimal. 

There are unwanted harmonics. Transmitters may not be located optimally for 

radar purposes. Noise is one of the main issues. Harmonics from the 

transmitter(s) of opportunity, the Galactic noise and interference from other 

transmitters within line of sight, and multipath especially due to ground effect, 



 21

degrade PCL system performance. Thus, thermal noise-limited detection ranges 

are significantly decreased. Coverage may also be an issue at some areas, 

depending on the available power levels and terrain shape. 

Tracking of objects is the main problem in PCL systems. Track initiation 

latency, track initiation efficiency and spurious tracks, and latency constrained 

by a fundamental data requirement are basic issues. Both latency and efficiency 

may require different techniques such as antennas with larger receive aperture 

and multistatic operation, which requires highly sophisticated signal processing. 

The association of objects parameters process degrades as the object 

density increases. Object altitude estimation degrades when long-range detection 

is performed. 

The systems’ use of phase interferometry for DOA measurement with 

simple Yagi antennas had problems for DOA measurements for off-boresite 

signals. 

Howland showed that the Doppler measurements are limited by 

“quantisation noise” and any random movements of the object. He also showed 

that the probability density function of the DOA errors is a function of both 

signal-to-noise ratio (SNR) and the true DOA [14:224]. 

In this thesis, sophisticated DOA estimation techniques are examined in 

order to provide better DOA estimation. 
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2.4 Direction of Arrival Estimation 

There are several methods of finding DOA, such as interferometer, 

Doppler, differential Doppler, TDOA. Howland, in his first work, used phase 

interferometry for DOA measurements with two simple Yagi antennas [14:38-39]. 

A two-element interferometer is the simplest and cheapest means of direction 

finding. If more channels are available, then additional sensors can be arranged 

in an array, and then other direction finding techniques such as conventional 

beamforming, adaptive beamforming and super-resolution can be used. This will 

give better performance at the expense of complexity.  

Beamforming techniques try to separate super-positions of source signals 

from the outputs of a sensor array. “The objective of blind beamforming is to do 

this without training information, relying instead on various structural 

properties of the problem” [4:1]. DOA estimation of multiple signals impinging 

on an antenna array is a well-studied problem in signal processing. 

DOA estimation methods exploit either parametric structure of the array 

manifold or properties of the signals such as being non-Gaussian, or cyclo-

stationary. In these kinds of methods, the estimation of the signals’ waveform is 

done by multiplying a weight matrix by the received data matrix. A well-studied 

example of the first type is the ESPRIT algorithm, which is based on a constant 

delay and attenuation between any two adjacent samples in a uniformly sampled 

time and space series [5:503]. A representative of the second type is ACMA, 

which gives algebraic expressions for the separation of sources based on their 
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constant modulus property, valid for phase-modulated sources. Alle-Jan showed 

that the two properties could be combined into a single algorithm [4:1-4]. 

Leshem introduced a Newton scoring algorithm for the maximum 

likelihood separation and DOA estimation of constant modulus signals, using a 

calibrated array. “The main technical step is the inversion of the Fisher 

information matrix, and an analytic formula for the update step in the Newton 

method, based on initialization with a sub-optimal method” [6:1]. Leshem 

presented the computational complexity of the algorithm and demonstrated its 

effectiveness by simulations [6]. 

Trump and Ottersten analyzed least square based algorithms and 

proposed a weighted least square algorithm. They proved the asymptotic 

efficiency of the proposed algorithm and provided CRLB [7:3-24]. 

2.5 Conclusion 

Discussions, presented here, include advantages, disadvantages, issues, 

and article reviews on one of the main issues in PCL systems, DOA estimation. 

Implementation of sophisticated DOA estimation methods, such as MUSIC, CBF, 

or ACMA can increase the performance of PCL, and this literature review 

provides a background for the next chapter. 
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Chapter 3  -  RESEARCH METHOD 

3.1 Assumptions 

The source signal is a narrow band FM signal at a 100 MHz carrier 

frequency with a 75 KHz bandwidth. This means that source signal, and object 

signals are constant modulus signals, i.e., for all t,  si(t)  = 1. 

Possible object signals are constant signals with Doppler shifts. There is no 

range information. The object signals correspond to Swerling cases 1, 3, and 5 in 

radar theory. This is applicable only for constant object signals with Doppler 

shift and not for random signals. Swerling cases 1, 3, and 5 means that the 

amplitude of the signal remains constant between adjacent snapshots but can 

change between different trials (CPI’s). Swerling case 1 means that the amplitude 

exhibits large fluctuations between different CPI’s. Swerling case 3 means that 

the amplitude exhibits small fluctuations between different CPI’s. Swerling case 

5 (also called Swerling case 0 or Marcum case) means that the amplitude does not 

fluctuate between different CPI’s [8:373-440]. 

A passive receiver of linear array antennas, which has uniformly spaced 

16-isotropic-elements, is simulated. Figure 5 shows the antenna pattern. The 

array is assumed to be calibrated so that the array response vector a(θ) is a 

known function. The ACMA algorithm requires that the array manifold satisfy 

the uniqueness condition, i.e., every collection of p vectors on the manifold is 

linearly independent. 
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Figure 5. Antenna Pattern 

Initial object directions and coordinates are fixed. Objects travel at 

constant speed within a single coherent processing interval (CPI). In a single CPI, 

there will be N snapshots. 

3.2 Model Exploration 

3.2.1 Signal Modeling 

Typically, an FM signal can be depicted as 

Another way to write this equation is 

( ) ( )( )ttwcost c γ+=s . (2) 

Since we are modeling a narrow band system, we can add object Doppler 

to the expression above as 

( ) ( ) ( )( )tttcwcost ds ++= γ  (3) 

( ) ( )twtwcost sc +=s . (1) 
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According to the assumptions sustained in this thesis, the terms ( )tγ  will 

be constant and ( )td  will represent a constant phase shift for each snapshot 

within a single CPI. 

The received object signals and source signal are simulated with an SNR 

value related to a unit-variance noise signal. This may be used for a uniform 

linear array with isotropic elements. SNR is the ratio of the signal power to the 

noise power for each signal, at each of the antenna elements, and each of the time 

snapshots. The amplitude of the signal, therefore, will be 
( )2010
SNR

. Then the 

equation (3) becomes 

( ) ( ) ( )( )tttcwcos2010t d
SNR

s ++= γ  
(4) 

This is the real part of the signal. We have a complex envelope, thus the equation 

(4) should be rewritten as 

( ) ( ) ( )( )tttcw2010t de
SNR

s ++= γ  
(5) 

3.2.2 Signal Data Matrix 

The data model can be written as 

x(t)=ABs(t)+n(t) (6) 

where 

 x(t) = [x1(t),….., xp(t)]T is a p x 1 vector of received signals at time t. 

 A = A(θ) = [a(θ1),….., a(θq)], where a(θ) is the array response vector 

for a signal from a direction θ, and θ = [θ1,……, θq] is the DOA vector of the 

signals. 
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 B = diag(β) is the channel gain matrix, with parameters β = [β1,….. 

βq]T, where βi ∈  R + is the amplitude of the i-th signal as received by the array; 

our object signals are reflected constant source signals. The noise power is 

assumed one. The power of each objects signal is, therefore, equal to the value 

given by the input parameter SNR. This means that the amplitude of the signals, 

βi, should be 
( )2010
SNR

, 

 s(t) = [s1(t),….,sq(t)]T is a q x 1 vector of signals at time t, 

 n(t) is the p x 1 additive noise vector, which is assumed spatially 

and temporally white Gaussian distributed with covariance matrix νI, where ν = 

σ2 is the noise variance [15]. Noise standard deviation for the real part and for the 

imaginary part is set to 2
1 . The total power of the noise is therefore one. 

Unequal signal powers are absorbed in the gain matrix B. Phase offsets of 

the signals after demodulation are part of the si. Thus, it can be written as 

si(t) = ejϕi(t), where ϕi(t) includes the unknown phase modulation for signal i, and 

the Doppler shift due to object movement. It is defined ϕi(t) = [ϕ1(t),……, ϕq(t)]T 

as the phase vector for all objects at time t. 

There will be N samples available, i.e. 

X = [x(1),…..,x(N)]T 

Thus, X is the data matrix with different channels as different rows and 

different snapshots as different columns. Figure 6, Figure 7, and Figure 8 show 

object signals and antenna output. 
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Figure 6. Simulated Object Signals 

 

Figure 7. Simulated Object Signals with Additive Gaussian White Noise 
SNR = [10, 10] 

 

Figure 8. Simulated Antenna Output 
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3.3 DOA Estimation 

Once we acquire the signal data matrix X, we can apply signal-processing 

techniques to estimate the DOA. 

3.3.1 DOA Estimation with MUSIC and CBF 

To estimate the DOA using MUSIC and CBF, the following steps must be 

followed: 

• Estimation of the signal correlation matrix, 

• Estimation of the output DOA spectrum, 

• Estimation of the DOA 

3.3.1.1 Estimation of the signal correlation matrix 

The correlation matrix estimate is based on the maximum likelihood (ML) 

estimate. This is, basically, the calculation of the maximum-likelihood 

correlation-matrix-estimate of the received signals from different channels. 

Signal correlation matrix is calculated using 

T

T
XXR xx

1=  (7) 

where, 

Rxx is the correlation matrix, 

T is the number of snapshots. 

3.3.1.2 Estimation of Output DOA-spectrum 

The output is a quadratic measure of the presence of source and object 

signals in different directions. The output can be either a power spectrum or a 
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pseudo spectrum. In this thesis, CBF estimates the power spectrum (Figure 9), 

whereas MUSIC estimates pseudo spectrum (Figure 10). 

The parameters of MUSIC and CBF algorithms do not depend on signal 

characteristics or noise characteristics. These algorithms exploit the parametric 

structure of array manifold. Thus, we should know the relation between the 

direction propagation and delay per sensor in an array antenna. CBF, after 

compensating these delays, weights and sums the sensors’ output to form a 

signal estimate. Power spectrum estimate for CBF is defined as, 

θθθ wRw xx **   P H=
∧

 
(8) 

where, 

Rxx is the correlation matrix, 

wθ  is Taylor-tapered1 known array response for θ. 

MUSIC is an eigenanalysis-based algorithm. “A linear operator’s 

spectrum is defined to be its set of eigenvalues and its natural basis the set of 

normalized eigenvectors” [16:373]. The algorithm can be summarized as; 

By sorting the eigenvalues, the associated eigenvectors can be subdivided into 
two groups that each form a basis: One group spans signal vectors and noise 
components indistinguishable from signals, and the other spans the 
remaining noise components. 

The largest Ns eigenvalues, where Ns denotes the number of signals, defines 
the first group. 

Because distinct signal vectors are linearly independent, we can find signal 
vectors from the first eigenvector group provided with only the array 

                                                 

1 wθ = aθ * TaylorTaper 
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geometry. Consequently, directions of propagation can be found by sorting the 
special correlation matrix’s eigenvalues.  [16:377-378] 

Eigenvalue decomposition can be achieved using singular value 

decomposition (SVD) as; 

[U,S,V] = svd(Rxx) (9) 

Since Matlab sorts in ascending order, the first Ns eigenvalues belong to 

the first group spaning remaining noise components. Thus, the other group 

spans signal vectors and noise components indistinguishable from signals. The 

corresponding eigenvectors can be identified as; 

En = U(:,(Ns +1):noChan) (10) 

 MUSIC pseudo spectrum [12] can be found as, 

( ) ( ) ( )( )'**'*diag/.*diag  THTH AEnAEnAASpect Power =
∧

 (11) 

The descriptions, detailed explanation, and comparison of the MUSIC and 

CBF algorithms can be found in Johnson and Dudgeon [16:349-402]. 

 
Figure 9. CBF Power Spectrum 
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Figure 10. MUSIC Pseudo Spectrum 

3.3.1.3 Estimation of the DOA 

Peaks of the DOA-spectrum give DOA estimate. 

3.3.2 DOA Estimation with ACMA 

Alle-Jan and Arogyaswami [9] explain the details of the algorithm. To 

estimate the DOA using ACMA as in Figure 11, the following steps must be 

followed: 

• Blind source separation, 

• Estimation of the array response for each signal, 

• Estimation of the DOA for each signal. 

 
Figure 11. DOA Estimation Process with ACMA 

3.3.2.1 Blind Source Separation 

ACMA provides blind estimation of the signal separation using constant 

modulus property as presented in Figure 12.  
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Figure 12. Estimated Signals Out of ACMA Separation Process 

The signal estimate matrix is obtained as follows: 

1. Estimate row (X): 
a. Compute SVD(X): X=USV 
b. Estimate d = rank(X) from S: the number of signals 
c. Redefine V as first d rows of V 

2. Estimate ker(Ps), which summarizes all CM conditions: 
a. Construct Ps: (n-1)×d2 from V 
b. Compute SVD(Ps): Ps=UpSpVp 
c. Estimate δ = dim ker(Ps) from Sp: the number of CM signals 
d. [y1, … , yδ] = last δ columns of Vp. 

3. Solve the simultaneous diagonalization problem, 
4. Recover the signals.  [9:9] 

Alle-Jan and Arogyaswami discus further details of the algorithm [9]. 

Since ACMA blindly separates constant modulus signals and estimates 

corresponding array responses, it is possible to identify the signal estimate that 

belongs to the direct source signal using magnitude of the subsequent estimated 

array response. We can further remove the set that belongs to direct source signal 

and recombine other estimated signals belonging to objects and their array 

response estimates together. This process gives us a direct-source-signal-free 
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estimate of antenna output. Now we can apply ACMA to this antenna output 

estimate. Figure 13 shows the estimated signals out of differential ACMA. 

 
Figure 13. Estimated Signals Out of Differential ACMA Separation Process 

3.3.2.2 Estimation of the array response for each signal 

ACMA provides the estimate of the array response for each separated 
signal. 
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3.3.2.3 Estimation of the DOA for each Signal 

A one-dimensional projection of each array response estimate on to the 

known array response gives the estimation of the DOA for the corresponding 

signal estimate [17]. This projection is defined as 

( )

( )θ

θ
θ

θ a

aai

i

*
maxarg

^

^
=  (12) 



 35

 
Figure 14. ACMA DOA Estimation. 

3.4 Designed Tests 

In this thesis, four different tests are designed in order to evaluate the 

performance of the three DOA algorithms. All tests based on 400-trials. 

3.4.1 Test Number (1) : Directional Test 

 

Figure 15. Directional Test 
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In this test, it is the goal to see the directional performance of the 

algorithms. Antenna element spacing is 0.5λ. As in Figure 15, there is only one 

object. Test is performed for all directions from -90° to 90° using 1-degree 

increment. The SNR values used in this test are -10, 0, and 10. 

3.4.2 Test Number (2) : Separation Test 

 

Figure 16. Separation Test 

In this test, it is the goal to examine the separation performance of the 

algorithms. Antenna element spacing is 0.65λ. As in Figure 16, there are two 

objects. One of the objects is fixed at five degrees, and the other objects’ position 

will be changed from -10° to 10° using 1-degree increment relative to the fixed 

one. The SNR values used in this test are [-10 –10], [-10 10], and [10 10]. 
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3.4.3 Test Number (3) : Suppression Test 

 

Figure 17. Suppression Test 

In this test, it is the goal to examine the separation performance of the 

algorithms under the suppression of strong non-constant modulus signals. The 

antenna element spacing is 0.65λ. As in Figure 17, there are two objects. One of 

the objects is fixed at five degrees, and the other objects’ position will be changed 

from -30° to 10° using 0.25-degree increments relative to the fixed one. The SNR 

values used in this test are [0 0], [5 5], and [10 10]. There is a source representing 

Galactic Noise at -50° (SNR = -15 dBm). There is an interfering signal (random 

like color noise) at -15° (SNR = 50 dB). There is another interfering signal 

(random like color noise) at 60° (SNR = 15 dB). 
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3.4.4 Test Number (4) : Direct Source Signal Test 

 

Figure 18. Direct Source Signal Test 

In this test, it is the goal to examine the separation performance of the 

algorithms under the suppression of strong non-constant modulus signals, and 

direct source signal. The antenna element spacing is 0.65λ. As in Figure 18, there 

are two objects. One of the objects is fixed at five degrees, and the other objects’ 

position will be changed from -30° to 10° using 0.25-degree increments relative to 

the fixed one. The SNR values used in this test are [0 0], [5 5], and [10 10]. There 

is a source representing Galactic Noise at -50° (SNR = -15 dBm). There is an 

interfering signal (random like color noise) at -18° (SNR = 50 dB). There is a 

direct source signal (constant modulus) at 70° (SNR = 170 dB). 
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Chapter 4  -  RESULTS, ANALYSIS, CONCLUSIONS, and 

RECOMMENDATIONS 

4.1 Results and Analysis 

Simulations are carried out in MATLAB, using Matlab toolbox for radar 

array processing [12]. There are N=512 samples available for antenna output, X. 

Tests are based on 400 realizations. We have also carried out another simulation 

using N=100 samples, and present results in Appendix II. Additional Results 

(N=100).   

For test 1, we present two sets of figures, expected errors, and variances. 

For test 2, 3, and 4, there will be an additional set, which presents estimated 

DOAs. In these figures, we should see two straight lines corresponding to the 

object DOA track. However, there are deviations, which belong to the false 

estimated DOA values. Figures that show expected errors, and variances for test 

2, 3, and 4 have three lines. At the first line, we present results for the moving 

object, and at the second line we present results for the fixed-one. There is a third 

line, which shows separation performances for algorithms. 

For this research, the most valuable information out of an array antenna 

for a signal is the phase difference caused because of the distance between 

elements of the array. MUSIC and CBF, basically, use this information, but 

ACMA uses additional information. Since possible object signals are constant 

modulus, and phase of a single object signal is the only identifying information 
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about that signal, ACMA combines this strong property with constant phase 

difference information out of array antenna. 

ACMA shows the best performance, and CBF shows the worst. MUSIC 

offers some good features, but ACMA has several robust features. As mentioned 

before, MUSIC and CBF estimate DOA using pseudo or power spectrum. Thus in 

the presence of a powerful signal, a signal with less power is lost, and  there is no 

chance to estimate its DOA. ACMA, blindly, separates object signals from each 

other, and estimates a corresponding array response. Simple projection of this 

array response estimate onto actual array response, gives the DOA estimate. 

Once you have object signal estimates, you may further process, and may extract 

Doppler or other information. You have an estimate for each object, s1, s2, …, sm, 

and using this estimate you have the array response estimate that corresponds to 

each particular signal estimate, a1, a2, …, am, and then you have DOA estimates, 

θ1, θ2, …, θm. Thus, you have single Doppler information that belongs to single 

DOA information. This saves the time that we need to associate Doppler and 

DOA values, and prevents the data lost during this association process. Results 

show that ACMA can provide reasonable DOA estimates even for SNR values as 

low as –10 dB. 

Comparing the results based on 512 samples to the results based on 100 

samples, we see that there is a decrease in algorithm performance as the number 

of samples available decreases. 
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4.1.1 Test 1 : Directional Test 

 

Figure 19. Expected Errors 

 

Figure 20. Variances 
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We show here that all three algorithms behave almost the same. There is 

no significant performance difference between them; although, Figure 20 shows 

better variance values for ACMA. For all three algorithms, the directional 

coverage increases as the SNR increases. 

4.1.2 Test 2 : Separation Test 

MUSIC estimates are unbiased when objects are not very close to each 

other. If objects are closer than three degrees, MUSIC cannot separate the object 

signals anymore and produces one estimate when SNR equals to –10 dB for both 

objects. The DOA errors within this three degree region can be as high as 80° 

with variances up to 600 degrees-squared. As SNR increases, separation 

performance gets better. MUSIC can separate objects as closer as one degree 

when SNR equals to 10 dB for both objects. Variances also get smaller as SNR 

increases. 

CBF has lowest variances, but it is the algorithm that behaves worst at all 

circumstances. Separation is a concern. CBF cannot separate objects closer than 

six degrees. If objects have different SNR values like [-10, 10] dB, CBF cannot 

separate them within eight degrees. 

The separation characteristics of ACMA do extremely well compared with 

the other two algorithms. ACMA can separate objects not closer than two 

degrees even if the objects’ SNR is –10 dB. Figure 24 and Figure 25 show that 

ACMA can separate objects regardless of how close they are to each other if 
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objects SNR is 10 dB. In addition, Figure 25 shows that as the SNR increases the 

variance decreases faster for ACMA. 

 
Figure 21. Estimated DOAs with MUSIC, SNR = [10, 10] 

 
Figure 22. Estimated DOAs with CBF, SNR = [10, 10] 

 
Figure 23. Estimated DOAs with ACMA, SNR = [10, 10] 
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Figure 24. Expected Errors, SNR = [10, 10] 

 
Figure 25. Variances, SNR = [10, 10] 
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4.1.3 Test 3 : Suppression Test 

In this test, there are two objects again, and additional sources. There is a 

source representing Galactic Noise at -50° (SNR = -15 dBm). There is an 

interfering signal (random like color noise) at -15° (SNR = 50 dB). There is 

another interfering signal (random like color noise) at 60° (SNR = 15 dB). 

Results belonging to previous test show CBF has a bad separation 

characteristic, and as mentioned before, CBF estimates DOA using power 

spectrum. Thus, results of this test show CBF cannot estimate DOA of objects 

accurately, even if objects SNR are as high as 10 dB. 

MUSIC estimates DOA using pseudo spectrum. In this test, there are five 

different signal sources. We should, therefore, identify five peaks if none of them 

remains below side-peaks due to MUSIC pseudo spectrum estimation process. 

To be more understandable, in Figure 10, we can identify three obvious peaks 

belonging to the interfering signals and Galactic noise signal. In addition to these 

three peaks, we see several other peaks, namely side-peaks. Since objects SNR 

are small, the peaks that should belong to objects remain below side-peaks. 

Figure 26, Figure 51, and Figure 56 show estimated DOA data with MUSIC for 

five signals: three interfering signals, and two object signals. Examining those 

figures, we clearly see that to find out the most accurate estimates that belong to 

two objects, we should have some extra information, like Doppler history. This 

requires additional process and time. In order to have accurate estimates that 

belong to objects, a non-linear filter, possibly a Kalman filter, should be applied. 
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This is a complicated process. When objects SNR are small, this filtering process 

becomes much more complicated, and data lost is quite a possibility. Even if we 

have accurate estimates out of a non-linear process, we should still associate 

those estimated DOAs and Doppler processing results, in order to have two 

separate sets of object information. This process is a challenging job, and 

considerable amount of time. In this thesis no non-linear process has been done. 

Therefore, statistical evaluation for MUSIC and CBF at tests 3 and 4 was not 

studied. Examining estimated DOA data plots, we observe that presence of high-

SNR colored-noise source adversely affects results of MUSIC algorithm. 

As we know, ACMA blindly separates constant modulus signals, 

estimates corresponding array responses, and estimates DOA. Thus, we have, in 

our case, two sets of signal estimates, and we have a corresponding DOA set for 

each set of signal estimate. We shall not associate any information. We directly 

have two DOA histories and two signal estimates for those histories, and we 

know that each set belongs to a single object. We, therefore, do not require any 

complicated filtering or association process. We may use some additional process 

to detect false estimated data, especially when objects SNR are low. Since we 

have separate sets, statistical evaluation for ACMA is possible. Results are 

presented in following figures. 

In this test, we use 30 Gechenberg iterations. We also study no iteration 

cases. Results without iterations show low error levels; however, they are not 
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stable and have high variances. Iteration helps to remove the effect of colored-

noise source signal, but it introduces small bearing error. 

Examining the results, we observe that the separation performance of 

ACMA is degraded comparing to the white-noise case. Iteration is another cause 

for this corruption. In a high-colored noise environment, ACMA can separate 

objects not closer than 2.5° when objects SNR are 0 dB. We further observe that 

ACMA can separate objects if they are not closer than one degree to each other 

when objects SNR are 10 dB. It is possible to have big errors and high variances, 

as object gets closer to 50 dB colored noise source signal. Corruption begins, as 

object gets closer than three degrees, regardless of object SNR levels. At low SNR 

levels, high-colored noise source causes high variances. 
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Figure 26. Estimated DOAs with MUSIC, SNR = [10, 10] 

 
Figure 27. Estimated DOAs with CBF, SNR = [10, 10] 

 
Figure 28. Estimated DOAs with ACMA, SNR = {10, 10] 
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Figure 29. Expected Errors, SNR = [10, 10] 

 
Figure 30. Variances, SNR = [10, 10] 
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4.1.4 Test 4 : Direct Source Signal Test 

In this test, there are two objects again, and additional sources. There is a 

source representing Galactic Noise at -50° (SNR = -15 dBm). There is an 

interfering signal (random like color noise) at -18° (SNR = 50 dB). There is a 

direct source signal (constant modulus) at 70° (SNR = 170 dB). 

It is observed that CBF cannot estimate DOA of objects accurately, even if 

objects SNR are as high as 10 dB. MUSIC behaved even worse than it behaved in 

test 3. Examining estimated DOA data plots, it is observed that presence of direct 

source signal adversely affects results of MUSIC algorithm. For all SNR levels, 

there is almost no chance to extract object DOAs from MUSIC estimations. 

 
Figure 31. Adaptive Total Finite Time Response Filter. (No Differentiation) 

 Filter is applied to the antenna output after beamforming. No 
Differentiation is used. The antenna output includes two objects at 
five and –25 degrees (10 dB SNR), a direct source signal at 70 
degree (170 dB SNR), and an interfering signal at –18 degree (50 dB 
SNR). 
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ACMA continues to give us DOA estimates even if we have strong direct 

source signal at the antenna with a high-colored noise source signal. We 

introduce differential ACMA at this test. Since ACMA blindly separates constant 

modulus signals, estimates corresponding array responses, and estimates DOA, 

it is possible to identify the signal estimate that belongs to direct source signal 

using magnitude of the subsequent estimated array response. We can further 

remove the set that belongs to direct source signal and recombine other 

estimated signals and their array response estimates together. This process 

results a new direct-source-signal-free estimate of antenna output. Now we can 

apply ACMA to this new antenna output estimate. This time we have two sets of 

signal estimates that belong to objects, and we could further have a subsequent 

DOA set for each set of object signal estimate. 

 
Figure 32. Adaptive Total Finite Response Filter. (With Differentiation) 

Differentiation is used. Filter is applied to the new antenna output 
estimate. 



 52

Figure 31 shows the adaptive total finite time filter result. The filter was 

applied to the original antenna output. Since power of the direct source signal 

and the interfering signal are higher than the power of the two objects, the 

objects’ signals are filtered out. On the other hand, the two objects’ signals are 

clearly seen in Figure 32. 

In this test, we use 30 Gechenberg iterations for both ACMA estimations. 

We also study the no iteration case. Results without iterations show high error 

levels, and they are not stable and have high variances. Iteration helps to remove 

the effect of colored-noise source signal, but it introduces small bearing error. 

Differentiation helps to remove the effect of direct source signal. Differentiation 

helps to remove some effects of colored-noise source signal also.  

Examining the results, we observe that the separation performance of 

Differential ACMA is worse than the white-noise case. However, we have better 

results comparing to test three. Differentiation causes this improvement even 

though iteration causes corruption. In this test, Differential ACMA can separate 

objects not closer than two degrees when objects SNR are 0 dB. We further 

observe that differential ACMA can separate objects if they are not closer than 

one degree to each other when objects SNR are 10 dB. It is possible to have big 

errors and high variances, as the object gets closer to 50 dB colored noise source 

signal. Corruption begins, as object gets closer more than three degrees, 

regardless of object SNR levels. Differentiation also causes a decrease in 

variances. 
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Figure 33. Estimated DOAs with MUSIC, SNR = [10, 10] 

 
Figure 34. Estimated DOAs with CBF, SNR = [10, 10] 

 
Figure 35. Estimated DOAs with ACMA, SNR = [10, 10] 



 54

 
Figure 36. Expected Errors, SNR = [10, 10] 

 
Figure 37. Variances, SNR = [10, 10] 
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4.1.5 Previous Work 

We present here results of a previous work. Leshem and Van Der Veen 

examine bounds and algorithm for direction finding of phase modulated signals 

[17]. Figure 38, Figure 39, and Figure 40 are directly taken from their publication. 

As seen in Figure 38 ACMA is very close to its CRB. Thus, it provides 

better DOA estimation than the algorithms, which do not use constant modulus 

information. 

Figure 39 shows ACMA almost achieves CRB. 

In Figure 40, we see that ACMA does not achieve CRB, however; it still 

provides better results than CRB for arbitrary signals up to correlations of 0.5. 

 

 
Figure 38. ACMA and ESPRIT Performance (Separation) [17] 
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Figure 39. ACMA and ESPRIT Performance (SNR) [17] 

 
Figure 40. ACMA and ESPRIT Performance (Correlation) [17] 
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4.2 Conclusions 

The results and analysis presented here support the idea that the constant 

modulus information, where available, is an important addition to DOA 

estimation. ACMA is a still relatively young. It offers many simple solutions to 

noise and separation related problems. The basic advantage of ACMA is that it 

provides a signal estimate. A reliable signal estimate permits further information 

extraction and reduces the problems in data association. 

We showed that the separation performance of ACMA is better than the 

other two algorithms. It can provide accurate DOA estimates even if a direct 

source signal or additional high-colored noise source signals at the antenna are 

present. In addition, differential ACMA, which allows the digital removal of the 

direct signal component from the output of a sensor array in a simple way, is 

introduced. 

It is clear that ACMA can provide solutions to some degree. At low SNR 

levels (-10 dB), ACMA provides much more accurate estimates and yields 

reasonable separation performance even in the presence challenging signals. 

4.3 Recommendations 

The results and analysis presented here situation-dependent. Further 

analysis for other situations is useful. 

In this work, only one iteration technique is used for ACMA. Other 

iteration techniques should be examined. In addition, non-linear processes were 
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not studied, e.g., statistical evaluations for MUSIC and CBF are not presented. A 

comparison based on available statistical evaluations of the MUSIC and CBF 

algorithms to ACMA should be useful. 

Finally, the results and analysis are based on Matlab simulations. No 

real data was available. Verification of results with real data should provide 

better understanding. 
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Chapter 5  -  FUTURE WORK 

In this thesis, we present a comparison of the ACMA with the MUSIC and 

CBF algorithms. ACMA offers some solutions to problems in PCL, such as noise 

and separation performance. 

5.1 Object Search with ACMA 

An object search algorithm that uses ACMA might be explored. A dummy 

constant modulus signal could be added to the antenna output, and a search 

could be done using this dummy signal at each direction. Deviation from the 

correct direction would indicate that there is something at that sector. We may 

not be able to tell that it is an object; however, we can definitely tell that there is a 

signal at that sector. 

5.2 Sensor Analysis and Antenna Optimization for ACMA 

Different types of sensors and different types of array designs may result 

in improved DOA estimation. 

5.3 Phase Error Analysis on ACMA 

Since ACMA blindly separates signals, phase information is available. 

Phase error analysis may lead to new techniques in object detection, tracking, 

and identification. 

5.4 Improvement of Differential ACMA 

The differentiation process digitally removes the direct source signal 

component from antenna output. This may be done in several ways. One way 
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might be to calculate a data matrix formed by using signal estimates from ACMA 

and an actual array response from a direct source signal. Then, this data matrix 

can be subtracted from the antenna output. There is a normalization problem in 

the procedure that follow-on study may examine. 

5.5 Root ACMA 

Root ACMA is an algorithm designed for digital signals. Follow-on work 

may examine the algorithm and apply it to Digital Audio Broadcast (DAB) 

signals. 

5.6 Analysis of Different Iteration Techniques Used at ACMA 

Gechenberg iteration is used in this thesis, but there are other iteration 

techniques. Follow-on work may study and analyze different iteration 

techniques. 

5.7 Joint Angle and Delay Estimation 

ACMA combines the structural characteristics of the array antenna and 

the constant modulus property of the signal. Joint Angle and Delay Estimation 

(JADE) combines time delay estimation information for further improvement of 

ACMA. Follow-on work may examine the JADE algorithm. 
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Appendix I. Additional Results (N=512) 

Test 2 : Separation Test 

 
Figure 41. Estimated DOAs with MUSIC, SNR = [-10, -10] 

 
Figure 42. Estimated DOAs with CBF, SNR = [-10, -10] 

 
Figure 43. Estimated DOAs with ACMA, SNR = [-10, -10] 
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Figure 44. Expected Errors, SNR = [-10, -10] 

 
Figure 45. Variances, SNR = [-10, -10] 
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Figure 46. Estimated DOAs with MUSIC, SNR = [-10, 10] 

 
Figure 47. Estimated DOAs with CBF, SNR = [-10, 10] 

 
Figure 48. Estimated DOAs with ACMA, SNR = [-10, 10] 
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Figure 49. Expected Errors, SNR = [-10, 10] 

 
Figure 50. Variances, SNR = [-10, 10] 
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Test 3 : Suppression Test 

 
Figure 51. Estimated DOAs with MUSIC, SNR = [0, 0] 

 
Figure 52. Estimated DOAs with CBF, SNR = [0, 0] 

 
Figure 53. Estimated DOAs with ACMA, SNR = [0, 0] 
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Figure 54. Expected Errors, SNR = [0, 0] 

 
Figure 55. Variances, SNR = [0, 0] 
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Figure 56. Estimated DOAs with MUSIC, SNR = [5, 5] 

 
Figure 57. Estimated DOAs with CBF, SNR = [5, 5] 

 
Figure 58. Estimated DOAs with ACMA, SNR = [5, 5] 
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Figure 59. Expected Errors, SNR = [5, 5] 

 
Figure 60. Variances, SNR = [5, 5]. 

 



 69

Test 4 : Direct Source Signal Test 

 
Figure 61. Estimated DOAs with MUSIC, SNR = [0, 0] 

 
Figure 62. Estimated DOAs with CBF, SNR = [0, 0] 

 
Figure 63. Estimated DOAs with ACMA, SNR = [0, 0] 
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Figure 64. Expected Errors, SNR = [0, 0] 

 
Figure 65. Variances, SNR = [0, 0] 
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Figure 66. Estimated DOAs with MUSIC, SNR = [5, 5] 

 
Figure 67. Estimated DOAs with CBF, SNR = [5, 5] 

 
Figure 68. Estimated DOAs with ACMA, SNR = [5, 5] 
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Figure 69. Expected Errors, SNR = [5, 5] 

 
Figure 70. Variances, SNR = [5, 5] 
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Appendix II. Additional Results (N=100) 

Test 1 : Directional Test 

 
Figure 71. Expected Errors 

 
Figure 72. Variances 
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Test 2 : Separation Test 

 
Figure 73. Estimated DOAs with MUSIC, SNR = [-10, -10] 

 
Figure 74. Estimated DOAs with CBF, SNR = [-10, -10] 

 
Figure 75. Estimated DOAs with ACMA, SNR = [-10, -10] 
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Figure 76. Expected Errors, SNR = [-10, -10] 

 
Figure 77. Variances, SNR = [-10, -10] 
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Figure 78. Estimated DOAs with MUSIC, SNR = [-10, 10] 

 
Figure 79. Estimated DOAs with CBF, SNR = [-10, 10] 

 
Figure 80. Estimated DOAs with ACMA, SNR = [-10, 10] 
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Figure 81. Expected Errors, SNR = [-10, 10] 

 
Figure 82. Variances, SNR = [-10, 10] 



 78

 
Figure 83. Estimated DOAs with MUSIC, SNR = [10, 10] 

 
Figure 84. Estimated DOAs with CBF, SNR = [10, 10] 

 
Figure 85. Estimated DOAs with ACMA, SNR = [10, 10] 
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Figure 86. Expected Errors, SNR = [10, 10] 

 
Figure 87. Variances, SNR = [10, 10] 
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Test 3 : Suppression Test 

 
Figure 88. Estimated DOAs with MUSIC, SNR = [0, 0] 

 
Figure 89. Estimated DOAs with CBF, SNR = [0, 0] 

 
Figure 90. Estimated DOAs with ACMA, SNR = [0, 0] 
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Figure 91. Expected Errors, SNR = [0, 0] 

 
Figure 92. Variances, SNR = [0, 0] 
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Figure 93. Estimated DOAs with MUSIC, SNR = [5, 5] 

 
Figure 94. Estimated DOAs with CBF, SNR = [5, 5] 

 
Figure 95. Estimated DOAs with ACMA, SNR = [5, 5] 
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Figure 96. Expected Errors, SNR = [5, 5] 

 
Figure 97. Variances, SNR = [5, 5] 
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Figure 98. Estimated DOAs with MUSIC, SNR = [10, 10] 

 
Figure 99. Estimated DOAs with CBF, SNR = [10, 10] 

 
Figure 100. Estimated DOAs with ACMA, SNR = {10, 10] 
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Figure 101. Expected Errors, SNR = [10, 10] 

 
Figure 102. Variances, SNR = [10, 10] 
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Test 4 : Direct Signal Source Test 

 
Figure 103. Estimated DOAs with MUSIC, SNR = [0, 0] 

 
Figure 104. Estimated DOAs with CBF, SNR = [0, 0] 

 
Figure 105. Estimated DOAs with ACMA, SNR = [0, 0] 
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Figure 106. Expected Errors, SNR = [0, 0] 

 
Figure 107. Variances, SNR = [0, 0] 
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Figure 108. Estimated DOAs with MUSIC, SNR = [5, 5] 

 
Figure 109. Estimated DOAs with CBF, SNR = [5, 5] 

 
Figure 110. Estimated DOAs with ACMA, SNR = [5, 5] 
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Figure 111. Expected Errors, SNR = [5, 5] 

 
Figure 112. Variances, SNR = [5, 5] 
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Figure 113. Estimated DOAs with MUSIC, SNR = [10, 10] 

 
Figure 114. Estimated DOAs with CBF, SNR = [10, 10] 

 
Figure 115. Estimated DOAs with ACMA, SNR = [10, 10] 
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Figure 116. Expected Errors, SNR = [10, 10] 

 
Figure 117. Variances, SNR = [10, 10] 
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Appendix III. List of Matlab Codes 

A Matlab toolbox for radar array processing [12] is used. Codes listed 

below are written by this thesis author. E-mail address for the author is 

Ahmet.Ozcetin@ieee.com. 

Matlab Functions 

1. ACMA.m [9] 
2. IACMA.m [9] 
3. FMSignal.m 
4. SimSource.m 
5. SDOASpectrum.m 
6. DOASpectrum.m 
7. ACMA_DOA_Est.m 
8. ACMA_DOA_Est1.m 
9. ACMA_DOA_Est2.m 
10. ACMA_DOA_Est3.m 
11. ACMA_DOA_Est4.m 
12. findsig.m 
13. den.m 
14. den1.m 
15. dep.m 

 
Matlab Scripts 

1. SwapTest.m 
2. SepTest.m 
3. CsepTest.m 
4. DsepTest.m 
5. SwSNRM10.m 
6. SwSNR0.m 
7. SwSNR10.m 
8. PlotSw.m 
9. AntennaDef.m 
10. VarDef.m 
11. Wfor.m 
12. Sfor.m 
13. Sep003.m 
14. Sep005.m 
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15. Sep0065.m 
16. SepM1003.m 
17. SepM1005.m 
18. SepM10065.m 
19. Sep1003.m 
20. Sep1005.m 
21. Sep10065.m 
22. PSpSNRM10.m 
23. PSpSNR0.m 
24. PSpSNR10.m 
25. Duzelt.m 
26. IsourceDef.m 
27. CSFor.m 
28. CvarDef.m 
29. CFor.m 
30. ICFor.m 
31. CSep003.m 
32. CSep005.m 
33. CSep0065.m 
34. Csep5003.m 
35. Csep5005.m 
36. Csep50065.m 
37. CSep1003.m 
38. CSep1005.m 
39. CSep10065.m 
40. CPSpSNR5.m 
41. CPSpSNR0.m 
42. CPSpSNR10.m 
43. DFor.m 
44. DDFor.m 
45. DiffDuzelt.m 
46. DForIt.m 
47. DvarDef.m 
48. DsourceDef.m 
49. DIDFor.m 
50. DIIDFor.m 
51. DSep003.m 
52. DSep005.m 
53. DSep0065.m 
54. DSepM1003.m 
55. DSepM1005.m 
56. DSepM10065.m 
57. DSep1003.m 
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58. DSep1005.m 
59. DSep10065.m 
60. DPSpSNRM10.m 
61. DPSpSNR0.m 
62. DPSpSNR10.m 
63. Edel.m 
64. Residuals.m 
65. Residulasnone.m 
66. AntennaDefEv.m 
67. AntEval0.m 
68. AntEval10.m 
69. AntEvalM10.m 
70. PlotAntEv.m 
71. TFor.m 
72. Track10065.m 
73. TvarDef.m 
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