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SUMMARY 

This report presents data from which one may obtain the probability that a 
pulsed-type radar system will detect a given target at any range. This is in con- 
trast to the usual method of obtaining radar range as a single number, which can be 
taken mathematically to imply that the probability of detection is zero at any range 
greater than this number, and certainty at any range less than this number. 

Three variables, which have so far received little quantitative attention in the 
subject of radar range, are introduced in the theory: 

1. The time taken to detect the target. 

2. The average time interval between false alarms 
(false indications of targets). 

3. The number of pulses integrated. 

It is shown briefly how the results for pulsed-type systems may be applied in the 
case of continuous-wave systems. 

Those concerned with systems analysis problems including radar performance may 
profitably use this work as one link in a chain involving several probabilities. For 
instance, the probability that a given aircraft will be detected at least once while 
flying any given path through a specified model radar network may be calculated using 
the data presented here as a basis, provided that additional probability data on such 
things as outage time etc., are available. 

The theory developed here does not take account of interference such as clutter 
or man-made static, but assumes only random noise at the receiver input. Also, an 
ideal type of electronic integrator and detector are assumed. Thus the results are 
the best that can be obtained under ideal conditions. It is not too difficult, how- 
ever,. to make reasonable assumptions which will permit application of the results to 
the currently available types of radar. 

The first part of this report is a restatement of known radar fundamentals and 
supplies continuity and background for what follows. 

lhe mathematical part of the theory is not contained herein, but will be issued 
subsequently as a separate report (23). 
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SYMBOLS 

A 

Be 

= effective area of antenna for receiving. 

= beamwidth of antenna. 

C = velocity of light. 

c = total shunt capacity of input circuit. 

6 = factor which accounts for losses in transmission lines, T R switches, atmos- 
pheric absorption, etc. 

e = rms noise voltage. 

5 
= transmitted energy per pulse. 

ER = received energy per pulse. 

fr 
f 
A"; 

Af' 
A fw 
F 

Y 

Y' 

gm 
G 

= pulse repetition frequency. 

= scanning frequency. 

= bandwidth for noise purposes. 

= input circuit bandwidth. 

-I combined H F and I F bandwidth of continuous-wave-system receiver. 

- bandwidth multiplying factor = 1 for simple L C circuit. 

= number of pulses received during detection time. 

= .y/qy 

= mutual conductance of first receiver tube. 

= gain of transmitting antenna. 

h 

h: 

= height of radar antenna. 

= target height. 

IO(z)= modified Bessel function of the first kind. 

k = Boltzmann’s constant. 

h 

L 

R 

n’ 
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T’ 
N 

N 
- 
lv;T= 

= wave length of transmitter. 

- sweep length in miles. 

= -pa’ f/T 

= ri/N 

= number of pulse intervals per sweep. 

= number of separate velocity channels in continuous-wave-system receiver. 

= number of pulses integrated, or, in cw system, the number of independent vari- 
ates (of length l/ Af,,) integrated. 

= number of pulses per scan. 

= overall noise figure of the receiver. 
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pN = probability that Npulses of noise will exceed a given level. 

P = probability that N pulses of signal plus noise will exceed the bias level. 

P’ = probability that at least cme group of N integrated pulses will exceed the bias 
level within the detection time. 

P av = average power. 

Pt 
= transmitted power. 

P min = minimum detectable ‘power at receiver. 

P. = effective input noise power to receiver. 

I- = resistance. 

R = radar range. 

R max = maximum radar range. 

Ro 
R =q 
Rl 
AR 

(7 

7P 

rfa 

rd 
7. 

T’ 

T 

Tit 
v 

v 

v” 

w 

x 

Y 

= idealized radar range. 

= equivalent noise resistance of first receiver stage. 

= total shunt resistance of first receiver input circuit. 

= range interval for integration with a moving target. 

= scattering cross-sectional area of target. 

= pulse length. 

= false alarm interval. 

= detection time. 

f maximum integration time for moving target. 

= absolute temperature. 

= absolute temperature of space radiation #received by antenna. 

= absolute temperature of room. 

= velocity of the target. 

= velocity of traveling gate. 

= visability factor of receiver. 

= angular velocity of antenna. 

= received signal pulse energy in units of k TR IF. 

=. noise level in units of the rms value of noise - the bias level. 
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A STATISTICAL THEORY OF TARGET DETECTION 
BY PULSED RADAR 

PART I - INTRODUCTION 

THE USUAL RADAR RANGE EQUATIQN 

Most radar engineers are ncnv well acquainted with the following equation used 
to determine the maximum range of a pulsed radar system: 

?6 

I ' 

(1) R = 
max 

where 

pt = peak transmitted power in watts. 

P min = minimum peak detectable signal in watts. 

D = scattering cross section of target in units consistent with range. 
G = gain of transmitting antenna. 
A = c effective area of antenna for receiving in units consistent with 

range (usually about 2/3-of the physical aperture, Ac = Gpa/4~). 
6 = a dimensionless loss factor which accounts for atmospheric absorption, 

-. losses in antenna and transmission lines, etc. 

The number of pitfalls that may be encountered in the use of the above equation 
are almost without 1imit;and many of these difficulties have been recognized in the 
past (3) t (13) . Three of the most troublesome are: 

I. The Scattering Cross Section 

In the case of moving targets, the wide variation of this quantity with as- p-t, and hence with time, is a matter of vital concern. The variation of, 
cross section as a function of frequency may also be critical. 

2. The Minitnum Detectable Signal, Pni,, 

The statistical nature of the noise with which Pmin must compete makes this 
an ill-defined quantity. 

For references see page 143. 

65 



3. The Maximum Range, RIox 

The statistical nature of Pmin in turn makes Rmax a statistical quantity. 

There are also lesser troubles, such as the dependence of 6, the loss constant 
on the range, and the contribution of reflections from the ground, sea, or other ob- 
jects to the incident and received powers. (One must also remember that a target 

cannot ordinarily be detected at ranges (in miles) much greater than mr tat, 
where hr is the height of the radar antenna and h, the height of the target in feet, 
except in the case of superrefraction, or ‘ducts.” See pp. 55-58, Ref.(M). ‘lhis is 
the familiar “line of sight” limitation due to the earth’s curvature. 

THE SCATTERING CROSS SECTION OF THE TARGET 

For a stationary radar observing a stationary target, the scattering cross sec- 
tion is a constant. Although it may not. be calculated for any but the most simple 
target shapes, it is not too difficult to measure. On the other hand, if either the 
radar or the target is in motion, the cross section becomes a function of time caus- 
ing the return signal strength to fluctuate. In general, the plot of cross section 
as a function of angle for a complex target such as an aircraft shows two interest- 
ing features. There is a nearly continuous rapid fluctuation having an angular pe- 
riod in the neighborhood of a degree or so (for A in the microwave region), and a 
slow variation with a period in the order of 20” or more. Both of these variations 
may be as great as 30 db. The question at once arises: In lieu of using the com- 
plete polar diagram of cross section vs. angle, what kind of average figure can be 
used, and under what conditions. 3 The answer to this question involves such things 
as angular rates of the aircraft with respect to the radar, correlation times, rep- 
etition rate of the radar, and number of pulses integrated. It is almost obvious 
that the only general way to treat this complex problem is to consider the cross sec- 
tion as a statistical variable. This approach seems mathematically feasible. However, 
in the present report the cross section will be considered to be a constant. An at- 
tempt to justify this assumption is the following: The rapidly fluctuating corre- 
lation angle at half-power points is perhaps 0.1’. The normal variation in attitude 
angle of an aircraft may be about 30” per second. (This variation may be caused by 
small rapid changes in pitch or roll due to normal turbulence of the air as well as 
by systematic changes in position.) Thus, the corresponding correlation time for CT 
is around l/300 second. If the observation time is essentially greater than this 
period, it may be assumed, as a first ap$roximation, that the rapid fluctuations in 
the cross section “average out.” 

The slow variations (period around 20’) may or may not average out. However, if 
the average over all likely attitudes is used for (+, or tobe more exact, if a weighted 
average is taken for D according to the probability for any attitude, then the prob- 
ability of detection may not be changed very much. Henceforth, in this report 3 
will be assumed to be a constant, on the basis of the above statements. It may be 
mentioned in passing that CT loses its meaning if the target is not uniformly illum- 
inated. Such can be the case, for example, if waves reaching the target via two or 
more paths combine to produce an interference pattern at the target. This effect 
exists in the detection off ships by surface radar. 
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THE MINIMUM DETECTABLE SIGNAL 

As is well known, (lp2s3) the minimum detectable signal power in a radar receiver 
is fundamentally limited by three main factors; i.e., Johnson noise in circuit ele- 
ments of the input circuits, shot effect and other noise in the first tube (and to 
some small extent succeeding tubes), and cosmic noise picked up by the antenna. There 
may also be man-made interference such as engine noise, radiations from other radars 
and radio transmitters,etc Clutter caused by sea return, rain, clouds, land masses, 
etc., may reduce the minimum detectable signal by a considerable amount. The effects 
of clutter and man-made interference are complete subjects in themselves, (Is) and 
will not be treated further in this paper. A study will be made here of radar range 
in the absence of such interference. It is not too optimistic to suppose that cir- 
cuits will eventually be designed which will largely eliminate man-made interference, 
and most types of clutter. 

The mean squared noise voltage across a resistor of resistance r is given by 

e2 = 4kTrA f (2) 

where 
k = Roltzmann’s constant = 1.38~10’~~ joules/degree 
T = absolute temperature of the resistor 

Af = the frequency interval under consideration. 

Though the noise at the input circuit of a receiver is usually several times this 
value, it provides a convenient scale for measuring the input noise. The effective 
input noise puuer is defined to be 

p -z kTHAf NT (3) 

where m is the so-called noise figure of the receiver, and T, is the absolute room 
temperature. * If a signal power of the same value as p were incident on the antenna 
and the receiver were noiseless, then the output would be the same as in the case 
when noise only was present. 

At this point, one important result concerning the noise figure due to Herold 
is pertinent: 

T 
$Y =a+ 

2rrAf'R$ 

Ik F + m  (4) 
-0 as Al-Cc 

where 

Tea = absolute temperature of space radiation received by the antenna. 

TR = room temperature. 

* Complete discussions and derivations will be found in the Mathematical Appendix (a separate 
report). (23) 
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Af’ = bandwidth oWnput circuit. 
c = total shunt capacity of input circuit. 
R =’ 

=q 
equivalent noise resistance at input (due mainly to shot noise in 

first tube) % 2.5/g for triodes. 
F = a factor depending on 2he exact type of input circuit coupling (= 1 

for simple tuned circuit). 

Rl = input shunt resistance including effect of finite input resistance 
of tube. 

f(R,) = a function of R1, R W  C and Af'. 

This formula assumes a more or less conventional type of input tubes, such as the 
V H F triodes and pentodes. However, it seems reasonable to believe that the gen- 
eral conclusions which are reached from l?q.(41 will apply to velocity-modulated input 
tubes as well. 

The main points to be noted about Q.(4) are these: 

1. f(RJ approaches zero as R, approaches infinity. RI may be increased by bet- 
ter tube design. 

2.%-, should be made as small as possible in a tube used as the first amplifier. 

3. Long pulses tend to allw smaller bandwidths for the input circuit, and hence 
lower noise figures. 

4. If Req CAf’ is made small enough, and R, large enough, the noise figure will 
approach Ta/TR. 

Point 4 is of the greatest importance. It sets alimit on the noise figure when there 
are no sources of noise in the receiver itself. Though such a receiver will never be 
built in practice, it may be possible sane day to approach closely this ideal state. 
Then the input noise will be almost entirely dependent on the temperature of space;* 
or, in other words, on the noise received by the antenna from without the radar set. 
That this state of affairs is not yet at hand is evidenced by the fact that at present 
the noise figure for microwave receivers is around 10, and for longer-wave receivers 
perhaps as low as 3 or 4. 

The concept, often stated, that the ideal noise figure bf a receiver is 1.0 is 
erroneous. ** This would be true only if the temperature of space were the same as 
room temperature. Actually the temperature of space decreases rapidly with decreas- 
ing wave length. (‘) 

* Though the noise figure can be decreased by increasing TR, this would increase the actual 
input noise, as is apparent from Eq. (3). 

** ?he noise figure of a receiver may be defined in such a way that the antenna must be re- 
placed by a resistor at room temperature equal to the radiation resistance of the antenna. 
In this case the ideal noise figure of the receiver would be 1.0. 
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The average space temperature* is around room temperature at 180 megacycles and 
drops to around 30’ absolute at 450 megacycles. (la) NO good measurements are avail- 
able in the microwave region, but there is reason to believe that values of loo or 
lower may be found. If this proves to be true, then it is conceivable that the noise 
figure of future microwave receivers may be improved by a factor of 100, which would 
mean that the range of radar sets could be more than tripled as a consequence of this 
one factor. It is certainly a field where research should be pushed to the utmost. 

It has often been the practice to calculate the maximum range of a radar set 
from (1) by assuming that Pmin = kTR Af @, or that the minimum detectable signal power 
is just equal to the average noise power. 

This gives 

R = 
P,G$d 

max 

c I 

?4 

l&rrakT, &NT 

Now the energy per pulse is represente a%+* 

E 
-P 

= ’ P& 

where rp is the pulse length. Making this substitution in (5) gives K 
R = 

EpG4eUS L 1 1 
max 16n=kTp ' bpAf)% 

It is usually said that if r Af is made equal to 1, the amplitude of 
passing through the amplifie! will not differ much from the amplitude 
sult if the pulse were infinitely long. 
1, and the resultant equation 

Without further ado, ~~ Af 

?4 
R = max 

(6) 

(7) 

the pulse after 
which would re- 
is put equal to 

(8) 

emerges as the radar range equation. Now the unfortunate fact (in some respects) is 
that the range of a radar set calculated by means of this formula often turns out to 
be rather close to the experimental range. Naturally, under these circumstances great 
effort has not been expended in investigating the validity of radar-range equations. 

l There is a variation of the space temperature with direction(12). When the antenna points 
near the horizon, the temperature may be higher than when it is pointed at the zenith. In 
particular, if any appreciable part of the radiation strikes the ground, the thermal radi- 
ation received from those direction8 will have a temperature nearly equal to the actual 
temperature of the surroundings. 
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The reasons for the agreement of equation (81 with experiment are many. First 
of all, the cross section has been, in most cases, determined by observing the max- 
imum range of a particular target and solving equation (81 for (T. This one fact 
alone accounts in no small way for the agreement. Secondly, the fourth power law 
makes R rather insensitive to changes in the various parameters concerned in equa- 
tion <8"p9" A much fairer test is to compare respective values of R,‘,. rather than 
R 

max ' 

Equation (81 is in no sense perfect with regard to its agreement with experiment. 
Errors of as such as f 30% are conunon, and factors of 2 can often be found. However, 
considering all the unknown factors present in an experimental determination of max- 
imum range with an operational radar set, this agreement is considered to be quite 
good. 

In any field of science, theoretical equations are deduced to explain observed 
data. However, one is very cautious in using these equations to predict results for 
other experiments where the values of many of the variables differ greatly from those 
used in the particular experiments already performed. Most of the radar sets built 
to date have operated within essentially narrow limits as far as some of the para- 
meters are concerned. Particular examples are pulse repetition frequency, and, most 
important, the number of pulses integrated. This latter quantity is not even men- 
tioned in equation (8); but, as will be seen in the next section, it is of vital im- 
portance. 

The task is now two-fold: 

1. To make a satisfactory statistical definition of the range of a radar system. 

2. To determine the dependence of this quantity on the parameters of a (pulsed) 
radar system. 
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PART II 

THE STATISTICAL PROBLEM OF THE MINIMUM DETECTABLE SIGNAL 

AND THE MAXIMUM RANGE 

GENERAL BACKGROUND 

It has been realized by many workers in the field* that the range of a radar set 
is a statistical variable and must be stated in terms of probabilities rather than in 
the exact terms of an equation such as (8). However, the evolution of a practical 
working theory doe8 not Beem to have been accomplished 80 far. The following work is 
a first step in that direction. 

Before beginning the explanation of equation8 and derivations, it will be well 
to glance at some of the new ideas which will be included. 

The random noise, which limits the range, can at interval8 assume large value8 
due to its statistical nature. This means that there will inevitably be times when a 
random fluctuation of the noise will be mistaken for a signal. The average interval 
at which such undesirable events take place will be called the false alarm time, and 
it will be found that the probability of detecting a target will be a function of 
this time. Let the reader at once be cautioned ‘against thinking, “If it were a noise 
flash, I can easily tell by looking a little later. If it were a signal, it will 
still be there; if it were noise, it will be gone.” 

The second new parameter which will be introduced is the detection time. It is 

apparent that if an observer can spend sufficient time in deciding whether or not a 
target is present on an oscilloscope screen, the probability of a correct decision 
being reached will be increased. It is also obvious that in any practical situation 
in which radar is used one cannot take unlimited time to decide whether or not a tar- 
get is present. To put things on a quantitative basis, the time in which a decision 
shall be rendered must be specified. In this event, there wi 11 not always be time 
for the “second look” just mentioned; but should time permit, then the probability of 
detecting a target will be increased at the expense of a longer detection tip. Even 
so, there will still be. a certain lesser probability that the noise flashes will oc- 
cur on both occasions. Further, it will be found that the velocity of a moving tar- 
get has an appreciable effect on the detection probability, due to the fact that the 
signal fran such a target doe8 not “remain stationary” (see page 80). 

* For an excellent qualitative statement of the problem, see Radiation Laboratory Series No.1. 
pp.35-47, Ref.08). 
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PRELIMINARY STEPS 

It is desirable to present data in the most compact form, and the first step in 
this direction is the elimination of the necessity for the appearance of such para- 
meters as E , G, Ae, CT, 6, and %  in the final results. To this end, .a parameter R, 
is defined !hich is given by a slight modification of Eq. (71, as follows: 

.(9) 

Here, the factor l/rp Af has been replaced by V, the so-called visibility factor." 
This factor will always be less than 1 but usually not less than 0.8, except when the 
Doppler effect is very large. R, will be called the "idealized range" for lack of a 
better term. 

Now let the received energy per pulse at any range R be ER. 
from the equations (9) that 

and defining 

gives from (10) 

[ I 
w 

R kTp 
-= 

Ro ER 

ER 
x =- 

kTRN; 

R 1 -=- 
Ro x" 

Then it is clear 

(10) 

ill) 

(12) 

* The derivation of exact formulas and numerous curves of visibility factors as a function of 
pulse width, bandwidth, type of amplifier, and off-resonance of carrier frequency will be 
found in the Mathematical Appendix (a separate report) (23). The visibility factor is actu- 
ally given by 

E a W.X (4 E ss 
v = 

;Af 

where Emax is the maximum voltage to which the pulse rises at the receiver output, and Es8 

is the steady state voltage at the same point. should be contained 

in (7) and (8) but is usually omitted because it is so near to unity when df = 1. In the 
case where the bandpass characteristic of t elIamplifier is the conjugate transform of the 
pulse, + the visibility factor is exactly unity . 



where x is now the signal pulse energy in units of the average receiver noise pulse 
energy. As an example, suppose x=4, which means that the signal power equals four 
times the average noise power. Suppose the probability is calculated to be 0.5 that 
in this case the signal will be detectable. There is then a point P=O. 5 at R=O=IR,. 
When a series of such points are calculated for various values of x, a curve for P as 
a function of R/R may be drawn, 

.O 
assuming fixed false alarm time, etc. 

INTEGRATION OF PULSES 

Before proceeding further, the meaning of pulse integration must be defined in 
detail. In its simplest form, it merely consists of adding N successive signal pukes 
together and attempting to detect the sum rather than an individual pulse. NON, what- 
ever the integrating device may be, it will not know in advance whether there is a 
signal or not, and hence in the absence of a signal it will add up N successive noise 
pulses. Therefore, the comparison is between N signal plus noise pulses and N noise 
pulses as contrasted to a single signal pulse to a single noise pulse. One might be 
tempted to say that the signal to noise t-a tio would be unchanged, and that integra- 
tion, or addition, of pulses therefore offered no advantage. This argument neglects 
the fact that the noise voltage fluctuates about its average value The mean or aver- 
age value of the noise voltage is not of too much concern, for it can always be “bi- 
ased out.“* If we add N signal pulses of voltage V, the total signal voltage is NK 
If we add N noise pulses of average voltage VN, the average sum will be NVN. How- 
ever, the average sum can be balanced out. The question is, whether or not the fluc- 
tuation in the sum voltage is now N times the fluctuation voltage of single pulse. 
If the answer were yes, then integration would be futile. However, due to the random 
nature of the fluctuation of any single pulse, the fluctuation voltage of the sum is 
only about m  times the fluctuation voltage of a single pulse. It is the signal to 
noise-fluctuation** ratio, not the signal to average noise ratio. that is of paramount 
importance. The greater the number of pulses integrated, the greater is the signal 
to fluctuation ratio, and the greater is the probability of detecting the signal, but 
at the expense of longer detect+ times. 

DEFINITION OF DETECTION AND THE BIAS LEVEL 

Before the false alarm time can be calculated, a definition of “detection of a 
signal” must -be given. Detection of a. signal is said to occur whenever the output 
of the receiver exceeds a certain predetermined value hereafter called the bias level. 
In the absence of any signal, this bias level will on occasion be exceeded by the 
noise alone. The higher the bias level is set, the more infrequently this happens. 
The first problem is to calculate the required bias level, given the false alarm time. 
Knowing ‘this bias level, the rest of the problem is to calculate the probability that 
any given value of signal (plus noise) will exceed this level. 

l Practically, the bias level should not be too large, or the fluctuations in the bias will 
become of concern. See page’I$jwhere a method of reducing the necessary bias level by a 
considerable factor is discus&d. 

** The mathematical term for the fluctuation is the wstandard deviation,” usually denoted by CC 
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This is well and good, one says, but is this the best means of detection? What 
about the operator watching a cathode ray tube - what are his criteria for calling 
“signal”? Of course, it is impossible to say exactly, as is evidenced by the wide 
variation among radar operators. One can see, though, how an operator is affected 
by the false alarm time. If he is told that he will be subject to severe penalties 
if he calls a false alarm (calls a signal when it subsequently turns out that there 
was none), then he will be very cautious. If a doubtful pip appears on the screen, 
he will use discretion and say nothing. This means that mder these conditions the 
false alarm time is increased, and at the sane time the probability of detecting a 
target at a given range is decreased. 

Ihe operator may use the shape of a signal pulse contrasted to that of the noise 
as a criteria for detection as well as amplitude differences. This is thought to be 
a second order effect. The operator, on the other hand, is limited to sane extent 
by the minimum brightness ratio which the eye can detect. 

It seems that the method of electronic detection proposed above’ will be practi- 
cally as good as any other possible method, electronic, human, or otherwise, if 
identical false alarm times and detection times are assumed. This statement is cer- 
tainly not to be considered obvious. It should be possible to make some experiments 
to verify this theory. 

METHODS OF PULSE INTEGRATION 

As stated before, to integrate pulses it is merely necessary to add them to- 
gether. There are many different practical ways in which this is done. One of the 
simplest is the use of a cathode ray tube screen(“). Due to the screen persistence 
time, a certain number of pulses will be effectively integrated. In this case it 
will not be a simple addition, being more in the nature of a weighted average. The 
effect of weighting is always bad. In other words, the effect of equal samples in 
the integrated result should be as nearly the same as possible. P P I type of pre- 
sentations which use intensity modulated displays usually have much longer integra- 
tion times than an A scope. 

One must not overlook the human operator,* 
tube, as a vital part of the detection mechanism. 

who goes along with the cathode ray 
The combination of the eye and the 

brain makes avery good integrator. In fact, the maximum integration time for a skil- 
led operator may easily be several seconds. The best electronic integrators for pulsed 
radar built to date will not better this figure to any great extent. Henceforth, a 
model electronic integrator which linearly adds N pulses will be assumed. 

* ‘Ihere are a large number of factors involving observers and oscilloscopes which are quite 
complicated and are more or less outside the intended scope of this report. Lawson and his 
group have done a great deal of work on this subject, the results of which will appear in 
Chap.VIII of Ref. (19). Most of these experimental results are also available in Ref.(24). 
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Now, pulses can be integrated in the R F stages, in the I F stages, or in the 
video stages (13) 9 (14) 9 (16) 9 (12). 
law detectors 

Futhermore, there canbe oneormore linear or square 
present* ,and the integration can be done in one or more steps and in at 

least two different ways. Manyofthese possibilities are reservedfordetailed treat- 
ment in a separate mathematical report(2a). 

Fortunately, the results for the various cases show little difference, with one 
marked exception. R F and I F integration are better than video integration for 
small signals (compared to the noise). However, there is no practical way known at 
present to take full advantage of R F or I F integration with moving targets he- 
cause of the requirement that the successive received pulses must be completely co- 
herent (la), (14) . Coherent integration would be possible in the case in which both 
the radar and the target were stationary, but this case is not ofmuch practical value. 
The difference between various types ofboth detectors and video integrating circuits** 
is small, as far as results of this kindofstudy are concerned. 'lhere are, of course 
many reasons why a choice is made in practice, such as sensitivity to small changes 
in amplifier gains, vulnerability to countermeasures, etc. 

It is worth describing one sc,heme for integrating in which a pulse kncnvn' to be 
only noise is subtracted from each possible signal plus noise pulse. N of these ccnn- 
posite pulses are then integrated. With no signal, the average value of any number 
of such composite pulses is nearly zero, so that the required bias level is consid- 
erably reduced. Such a method is much less sensitive to a small change in bias level, 
and would usually be preferred in practice. l’his case is much more difficult to 
calculate than the straight addition case; and since sample calculations show the 
results to be nearly identical, the latter method has been used to obtain the curves 
of Figures 1 thru 50. 

Figures 51 and 52 show the difference in sensitivity to bias level for this 
method. Figures 53 and 54 show the comparison of straight integration to the case 
in which a noise pulse is subtracted from each signal-plus-noise pulse. 

Practical types of electronic pulse integrators often take the form of very nar- 
row band audio filters having-their center frequency at the pulse repetition fre- 
quencyf2') or some harmonic thereof. 'lhe action of such a filter can be understood 
roughly by consideration of the frequency spectrum of a finite group of N pulses. The 

It is assumed throughout this report that the video bandwidth is large ‘comparedwiththe I F 
bandwidth. Actually,the results will be affected only if the video bandwidth is small com- 
pared with the I F bandwidth(24), a condition not often found in practice. 

One might ask if there would be any advantage in having an integrator which adds the sum of 
the squares of the N pulses or perhaps the sum of some other function of the amplitude. Ac- 
tually, it can ba easily shown that this just corresponds to changing the shape of the de- 
tector curve, and what is being asked is, 
the linear or square law form?” 

“Is any shape of detector curve much superior to 
Apparently the answer is no. There is a “best” detector 

curve. for every different si’gnal strength, x, 
Bessel function. 

given by log Io(u fi) where I, is a modified 
No results have been obtained for this detector function, but it is thought 

that the maximum difference in range between this and the square law or linear detector will 
not exceed five percent. 
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envelope of such a spectrum is simply the familiar sin x/x curve of a single pulse, 
while the actual curve has appreciable values only in the neighborhood of the harmon- 
ics of the repetition frequency (including dc)*. The greater N is, the more closely 
the spectrum clusters around these harmonics. Thus, the filter may be made narrower, 
excluding more and more noise, but retaining most of the signal energy. With such a 
narrow band filter-type of integrator it is very simple to subtract a noise pulse 
from each signal-plus-noise pulse by gating the receiver at a frequency double the 
center frequency of the filter. To prevent the possibility of a signal on every other 
gate, the sweep length would ordinarily be held at less than one-half of the pulse 
repetition period. The simple electronic type of integrator has the disadvantage of a 
fixed integration time. If the number of pulses returned fran a target is greater or 
less than the number of pulses for which the integrator is set, the operation suffers. 
With the human operator, the story is different. He can adjust his integration time 
rapidly to fit changing situations. ‘Ibis procedure could be approximated electroni- 
cally by the use of two or more successive integrators in series,** or by the use of 
so-called “weighting circuits.” Such a complicated procedure does not come within 
the scope of this report. 

METHOD OF OBTAINING THE BIAS LEVEL 

By means covered in detai1(23), in a separate mathematical report***, theprobabi- 
lity that the sum of N pulses of noise voltage alone will be greater than an arbi- 
trary level y is obtained. This relation may be symbolically represented by 

pN = f(Y) (13) 

where y is measured in units of the rms value of the noise. The number of groups of 
noise pulses which are observed in a fixed false alarm time, r fa’ is then found. 

Wher. speaking of noise pulses, it is convenient to assume mentally a range gate 
equal to the pulse length at a fixed range. If the range sweep is continuous, such 
as with an A scope, the effective number of independent noise pulses observed in one 

* There is a close resemblance between such a spectrum and the diffraction pattern of an N 
slit grating (see any standard text book on physical optics). 

** The advantage of a multistage integrator is that if a signal which is large enough so that 
the number of pulses which need to be integrated in order to produce a detectable signal 
occur in a time appreciably less than the total integration time, one of the sub-stages 
will detect the signal much sooner than will the final stage. 

*** It turns out that the functions which describe the probability that the noise alone, or a 
given strength signal plus noise will have any arbitrary amplitude, are quite complicated 
and hence only some of the results and general procedures are given in this report. Fur- 
thermore, it should be mentioned in passing that the use of the central limit theorem, or 
the so-called "normal approximation," is not valid until the number of pulses integrated is 
of the order, of 1000. This is because the values of the distribution functions far out on 
the tails play a major role in the calculations. Several investigators in the past have 
made the mistake of assuming that the normal approximation was satisfactory if N were only 
of the order of 10. 
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repetition period is given by the length of the sweep divided by the pulse length: 
hereafter called 71. It is apparent that 77 = ~L/cT, = 10.8L/rp where L is the sweep 
length in miles, c is the ,vetoci ty of light, and 7 is the pulse length in micro- 
seconds. In the special case inwhich the sweep occufies the total time between pulses, 
77 = l/rpfr, which 

to occur is N/fr. 

only one gate per 

is merely the reciprocal of the duty cycle. The time for N pulses 

rfa _ 7f.fr 
Therefore N/f - - 7 groups are observed in the time -T 

r fa 
,assuming 

sweep. Since the effective number of gates per sweep is 7, the to- 
tal number of independent chances for obtaining a false alarm in 7 

fa 
is** 

n‘ =R= rfafrrl 
iv N ( 14) 

The false alarm time is defined as the time in which the probability is %  that the 
noise will not exceed the bias level.*** From (13) and (141, 

(l- P,)““$ (15) 

from which y, the bias level, is obtained. 

PROBABILITY OF DETECTING A SIGNAL 

Having established the value of the bias level, the probability that a signal 
will exceed this level in a given time, namely the detection time rd, must be calcu- 
lated. The signal is assumed to consist of N integrated pulses. ‘Ihe time of such a 
pulse group is N/fr. The number of such groups which occur in rd is given by 

rdfr 

y’ =x=- N ’ 

As a corollary to the previous definition of detection, it is now assumed that the 
signal is detected if any one of the y’ groups of pulses exceeds the bias level. One 
will ask, at this stage, ‘why not count exactly how many t imes the signal exceeds the 

* If the range gate is much wider than the pulse length, the operation of the integrator will 
suffer more or less, depending on the exact type of integrator used. ?his corresponds 
somewbat to the case of an oscilloscope where the spot does not move by at least its 
diameter within a pulse length. 

l * This derivation assumes that the antenna is not scanning. With a scanning antenna, inte- 
grating channels must be deposed in angular position as well as in time. In order for 
(14) to hold, the number of pulses per channel per scan must be equal to or greaterthan 

N, the number of pulses which each channel integrates. 

*** This very nearly, though not exactly, corresponds to the earlier definition given on p. 71. 
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bias level?" This would in effect correspond to a two-stage integrator. Such a de- 
vice is not considered here, though it is easy to make an extension of the present 
theory to cover this case. 

At any range 8, the normalized signal strength n is obtained from Eq.(12). The 
probability that the signal plus noise will exceed any value y for a single group of 
N integrated pulses is known(23), and may be represented symbolically as 

p = f(Y,X). 

The probability that at least one of the y' groups will exceed the bias level y is 
then 

P’ = 1-(1-P& (18) 

Notice that y' must be an integer for the analysis to be strictly correct. It will 
be satisfactory, however, if one always requires y'>/l*. 

EFFECT OF ANTENNA SCANNING 

If the antenna is scanning, some modifications of Eq. (16) for y’, the number of 
groups of pulses integrated, will be necessary(24). If, with a P P I type of pre- 
sentation, the antenna moves at an angular velocity W, and the beam width is B, then 
the number of pulses per target per scan will be 

and (16) is replaced by 

N Bfr =- 
SC w 

rf N 

Y 
,-Y- dscsc 

-N- N 

(19) 

(20) 

where f,, is the number of scans per second. With a simple type of electronic inte- 
grator, Nsc must be equal to or greater than N for Eq.(20) to be valid, assuming that 
the integrator does not hold over from scan to scan. If the integrator does hold over 
from scan to scan, as an operator partially does, then it is only necessary to have 
~'31 as before. In any case (20) only holds if rdfsc>/l. 

If rdfsc<l, then y'."Nsc /N, which must be equal to or greater than 1. * 

* It is always beat for 7’ to equal 1. In this case the integrator effectively integrates 
pulses during the whole of the detection time. y’>l is the case in which the detection time 
is longer than the integration time. Here the probability for detection is greater than if 
the detection t ime were reduced to the integration time, but less than it would be if the 
integration time were increased to equal the detection time. The case for y’<l is that one 
in which the number of signal pulses occuring are fewer than the number for which the inte- 
grator is set. In this case the probability of detection is reduced from the value it would 
have if the integrator were set for exactly the number of signal pulses which occur. To cal- 
culate this latter case would require using N to calculate the bias level as in (151, but 
the use of some lesser value N’ in obtaining (17). This will be done, but results have not 
been obtained as yet. 4 

78 



PRESENTATION OF THE RESULTS 

'lhe results are presented in the form of a set of curves. This is necessary he- 
cause of the complicated form of the analytical solutions. The parameters involved 
in the curves are: 

P = the probability of detecting a target at range R. 
R/R,, = the ratio of the range to the idealized range. 

n = rf;f; 77 * 

r.fa = the false alarm time 

fr = the pulse repetition rate 

T = the number of pulse intervals per sweep. 

Y = rd. fs c-Nsc** 

rd = the detection time 

f, c = the scan frequency 

N 
SC 

= the number of pulses per scan 

N = the number of pulses integrated. 

A summary of the range of the variables for the curves presented will be found 
on page 84. 

AN EXAMPLE WITH A QUASI-STATIONARY TARGET 

A simple example is now solved assuming a stationary target. The radar set will 
also be assumed to be stationary. The following data are taken as given: 

CL) = angular rate of antenna = 30°/sec, f,, = l/12 

B = beam width of antenna * 3.0' 

f, = pulse repetition rate = 500 per second 

7 = pulse length = 1 microsecond 

R', = idealized range for given target and average aspect = 40 miles 

rfa 
= required false alarm time = 5 minutes 

rd = required detection time = 25 seconds. 

* 77 = r fa /; if the sweep occupies the total t ime between pulses. 

** See also (161, and the conditions on (20). The notation used on Figs.l-54 is +Y = rd*fr, 
which represents the special case in which there is no scanning. In general this should 

be replaced by Y= Td’fsc’Nsc. 
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Type of detector - electronic integrator, N = 50; sweep length ~20 to 80 miles. 

Step 1. Calculate Ns, from (19) 

Bfr 
N =.w= 

3x500 
- = 50 

SC 30 

Step 2. Calculate y from (20) 

1 
Y  = rdfscNsc 

= 25~~x50 = 104 

Step.3. Calculate 7 from 7 = 10.8L/r where L is the sweep length in miles and r is 
the pulse length in microsec&ds. P 

10.8x(80-20) 
rl = 1 = 648 

Step 4. Calculate n from (14) 

n = rfa.fr.T = (SX60)~500~648 = 0.98xlOs 

Step 5. Refer to Fig. 23; n ~10' and y = 100. Mentally interpolate a curve for N = 
50 between N = 30 and N = 100. Th' is curve gives probability of detection at 
any H/Ra. R, is given as 40 miles. For instance, P = 0.50 at R/R0 = 1.07 or 
at R = 43 miles. 

MOVING TARGETS AND/OR RADAR 

If there is an appreciable change of range with time between the radar and the 
target,a limit will ordinarily be set on the number of pulses which can be integrated. 
This is because the returned pulses will just fail to overlap when the target has 
moved through a distance d = rpC/2 where c is the velocity of light. The effective 
distance over which the pulses can be assumed to contribute their full amplitude is 
about f/r this value. If the rate of change of range is v, the time available for in- 
tegration is 

ri 
rPc =-. 
4v 

(21) 

The maximum number of pulses which can be integrated in this time is 

N = rifr 
rppf/ =-. 

max 4v (22) 
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This quantity Nmax is the maximum number of pulses that can be integrated: provided 
that it is not greater than N , the number of pulses per scan. In the case where 
Nmax>NSC, then hit is the maxi%n number of pulses which can be integrated. 

In the case of approaching targets, one may be concerned with the probability 
that a target will be detected by the time it has reached a certain range. Assuming 
the target to have started its approach at range R,, the probability that it will have 
been detected at least once by the time it reaches range R is 

(23) 

where R progresses from R 
.1 

to R in units of AR. The length of the AR intervals 
and the number of pulses integrated per interval are determined from the considera- 
tions given above. 

An example follows in which (23) can be reduced to a particularly simple form: 
Assume a continuously directed beam (no scan) and the target moving toward the radar 
with a constant range rate v . The finite product in (23) may be approximated by 

(24) 

(25) 

The integrations necessary in the solution of this type of problem must be performed 
numerically, using the graphical data of figures 1 to 50. 

In problems where the antenna is sbanning, equation (231 may be approximated in 
different ways depending on the exact values of the parameters involved. These are 
rather simple to work out in any specific case. 

l A system could presumably be built incorporating one or more velocity gates. Such a ve 1 oci ty 
velocity of. the 
target velocity, 

gate would travel with a given preset velocity. .In this case, the relative 
target to that of the gate, u-u 

P  
can be used in Eq. (22) in place of the 

V. ‘Ihe greater the number of ve oiity gates used, the greater will the probability be that 
the difference between the target velocity and aose one of the gates will bevery small. 
lheref ore, in this gate the allowable value of A’,,, will be large, and the probability of 
detection in this gate will be increased. 

In any multi-channel receiver, such as this, the number of pulse intervals per sweep, tl, must 
be multiplied by the number of channels in calculating n. 
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EXACT EFFECT OF THE NUMBER OF PULSES INTEGRATED ON THE RANGE 

One might expect that for a given n and a given probability of detection, the 
range to the fourth power would vary as N, as was stated on page 73. This would be 
true w.ith coherent integration, but with video integration the variation is between 
N% and N (assuming a threshold signal). This effect is due to the so-called “modula- 
tion suppression” of the weak signal by the stronger noise in the process of detection. 

Fig. 55 shows the exact variation of the exponent of N, here called 0, as a 
function of N, and of n, for P fixed at 0.50. The effect of n is seen to be quite 
small. 

Fig. 56 shows the variation of the exponent of N for an incremental change of N 
as a function of N and n. P is again fixed at 0.50. In both cases, B approaches 0.5 
as N approaches infinity; though much more slowly, in the first case. 

APPLICATION OF RESIJLTS TO CONTINUOUS-WAVE SYSTEM 

Though this report is concerned primarily with pulsed systems, the results are 
directly applicable to continuous-wave systems. To accomplish this, the following new 
not,ation is introduced: 

P = the average cw transmitter power. 

A;;. = the combined R F and I F bandwidth of the cw receiver. 

q’ = the number of separate velocity channels incorporated in the receiver.* 

The change-over is then made by means of these substitutions: 

Replace Ep by Pov/ Af,, in R, 

Put Y = +fcw 

Put n = rfa* A f,,*-q 

N is now to be taken as the number of variates (of duration l/ Af,,) which are inte- 
grated after detection. ** 

* In both the pulse and cw analysis it has been assumed that the range or velocity pates or 
channels are fixed in position. In the case where such gates’ sweep as a function of t ime 
in order to conserve apparatus (or for any other reason), the analysis is not strictly 
valid. A  good rule-of-thumb is that the gate should move through the amplifier pass band 
in a time equal to the reciprocal of the amplifier pass band. In this case the effective 
visibility factor is about 0.8. Curves of the visibility factor for other sweep speeds are 
given in the Mathematical Appendix(?3) (a separate report). 

** Integration of A’ variates before detection merely corresponds to narrowing the R F (or I Fl 
bandwidth by a factor oft. 
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N must be less than y for the theory to hold. An optimum cw system is one in 
which y = 1 (rd = l/Af,,), and N = 1. This gives the greatest range for a given 
energy expended during the detection time, rd. This corresponds exactly to the case 
N = 1 and y = 1 in a pulsed system. If the number of range channels rl in the pulsed 
system is equal to the number of velocity channels T' in the cw system, then the two 
systems, with N = 1 and Y = 1, will have identical ranges for the same average power. 

In either case, if N>l, a larger amount of average power is required, every- 
thing else remaining equal. In the pulsed case, reducing N necessitates higher peak 
powers, which may be impracticable; or it necessitates longer pulse lengths, which 
reduces possible range-resolution and at the same time aggravates the effect of a 
fixed Doppler shift due to the narrowing of the receiver pass band. In the cw case, 
reducing N necessitates a target with reasonably constant velocity so that the signal 
will not wander in and out of the pass band of the receiver, and also a sufficiently 
slow scan so that each target "pulse" is at least as long as the reciprocal of the 
receiver pass band. 
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RANGE OF VARIABLES FOR FIGURES 1 THRU 50 
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ERRATA 

In Figs. 13 thru 24, all of the ordinates appear as 
percentages but are labeled as probabilities. Therefore, 
in order to make the two scales conform, the decimal 
place should be moved two units to the left on all the 
ordinates. 
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SUMMARY 

In a previous reporttae) a statistical theory of radar 
detection was presented in outline form. The mathematical 
details were omitted, in order that the main ideas and results 
might be made available as soon as possible. 

This report contains the mathematics that led to the 
results presented in Ref.28. 

In addition, several subjects are briefly discussed 
that were not covered in Ref.28. These are collapsing loss, 
antenna beam shape loss, the effect of signal injection, limiting 
loss, and moving target indication. 

For references see page 264. 
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f 
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CN 
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?I 
J .Y 
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K** i 

Li 

Lc 
L; 

M 

n 
n’ 

N 

amplitude of sine wave relative. to R.M.S. noise level 

one of the independent variables in the function Q(u,~) 

it” central standard moment 

one of the independent variables in the function Q(cr,b) 

half-power antenna beamwidth 

coefficient in the Gram-Charlier series 

characteristic function 

delta function 

base of natural logarithms 

frequency 

confluent hypergeometric function 

C-bell and Foster notation for .characteristic function 

Campbell and Foster notation for anticharacteristic function 

the gamma function 

probability that the sum of N noise variates will exceed the bias level 

ith Hermite polynomial 

index, subscript, or 6i 

incomplete gaazza function as defined by Pearson(s) 

modified Bessel function of the first kind 

Bessel function of the first kind 

ith cumulant 

standard ith cumulant, or sometimes a modified Bessel function of the 
second kind 

integration loss 

collapsing loss 

generalized Laguerre polynomial 

number of excess noise variates integrated with N signal plus noise variates 

false alarm number 

n/N 

number of variates integrated 

*This symbol has a different meaning in RA-15061. 

**This symbol ie used in more than one sense in various places, but other meanings should 
be obvious. 
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P 
P” 

pcl 

pN 

@,’ 
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= sine wave amplitude 

= probability 

L probability,that noise will exceed the bias level at least once within false 
alarm time 

= probability that the sun of N’variates of signal plus noise will exceed the 
bias level 

= i th derivative of the error’ function 

= R.M.S. noise level 

p envelope amplitude or radar range in R/R0 

t idealized radar range 

= collapsing ratio, ratio of total number of variates integrated to those 
containing signal 

Qtad = modified Lommel’s function 

R++ 

4J 
P 

s 

Q* 

P 

Ti’ 

Pi 

4 
zI* 

v. 

wlf, 
w 
n 
Y* 

r* 
‘b 

= cathode ray writing speed 

= standard deviation 

= (y-Jw~, semi-independent variable in Gram-Charlier series 
= incomplete Toronto function 

* ith moment about the mean 

= Lommel’s function 

= normalized envelope amplitude 

c i th moment 

= power spectrum 

= 27rf 

= power signal-to-noise ratio 

= normalized detector output 
, 

P integrator output for the sum of N variates 

= bias level 

*This symbol has a different meaning in RA-15061. 

**This symbol is used in more than one sense in various places, but other meanings should 
be obvious. 
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A STATISTICAL THEORY OF TARGET DETECTION 

BY PULSED RADAR: MATHEMATICAL APPENDIX 

BASIC FORMULAE RELATING TO THERMAL NOISE 

Both the thermal noise voltage across a resistor and the noise voltage due to 
the shot effect in a vacuum tube approach a normal distribution when the number 
of electrons involved per second in the processes tends toward infinity. In prac- 
tice, it may usually be assumed that the total noise voltage between any two points 
due to any combination of thermal, shot, and cosmic noise sources can be represented 
by the distribution function 

where $c is the mean square value of the noise voltage( This distribution is 
valid provided all elements involved in the composition of the total noise voltage 
have been linear. 

If such noise is now passed through a linear filter of center frequency fs, 
having a pass band which is narrow compared to f , the output will have an enve- 
lope, which has a probability density function 

dP =$e 
0 

(2) 

For references see pa@ 264 
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where R is the amplitude of the envelope and $a is the mean square noisevoltage, 
given by 

w(f) is the so-called power spectrum of the filter and is simply the square of the 
absolute value of the amplitude transfer function of the filter. 

If the input to a filter consists of a sine wave of frequency &, as well as 
noise, then the probability density function of the output envelope is* 

dP+z 
0 

dP = 0 

R>O (4) 

R<O 

where P is the amplitude that the sine wave would have at the output of the filter 
in the absence of noise, and IO is a modified Bessel function of the first kind 
(see footnote, page1167). 

The envelope of the output has a correlation time which is approximately equal 
to the reciprocal of the bandwidth of the filter. In simple language, it is im- 
probable that the envelope will change by an appreciable percentage in times much 
less than the correlation time, but it is quite probable that it will change by a 
goodly percentage in times large compared with the correlation time. It is probably 
a good approximation to assume that values of the envelope l/Af seconds apart are 
independent, where Af is the bandwidth of the filter. By assuming such a discrete 
process it is possible to materially simplify calculations which would be very 
tedious if exact integration processes were usedb while at the same time sufficient 
accuracy is obtained for most practical purposes. 

A further justification for this assumption in the pulsed case shows in the 
results. Changing the factor I/Af to-k/Af for the correlation time has only the 
effect of changing the false alarm'time by the factor k. The probability of detec- 
tion turns out to be a very insensitive function of the false alarm time, so that 
if k is any factor of the order of magnitude of unity, the results are affected to 
a negligible extent. 

l It is of some interest to note that the same form of distribution function occurs in other 
problems. For instance, 
turbulence, 

if $o represents the mean square velocity of a gas due to ordinary 
and P  represents the translational velocity of the whole mass of gas relative 

to some fixed reference. then the density function of Ea.(4) gives the probability that 
the total vector -velocity at any point in the gas will-have a magnitude between.R and 
R t dRfp4) . 

‘l$e same density function also represents the probability that a bomb will hit at a distance 
between R and R t dR from a given point if it is initially aimed at a point whose distance 
from the given point is P. lhe mean square aiming error is represented by &-,, the distri- 
bution being assumed Gaussian (“1. 
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DEFINITION AND EFFECT OF DETECTION 

A detector is defined as any device whose instantaneous output is a function 
of the envelope of the input wave only. Thus 

r=f$) 
( ) 

= F(u) (5) 

whereyis the output of the detector and v is the normalized amplitude of theenvelope. 

If P/s is replaced by o, Eq. (4) may be written 

v2+a2 
dP = ve-- 2 I,(av)dv, v>o (6) 

dP + 0 v<o * 

Eq.(5) solved for v is I = g(y) . (7) 

If v is eliminated from (6) and (7), an equation of the form 

dP = f(a,r)dy (8) 

is obtained for the probability density for the normalized voltage at the output 
of the detector which has the characteristics given by Eq, (5). For example, if y 
= v2/2, then Eq.(8) becomes 

dP = e- y-r 4, (2G)dy, y >o 

dP = 0 Y<O 

(9) 

where a2/2 has been replaced by X. The quantity x may be identified with the power 
signal-to-noise ratio, commonly used in radar literature. 

EFFECT OF VIDEO AMPLIFIERS 

Since a complete radio receiver usually has one or more stages of video ampli- 
fication following the detector, it would seem that one would want to calculate 
the probability density function for signal-plus-noise at the output of the video 

157 



amplifier. This can be done theoretically, as has been shown in an excellent paper 
by KactP5), but the mathematical labor is great. On the other hand, it has been 
shown experimentally t3s) that the signal threshold is practically unaffected by 
the video bandwidth until it becomes less than about $4 of the IF bandwidth. Since 
video bandwidths less than $4 cf the IF bandwidth are quite uncommon in practice, it 
appears best for the sake of simplicity to assume the video bandwidth infinite in 
all the work which follows. 

When the results have been computed, assuming an infinite bandwidth, it will 
be possible to modify them in an approximate manner so that they become valid for 
any video bandwidth. This is explained on pagei213, under the title "CollapsingLoss". 

PROBABILITY OF DETECTION WITH NO INTEGRATION 

The calculations necessary to determine the probability of detection when 
exactly one correlation interval is available are quite simple compared with the 
case where the output over many correlation intervals is available, and hence the 
former case is taken up first. In a pulsed system this corresponds to using a single 
pulse, while in a c-w system it is equivalent to observing the output for a time 
t = I/Af, where Af is the over-all effective bandwidth. In either case this amounts 
to observing the receiver output for one correlation interval. If the output exceeds 
the bias-level, the signal is observed or detected (see pages 9-14 of BA-15061. 
A Statistical Theory of Target De,tection by Pulsed Radar(=s), hereafter referred to 
as No.1, for complete definitions of detection and bias level). 

It will now be shown that the probability of detecting a given signal x is 
independent of the detector function, everything else being held constant and only 
one variate being taken from the density function of Eq.(8). The false alarm time 
has been defined as the time in which the probability is %  that the noise alone 
will not exceed the bias level (Eq.(15), No.l), but it will be best here to keep 
things general and denote this probability as PO, rather than as %. Eq.(15), No.1, 
then becomes 

where the subscript N denotes the number of variates and r is simply an ahbrevia- 
tion. From Eq.(8), 

s 

P(a) 
r;= f(o,y) dy (11) 

yb 

where the symbol yb is now used for the bias number. Then the probability of detec- 
tion is 

s 

F(m) 
q= f(a,y) dy (12) 

yb 

158 



but since y - F(V), or v = g(y), Eq. (11) may be written 

P 
s 

(I) v2 g2(Yg 1 
VI? -?-dv t e-- 

gtyb) 

and 

Therefore Eq. (12) becomes 

S 

a, v3ta2 -- 

3 * ve. ’ I,,(av) dv 

v 

t 13) 

(14) 

(15) 

which is independent of the detector function, 

The integral of Eq.(lS) must be evaluated by approximate methods. ‘Es function 
will appear in several places subsequently, and is defined as+ 

s 

m  v2ta2 -- 
Q(a,P) = ve. 2 I,(w) dv . 

B 
(16) 

Footnote on Q Function8 

+ It doea not appear possible to express the Q function in terma of a finite number of 
known functions. 
pressed aa 

The Q function is similar to Loraael’a functions and in fact can be ex- 

2t82 
Q&/3) = 1 - c -‘[ipC-ijT2, iag) -U2(-i/2,iC@)] 

where vi and 4 are Lommel’a functions of the first kind. 
using the definite integral6 given in Wataonfrl 

This identity may be proven 
, pagea 540 and 541, especially Eq.5 of 

page 541. Ely succensivq integration by parta, 
8eriea giving 

the Q function may be expanded in infinite 

or 

Q&/3) = 1 - e 

The similarity of the firat of these expansion8 to the series for Ui (u, t) given in Eq. (l), 
page 537 of Watson, is interesting. A  simple expreaaion for Q@,u) analogous to Eqe.(9) 
and (lo), page 538 of Watson in 

(Continued on next page.) 
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In terms of this notation, Eq.(15) may be written 

Pl = Q(a,dz logcl/I;) . 

Ihis is the probability of detection only ifTd = l/fr where Td is the time .available 
for detection. In general the probability of detection is given by Eq.(18), No.1, 

P 
N.Y 

= l-(1 -PN)y’ 

(17) 

(18) 

which follows from the definition of detection given on page 9, No.1. The double 
subscript notation P 
simply as PM. 

Iv r is used here in place of P'. If N  = 7, , Pn N is written , 

-5 Y 
(R/R,) can be calculated by means of Eqs.(18), (171, the tables of Q, and 

the s&ple relation 

R 1 2’/4 

%  = 21/4=J;; 

(see Eqs.(lOl, (11) and (121, No.1). 

Footnote on Q Functions (Cant ‘d) 

which is useful in special cases. 
given by Rice (“!, page 109: 

An asymptotic expanaion for Q which is of value is 

where +-l(T) ia given by the error function of Eq. (100). This expression ia most useful 
in the region where C@ >> 1 and a, >> I/~-cL~. m  

The Q function is a special .case of the incomplete Toronto function described in the 
footnote on page 182j The relation is 

The Q function is graphed in Figs.13 and 14. 

A  table is available in Ref.47 but the intervals are too large to be of general use. Project 
RAND is computing an extensive table of the Q function which will be published as a sepa- 
rate report. 
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A very good approximation for .the quantity G, which appears in Eqs.(lO) and 
(17),may be derived from Eq.(lO) by writing 

,b’” e 
’ I/n’ log, PO 1 1 

* l-7 logeT 
n 0 

which is valid when n' >>l, a condition nearly always true in practice. Eq.(lO) 
then becomes 

If PO = l/2, as is assumed in all the curves in No.1, 

0.693 
l-p7 . 

Eq.(17) may consequently be written 

(22) 

3 
,A.60 loglo n +, 0.730 1 - (23) 

As an example, let R/R0 = 0.595, and n = lO'.'Then PI = Q(4, 4.37), which has the 
value 0.410 from the table given in Ref.47. Note that this is a point on the graph 
of Fig.1, page 22, No.1. 

GENERAL CASE - INTEGRATION OF N INDEPENDENT VARIATES 

If the output of the receiver (or filter) can be observed for a length of time 
much greater than one correlation period, it is of advantage to integrate the out- 
put. The simplest concept of an integrator is a device which linearly adds the 
voltage output of N samples from the detector. The time elapsing between samplings 
must be at least one correlation period, in order that the samples may be considered 
to be independent. If the sum of N variates* of signal-plus-noise exceeds the bias 
level calculated from the probability density function for N variates of noise 
alone, then the signal is said to be detected. 

* Readers with some statistical experience will recognize that here is a case of t&sting a 
statistical hypothesis. It is knom that the n observations yl, y.,, ---- y come from 
a universe whose density function f(y,a) depends on the unknown parameters a; it”is required 
to decide, on the basis of these observations, which of the two values a 
estimate for a. If a1 is the true value of 9, 

or a, is a better 
let pi be the probabi’ity of making the 

mistake of choosing a, as the correct value; similarly, if aa is the true value, let pa be 
the probability of choosing al. Suppose p 

* h 
= .05. Then a statistical decision method can 

be devised for which p1 = .05 and for whrc pa will be less than for any other method with 
the same pl. See, for example, Kendall, ~01.2, pp.272-275(e). 
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lhe integrator may take the sum of the ‘squares of the N variates, or, in general, 
the sum of N variates where each variate has been processed by some general func- 
tion. As long as the sams weight is applied to each variate, the integrator will be 
called linear. The function which the integrator applies to each variate will be 
called the ~CUO of the’ integrator. Any nonlinear integrator will be. inferior in opera- 
tion to a linear integrator with the same law and would ordinarily never be used 
intentionally in practice. Cathode ray tubes are nonlinear, however, and thus fall 
short of other types of linear integrations. 

The law of the integrator acts in exactly the same way as the law of the detec- 
tor. Thus, if the detector output is Y = (F(u) as given by Eq.(5), ,the in!egrator 
output is 

N 
Y= c 44y) = N c dFb41. 

1 ,l 

(24) 

It is obvious, as far as the theoretical problem is concerned, that the only 
function of importance is 

. W ) - #4m3 . (25) 

There will be an infinite number of combinations of 4 and F functions which will 
produce the same function $ and hence the same theoretical results. In all the work 
that follows, the output of the combination of integrator and detector for one 
independent variate. will be called y = #<v>, and the sum of N variates will be 

N 
Y= y. c (26) 

1 

The symbolic solution for the case of N variates corresponding to Eq. (15) for one 
variate is not. too difficult to obtain. The starting point is b.(8) for the proba- 
.bility density function for one variate. The characteristic function for this 
distribution is 

S 
al C l = f(a,y)eiwYdy . (i7) 

,ca 

The characteristic function -for the probability density function for the sum of N 
independent variates is then simply 
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and 

s 

m  

dPN = dY 
da 

CN(a,w)emiuYE 
-a, 

or 

d?v = G(a,N,Y) dY . 

' Corresponding to Eq.(ll) is 

S 

m 
rN = G(O,N, Y)dY 

‘b 

and to Eq.(12), 

S 

a, 
PN = G(a,N, Y) dY . 

‘b 

(29) 

(30) 

(31) 

(32) 

If Ya is eliminated from Eqs.(31) and (32), there results a solution for PN as a 
function of r,, N, and a, which is the desired result. 

It is found in most cases that the integrations required in Eqs.(27) to (32) 
are not possible in terms-of known functions. 

THE SQUARE LAW DETECTOR WITH N VARIATES 

It seems, by a process of trial and error, that the best possible function 
for rl/(v) in Eq.(25) to produce integrable functions in Eqs.(27) to (32) is 

L)(U) = AG2 =‘y . (33) 

Though this represents a square law for the combined detector and integrator law, it 
is usual to think of it as representing a square law detector coupled with a linear 
law integrator. 
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In Eq.(33), the only effect of the constant A is to multiply the bias level 
Yb in &s.(31) and (32) by A. 'Ihe value ofPP in Eq.(32) is independent of A. It is 
convenient to let A = l/2, or y = v2/2. By d erect substitution from 4s.(6) and (27), 

s 

a0 

c/ e-Y-xIo (2 e)ePYdy (34) 
0 

where x * a2/2 and p = ica. 

This integral may be obtained from pair 655.1 of Campbell and Foster('). In all 
pairs taken from Campbell and Foster it is necessary to replace p by -p, since they 
use &Pg for the first integration. As long as the same notation is used in both 
directions, the order of signs is imnaterial. In order to avoid confusion, the minus 
sign will be used in the exponent in the first transform-ation and the plus sign in 
the second transformation. Thus all of the characteristic functions which appear 
hereafter are really C(-P) rather than C(P). In this way there is direct agreement 
with the Campbell and Foster tables as well as with tables of the Laplace trans- 
form. Equation (34) becomes 

Cl -+ -xe$i . 

The characteristic function for the sum of N variates is then simply 

c, = 
e-Nx .& 

-eP+” . 
(p+lIN 

(36) 

By means of pair 650.0, Campbell and Foster, the probability density function is 

E$ 

e-Y-N% I N-1( 1m)dY Y>O (37) 

=‘O Y<O . 

Graphs of this.function are shown in Figs.l-7. The density function for noise alone 
(x = 0) is found most easily from pair 431, Campbell and Foster, to be 

dPN = 
yN-1 e-Y 

W-l)! dY * 
(38) 
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BIAS LEVEL FOR SQUARE LAW CASE 

The bias level, Y,,, is by Eq.(31) 

s 

O3 yN- 1,-Y 
q= - 

yb (N-l)! dY * 

The incomplete gamma function, as defined by Pearson(*), is 

s 

u+x 

I(U,P) = 
e’“uPdv 

0 
p! * 

In terms of this function, Eq.(39) becomes 

(39) 

(40) 

(41) 

The tables of I&,p) extend to p = 50, and values of the function are given to seven 
places. Thus, for N < 50, and n’ < 106, the bias level Yb may be obtained directly 
from Pearson's tables. Other methods must be evolved for N > 50 or n' > 106. The 
normal approximation to Eq.(39) is unsatisfactory for N less than several thousand 
because of the fact that the integral is over a region which is far out on the tail 
of the curve. This can be seen from the Gram-Charlier series which will be taken 
up presently. 

The integral of Eq,(33) may be evaluated directly by successive integration 
by parts to give 

N-l -Yb 

q= 
yb e 

(N-l)! 
(42) 

In the regionsofinterestG>N>>l. lhe series in the brackets may be approximated by 

1 + N-l + ---me 1 
a- 

u, 
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in this region so that Eq.(42) becomes 

NYiemYb 

= N!(Yg-N+l) . 

By the use of Sterling’s approximation for N!, Eq.(44) reduces to 

p exp [-Yb+N(I + log, 2~1 

G=;;;; (Y/yN+l) * 

(44) 

(45) 

Though the expression looks more cumbersane in this form, it is actually much simpler 
to use in calculations than is Eq.(44). Substituting for q from Eq.(21) gives the 
expression 

loglon = 0.24 + f log,, N t log lo (Y,-Ntl) (46) 

yb 
+ 0.434 (Yb-N) - N log,, F . 

Graphs of this function are shown in Figs.8 and 9. For N = 1, the exact expression 
for Yb from &. (39) is 

‘b = 2.3 logI n t 0.37 (47) 

whereas Eq. (46) for N = 1 reduces to 

Yb = 2.3 log,, nt0.45 . (48) 

The difference is seen to be practically negligible. 
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CUMULATIVE DISTRIBUTION FOR N VARIATES OF 

SIGNAL PLUS NOISE - SQUARE LAW DETECTOR 

Knowing the required bias level for a given false alarm interval, it is now 
necessary to integrate the density function of 4.(37) from this value to infinity 
to give the probability of detection for a signal of strength x, thus 

‘N - 

ty 

ewymNxIN-l(2~)dY . (49) 

This integral is not soluble.directly in terms of well-known functions. The order 
of the Bessel function* can be reduced in steps of 1 by successive integrations by 
parts, so that the last remaining integral is of the type given by the Q function 

* The following are sorssof the useful 
first kind: 

l,(z) = C-iYJs(iz) = 
y (f’ 

PO r! (ntr)! 

identities concerning the modified Bessel functionsofthe 

ctr p 
= N’ . [ l+ -m%Ti + 

z4 
2.4(2n+2)(2n+4) s--s I 

Asymptotic expansion: 

e* 
I”(X) mx  

[ 

1 + l-4na + ( l-4na)(9-4n’) 
---- l! (8%) 2! (8x2) 1 

I fx) t1 2’ n J;;T'(n+$) (2) ’ ‘/1 e*xcox+(sin +p 4 
zl~(r) = d,(z) + tl,tx(~) = -d,(f) + 21,,,(z) 

-I) 2) = II(%) 

.s r”l”,l( E)dZ = qc 2) 

I zIo( Adz = zfl( I) 

+ I,(z) = l,,lb) - ftl( 2) 

s e’I,,(x)dx = zeibo(x) - I,(z)] 

I e”Io(x)dx = xe -‘[lo(x) + I,(% ,1 

s @It (x)dr = e’Cc I-dI,(x) + =I1 (x)1 

I CXrl(z)dx = e”[(iwIo(d + xII(r)l 

Relations between the In functions and the hypergeometric functions will be found in the foot- 
note on p.!l75. 
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of E&.(16). An easier way to arrive at the same result is by the use of the charac- 
teristic function. To get the cumulative distribution from -00 to Y of any density 
function, it is only necessary to find the anticharacteristic function of C/p, where 
C is the characteristic function of the given density function (see pair 210, Campbell 
and Foster). Thus from Eq.(36), 

PN =I- 

The term l/p(p+l)’ may be expanded in a series 

1 ‘1 1 1 1 

p(p+lF = p(pt1) - 
--- 
(pt112 (ptl)J---- (p+l)N l 

(SO) 

(51) 

The mate of the first tennof the series, by pairs 210, and 655.1, Campbell and Foster, is 

e-Nx 

s 

‘b 
e-y 1, ( 2dG7) dy . 

0 

‘The first two terms of pN are thus 

s 

*b 
l- e’Y’NzIo ( 2&y) ffy 

0 

(52) 

(53) 

S 
aI &2,4x -- 

2s ue 
q 

2 Io(um)du 

using the definition of.Q from Eq.(l6). All the succeeding terms may be obtained 
by using pair 650.0 Campbell and Foster. 

NX r- 1 
T 

Mate of -EL is 6 
2 

(ptl)’ ( > 
$m,-,(2az7) . (54) 

* As in Campbell end Foster, f is here used in place of 42n or p/2ni. 
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From Eqs.(53) and (54), 

r- 1 
2 

PN = Q(&,@)t e-'b-Nxf$k) Ire1(2q) . (55) 

This 
less 

form of solution for P,is practical for numerical calculation only where N is 
than about 10. 

The characteristic function in 4.(50) can be expanded in another manner using 

1 
r=aD 

c 
1 

P(P+l)N = r=N+l (p+l)’ * 
(56) 

This leads to an expression for $ complementary to that of Eq.(55) of the form 

P ,N=l-e (57) 

By equating (55) and (57), one obtains one of‘the known expansions for Q given in 
the footnote on pagel% Equations (55) and (57,) may also be obtained directly from 
Eq.(49) by repeated integration by parts. Equation (57) may also be obtained di- 
rectly from Eq.(55) by means of the identity 

,e tt+ = E ( ) t”In (%I 
n--m 

given in hlcBobert(P), page 32, and one of the known series for Q. 

For the special case s = Nx, the function Q of Eq.(55) is simply 

Q = i [ 1 + e-2Yb Io(2.u,)] 

(see footnote, page 159),‘and Eq.(55) becomes 

(58) 

(59) 

+5(2Y,,) tI,(i%b) + 12(2Yb) ---- .$&?Yb) 
3 

. (60) 
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'This formula is useful for checking special points for values of N around10 or below. 

None of the methods developed above are suitable for calculating PN for large 
values of N. 

In the next section the general method of Gram-Charlier series isdeveloped, 
which will be useful in a number of succeeding problems concerning distribution 
functions over large ranges of variation of N. 

EXPANSION OF FUNCTIONS IN GRAM-CHARLIER SERIES . 

The function c$(y) is defined by 

The Hermite polynomials may be defined by the relation 

. Y2 
+i(y) - $$eaTlji (y) (62) 

where the superscript i stands for the i th derivative with respect to y. The 4 
functions and the Hermite polynomials are biorthogonal, that is 

S 
mHi(Y)rbj(Y) p ‘ij - O,i#j 

-m 
= l,i=j . 

Therefore it is possible to expand any reasonable function in a series of the form(s) 

f(Y) * gai+qy) , 
i=O 

($4) 

The coefficients ai may be evaluated in a manner analogous to the Fourier series 
methods by multiplying both sides of Eq.(64)by Hi(y) and integrating from -Q) to c0.A.U 
terms drop outbutone, giving 

(-l)i m  ai .= - 
i! s 

Hi (Y)f(Y)‘Y l 

,a0 

(65) 
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It is usual to make the substitution t = y - Y/U before making the expansion,thus 
causing the second and third terms of the series to vanish. The notation is 

Y = v1 = the average value of y, or the first moment 

cr2 = v2 - y2 = the variance 

vn - the nth moment of the distribution. 

s 

0) 
vn = y”f (y)dy 

-0D 

Equation (64) is replaced by 

i=co 

f(Y) = g(t) = Cc#(t) 
i =O 

and Eq.(65) by 

(-12 m  
‘i = - i! S Hi (t)g(t)dt 

-a, 

(66) 

(67) 

(68) 

It follows at once from Eq.(68) that co = l/a, cl = c2 = 0. The moments about the 
mean, or the central moments, are defined by 

s 

m  

pi= - (y-Y)f(y)dy 
-a0 

and the standard moments about the mean by 

169) 

pi 
a.=. . I 

u” 
(70) 
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The coefficients ci in Eq.(68) may be easily written in terns of the a's, 'l'he first 
few are 

C3 
1 

= 73 (7la) 

=4 = 2 PC3) (71b) 

%  - -3 l (a,-lOa,) (71c) 

‘6 = +6 -lSa, +30) (71d) 
. 

c, = -- ,; w  2 la, + 105a, ) (71e) 

5 28a6*210a,-315) (71f) 

=9 = -i (a,-36a,+3?8a,-126Oa,) . (7h3) 

Formulae for the p's in terms of the U'S can be obtained directly from l&.(69), giving 

p2 = 3 -. u; (72a) 

cl3 = u3 - 3v.p, + 2lJ; (?2b) 

k = u4 
2 - 4u3ul, + 6u2v, - 34 (72~) 
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CL, = Y - sup1 .+ 1Oyv~ - 1ov2u; + 44 (72d) 

p6 = v6 - 6vs ul + 15t.& - 2ou3u; + 15v,u; - 5l.J; . (72e) 

Continuations of this series are obvious. 

The process of obtaining the Gram-Charlier expansion is now evident: 

1. Find the moments of the distribution. 

2. Obtain the central moments from Eq.(72). 

3. Obtain the standard central moments from Eq.(70). 

4. Obtain the coefficients from 4. (71). 

5. Write the series for f(y) from Eq. (67). 

It turns out that the best grouping for the terms of the series of Eq.(67) is 
different from the natural sequence fa). Such a regrouped series is termed an “Edgeworth 
series” and is actually used in this work. The grouping used by Edgeworth is 

0 (73a) 

0, 3 (73b) 

0, 3, 4, 6 (73c) 

0, 3, 4, 6, 5, 7, 9 . (73d) 

This means that if the 0 and 3 terms are used as the first approximation, the addi- 
tion of terms 4 and 6 gives the next order approximation, and so forth. 

MOMENTS OF SIGNAL PLU‘S NOISE,,SQUARE LAW DETECTOR 

The moments of a distribution may be obtained by using the characteristic 
function as a moment generating function*. Thus 

vi - (ai $ ('1 p=o 
(74) 

*-Kendall, p.54(@. 
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In the case of the distribution function for the sum 
noise with a square law detector, the characteristic 
and the moments are 

of N variates of signal plus 
function is given by Eq.(36), 

-“,# 
e 

Y 
= (,l)i d’ 

1. I W  (p+lJN p=. 

. (75) 

Though the first few moments may be obtained by direct differentiation, it is better 
in this case to expand in a hlcLaurin's series and obtain the coefficient of pi/i!. ‘IINS 

NX 
$F 1 

(P+l yv =(p+l)N+ 

NX 
(p+l)N+' + 

0'~)' 

(pt1)Nt2* 2! * 
(76) 

The coefficient of pi/i! is, by direct expansion of each term in Eq.(76), 

(-1)’ ‘~~i;~~! [1 + 
. 

(N+i) 

NNX + 

(N+i)(N+i+l) (Nrj2 +-l-- 

N(N+l) 2! 1 
(77) 

(N+i-l)! 
-t-l)' (N l), ,F,(N+i,N,Nx) 

. 

where rFr is the confluent hypergeometric function.* Thus the moments are 

(78) 

l The following are saneofthe useful relations concerningthe confluent hypergeometricfunction: 

f“ (a. c, z) _ r(c) ‘5:” r(o+r) *r = 1 + gt 
l-‘(o) r=o r! T( c+r) cl, + p$$j$ ---- ‘= ,F&,b,c,f) 

Asymptotic expansion: 

lFl (0, c, z) %  

Lim b’m  

K-r's first transformation: 

1Fl (a, c, z) = ezlFl ( C-O, c. -2) 

Kummer's second transformation: 

lFl(a,20.2z) = ezoFI(b+,$) 

Recursion relations: 

alFl~o+l,c.z) + (o-~)~F~(o-l,c,z) = (?+fa-c) 1Fl (a, c, z) 

oclFl (a+l.c.t) + (c-a~zlFl (a,ctl,z) = c(otz)IFI (o,c,t) (Continued on next page.) 
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(Nti-l)! 
lJi - 

(N-l)! 
evNx lF, (Nti,N,Nx) 

vi = (N+i-l)! F (tii,N,+‘%) . 
(N-l)! 1 l 

Hypergeometric function (Cont’d) 

=lFl(=+l,c.z) + (1-dlF1(o,c-1,~) = (otl-c)IFI(o~c,z) 

cl< (o-1, c, z) + zlFl (a. ctl, z) = cl< to, c, z) 

‘=-c’f’ to-1,c.z) + (c-l),< (o.c-1,~) = (~ta-l)~~ (o.c, z) 

(c-0) zl< ( 0, c+l, I) + c( c-1) 1< (0. c-l, 2) = c( ztc-1) I< (0, c, z) 

# z $Y (0, co z) = : Is (otl, ctl, z) 

Relations between hypergeometric functions and other functions: 

lq (0, 0, Z) = eL 

1T (0,0+1,-z) = OZ” Jo’ e’tto’ldt = z”r(otl)I~ ~-1 
k 1 

using Pearson’s notation for th’e incomplete gafmna function. 

,Fl(l, otl,z) = e'*zOT(0t!)I (2. o-l) 

1< C-n, 1, z) = Ln( z) 

(original Laguerre polynomial) 

n!T(a+l) a &  (-n.a+l, 11 SF (atltn) L,(z) 

(generalized Laguerre polynomial) 
L 

A( 4,2Ml,-z = 
> 

2avr~tl )evT 

(-zlV I, (3) 

,F,(+, I.-Z) = e+Io(:) 

& (3.2.-2) = e-“[I.(f) + Il(ffl 

,Fa(-+il,-~) = e-~~ltz)~O(+) t zig] 

(79) 

(80) 
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Eq.(80) being obtained from Eq.(79) by Kuazner's first transformation. The first 
four moments are 

Vl = N(ltx) (81a) 

v2 = (Nx)2 + 2Nx(N+l) + N(N+l) (81b) 

V3 = (Nx)~ t 3(Nn12(N+2) t 5Nx(N+l)(N+2) t N(N+l)(N+2) (81~) 

u4 = (Nn)’ t 4(Nx)3(N+3) + 6(Nx)2(N+2)(N+3) (81d) 

t 4Nx(Ntl)(Nt2)(!/+3) + N(N+l)(N+2)(N+3) . 

The generalized Laguerre polynomial Lr)(z) is defined by 

Lta’(z) = 
I-(at 1+n) 

n ,n!ITa+l) 
fl (-n,a+l, 2) . (82) 

Comparing (80) and (82), it is seen that the moments expressed in terms of the 
Laguerre polynomials are 

V. = i!LiN-r)(-Nx) . (83) a 

Another generating function for these polynomials is available through the relation 

q=) (z) = ezfa .n! $ (e’zzn+a) . (84) 

The moments about the mean may be expressed in terms of the moments about the origin 
by means of Kqs.(72a-e), resulting in: 

PO = 1 

Pl = 0 

(85a) 

(85b) 
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p2 = 2Nx + N = N( 2rtl) - w2 (85~) 

k = 6Nx + 2N = 2N(3xtl) (85d) 

p4 = 12(Nx)2 t 12Nr(N+2) t 3N(Nt2) (85e) 

p5 = 120(Nx)” + 20Nx( 5N+6) + 4N(5N+6) . (85f) 

A generating function for the central moments may be obtained by multiplying the 
generating function of Eq. (75) by ePvlgiving (see pair 207, Campbell kd Foster) 

(86) 

The moments of Eqs. (85a-f) are most easily obtained by logarithmic differentiation 
in Eq. (86). 

The standard moments about the mean are obtained from Eq.(70), and are 

a0 = 1 (87a) 

al = 0 (87b) 

a2 = 1 (87~) 

2(3x+1) 
a3 = 3 

N”2(2xt1) 2 

6(4x+1) 

a4 = 3 + 
N(2xtl)2 ’ 

(87d) 

(87e) 
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,a There is an approximate method of computing the significant part of a6 which is 
based on the fact that ce 
259, Fryt6) ). Thus 

of Eq.(7ld) is always nearly equal to c3’/2 (see page 

a6 %lSa , + lOa: - 30 (88) 

or 

a,% 15 t 
10(108%2t78zt13) 

N(2nt1)3 * 
(87f) 

For noise alone, the moments are given by 

(N&l)! 
y = 

(N-l) ! 

and the central moments by 

(Nti-l)! 
Pi L: (N-l)! ,F,(-i,l-i-N,TN) . . 

(89) 

(90) 

Equation (90) was obtained from Eq.(86) by putting x =O and expanding in a series. 

THE GRAM-CHARLIER SERIES FOR THE SQUARE LAW CASE 

The coefficients of the series may be obtained by use of Eqs. (7la-d) since 
the standard central moments are now known (Eqs.87a-f). They are: 

co = 1 (%a) 

‘C xc 
I 2 .- 0 (91b) 

c. 0 - 3x+1 
.3 

3Nv2 (2r+$ 

(91c) 



% = 
4x+1 

4N(2rt1)2 
(91d) 

(3n’tl) 2 

‘6 = 18N(2xW3 * 
(91e) 

From Eq.(67) the required series is 

dP 

where 

v1 = N(ltx) 

(93) 

(94) 

and the c's are given by Eqs.(9la-e). 

Note that the grouping.of terms is according to the Edgeworth scheme given in 
Eq.(73). Note further that as N tends to infinity, all the coefficients go to zero 
except CO. Thus 

(Y- wa 1 -- 
dP 

=zEe 
2uz dy 

as N 403. In terms of N and x 

[ -N( 1+x)1 a 
dP = - .-w dy 

J’mN( 1+,2x) 

(95) 

(96) 
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Eq.(95) is precisely a statement of the central limit theorem, and the derivation 
given is essentially a loose proof of the theorem. 

The cumulative distribution is easily obtained from Eq.(92) by means of the 
simple relation 

S &(t)dt = q+-‘(t) (97) 

giving 

s 

m  

‘N * f(y)dy = ;h-+-‘(T)1 - c3#‘2(T) - “,+3(T) - c6# (T) ---- (98) 

‘b 

where 

‘b- fi 
T=, (99) 

(100) 

The function &l(T) is tabulated in the W.P.A. tables(g). This differs from the 
definition given for &l(y) in Fry, page 456 but is used here because of the W.P.A. 
tables. 

The series of 4.(98) was used to calculate all the curves of Figs. l-50, No. 1, 
with the exception of the cases where N = 1. In most cases the first two terms of 
the series are sufficient, though in some regions of small P four terms areneeded. 

SAMPLE CALCULATION 

Assume N = 10, n = IO6 

From Fig. 8, or Eq.41, Yb w 30.0 

Let g- = 1.0 so that x * 1.0 . 
0 
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From Eq.(94), vl - N (It% ) - 20.0 

-From Eq.(99), TX+ 30.0 -20.0 
5.58 = 1.830 

4-'(T) - +-'(1.828) - 0.9325 

+(1-4-‘(T)) - 0.0338 

From Eq.(9lc), C *- 3x+1 
3 s 

= -0.081 

3Nv2(2%t1)a 

From Eq.(9ld), 

From Eq.(9le), 

c4 - 
4%+1 

4N(2%+1)’ - o*013g 

C6 * ,a$ = 0.0033 

42(1.828) = 0.174 

+3(1.828) - -0.470 

(See p. 218 for references on 
tables of the derivatives 
of the error function.) 

@(1.828) = 0.990 

c,~~(T) = -0.0141 

+(T) = -0.0007 

F,~.~(T) = to.0032 

P = 0.0338 t 0.0141 + 0.0007 - 0.0032 = 0.0452 

This point, P = 0.045, R/R, = 1, may be found on Fig.20, No.1. 

INTEGRATION LOSS, SQUARE LAW DETECTOR 

It is of interest to express the effect of noncoherent integration as a loss 
with respect to coherent integration ("). This may be done by defining the integration 
loss as 

Li 
Nz2 

- 10 logr,-- 
5 

(lOOa) 
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where 

N = number of pulses integrated 

5 = required value of signal-to-noise ratio to produce given probability of 
detection for N = 1. 

%2 = required value of signal-to-noise ratio to produce the same probability 
of detection for N = N. 

Thus L, is a function of P and n. However, it turns out that the dependence on P 
and n is very small. 

In the case of coherent integration, n2 is always equal to xl/N, so that Li = 
0. With noncoherent integration, x2 is always greater than x1/N, so that noncoherent 
integration is never as efficient as coherent integration. The results of calcula- 
tions are given in Figs.10 and 11. One observes that the dependence of Li on P and 
n is quite small. Thus by means of the graph of Fig.12, which gives 1: as a function 
of P and n for N = 1, and any one of the curves of Fig.10, it is possible to obtain 
a fairly accurate value of x for any P, n and N. 

GENERAL CURVES OF THE CUMULATIVE DISTRIBUTION FUNCTION 

The integral of Eq.(49) is a function found in other applications than the one 
discussed in this paper. It is desirable to have graphs of this function available 
in general form rather than the specialized form of Figs.l-50, No.1. The integral 
is a special case of the incomplete Toronto function* described by Heatley(*') and 
Fisher("), which is defined as 

S 

B  

TB(n,n, r) = 2r”-“t1e”a tm-“emtaI,(2rt)dt . 
0 

(100b) 

Using this notation, Eq.(49) for the cumulative distribution function becomes 

PN = 1 ,- T'(2N-l,N-0%) . (1OOc) 

l In normal correlation theory, the quantity 

is given by FisherfIr) as the limiting form, for large samples, of the frequency element 
of the quantity Ba = naRa where Rs is the sample estimate of the multiple correlation 
coefficient of a random variable y with other variables x1, x,---- xar , na is the size 
of the sample, and fi2 = napa where p is the population multiple correlation coefficient. 
The pumulative distribution is 

and can be obtained from the curves in Figs.13 to 32. 
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The function plotted in Figs. 13 to 32 is 

TG(2N-l,N-l,G) (100d) 

and pN may be found easily from these curves for any .values of Yb, N and X. 

THE LINEAR DETECTOR - N VARIATES 

The linear detector is usually more difficult to deal with than is the square 
law detector. The distribution function for one variate of signal-plus-noise is 

vstaa 
dP = ve-- lo(au)dv . (101) 

In attempting to find the distribution for the sum of N variates by the method 
of characteristic functions, the inmediate trouble is that the characteristic function 
of Eq.(lOl) does not seem to be obtainable in closed form. To give an idea of the 
difficulty involved, the characteristic function for one variate of noise alone is 
obtained as follows: 

aa Cl3 v= 
c ‘T S ----iov 

= e ve 2 dv . 

0 

(102) 

This is pair 903.3, Campbell and Foster, and may be evaluated directly by completing 
the.square or by forming a differential equation, giving in either case 

f 

a 
7l 

C-l- ij- pe f erfc -!- 
A- 

or in terms of w 

ua u 
C 31 “i- - oe 

(103) 

(104) 

To raise this expression to the Nth power and then obtain the anticharacteristic 
function is practically hopeless, 
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The distribution function for the sum of two variates of noise alone is ob- 
tainable by use of the convolution theorem, giving 

and the cumulative distribution is also obtainable, giving 

s 
m  G 

P= 2 f(y)dy = eqg t ,,,qer-f; . 

Y 

(105) 

(106) 

However, when N > 2 there seems to be no closed solution corresponding to Eq. (105) 
or (106). Since these cases are for noise alone, the signal-plus-noise situation 
must be attacked by other means. 

It turns out that if the moments of the distribution for one variate areknown, 
the moments of the distribution for the sum of N variates may be found directly. 
Formulae are given, for instance, in Cramer, page 345, (lo) for the first few central 
moments, which are 

4 = 45 (107a) 

N 
p3 = NP3 (107b) 

N 
p4 = Np, t 3N(N-1)~; (107c) 

(107d) 

The corresponding coefficients in the Gram-Charlier series then become 

(108a) 

a4-3 
=4 

=- 
4!N 

(108b) 

‘6 6!N l 

( 108~) 
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The a's in Eqs.(108a-c) are the central standard moments for one variate. Note 
that, in the square law case, ifN is put equal to 1 in Eqs.(85c-f) and the resulting 
p's used in Eqs.(l07a-d), the p's for N variates are correctly given. If a moment 
generating function can be found for the case of N variates, then it is immaterial 
which method is used; but in the case in which such a function is not available, the 
Eqs.(lO7) must be used (or some method essentially equivalent). 

To handle the linear detector it is now sufficient to find the moments for one 
variate only. Ilice( page 107, gives the required expression as 

v. 1 = 2w(lt;)1Fl (-$1,-x) * 

Rice also gives the first two moments as 

. 
(109) 

(110a) 

v2 = 2(1+x) (110b) 

TO calculate 2; one needs to know the function,,~(-3/2,1,-x). This may be obtained 
by use of the recursion relation 

alFJatl,c,z) t (a-c) lF,(a-l,c,z) = (2a+z-c)IFI(a,c,t) (111) 

by putting a = - 4 , c = 1, z = -x. The result is 

also 

v, = 4(2+4x+r’) . 

(11Oc) 

(110d) 
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The corresponding central moments are 

k 
s c.2 = 2(1+x) - v; (112a) 

p3 = 23; - 2?Jl (1+2x) -~“Q)(f) (112b) 

P4 = 4(2+4x+x2) - 3vf - 4v1 
C 
(1-n)y -*e-‘Io(g] . (112c) 

The standard central moments, and then the C’S of Eqs. (108a-c), are directly obtain- 
able from these formulae, though the process is somewhat tedious due to the cumbersome 
form of Eqs. (112a-c). The functions vl to U, are shown graphically as a function of 
x in Fig.34. 

G. C. 
To obtain the bias level sfor the linear detector for N > 2, one can use the 
series for noise alone. Setting x = 0 and vl = m in Eqs. (112a-c) gives 

CL2 = Q 
2 = 2 + 0.4i9 (113a) 

= 0.1772 (113b) 

c~q 8 
379 

= - - = 
4 

0 ' 598 (113c) 

and 

P3 
a3 = 2 = 0.632 

0.1053 
c3 = - - 

NV2 

and 

a4 AL 
V' 

3.26 
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c4 
= 0.0108 

N 
(115b) 

0.00555 
C6 = 

N ’ ( 115c) 

The cumulative distribution function is now equated to $, giving 

0.1053 
+ N’/242(T) 

0.0108 
- --43(T) - o.“;555@(T) ---( 116) 

where 

T= 

For any given n and N, Ybmay be found from Eq.(116) by trial and error methods. 
If an approximate value of T is found by neglecting all but the first term in Eq. (116), 
a more accurate value obtained by Newton’s method is 

fvl) 
T, = Tl - - 

f'(Td - 
(117) 

It is better, however, to plot Eq.(116) giving n as a function of T and N from 
which is finally obtained the bias level graph of Fig.35 showing Y,as a function 
of n and N for the linear detector. 

Since for finding the bias level it is necessary to know the distribution 
functions only for large values‘of the argument, it is possible to find an ap- 
proximate solution valid in this region. Consider a distribution function given by 

lJa 

dP = vt? dv (ll?a) 

for v going from -03 tot co. The Nth convolution of this function will be nearly 
the same for large values as if (117a) went only from 0 to co, because the large 
values in the sum of N variates are most probably produced by addition of large 

187 



values of every variate, and for large values (in fact for all positive values) 
the two distribution functions are identical. The characteristic function of Eq. 
(117a) is given by pair 710.1 of Campbell and Foster to be 

P2 
c= -fipe-i- . (117b) 

For the sum of N variates 

CN 5 (-l)“(&)Ne% . (117c) 

The probability density function is obtained from pair 740.2 of Campbell and Foster as 

dPN x y>>l 

NT 

(117d) 

where DN is the parabolic cylinder function of order N. In terms of the derivative 
of the error integral as defined in 4. (62), 

dPN z $ dN($y y>>l . (117e) 

Note that for N = 2, Eq.(ll7e) becomes 

. (117f) 

Referring to Eq.(105), the exact expression .for this case, it is seen that Eq.(117f) 
can be obtained by neglecting the first term and replacing erf y/2 by 1, both of 
these approximations being very good if y >> 1. 

The approximate cumulative distribution is easily obtained from Eq.(ll?e) by 
direct integration and gives 

(117g) 
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The bias level is easily obtainable from this expression by equating it to $and 
solving for Yb by means of the tables of da, or by plotting graphs. The method is 
not very practical for N > 20 since suitable tables do not exist. 

It is interesting to note that no such approximation as Eq.(ll7g) is obtainable 
for the square law case. 

Graphs of the probability density functions for signal-plus-noise have been ob- 
tained by numerical convolution for some selected cases and are shown in Figs.36 to41. 

RESULTS OF THE LINEAR DETECTOR CALCULATIONS 

The difference in results for the linear and square law detectors turns out 
to be so small that extreme accuracy must be used in the calculations to show the 
relation in its true form. One such comparison graph was calculated and is shown 
in Fig.42. Also, in Fig.43 is shown the difference in db in the two cases at P = 
0.50. The two are identical at N = 1, the linear law becomes better by a maximum 
of 0.11 db at N = 10, the two are again equal at N = 70, and the square law then 
becomes better and asymptotically exceeds the linear law by 0.19 db as N -rcn having 
reached 0.16 db at N = 1000. These results show conclusively that there is little 
to choose between the linear law and square law as far as theoretical signal threshold 
is concerned. 

EXPANSIONS IN LAGUERRE SERIES 

In certain cases, particularly for low values of N, the Gram-Charlier series 
may not be the best-suited type of expansion for distribution functions which are 
zero for all negative values of the amplitude. For low values of N, a suitable 
expansion for such functions is the following: 

i=a, 

f(Y) = c ai e-Yy”,LT(y) (118) 
i=O 

where L;(Y) is the generalized Laguerre polynomial defined by 4.(82), or by 

The orthogonality relation which makes the expansion possible is 

i! 

s 

0) 

r(a+i+l ) em2 zaLq (2) Lja(2) = Fij 
0 

(119) 

(120) 
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(see Copson (4) , page 269). 

Thus, from Eqs.(ll8) and (120), the coefficients are determined by 

i! 

S  

co 

a. = L;(y)f (y) dy . (121) 
a r(a+i+l) 

0 

Note that 4s.(118), (120) and (121) are analogous to Eqs.(64), (63) and (65), re- 
spectively, for the Gram-Charlier expansion. 

Let a new variable t = y/p. Then 

i=CO 

f(Y) = g(t) = c c.eettaL4(t) a 
i=O 

where 

i! 

s 

m  

c. = a r(a+i+l) o L;(t)g(t) dt = 

The first few Laguerre polynomials are 

L;(z) = 1 

q(z) = 1+a-z 

2L3z) = (a+1)(a+2) - 2z(a+2) t z2 

6L;(z) = (a+1)(a+2)(u+3)- 3z(u+2)(u+3)+322(a+3)-~~ . 

There fore 

1 
Cl = lycW2)‘P [ 1 1tu-s 

P 

1 
[ 

2Vl 

c2p r(a+3)*P 
(u+1)(u+2) -- p (ut2)+3 1 * 

(122) 

. (123) 

(124a) 

t 124b) 

(124~) 

(124d) 

(125) 

(126) 
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Since there are two arbitrary constants, a and p, in the expansion of Eq.(l22), it 
is possible to make cr = ci = 0 by a proper choice of u and p. These relations are 
easily determined by equating Eqs.(125) and (126) to zero and solving simultaneously. 
The results are 

Y 
2 2 

v1 

a=--1=T7-1 v2 -v;" 
(127) 

v2-v12 *2 

P=7=q 

and 

1 vl 

‘0 = prta+i) = 52r 2 
( ) 52 

(128) 

(129) 

5 = c2 = 0 (130) 

‘3 = pr(it4) [ 
V1(at3) -; . 
p2 1 (131) 

The coefficients past c,, are so complicated that the whole value of this type of 
series seems to depend on the fact that the first term alone is often a good ap- 
proximation. This approximation is 

dP e 

2 

Vl y 
--1 

v 

0 

f 

-7 

7- 
d y 

and the corresponding cumulative distribution function is 

s al 
P i f(y)dy = 1-I 

Y 

(132) 

(133) 
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where I is the incomplete gamma function as defined by Eq.(40). 

There is a striking analogy between Eq.(132) and the corresponding normal 
approximation. In both cases the distribution for the sum of N variates is simply 
obtained by multiplying both vr and o2 by N. As N -03, both the normal approximation 
and JZq.(132) approach the true distribution (and each other). In any particular 
case, however, the convergence properties of one approximation will be more useful 
than the other. 

In the square law case, for z = 0, v,= N and u2 = N. Substitution of these 
values in Eq.(l32) gives 

dP 
1 I - e’YyN-ldy . 

l-(N) 
(134) 

Note that this is the same as Eq.(38), the exact expression. Thus in this particular 
case the first term gives the whole correct result. The third coefficient from 
Eq.(l31) is easily shown to be zero, as all the following coefficients will be, 

In the square law case where x # 0, 3 = N(l+x) and o2 = N(l+U). Substitution 
of these values in F.q.(132) gives 

dP = 

and from Eq.(133), 

Nt1+xj2 
’ 1+2x - 

1. 1 

(135) 

(136) 

A comparison of the particular case N = 3. x = 1 is shown in Fig.44. Curves are 
given for the exact distribution function (EqJ37))and the two approximations given 
by Eqs.(96) and (135). 

For the linear case with z = 0, ZJ~ = N-and c2 = N(2-n/2), the cumulative 
distribution is, from 4.(133), 

P= 1-I (137) 
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OTHER SERIES APPROXIMATIONS 

It is theoretically possible to develop still other series approximations for 
the various distribution functions. Forainstance, it might be thought advantageous 
to use a sum of terms of thetypeyae'Y/2, particularly in the linear case. While 
this turns out to be possible, even the first coefficient is so difficult to calcu- 
late that the process is impractical. 

METHODS OF INTEGRATION INVOLVING 

SUBTRACTION OF NOISE 

Certain practical difficulties arise in maintaining the bias level at the 
correct value in an electronic detector, particularly if the number of pulses inte- 
grated is large. The trouble may arise from fluctuations in amplifier gain, the 
bias supply, or the noise level itself. 

A solution of this problem is to have the gain of the amplifier, or the bias 
level, or both, controlled by some sort of average value of the noise output. Ob- 
viously the time constant of the control device mustbeneither too long nor too 
short. One scheme which has been used is to subtract a pulse known to consist of 
noise only from each possible signal-plus-noise pulse* (see paragraph 3, pagell, 
No.1). Thus in the absence of a signal, the average value of any number of composite 
pulses will always be zero, and the required bias level will be comparatively low. 

DISTRIBUTION FUNCTIONS FOR COMPOSITE PULSES 

OF SIGNAL-PLUS-NOISE MINUS NOISE 

When a noise pulse is subtracted from each signal-plus-noise pulse, the theo- 
retical distribution functions will be entirely different from previous cases. The 
square law case is the only one that can be treated in any reasonable fashion. The 
distribution function for one variate of signal plus noise is given by 

dp e evxwy I,(Za) dY (138) 

and the characteristic function is 

e-X X  
C = p+1 eP+l . (139) 

l This subtraction can be accomplished by means of a gate which operates at double the 
repetition frequency. On every other gate only a noise pulse of reversed phase goes through 
the integrator. 
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Subtracting a positive noise variate is equivalent to adding a negative noisevariate. 
The distribution function for a negative noise variate is 

dP = .r Y<O (140) 

= 0 Y>O 

and 

1 
c =- 

1-p 
(141) 

To obtain the characteristic function for the sum of a variate from the distributions 
of Eqs.(138) and (140) it is only necessary to take the product of the characteristic 
functions given by Kqs.(139) and (141), giving 

(142) 

This is the characteristic functionforone so-called composite pulse. The characteris- 
tic function for the sum of N composite pulses is simply 

e-Nx N% 
C= 

(1mp2)N ea 

In the case of noise alone (X = 01, 

c= l 
t l-p2)N 

and the anticharacteristic function is, by pair 569 Campbell and Foster, 

1 

dPN 
1 

= I r 
N-- 2 

J;;(N-l)! 
Y dY 

2 
I KNml 1 t 

2 

(143) 

(144) 

(145) 

where KNmw is a modified Bessel function of the second kind and is given by the 
finite series 

(146) 
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The cumulative distribution for the sum of N composite noise variates may be found 
by use of the series (146) and term by term integration. However, for N greater 
than 3 or 4 the process rapidly becomes impractical. 

43 ain, it is necessary to find moments and proceed by means of Gram-Charlier 
series. For noise alone, the moments are easily found from Eq.(144) to be 

V. 1 = Pi = 0, i odd (147) 

Nti-1 !(i)! . > ZJ. = p. = a a (N-l)! + ! ’ i even 
0 

in particular, 

p.2 
I 2N t c2 

p4 = 12N(N+l) 

PLs = 120NtN+l)(N+2) 

and 

u3 = 0 

(148) 

(149) 

(150) 

(151) 

Q4 =3+$ (152) 

The only coefficients different from zero in the first six are co and c4 to the 
order of l/N. 

1 
=4 = 6 (154) 

Thus 

dpN = $i’(&) + f+l(&) ----, (155) 
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and similar to Eq..(98) is the cumulative distribution 

PN = .$-4-l(&)] - fcP’(&) ---- (156) 

The bias number is found by setting this expression equal to $ and plotting Yb 
as a function of n and N. Results are given in Fig. 45. In the special case N = 1, 
the cumulative distribution function is simply e -“’ for Y > 0, and the bias number 
is obtained from this expression rather than from Eq.(156). The anticharacteristic 
function of the general case, Eq. (143), may be obtained by use of the convolution 
theorem, pair 202, Campbell and Foster. Let 

NX 

Fl = e 
-Nzep+l 

(p+1)” 
(157) 

(158) 

Then from 4:(37), 

N-1 2 
G,= ; ( ) e-YwNx IN- 1 ( 26 1 Y’O (159) 

and by pair 525.2, Campbell and Foster, 

(160) Y’O 

cL (-ylN-‘d y <o 
(N-l)! 

Applying the convolution theorem gives 

N-l 

dPN 

e Y-N% 
= dY- OY 

2 

(N-l) ! S( ) pi 
(y-Y) N-1 ee2YIN-, (2G)dy Y’O (161) 

For Y < 0, the lower limit of the integral in 4. (161) is 0 rather than Y. 
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PROBABILITY DENSITY FUNCTIONS FOR Y < 0 

To evaluate the integral in Eq.(161) h w en the lower limit is zero is straight- 
forward but tedious. First one evaluates the integral 

(162) 

by use of characteristic functions' in a mannerentirely similar to that used in 
Eqs.(74)to(80). The characteristic function of the function of Eq.(162), with 
k = 0, is 

NX 
ep+2 

c=- 
(p+21N 

and 

42 

f(k) = 
e 2 (Ntk-1) ! 
(N-l) !2N'k 

1Fl (-k,lV,-F) . . 

Then by expanding (Y-Y)~-~, one obtains the coefficient of 

(N-l)! (-Y)N-l-k 
yk = 7 o/-l-k)! 

and from Eqs.(164), (165), and (161), 

e Y-N% k=N- 1 
dPN = - c (N-l)! k=o 

f(k)(N-l)! (-YPl+-k 

k! (N-i-k j 1 

or 

y-“; 

dPN 
= d+------ 

k-N-1 (Ntk-l)! ,F, (-k,N,-9) 

c (N-l)! k=o (N-k-l)!k!2Ntk 
(-y)N-k-1 Y<O . 

(163) 

(164) 

(165) 

(166) 

(167) 
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In terms of Laguerre polynomials, using Eq.(82), 

dPN = dYe ' < ' - (168) 

The first few polynomials are giveninEqs.(12&d). Some special cases of Eq.(168) are 

Y-X 

N = 1 dP, = dY$ Y<O (169a) 

eY-x 
N = 2 dP2 = dY- 

4 
Y<O (169b) . 

N=3 dP3 = dY+ y-F [3tiitEJ(2ty)yt v2] y<o . (169c) 

The cumulative distributions for Y < 0 may easily be obtained,by integrating (169a-c). 
Obviously, the expressions in Eqs.(167)and (168) are practically useful only for 
small values of N. 

PROBABILITY DENSITY 

FUNCTIONS FOR Y > 0 

To find a general expression for Eq.(161) g iving the distribution function 
when y > 0 is a task of tremendous proportions. Consider, for instance, the special 
case N = 1. Equation (161) becomes 

dP1 = dye&x 
J 

ew2Y I,, ( 2fi) dy 
Y 

By means of the substitution y = v2/4, this becomes 

Y>O . 

Y>O . 

(170) 

(171) 
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This can be expressed in terms of the Q function defined by Eq.(16). 

Y-X 

dp, = dY$ Q( 6 2JjT) Y>O . (172) 

Eq.(169a) was 

y-2 
2 

dP, = +dY Y<O * (169a) 

Thus, for the case N = 1, the whole distribution function is described by Eqs.(l69a) 
and (172). A graph of this function for various values of x is shown in Fig.46. 
Note that if x = 0, Q(0,21@) = e-2y, and Eq.(172) for Y > 0 reduces to 

d5 = $dy Y>O (173) 

and from Eq.(169a) 

ds t +’ Y<O (174) 

when x = 0. Thus over the whole range of Y 

e-k1 
dP, = 2 dY (175) 

which checks Eq.(145) when N = 1. 

For N = 2, Eq.(161) becomes 

@2 = dYeYe2’ 
SC) 

m  :‘(y-Y)ew2y I,(fJm)dy Y>O . (176) 
Y 

This integral may also be evaluated in ternm of the Q function. The process requires 
a large number of integrations by parts and is very time-consuming. The result 
turns out to be 

dP2 

e- Y- 2% 
\ = Q(&,2fi) + 4 l 

\ 
YI,(2&z) + 

! I 

Y>O . (177) 
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This equation is already so complicated as to be nearly useless. Thus it was not 
thought worth while to seek a general expression of this,type for arbitrary N when 
Y> 0. 

Note: If x = 0 in Eq.(77), it reduces to 

ds = dY $ltY) Y>O (178) 

which may also be obtained from Eq.(169b) by substituting -Y for Y. 

CUMULATIVE DISTRIBUTION FUNCTIONS 

The effort in Eqs.(l61) to (178) has been concerned with obtaining the proba- 
bility density function for N variates of signal-plus-noise minus noise. To find 
the cumulative distribution functions exactly is difficult, especially for Ypositive. 

A case which can be solved, however, is that for N = 1. For Y negative the 
answer is simply obtained from Eq.(l69a) and is 

y-3 
p1 e’ 1 - $ Y<O . 

For Y positive, using the result of Eq.(172), 

e-$ m  
PI = -j- 

s 
eYQ(G, 2G)dY Y>O . 

Y 

(178a) 

(178b) 

Since the value of 3 at Y = 0 is, from Eq.(178a), 1 - e 2/2, Eq.(l78b) may be re- 
written as 

,? e-$ Y 

P,=l-,-, 
s 

eYQ(J3F, 2G)dy 
0 

but from the definition of Q in Eq.(16), 

(178~) 

a, l12+x co 
Q( 6 W ’) = 

s 
vesTIo(vfi)dv = 2e-' S e-2*Io(2G)dz . (178d) 

26 Y 

200 



Replacing Q by its defining integral in Eq.(178c) gives 

,+ Y  

pl = l - -ii-- e-” 
s s 

m  
dyer e-221o( 2G)dt . 

0 Y 

Integration by parts is now used, letting 

s 

a, 
u = -2z e Io( 2G)dz 

Y 

dv = eY dy 

du = -e- “‘I,( 2fi)dy 

v = e Y 

IuvI~ - ey 
s 

m  e-2210(2~)dz 
Y 

.“: e: 
= -7Q(J;;,20) - -yj- 

Thus 

PI = 1 

eY-$ 

- -Q( &, 2~6’) + em’ 
2 s 

Y  

vdu 
0 

or 

(178e) 

\ 

(178f) 

(178g) 

(178h) 

(178i) 

PI = 1 

eY-$ Y  

- y-Q(&,2fi) - e-’ 
s 

ewYIo( 2Ky)dy . (178j) 
0 

The integral term in Eq.(l78j) is just 1 - Q(a,J2y), and the final result is 

Pl = Q(&,v’% ‘) 
.Y-$ 

- -Q(J;;, 20) Y>O . 

Pa 
For x .= 0, Q(O,,LJ) = eT, and 

(178k) 

PI -y =e -ge-2Y) = g (1781) 
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agreeing, as it should, with the result obtained from Eq.(145) by letting N = 1 
and integrating. For Y = 0, Q(a,O) = 1, and 

.-f 
Pl =l-, (178m) 

agreeing with Eq.(178a) when Y = 0. 

The bias number for use with Eq.(178k) is obtained by 

or 

0.693 e- ‘b 
r1 s - = - 

n 2 (178n) 

%  s 2.30 loglo n-0.327. (1780) 

In Fig. 47is shown a grafih comparing Eq.(178k) with Eq.(23) for n = 106, where 
P is plotted as a function of X. 

Though it might be possible to calculate the cumulative distributions for N 
> 1 by a method similar to that used for N = 1, it would be very tedious. Therefore 
resort is made to Gram-Charlier series, as before. The moments are directly obtainable 
from the characteristic function given in Eq.(l43), 

vi 
s (-l)i “’ 

dPZ 
(179) 

There seems to be no readily obtainable expression for viin closed form. The first 
six moments obtained directly from Eq.(179) are: 

v1 = Nx (180a) 

v2 = (Nx12 + 2Nx. + 2N (180b) 

u3 = (Nz13 + I' + 6Nx(Ntl) (180~) 

v4 = (Nx)~ t 12(N~)~ + 12(Nx)2(N+3) + 24(Ntl) t 12N(Ntl) (180d) 

vs = (Nx)' + 20(N~)~ t 20(Nx)3(Nt6) t 120(Nx)2(Nt2) t 60i’ix(Ntl)(Nt2) . 

(180e) 
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u6 = tNx16 + 30(Nz15 + 30(Nx)4(N+10) t 120(Nx)3(3Nt10) 

t 180(Nx)2(Nt1)(N+6) + 360Nx(Ntl)(Nt2) 

+ 120N(N+l)(Nt2) . (180f) 

.The corresponding central moments are: 

p2 = 2Nx t 2N = 2N(ltn) = c2 (181a) 

p3 = 6Nx (181b) 

p4 = 12(Nx12 + 24Nx(N+l) + 12N(Ntl) (181~) 

CL, = 120(N~)~ + 360(Nx)2(N+3) t 360Nx(Ntl)(Nt2) + 120fi(Ntl)(Nt2) . 

(181d) 

The central standard moments are: 

3% 
a3 = 

rn(1tx)f 

3+ 
3(1+2x) 

a4 = 
N(1+x12 

a6 !% 15 + 
45 (3x2 +3x+1) 

N( ltrJ3 - 

(182a) 

(182b) 

(182~) 

The coefficients of the series are, from Eq.(71): 

x 
c3 = - 

2rn( 1t$ 

(183a) 

1+2x 
c4 = 

8N(1+xP 
(183b) 

(183~) 
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The Gram-Charlier seriesforthe probability density function is given by Eq.(93) where 

Y-v, 
t = u ’ Ul = Nr, cr= m  (184) 

and the cumulative distribution is given by Eqs.(98) and (99). Figures 53 and 54, 
No.1, showing the comparison between the ordinary case and the composite case, were 
computed using the Gram-Charlier series developed above. There appears to be no 
significant difference in the probabilities of detection for N between 1 and 10. For 

N between 100 and 1,000, the composite case gives an effective signal-to-noise ratio 
about 1 db lower than the ordinary case. 

ANOTHER APPROACH TO THE DETECTION 

CRITERIA-PROBABILITY THAT SIGNAL- 

PLUS-NOISE EXCEEDS NOISE ALONE 

The method of setting a bias level and calling any signal-plus-noise or noise 
alone which exceeds this level a signal is not the only possible way of defining 
detection. Another method is based on asking what is the probability that any given 
signal will be larger than any noise pulse during a given interval of time("). The 
interval of time taken would logically be the false alarm time, as defined previously. 
In this time there will be n/N = n’ independent groups of noise pulses. If.the proba- 
bility that a single integrated group of signal-plus-noise pulses exceeds a single 
group of noise pulses is called {(x,N), then the probability that the group of 
signal-plus-noise pulses exceeds all of the n' groups of noise pulses is simply 

p = [P~(~,N)]“’ (185) 

This probability is a little difficult to interpret properly. It means that if 
during the false alarm time a signal of strength x appears, it will have this proba- 
bility of being larger than any noise pulse group appearing during the same time. The 
difficulty is how to pick out the largest signal over a period of time, and what 
to do when many signals are present. These are reasons why the earlier detection 
criteria are thought to be superior, since they provide clear answers for the above 
questions. The criteria presented above may'be of special value, however, when a 
target is known to be present. Such is the case when a target is being automatically 
tracked, and one wishes to calculate the probability that it will be subsequently 
lost due to the noise exceeding the signal. 

The probability density function for N signal-plus-noise pulses minus N noise 
pulses has been indicated in Eq.(l61). 

To obtain the probability that the sum of N signal-plus-noise pulses will be 
.greater than N noise pulses it is only necessary to integrkte Eq.(161) from 0 to 
03. It will be easier to obtain the probability that N noise pulses exceed N signal- 
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plus-noise pulses, however, since this requires the integral from -a to 0, and an 
expression is available for Y < 0 in Eq.(167). Thus 

P 
,-8 0 S &=N-1 (Ntk-l)! $‘, -k,N,-9) 

N>StN = - (186) 
(N-l)! am 

dYeY c 
(N-k-l)!k!2Ntk 

(-yp-1 
k=O 

Now one substitutes z for -Y and interchanges the sunmation and integrationsigns, 
obtaining 

1FI (-k,N,-y) cDe-l ZN-k-l dz J 1 (N-k-l)!k!2"+k o 
(187) ,- 

The integral is simply (N-k-l)!, and therefore 

(Ntk-l)! 
(N-l)!k!2Ntk-1 lFl 

Or in terms of Laguerre polynomials, using Eq.(82), 

NX 
e’T k=N-1 

p = 2 c 21-N-k L"k-' 

k=O 

(188) 

(189) 

From Eq.(188) a more convenient form may be obtained by introducing a dumny index 
i and interchanging sunnnation signs, leading eventually to 

k=N-I 

c 
(Ntk-l)! 

k=i (k-i)!ZNtk-’ 1. (190) 

The outside summation in Eq.(190) is obviously a polynomial in x of the N-lth degree 
and with N terms. It is rather curious to note that if one puts i = O-in EQ.(190), 
the following identity results: 

k=N-I 
2f”-’ z 

c 
(Ntk-l)! 

kkO (N-l)!k!2k 
(191) 
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In other words, the constant term in the polynomial is always unity. 

The first few cases for low values of N are: 

(192a) 

p2 = f emx (lti) 

P4 = i e-2x (l*2$t~*$ ) 

325x 5751 4375x= 

(192b) 

(192c) 

(192d) 

(192e) 

Obviously for N very large, these expressions rapidly become useless, and it is 
necessary to use the Gram-Charlier series of Eqs.(184) and (98). The lower limit 
Y is replaced by zero, giving for the series 

P = +fw)] + c,$J’(T) - c,c$w - c,+w---- 

where 

T=& N  

F  2(1+x) 

(193) 

(194) 

and c3 , c4 and c6 are given by Eqs. (183a-c). A graph, of P as a function of x and N 
is shown in Fig.48. For very small values of P, more terms may be necessary in the 
series of Eq. (193). 

USE OF CIJMULANTS IN OBTAINING 

GRAM-CHARLIER SERIES COEFFICIENTS 

It is often much simpler to obtain the cumulants for a given distribution 
function rather than the various moments. The cumulants may be defined by 

Ki 
= (-l)i d’ 

( W  
loge c) 

p=o 
(195) 
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where C is the characteristic function of the given probability density function 
(see pages 61-65 of Kendall te) ). The cumulants, except the first, are invariant 
with respect to a change of origin. Also, for the distribution of the sum of N 
variates, it is only necessary to multiply every cumulant by N, as is evident from 
the defining Eq.(195). Th e coefficients of the Gram-Charlier series in terms of 
cumulants are given on page 149 of Kendall. The cumulants in standard measure may 
be defined as 

K, =$ . 

In terms of standard cumulants, the coefficients of the series are: 

co = 1 5 = c2 = 0 

K3 
c3 “-3 

K4 
c4 

=- 
4! 

‘6 “3 ’ (K6t10K;) . 
. 

The first term in Eq.(l97d), K,, is omitted in the 0,3,4,6 approximation. 

Consider the square law case where, from 4. (35), 

CI e 
-% e,gl 

P+l 

log, c = - x t 2 - 
P+l 

In (ptl) . 

From 4. (1951, 

K. 1 = (i-l)!( i*+l) ifl. 

For N variates, 

Ki = N(i-l)!(ix+l) . 

and 

Ki ~3 L: (i-l) !( ixtl) 
. 

(196) 

(197a) 

(197b) 

(197c) 

(197d) 

(198) 

(1991 

(200) 

X201) 

(202) 
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In particular, 

K, = 2(3x+1) 
2 

N1'2( 2x+ 1)' 

K, = 
6(4%+1) 

N( 2x+1J2 

(203a) 

(203b) 

and it is at once evident that c3, c4, and c6 obtained from Eqs.(l97b-d) are iden- 
tical to the values given by Eqs.(92c-e) by means of a much longer process. 

In the case of a composite pulse of signal-plus-noise minus noise, the charac- 
teristic function is given by Eq.(l42) and 

loge c = -* t L- - 
P+l 

loge (l-p9 . 

Again by means of Eq.(195) it is easy to derive, for N variates, 

Ki = N(i-l)![ixt~] i even 

= NC i-l) ! ( ix) iodd, #I 

or 

Ki 
= N( i-l)! 

and 

Ki =$= 
(i-l)! [i%tlt(-l)i] 

‘. 
N+[2(x+lflf 

(205) 

(206) 

(207) 

Special cases are: 

K, = 

N"2 I%(:t 1 ,I 
2 (208a) 
2 

K4 - 
3(2x+1) 

N(xt~)~ 
(208b) 

and again by Eqs.(l97b-d) the coefficients are seen to be the same as given by 
Eqs.(183a-c). 
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In a case such as the linear one where the characteristic function cannot be 
obtained, the cumulants are still useful and may be found from the moments viby 
means of the formulae at the bottom of page 63 of Kendall. The first few are: 

5 = 3 (209a) 

K2 = y - U12 (209b) 

K3 = v3 - 3yy + 2u; * (209c) 

K4 = v4 - 4v3uI - 3u,f + 12v2u; - 6~; . (209d) 

The Ki are now obtained by multiplying by N and dividing by ci. The coefficients 
are then obtained as before by Eqs.(l97a-d). 

BEST POSSIBLE DETECTOR LAW 

It is of considerable importance to know whether there may be some detector 
law which will give results which are appreciably better than the linear or square 
law cases which have already been considered. 

The problem may be stated as follows: 

These are available N samples 

u1 ) v2 ---- UN 

which, it is assumed, are known to have come from either the distribution 

Y2 

dPr = ve-Tdv (210) 

or the distribution 

Y2+ a2 

dP2 = ve--I,( av)dv (2111 

the former being the distribution of the envelope of noise alone, and the latter 
the distribution of signal-plus-noise. 

The probability that all of the variates v~----u~ came. from the second dis- 
tribution is simply 

.dPN2 = d%Pl)dP2P,) ---- dwN) 
(2121 



whereas the probability that they all came from the first distribution is 

dPN1 = dP,(u,)dP,(v,) ---- dP,(v,) (213) 

The ratio of dPN2 to dPN, is the best measure of the likelihood that all the variants 
came from the signal-plus-noise distribution. It can be shown that any monotonic 
function of this ratio gives an equally good significance test. One arbitrarily 
picks a constant which the ratio must exceed to say that it shows that the variants 
came from the signal-plus-noise distribution. This constant determines the false 
alarm time. 

Taking the ratio of Eq.(213) to 4.(212) and substituting values from Eqs.(210) 
and (211) gives 

dPN2 
-t 

dPNl 

i=N <ta2 
JT Vi e-‘I,( Qvi)’ 
i=l 

i=N vi” 

i=l 

(214) 

or 

a2 i-N 

e-?ijIo(avi) 3 h 
i=l 

(215) 

where x is the constant which determines the false alarm time. 

Taking the log of both sides of Eq.(215) gives 

i=ir 

C loge Io(aVi) 2 lo& A  t f 
i=O 

(216) 

Note that nothing has been said in the foregoing discussion about integration. 
Now, however, Eq.(216) says that the best thing to do is take the log of I, of 
each variate, add these functions for each variate, and require the sum to exceed 
a certain value. Clearly this calls for a detector and integrator which has the 
combined law 

Y = log I,(av) (217) 

The meaning of this result is really quite remarkable (at least to one who is not 
a statistician). It says, in effect, that by having the sum only of N variates 
which have been subjected to the law y = log Io(au), one has as much useful in- 
formation as if the individual values of each of the variates were known (as far 
as determining to which distribution the variates belong)*. 

l If the two distribution functions to be distinguished are normal, then the simple sum of 
the N variates, or the ‘mean, is,tbe best criterion. In other words, a linear law would 
be the best if the envelopes of noise and signal-plus-noise were normally distributed. 
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Suppose that the signal strength is very small (which would make N large for 
any reasonable probability of detection). 'I'hen.Ie(au) 2 1 t a2v2/4 and 

Y = log &(aw) z log (218) 

In this ,case, the square law is seen to be the best possible choice. If, on the 
other hand, the signal strength is large, Io(au) a eav/fi and 

e au 
Y = log I,(au) a log - 

d3xz 
2 au - : log 2rrav a av (219) 

Thus, for large signals (usually small N) the linear law is best. 

It should be pointed out that the results for the two extreme cases, square 
and linear law, are not very different (see Fig.42), and in practice a linear de- 
tector would usually be preferred on account of its relative immunity to saturation 
by large signals. 

In the case of a human operator it is difficult to say what law is used in 
the process of integration. Thus if a linear detector were used in the receiver, it 
is conceivable that the operator might mentally take the sum of the squares in his 
integration‘process, with a net over-all square law effect. 

SIGNAL-PLUS-NOISE MINUS NOISE - LINEAR LAW 

This case is of special interest because of the method which must be used in 
obtaining the solution. Since the characteristic function for the linear case cannot 
be found, it is necessary to determine the moments for a composite variate directly 
from the moments for the signal-plus-noise distribution and those for the noise 
distribution alone. 

Using a double subscript notation, in which the first index represents the 
number of the distribution function and the second index represents the order of 
the moment, the following formulae can be derived at once by successive differen- 
tiations of the product of the-characteristic functions of the individual distribution 
functions: 

Yl s y11 + %2 

u2 = u12 + u22 + %%2 

u3 = u23 + u13 + 3(%f/22 + 752u21) 

%  = u14 + u24 + 4(u11u23 + u21 u13) + 6v12v22 

u6 = u16 + u26 + qv2Pll + YlS 2121) + 15(u12u24 + u22”14) + 2ou13u23 

(220a) 

(220b) 

(22Oc) 

(220d) 

(220e) 
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The first set of moments are those for one variate of signal plus noise given 
by Eqs.(lOq) and (llOa-d). The second set of moments are for one negative variate 
of noise alone. These are simply obtained from the first set of moments by putting 
x = 0 and multiplying the odd moments by -1. 

The details will not be given, since the results bear the same relation in 
general to the square law case as they do when a noise variate is not subtracted 
from each signal-plus-noise variate. 

USE OF SO-CALLED DETECTION CRITERIA 

Lawson and Uhlenbeck have made use of a quantity which is the shift in average 
value of a distribution of signal-plus-noise from that of noise alone divided by 
the standard deviation of noise alone, which they call the detection criterion. In 
symbolic form 

Z/iStN ‘%N 
k = . 

=N 
(221) 

This quantity is also called the deflection criterion, and it is implied that it 
must beofthe order of unity or greater to have a reasonable probability of detection. 

For the square law detector, using the results of Eqs.(8la-b) and (85c), the 
criterion becomes 

k = xdv (222) 

and for the linear detector 

XJiG 
k=---= 0.957xl8 (223) 

assuming x to be small. 

The object of these criteria is to show the variation in necessary signal- 
to-noise ratio as a function of the number of pulses integrated. The results for 
k in Eqs.(222) and (223) may be .derived.rigorously from the basic distribution 
equations if the central limit theorem is assumed to hold and for probability of 
detection equal to 0.50. 

However, it is found from the actual results presented in No.1, Figs.l-50, 
that the square root of N law given by the detection criteria is not closely fol- 
lowed, even for N as large as 1,000. If a law of the form 

k = xNe (224) 
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is assumed, the exponent 6'may be obtained from the data of Figs.l-50, No.1. The 
results are given in Figs.55 and 56, No.1. It is seen that 8 goes from 1.0 at N = 
1 to around 0.75 at N = 1,000. As pointed out earlier (page ti2), 8 = 1 for cod 
herent integration. 

It has been said that the NK law seems to fit observed data fairly well. It 
is the belief of the author that this is a coincidence that arises from the fact 
that the losses due to nonlinear integration by cathode ray tubes, and human operator 
losses, tend to just about equal the difference between N* and NXt so that the Nx 
law actually seems to fit the observed data. 

It is rather interesting to note that if the detector law is assumed to be of 
the form y = u", the detection criterion turns out to be 

(2 ) k = 2& xdF * (225) 

A graph of this function shows a very broad maximum of 1 at n = 2. Thus this is a 
special case, showing that for large N the square law is the best of the particular 
class of functions V". This is not as general as the proofon page 2mwhich shows 
that the square law is the best of all possible functions for small x. 

COLLAPSING LOSS - INTEGRATION OF GREATER NUMBER 

OF NOISE VARIATES THAN OF SIGNAL-PLUS-NOISE VARIATES 

In many radar applications, an additional number of noise variates are integrated 
along with a given number of signal-plus-noise variates. Such is the case when 
three-dimensional data are compressed onto a two-dimensional presentation, or with 
a C scope where range is not shown. The loss so occasioned is called a collapsing 
loss(aa). An effect of the same kind is caused if the spot of a cathode ray tube 
indicator moves less than its diameter in a pulse length("). Again, if the.video 
bandwidth is narrow canpared with the IF bandwidth, the same sort of thinghappens. 
All three effects are handled by assuming a given collapsing ratio, p, which is 
defined by 

MtN 
P’N 

where 

N= number of signal-plus-noise variates integrated 

M  = number of effective additional noise variates integrated. 

In the case of loss caused by low writing speed of the cathode ray beam, the effective 
collapsing ratio is given approximately by 

dtsr 
Peff = - ST (227) 
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i 
where 

d = spot diameter 

s = writing speed 

T = pulse length. 

Where the loss is caused by a video amplifier, the equivalent defining equation is 

Bif+Bv 
feff = 7 (228) 

where V 

B. lf = IF bandwidth (or total combined RF and IF bandwidth where RF 
amplification is used) 

BV = video bandwidth. 

Mathematically, the treatment necessary to take account of M extra noise variates 
is rather simple. It is only necessary to multiply the characteristic function for 
N signal-plus-noise variates by the characteristic function for M noise-alonevariates. 
In the square law case, this results in 

N&) 
CN = e 

N/J(;) - 
e P+l 

(ptl)N” = (pt1)NfJ l 

(229) 

It is apparent, by comparison with Eq. (36), that the results obtained for p = 1 
can be used directly to obtain results for any p. 

Care must be taken in obtaining the bias level, however. Without the M extra 
noise variates, the relation n' = n/N is used to find the required signal-to-noise 
ratio, x. With the added noise variates, the number of groups of pulses integrated 
may or may not remain the same. In the case of video mixing, where the output of 
two independent radars is superimposed on the same indicator, the number of groups 
of pulses integrated is constant, which means that n’ is constant. 

In the other cases where the loss is caused by narrow video amplifiers, col- 
lapsing of coordinates, or slow writing speed, the number of independent groups 
of pulses integrated is reduced by the factor peff so that n remains constant as is 
easily seen from the equations 

n = n'N (no loss) (230) 

n = (pn')(M+N) = n'N (with loss). (231) 

The collapsing loss is defined as 

x2 

Lc = 10 log,, - 
x1 

(232) 

where x2 is the required signal-to-noise ratio with M extra noise variates, and 
x1 is the signal-to-noise ratio required with no extra noise variates, such that 
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the probability of detection is the same in both cases. This fixed probability 
level will usually be taken as 0.90. 

The procedure, after finding x1, is to get the required bias from either Fig. 
8 or 9, depending on whether n or n' is held constant, using pN as the number of 

variates. From the cumulative distribution functions graphed in Figs. 13to 32, the 
value of x2 is found by multiplying the finding x for pN variates to give P = 0.90 
and multiplying this value of x by p. The reason for multiplying by p is apparent 
on referring to Eq.(229). 

The results of the calculation are shown in Figs. 49 to 52 where L is plotted 
as a function of N for P = 0.90 and N = 106. Also given are curves of Bc defined by 

x2 e - = NC. 
x1 

(233) 

It has comnonly been said that Br.should be l/2 (3e)1(a6). This statement is sometimes 
derived from the detection criterion given on page 212. 

From Fig.57 it is seen that if n’ is constant, 8 does approach l/2 as NM cc. 
However, 6' is much smaller for reasonably small N. In the case of n constant, the 
square root law is not even approached as an asymptote. 

'It was found that the values of L and 8 are only slightly dependent on the 
original values of n and P. 

ANTENNA BEAM SHAPE LOSS 

It has so far been assumed that the antenna pattern was flat over the half-power 
beamwidth and zero elsewhere. In any practical case the beam shape may usually be 
approximated by a Gaussian curve which will hold fairly well out to f the beamwidth 
from the point of maximum gain. In the case of a searchlighting antenna, the re- 
turned pulses will all fall at the same place in the beam, and if this does not 
happen to fall at the maximum of the beam, the loss may easily be taken into account 
by modifying the expression for gain used in 4.(9), No.1 for calculating R, such that 

where 
C = G,,, e (234) 

ea = azimuth angle between target and antenna axis 

ec = elevation angle between target and antenna axis 

Ba = half-power azimuth beamwidth 

Be = half-power elevation beamwidth 

If the antenna is scanning, the problem is entirely changed because the ~uc- 
cessive returned pulses will be of different magnitude. It is obvious that as the 
antenna scans past a target, pulses should be integrated out to some point where 
the principle of diminishing returns sets in, It is not too difficult to determine 
this point and to calculate the loss occasioned due to the beam shape as compared 
with the ideal case("). A complete' treatment which covers the general case of delay 

215 



of the received pulse relative to the transmitted pulse, off axis in elevation 
while scanning in azimuth, and random orientation of the pulse pattern relative 
to the antenna pattern is quite involved. However, the solution of some special 
cases has shown the general character to be expected of the results. 

The integration of pulses should be carried to about 1.1 times the half-power 
beamwidth. This figure is practically independent of the signal strength (range) 
and the number of pulses per half-power beamwidth. When the optimum number of pulses 
are integrated there will be an average loss over the ideal case which assumes 
constant gain between the half-power points. This loss is in the neighborhood of 
1.5 db and does not depend much on signal strength or number of pulses per half- 
power beamwidth. Since this loss is so small it was not considered worth while to 
reproduce all the detailed calculations here. 

It should be mentioned that special care is necessary when one considers rates 
of antenna scanning so fast that about only 1 hit per beamwidth is obtained. In 
this case it may be expedient to make the receiving antenna lag the transmitting 
antenna to compensate for the time of travel of the pulse, or to step-scan, that 
is, move the antenna in discrete steps rather than continuously. 

In order to calculate the probability of detection in any case where the suc- 
cessive returned pulses have different signal strengths, it is necessary to obtain 
the over-all characteristic function by multiplying the characteristic functions 
for each pulse. Using this method it is not difficult to work out the needed results 
in any particular case. 

LIMITING LOSS 

If limiting occurs anywhere in the receiver, the probability of detection 
will be lowered, everything else being held constant. The video amplifier is the 
first place where limiting will probably occur. Let the limiting ratio be defined 
as the ratio of the limit level to the R.M.S. noise level. Limiting can then be 
represented mathematically by replacing the probability density function at the 
detector output by an equivalent function below the limit level, and a delta func- 
tion at the limit level having an area equal to all of the area of the original 
function to the right of the limit level. The moments can be calculated for these 
new functions (noise alone and signal-plus-noise), and the probability of detection 
found by use of theGran4harlierseries as usual. The calculations are quite tedious 
and will not be reproduced here. The main conclusions are that if the number of 
pulses integrated is large, the limiting loss is only a fraction of a db if the 
limiting ratio is as large as 2 or 3, but if only one or two pulses are integrated 
the limiting ratio must be in the neighborhood of 10 to prevent a serious loss. 

Limiting in the output of the integrator can also cause a loss, but this loss 
is small compared to the loss caused by limiting of the individual pulses in most 
practical cases. 

EFFECT OF SIGNAL INJECTION ON PROBABILITY OF- DETECTION 

It has been proposed that the minimum detectable signal can be decreased by 
the injection of an RF or IF carrier voltage that adds linearly to the received 
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echo and the receiver noise(s'). The theory is that.the total signal will then be 
large compared with the noise, and thus the so-called modulation suppression that 
occurs in the process of detection with small signals will be eliminated. 

In such a process, the coherence of the injected signal with the received 
echo must be taken into account. If the target is moving, then the successive re- 
ceived pulses may be considered to be random in phase, so that the injected signal 
will necessarily be noncoherent with the echo. Analysis has shown that in this case 
the probability of detection decreases continuously as the magnitude of the injected 
signal increases, assuming a linear or square law detector. However, it can be 
shown that the best possible detector law starts to change radically as soon as 
the injected signal strength becomes comparable to noise. The analysis of proba- 
bility of detection when the detector function is altered to take into account 
the injected signal has not been completed. Preliminary estimates indicate that 
there will be only a small decrease in sensitivity in this case. 

It might be imagined that coherence could be obtained in a system using only 
one hit per target but having, say, 20 separate receiver channels with 20 separate 
injection oscillators having phases spaced 12 degrees apart. Thus, the return echo 
would be nearly coherent with some one of the channels. Theoretically, the improvement 
in this channel would be about 1 db. However, even this improvement would be just 
offset by the increased false alarm number due to the multiple channels, so that 
the over-all system improvement would be nil. It seems that there is no way to 
increase system sensitivity to moving targets by signal injection. 

'Ihere is some possibility of increasing sensitivity for stationary targets 
by coherent signal injection, but it is difficult to imagine a practical situation 
where such a method would be of any use. 

PROBABILITY OF DETECTION WITH MOVING TARGET INDICATIONSYSTEMS 

The analysis of the probability of detection for MT1 systems is quite compli- 
cated. It depends on the type of receiver (lin-log limiting or IAGC), the type 
of detector, and the characteristics of the storage device used. For a nonfluc- 
tuating clutter and no scanning noise, the effect of the clutter with or without 
the addition of a coherent oscillator is much the same as that of the injected 
carrier discussed in the previous section. If a suitable detection system is used, the 
sensitivity may be reduced.by a small amount, due to the addition of the coho,perhaps 
by 1 to 3 db. 

The sensitivity of an MTI system for high probabilities of detection is further 
reduced due to the fact that the target may be moving at a speed differing from 
one of the so-called optimum speeds. This effect is quite complicated and is similar 
to that caused by a random variation of the cross section of a target with aspect. 
A method of quantitatively treating these problems has been developed and will be 
presented in detail in a future report. 

If there is a fluctuation component in the clutter, due either to the movement 
of the clutter itself or to the scanning of the antenna, the effect will be to 
increase the amount of noise at the receiver input. This can be taken into account 
by an appropriate adjustment in the value of the noise figure of the receiver that 
will change R0 by the correct amount. 
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TABLES OF THE DERIVATIVES OF THE ERROR FUNCTION 

In order to make efficient use of Gram-Charlier series, it is necessary to 
have a good table of the derivatives of the error integral (the 4 functions of Eq. 
62). No satisfactory table was in existence at the time this report waswritten. 
Typical of the available tablest3) were 

Fry(a) n = 1(1)6, x = 0(.1)4 5 decimals 

Jorgensen n = 1(1)6, n = 0(.01)4 7 decimals 

and an unpublished table of the W.P.A., giving 

n = 1(1)14, x = 0(.1)8.4 20 decimals 

RAND therefore decided to calculate a suitable table with the aid of its IBM 
equipment. This h as resulted in a table of Hermite polynomials, as well as in the 
derivatives of the error integral, giving 

n = 1(1)10, x = 0(.01)12.0 6 significant figures 

A limited number of these tables are available at the present time. (RANDDocument 
D-350, A Table of Her-mite Polynomials and the Derivatives of the EFFOF Function.) 
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