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R R
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SUMMARY

This report presents data from which one may obtain the probability that a
pulsed-type radar system will detect a given target at any range. This is in con-
trast to the usual method of obtaining radar range as a single number, which can be
taken mathematically to imply that the probability of detection is zero at any range
greater than this number, and certainty at any range less than this number.

Three variables, which have so far received little quantitative attention in the
subject of radar range, are introduced in the theory:

1. The time taken to detect the target.

2. The average time interval between false alarms
(false indications of targets).

3. The number of pulses integrated.

It is shown briefly how the results for pulsed-type systems may be applied in the
case of continuous-wave systems,

Those concerned with systems analysis problems including radar performance may
profitably use this work as one link in a chain involving several probabilities. For
instance, the probability that a given aircraft will be detected at least once while
flying any given path through a specified model radar network may be calculated using
the data presented here as a basis, provided that additional probability data on such
things as outage time etc., are available.

The theory developed here does not take account of interference such as clutter
or man-made static, but assumes only random noise at the receiver input. Also, an
ideal type of electronic integrator and detector are assumed. Thus the results are
the best that can be obtained under ideal conditions. It is not too difficult, how-
ever, to make reasonable assumptions which will permit application of the results to
the currently available types of radar.

The first part of this report is a restatement of known radar fundamentals and
supplies continuity and background for what follows.

The mathematical part of the theory is not contained herein, but will be issued
subsequently as a separate report (33),
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SYMBOLS

Ae = effective area of antenna for receiving.

B = beamwidth of antenna.

c = velocity of light.

C = total shunt capacity of input circuit.

S = factor which accounts for losses in transmission lines, T R switches, atmos-
pheric absorption, etc.

e = rms noise voltage.

E} = transmitted energy per pulse.

Ep = received energy per pulse.

f, = pulse repetition frequency.

fsc = scanning frequency.

A f = bandwidth for noise purposes.

A f' = input circuit bandwidth.

[&f;w = combined R F and I F bandwidth of continuous-wave-system receiver.

F = bandwidth multiplying factor = 1 for simple L C circuit.

94 = number of pulses received during detection time.

Y =v/N

mutual conductance of first receiver tube.

[0+
1]

E]

= gain of transmitting antenna.

= height of radar antenna.

~

= target height.

~

modified Bessel function of the first kind.
= Boltzmann’s constant.
= wave length of transmitter.

= sweep length in miles.

:hya—cht:-:-n
-~
N
A
i

= Tfa' fr.n

' = n/N
n = number of pulse intervals per sweep.
7' = number of separate velocity channels in continuous-wave-system receiver.
N = number of pulses integrated, or, in cw system, the number of independent vari-

ates (of length 1/ Aj;w) integrated.

sc = number of pulses per scan.

NF = overzll noise figure of the receiver.
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probability that N pulses of noise will exceed a given level.

probability that N pulses of signal plus noise will exceed the bias level.
probability that at least one group of N integrated pulses will exceed the

level within the detection time.
average power.
transmitted power.
minimum detectable power at receiver.
‘effective input noise power to receiver,
resistance.
radar range.
maximum radar range.
idealized radar range.
equivalent noise resistance of first receiver stage.
total shunt resistance of first receiver input circuit.
range interval for integration with a moving target.
scattering cross-sectional area of target.
pulse length. '
false alarm interval.
detection time. '
maximum integration time for moving target.

absolute temperature.

absolute temperature of space radiation received by antenna.

absolute temperature of room.
velocity of the target.

velocity of traveling gate.

visability factor of receiver.

.angular velocity of antenna.

received signal pulse energy in units of k T, NF.

noise level in units of the rms value of noise — the bias
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-~ A STATISTICAL THEORY OF TARGET DETECTION
BY PULSED RADAR

PART I - INTRODUCTION

THE USUAL RADAR RANGE EQUATION

Most radar engineers are now well acquainted with the following equation used
to determine the maximum range of a pulsed radar system:

P GA o &
R - t e
max P . 16 =2

min

99

where \
F, = peak transmitted power in watts.
P .. = minimum peak detectable signal in watts.
o = scattering cross section of target in units consistent with range.
G = gain of transmitting antenna.
A = effective area of antenna for receiving in units consistent with

range (usually about 2/3 of the physical aperture, 4, = GN/4m).
8 = a dimensionless loss factor which accounts for atmospheric absorption,
.—.losses in antenna and transmission lines, etc.

The number of pitfalls that may be encountered in the use of the above equation
are almost without limit, and many of these difficulties have been recognized in the
past ®s (18 Three of the most troublesome are: '

1. The Scattering Cross Section

In the case of moving targets, the wide variation of this quantity with as-
pect, and hence with time, is a matter of vital concern. The variation of:
cross section as a function of frequency may also be critical.

2. The Minimum Detectable Signal, P..

n

The statistical nature of the noise with which Pmin must compete makes this
an ill-defined quantity.

" For references see page 143.
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3. The Maximum Range, R

Rax

The statistical nature of P , in turn makes H;ax a statistical quantity.

n

There are also lesser troubles, such as the dependence of §, the loss constant
on the range, and the contribution of reflections from the ground, sea, or other ob-
jects to the incident and received powers. (One must also remember that a target
cannot ordinarily be detected at ranges (in miles) much greater than VZ2h +\I§E},
where h_is the height of the radar antenna and h, the height of the targetrin feet,
except in the case of superrefraction, or "ducts.”" See pp. 55-58, Ref.(18). This is
the familiar "line of sight" limitation due to the earth’s curvature.

THE SCATTERING CROSS SECTION OF THE TARGET

For a stationary radar observing a stationary target, the scattering cross sec-
tion is a constant. Although it may not.be calculated for any but the most simple
target shapes, it is not too difficult to measure. On the other hand, if either the
radar or the target is in motion, the cross section becomes a function of time caus-
ing the return signal strength to fluctuate. In general, the plot of cross section
as a function of angle for a complex target such as an aircraft shows two interest-
ing features. There is a nearly continuous rapid fluctuation having an angular pe-
riod in the neighborhood of a degree or so (for A in the microwave region), and a
slow variation with a period in the order of 20° or more. Both of these variations
may be as great as 30 db. The question at once arises: In lieu of using the com-
plete polar diagram of cross section vs. angle, what kind of average figure can be
used, and under what conditions? The answer to this question involves such things
as angular rates of the aircraft with respect to the radar, correlation times, rep-
etition rate of the radar, and number of pulses integrated. It is almost obvious
that the only general way to treat this complex problem is to consider the cross sec-
tion as a statistical variable, This approach seems mathematically feasible. However,
in the present report the cross section will be considered to be a constant. An at-
tempt to justify this assumption is the following: The rapidly fluctuating corre-
lation angle at half-power points is perhaps 0.1°. The normal variation in attitude
angle of an aircraft may be about 30° per second. (This variation may be caused by
small rapid changes in pitch or roll due to normal turbulence of the air as well as
by systematic changes in position.) Thus, the corresponding correlation time for o
is around 1/300 second. If the observation time is essentially greater than this
period, it may be assumed, as a first approximation, that the rapid fluctuations in
the cross section "average out."

The slow variations (period around 20°) may or may not average out. However, if
the average over all likely attitudes is used for o, or tobe more exact, if a weighted
average is taken for o according to the probability for any attitude, then the prob-
ability of detection may not be changed very much. Henceforth, in this report o
will be assumed to be a constant, on the basis of the above statements. It may be
mentioned in passing that o loses its meaning if the target is not uniformly illum-
inated. Such can be the case, for example, if waves reaching the target via two or
more paths combine to produce an interference pattern at the target. This effect
exists in the detection of ships by surface radar.
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THE MINIMUM DETECTABLE SIGNAL

As is well known, (*+2»%) the minimum detectable signal power in aradar receiver
is fundamentally limited by three main factors; i.e., Johnson noise in circuit ele-
ments of the input circuits, shot effect and other noise in the first tube (and to
some small extent succeeding tubes), and cosmic noise picked up by the antenna. There
may also be man-made interference such as engine noise, radiations from other radars
and radio transmitters,etc. Clutter caused by sea return, rain, clouds, land masses,
etc., may reduce the minimum detectable signal by a considerable amount. The effects
of clutter and man-made interference are complete subjects in themselves, **) and
will not be treated further in this paper. A study will be made here of radar range
in the absence of such interference. It is not too optimistic to suppose that cir-
cuits will eventually be designed which will largely eliminate man-made interference,
and most types of clutter.

The mean squared noise voltage across a resistor of resistance r is given by

e? = 4kTr A f (2)
where
k= Boltzmann's constant = 1.38x1072° joules/degree
T = absolute temperature of the resistor
Af = the frequency interval under consideration.

Though the noise at the input circuit of a receiver is usually several times this
value, it provides a convenient scale for measuring the input noise. The effective
input noise power is defined to be

p = KT, Af NF (3)

where NF is the so-called noise figure of the receiver, and TR is the absolute room
temperature.* If a signal power of the same value as p were incident on the antenna
and the receiver were noiseless, then the output would be the same as in the case
when noise only was present.

At this point, one important result concerning the noise figure due to Herold
1s pertinent:

o T, 2nA f’ReqC
NF = T, + F + f(R,) (4)
-0 as R~
where
T, = absolute temperature of space radiation received by the antenna.
Tp = room temperature.

* Complete discussions and derivations will be found in the Mathematical Appendix (a separate
report).
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bandwidth of*input circuit.

c = tqtal shunt capacity of input circuit.

R.eq = equivalent noise resistance at input (due mainly to shot noise in
first tube) % 2.5/g_ for triodes.

F = a factor depending on the exact type of input circuit coupling (=1
for simple tuned circuit).

R = input shunt resistance including effect of finite input resistance

of tube.

f(R) =a function of R, R Cand Af'.

1’ eq’

This formula assumes a more or less conventional type of input tubes, such as the
VHF triodes and pentodes. However, it seems reasonable to believe that the gen~
eral conclusions which are reached from Eq.(4) will apply to velocity-modulated input
tubes as well.

The main points to be noted about Eq.(4) are these:

1. f(Rl ) approaches zero as R approaches infinity, R may be increased by bet-
ter tube design.

2.(/g, should be made as small as possible in atube used as the first amplifier.

3. Long pulses tend to allow smaller bandwidths for the input circuit, and hence
lower noise figures.

4, If Req CAf' is made small enough, and R, large enough, the noise figure will
approach Ta/T .

Point 4 is of the greatest importance. It sets alimit on the noise figure when there
are no sources of noise in the receiver itself. Though such a receiver will never be
built in practice, it may be possible some day to approach closely this ideal state.
Then the input noise will be almost entirely dependent on the temperature of space;*
or, in other words, on the noise received by the antenna from without the radar set.
That this state of affairs is not yet at hand is evidenced by the fact that at present
the noise figure for microwave receivers is around 10, and for longer-wave receivers
perhaps as low as 3 or 4.

The concept, often stated, that the ideal noise figure of a receiver is 1.0 is
erroneous.** This would be true only if the temperature of space were the same as
room temperature. Actually the temperature of space decreases rapidly with decreas-
ing wave length. (3}

* Though the noise figure can be decreased by increasing T,, this would increase the actual
input noise, as is apparent from Eq. (3).

** The noise figure of a receiver may be defined in such a way that the antenna must be re-
placed by a resistor at room temperature equal to the radiation resistance of the antenna.
In this case the ideal noise figure of the receiver would be 1.0.
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The average space temperature* is around room temperature at 180 megacycles and
drops to around 30° absolute at 450 megacycles. (*?) No good measurements are avail-
able in the microwave region, but there is reason to believe that values of 10° or
lower may be found. If this proves to be true, then it is conceivable that the noise
figure of future microwave receivers may be improved by a factor of 100, which would
mean that the range of radar sets could be more than tripled as a consequence of this
one factor. It is certainly a field where research should be pushed to the utmost.

It has often been the practice to calculate the maximum range of a radar set
from (1) by assuming that P_. = kTy Af NF, or that the minimum detectable signal power

) min |
is just equal to the average noise power.

This gives ¥
P,GA o8
R, | (5)
mex | 167°kT, AfNF
Now the energy per pulse is represente(i"t‘)}j.F
@; = Pt7} (6)
where 7, is the pulse length. Making this substitution in (5) gives
%
- |
fx T | TemerF | (r ap¥ w
7| o

It is usually said that if 7 Af is made equal to 1, the amplitude of the pulse after
passing through the amplifieg will not differ much from the amplitude which would re-
sult if the pulse were infinitely long. Without further ado, 7. Af is put equal to
1, and the resultant equation d

) ¥
E GA o8 —1
R -—2——£~::—
max lﬁnszbNF_J

i1

(8)

emerges as the radar range equation. Now the unfortunate fact (in some respects) is
that the range of a radar set calculated by means of this formula often turns out to
be rather close to the experimental range. Naturally, under these circumstances great
effort has not been expended in investigating the validity of radar-range equations.

* There is a variation of the space temperature with direction(!2)., When the antenna points
near the horizon, the temperature may be higher than when it is pointed at the zenith. In
particular, if any appreciable part of the radiation strikes the ground, the thermal radi-
ation received from those directions will have a temperature nearly equal to the actual
temperature of the surroundings.
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The reasons for the agreement of equation (8) with experiment are many. First
of all, the cross section has been, in most cases, determined by observing the max-
imum range of a particular target and solving equation (8) for o. This one fact
alone accounts in no small way for the agreement. Secondly, the fourth power law
makes R rather insensitive to changes in the various parameters concerned in equa-

ax - - [
tion (8). A much fairer test is to compare respective values of R;;x rather than
R

max

Equation (8) is in no sense perfect with regard to its agreement with experiment.
Errors of as mich as t 30% are common, and factors of 2 can often be found. However,
considering all the unknown factors present in an experimental determination of max-
imum range with an operational radar set, this agreement is considered to be quite

good.

In any field of science, theoretical equations are deduced to explain observed
data. However, one is very cautious in using these equations to predict results for
other experiments where the values of many of the variables differ greatly from those
used in the particular experiments already performed. Most of the radar sets built
to date have operated within essentially narrow limits as far as some of the para-
meters are concerned. Particular examples are pulse repetition frequency, and, most
important, the number of pulses integrated. This latter quantity is not even men-

tioned in equation (8); but, as will be seen in the next section, it is of vital im-
portance.

The task is now two-fold:
1. To make a satisfactory statistical definition of the range of a radar system.

2. To determine the dependence of this quantity on the parameters of a (pulsed)
radar system.
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PART I1I

THE STATISTICAL PROBLEM OF THE MINIMUM DETECTABLE SIGNAL
AND THE MAXIMUM RANGE

GENERAL BACKGROUND

It has been realized by many workers in the field* that the range of a radar set
is a statistical variable and must be stated in terms of probabilities rather than in
the exact terms of an equation such as (8). However, the evolution of a practical
working theory does not seem to have been accomplished so far. The following work is
a first step in that direction.

Before beginning the explanation of equations and derivations, it will be well
to glance at some of the new ideas which will be included.

The random noise, which limits the range, can at intervals assume large values
due to its statistical nature. This means that there will inevitably be times when a
random fluctuation of the noise will be mistaken for a signal. The average interval
at which such undesirable events take place will be called the false alarm time, and
it will be found that the probability of detecting a target will be a function of
this time. Let the reader at once be cautioned 'against thinking, "If it were a noise
flash, I can easily tell by looking a little later. If it were a signal, it will
still be there; if it were noise, it will be gone."

The second new parameter which will be introduced is the detection time. It is
apparent that if an observer can spend sufficient time in deciding whether or not a
target is present on an oscilloscope screen, the probability of a correct decision
being reached will be increased. It is also obvious that in any practical situation
in which radar is used one cannot take unlimited time to decide whether or not a tar-
get is present. To put things on a quantitative basis, the time in which a decision
shall be rendered must be specified. In this event, there will not always be time
for the "second look" just mentioned; but should time permit, then the probability of
detecting a target will be increased at the expense of a longer detection time. Even
so, there will still be a certain lesser probability that the noise flashes will oc-
cur on both occasions. Further, it will be found that the velocity of a moving tar-
get has an appreciable effect on the detection probability, due to the fact that the
signal from such a target does not "remain stationary" (see page 80).

* For an excellent qualitative statement of the problem, see Radiation Laboratory Series No.l.
pp.35-47, Ref.(18).
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PRELIMINARY STEPS

It is desirable to present data in the most compact form, and the first step in
this direction is the elimination of the necessity for the appearance of such para-
meters as E , G, Ae, o, &, and NF in the final results. To this end, a parameter Ro
is defined which is given by a slight modification of Eq. (7), as follows:

E cA otV ] * B GA o5V |
=\t R, = |E== | (9
167°Ep 0 1672k T, NF | '

Here, the factor 1/7 Af has been replaced by V, the so-called visibility factor.*
This factor will always be less than 1 but usually not less than 0.8, except when the
Doppler effect is very large. R, will be called the "idealized range" for lack of a
better term. : :

Now let the received energy per pulse at any range R be E,. Then it is clear
from the equations (9) that

¥
R kT NF
R, E,
and defining
E
R
x = — 1)
kThNF
éives from (10)
R 1
T % . - 12)
o x

* The derivation of exact formulas and numerous curves of visibility factors as a function of
pulse width, bandwidth, type of amplifier, and off-resonance of carrier frequency will be
found in the Mathematical Appendix (a separate report) (23). The visibility factor is actu-
ally given by :

where E__ = is the maximum voltgge to which the pulse rises at the receiver output, and £,
) 2
Ellx
is the steady state voltage at the same point. The quantity E should be contained
. s
in (7) and (8) but is usually omitted because it is so near to unity when 7Af = 1. In the
case where the bandpass characteristic of t%e amplifier is the conjugate transform of the
pulse, the visibility factor is exactly umity 4,
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where x is now the signal pulse energy in units of the average receiver noise pulse
energy. As an example, suppose x=4, which means that the signal power equals four
times the average noise power. Suppose the probability is calculated to be 0.5 that
in this case the signal will be detectable. There is then a point P=0.5 at R=0.7R .
When a series of such points are calculated for various values of x, a curve for P as
a function of R/Ro may be drawn, assuming fixed false alarm time, etc.

INTEGRATION OF PULSES

Before proceeding further, the meaning of pulse integration must be defined in
detail. In its simplest form, it merely consists of adding N successive signal pulses
together and attempting to detect the sum rather than an individual pulse. Now, what-
ever the integrating device may be, it will not know in advance whether there is a
signal or not, and hence in the absence of a signal it will add up N successive noise
pulses. Therefore, the comparison is between N signal plus noise pulses and N noise
pulses as contrasted to a single signal pulse to a single noise pulse. One might be
tempted to say that the signal to noise ratio would be unchanged, and that integra-
tion, or addition, of pulses therefore offered no advantage. This argument neglects
the fact that the noise voltage fluctuates about its average value The mean or aver-
age value of the noise voltage is not of too much concern, for it can always be "bi-
ased out." If we add N signal pulses of voltage V, the total signal voltage is NV,
If we add N noise pulses of average voltage V., the average sum will be NVy. How-
ever, the average sum can be balanced out. The question is, whether or not the fluc-
tuation in the sum voltage is now N times the fluctuation voltage of single pulse.
If the answer were yes, then integration would be futile. However, due to the random
nature of the fluctuation of any single pulse, the fluctuation voltage of the sum is
only about VN times the fluctuation voltage of a single pulse. It is the signal to
noise-fluctuation** ratio, not the signal to average noise ratio that is of paramount
importance. The greater the number of pulses integrated, the greater is the signal
to fluctuation ratio, and the greater is the probability of detecting the signal, but
at the expense of longer detection times.

DEFINITION OF DETECTION AND THE BIAS LEVEL

Before the false alarm time can be calculated, a definition of "detection of a
signal™ must be given. Detection of a signal is said to occur whenever the output
of the receiver exceeds a certain predetermined value hereafter called the bias level.
In the absence of any signal, this bias level will on occasion be exceeded by the
noise alone. The higher the bias level is set, the more infrequently this happens.
The first problem is to calculate the required bias level, given the false alarmtime.
Knowing ‘this bias level, the rest of the problem is to calculate the probability that
any given value of signal (plus noise) will exceed this level.

* Practically, the bias level should not be too large, or the fluctuations in the bias will
become of concern. See page8/where a method of reducing the necessary bias level by a
considerable factor is discussed.

** The mathematical term for the fluctuation is the "standard deviation," usually denoted by O
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This is well and good, one says, but is this the best means of detection? What
about the operator watching a cathode ray tube - what are his criteria for calling
"signal"? Of course, it is impossible to say exactly, as is evidenced by the wide
variation among radar operators. One can see, though, how an operator is affected
by the false alarmm time. If he is told that he will be subject to severe penalties
if he calls a false alarm (calls a signal when it subsequently turns out that there
was none), then he will be very cautious. If a doubtful pip appears on the screen,
he will use discretion and say nothing. This means that under these conditions the
false alarm time is increased, and at the same time the probability of detecting a
target at a given range is decreased.

The operator may use the shape of a signal pulse contrasted to that of the noise
as a criteria for detection as well as amplitude differences. This is thought to be
a second order effect. The operator, on the other hand, is limited to some extent
by the minimum brightness ratio which the eye can detect.

It seems that the method of electronic detection proposed above’ will be practi-
cally as good as any other possible method, electronic, human, or otherwise, if
identical false alarm times and detection times are assumed. This statement is cer-
tainly not to be considered obvious. It should be possible to make some experiments
to verify this theory.

METHODS OF PULSE INTEGRATION

As stated before, to integrate pulses it is merely necessary to add them to-
gether. There are many different practical ways in which this is done. One of the
simplest is the use of a cathode ray tube screen(®. Due to the screen persistence
time, a certain number of pulses will be effectively integrated. In this case it
will not be a simple addition, being more in the nature of a weighted average. The
effect of weighting is always bad. In other words, the effect of equal samples in
the integrated result should be as nearly the same as possible. P P I type of pre-
sentations which use intensity modulated displays usually have much longer integra-
tion times than an A scope.

One must not overlook the human operator,* who goes along with the cathode ray

tube, as a vital part of the detection mechanism. The combination of the eye and the
brain makes avery good integrator. In fact, the maximum integration time for a skil-
led operator may easily be several seconds. The best electronic integrators for pulsed
radar built to date will not better this figure to any great extent. lenceforth, a
model electronic integrator which linearly adds N pulses will be assumed.

* There are a large number of factors involving observers and oscilloscopes which are quite
complicated and are more or less outside the intended scope of this report. Lawson and his
group have done a great deal of work on this subject, the results of which will appear in
Chap.VIII of Ref.(19). Most of these experimental results are also available in Ref.(24).
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Now, pulses can be integrated in the R F stages, in the I F stages, or in the
video stages (13)s (14), (18), (18) | Fythermore, there canbe one or more linear or square
law detectors present*, and the integration can be done in one or more steps and in at
least two different ways. Manyof these possibilities are reserved for detailed treat-
ment in a separate mathematical report (33).

Fortunately, the results for the various cases show little difference, with one
marked exception. RF and I F integration are better than video integration for
small signals (compared to the noise). However, there is no practical way known at
present to take full advantage of RF or I F integration with moving targets be-
cause of the requirement that the successive received pulses must be completely co-
herent (*#)» 14) | Coherent integration would be possible in the case in which both
the radar and the target were stationary, but this case is not of much practical value.
The difference between various types ofboth detectors and video integrating circuits**
is small, as far as results of this kind of study are concerned. There are, of course
many reasons why a choice is made in practice, such as sensitivity to small changes
in amplifier gains, vulnerability to countermeasures, etc.

It is worth describing one scheme for integrating in which a pulse known to be
only noise is subtracted from each possible signal plus noise pulse. N of these com-
posite pulses are then integrated. With no signal, the average value of any number
of such composite pulses is nearly zero, so that the required bias level is consid-
erably reduced. Such a method is much less sensitive to a small change in bias level,
and would usually be preferred in practice. This case is much more difficult to
calculate than the straight addition case; and since sample calculations show the
results to be nearly identical, the latter method has been used to obtain the curves
of Figures 1 thru 50.

Figures 51 and 52 show the difference in sensitivity to bias level for this
method. Figures 53 and 54 show the comparison of straight integration to the case
in which a noise pulse is subtracted from each signal-plus-noise pulse.

Practical types of electronic pulse integrators often take the form of very nar-
row band audio filters having- their center frequency at the pulse repetition fre-
quency (*1) or some harmonic thereof. The action of such a filter can be understood
roughly by consideration of the frequency spectrum of a finite group of N pulses. The

* It is assumed throughout this report that the video bandwidth is large compared withthe I F
bandwidth. Actually, the results will be affected only if the video bandwidth is small com-
pared with the I F bandwidth(24), a condition not often found in practice.

** One might ask if there would be any advantage in having an integrator which adds the sum of
the squares of the N pulses or perhaps the sum of some other function of the amplitude. Ac-
tually, it can be easily shown that this just corresponds to changing the shape of the de-
tector curve, and what is being asked is, "Is any shape of detector curve much superior to
the linear or square law form?" Apparently the answer is no. There is a "best" detector
curve_ for every different signal strength, x, given by log Iy (v y2z) where I, is a modified
Bessel function. No results have been obtained for this detector function, but it is thought
that the maximum difference in range between this and the square law or linear detector will
not exceed five percent.
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envelope of such a spectrum is simply the familiar sin x/x curve of a single pulse,
while the actual curve has appreciable values only in the neighborhood of the harmon-
ics of the repetition frequency (including dc)*. The greater N is, the more closely
the spectrum clusters around these harmonics. Thus, the filter may be made narrower,
excluding more and more noise, but retaining most of the signal energy. With such a
narrow band filter-type of integrator it is very simple to subtract a noise pulse
from each signal-plus-noise pulse by gating the receiver at a frequency double the
center frequency of the filter. To prevent the possibility of a signal on every other
gate, the sweep length would ordinarily be held at less than one-half of the pulse
repetition period. The simple electronic type of integrator has the disadvantage of a
fixed integration time. If the number of pulses returned from a target is greater or
less than the number of pulses for which the integrator is set, the operation suffers.
With the human operator, the story is different. He can adjust his integration time
rapidly to fit changing situations. This procedure could be approximated electroni-
cally by the use of two or more successive integrators in series,** or by the use of
so-called "weighting circuits." Such a complicated procedure does not come within
the scope of this report.

METHOD OF OBTAINING THE BIAS LEVEL

By means covered in detail(??®), in a separate mathematical report***, the probabi-
lity that the sum of N pulses of noise voltage alone will be greater than an arbi-
trary level y is obtained. This relation may be symbolically represented by

Py = f(y) (13)

where y is measured in units of the rms valuve of the noise. The number of groups of
noise pulses which are observed in a fixed false alarm time, 7T o’ is then found.

Wher speaking of noise pulses, it is convenient to assume mentally a range gate
equal to the pulse length at a fixed range. If the range sweep is continuous, such
as with an A scope, the effective number of independent noise pulses observed in one

* There is a close resemblance between such a spectrum and the diffraction pattern of an N
slit grating (see any standard text book on physical optics).

*+ The advantage of a multistage integrator is that if a signal which is large enough so that
the number of pulses which need to be integrated in order to produce a detectable signal
occur in a time appreciably less than the total integration time, one of tlie sub-stages
will detect the signal much sooner than will the final stage.

*** Tt turns out that the functions which describe the probability that the noise alone, or a
given strength signal plus noise will have any arbitrary amplitude, are quite complicated
and hence only some of the results and general procedures are given in this report. Fur-
thermore, it should be mentioned in passing that the use of the central limit theorem, or
the so-called "normal approximation," is not valid until the number of pulses integrated is
of the order of 1000. This is because the values of the distribution functions far out on
the tails play a major role in the calculations. Several investigators in the past have
made the mistake of assuming that the normal. approximation was satisfactory if N were only
of the order of 10.
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repetition period is given by the length of the sweep divided by the pulse length?

hereafter called 7. It is apparent that 7 = 2L/cTp, = 10.8L/'rp where L is the sweep

length in miles, ¢ is the velocity of light, and 7 is the pulse length in micro-

seconds. In the special case inwhich the sweep occupies the total time between pulses,

n= l/Tpfr’ which is merely the reciprocal of the duty cycle. The time for N pulses
Tta Tfafr

to occur is N/fr. ThereforeW =N  groups are observed in the time Tt assuming
r

only one gate per sweep. Since the effective number of gates per sweep is 7), the to-

tal number of independent chances for obtaining a false alarm in T fa is**

_ Tral e
- N

n’ =

(14)

=|=

The false alarm time is defined as the time in which the probability is % that the
noise will not exceed the bias level.*** From (13) and (14),

]

1-p)" =+ (15)

from which y, the bias level, is obtained.

PROBABILITY OF DETECTING A SIGNAL

Having established the value of the bias level, the probability that a signal
will exceed this level in a given time, namely the detection time 7, must be calcu-
lated. The signal is assumed to consist of N integrated pulses. The time of such a
pulse group is N/fr. The number of such groups which occur in Tq is given by

7,f

, Y _ dlr
=—2= . 6
9% N ” (16)

As a corollary to the previous definition of detection, it is now assumed that the
signal is detected if any one of the ' groups of pulses exceeds the bias level. One
will ask, at this stage, "Why not count exactly how many times the signal exceeds the

* If the range gate is much wider than the pulse length, the operation of the integrator will
suffer more or less, depending on the exact type of integrator used. This corresponds
somewhat to the case of an oscilloscope where the spot does not move by at least its
diameter within a pulse length.

*+ This derivation assumes that the antenna is not scanning. With a scanning antenna, inte-
grating channels must be deposed in angular position as well as in time. In order for
(14) to hold, the number of pulses per channel per scan must be equal to or greater than
N, the number of pulses which each channel integrates.

##+ This very nearly, though not exactly, corresponds to the earlier definition given on p. 7l
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bias level?" This would in effect correspond to a two-stage integrator. Such a de-
vice is not considered here, though it is easy to make an extension of the present
theory to cover this case.

At any range R, the normalized signal strength x is obtained from Eq.(12). The
probability that the signal plus noise will exceed any value y for a single group of
N integrated pulses is known®*?), and may be represented symbolically as

P = f(y,x). (17)

The probability that at least one of the ¥’ groups will exceed the bias level y is
then

P' =1-(1-P)” . (18)

Notice that ' must be an integer for the analysis to be strictly correct. It will
be satisfactory, however, if one always requires ' > 1*,

EFFECT OF ANTENNA SCANNING

If the antenna is scanning, some modifications of Eq.(16) for 7', the number of
groups of pulses integrated, will be necessary(®*). If, with a PP I type of pre-
sentation, the antenna moves at an angular velocity w, and the beam width is B, then
the number of pulses per target per scan will be

Bf.
e TS (19)
and (16) is replaced by
7,f. N
! :_]%’.____d_sﬁc.ﬁ (20)

where f;c 1s the number of scans per second. With a simple type of electronic inte-
grator, N  must be equal to or greater than N for Eq.(20) to be valid, assuming that
the integrator does not hold over from scan to scan. If the integrator does hold over
from scan to scan, as an operator partially does, then it is only necessary to have
v'21 as before. In any case (20) only holds if Tfse > 1

If 7,f <1, then y' = N, . /N, which must be equal to or greater than 1.*

* It is always best for ¥' to equal 1. In this case the integrator effectively integrates
pulses during the whole of the detection time. <%'>l is the case in which the detection time
is longer than the integration time. Here the probability for detection is greater than if
the detection time were reduced to the integration time, but less than it would be if the
integration time were increased to equal the detection time. The case for y'<l is that one
in which the number of signal pulses occuring are fewer than the number for which the inte~
grator is set. In this case the probability of detection is reduced from the value it would
have if ‘the integrator were set for exactly the number of signal pulses which occur. To cal-
culate this latter case would require using N to calculate the bias level as in (15), but
the use of some lesser value N' in obtaining (17). This will be done, but results have not
been obtained as yet.
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PRESENTATION OF THE RESULTS

The results are presented in the form of a set of curves. This is necessary he-
cause of the complicated form of the analytical solutions. The parameters involved
in the curves are:

P = the probability of detecting a target at range R.
R/R0 = the ratio of the range to the idealized range.
n :Tfa.fr. 77*

Tta = the false alarm time

f, = the pulse repetition rate

7 = the number of pulse intervals per sweep.
24 - Td'f;c'Nsc**

Tq = the detection time

f¢o = the scan frequency

N, = the number of pulses per scan

N = the number of pulses integrated.

A summary of the range of the variables for the curves presented will be found

on page 84.

AN EXAMPLE WITH A QUASI-STATIONARY TARGET

A simple example is now solved assuming a stationary target. The radar set will
also be assumed to be stationary. The following data are taken as given:

’

w
B

angular rate of antenna = 30°/sec, fsc = 1/12

It

beam width of antenna = 3.0°

f, = pulse repetition rate = 500 per second

Ty = pulse length = 1 microsecond

R, = idealized range for given target and average aspect = 4C miles
Ta™ required false alarm time = 5 minutes

T4 = Tequired detection time = 25 seconds.

*7n= 7}a/“§ if the sweep occupies the total time between pulses.

** See also (16), and the conditions on (20). The notation used on Figs.1-54 is ¥ = ’Td'fr,
which represents the special case in which there is no scanning. In general this should

be replaced by ¥ = T,°f °N__.
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Type of detector - electronic integrator, N = 50; sweep length =20 to 80 miles.

Step 1. Calculate N from (19)

_ Bf. w500
Nsc_'co T30

=50

Step 2. Calculate 7y from (20)

Y - Tdfschc

1 —_
25%350 = 104

Step.3. Calculate 77 from 7 = 10.8L/'rp where L is the sweep length in miles and 7_is
the pulse length in microseconds. P

10. 8x(80-20)

(A R

Step 4. Calculate n from (14)

n o= To.f.m T (5X60)x500x648 = 0.98x10°

Step 5. Refer to Fig. 23; n = 10% and v = 100. Mentally interpolate a curve for N =
50 between N = 30 and N = 100. This curve gives probability of detection at
any R/Ro. R, is given as 40 miles. For instance, P = 0.50 at R/Rj = 1.07 or
at R = 43 miles. :

MOVING TARGETS AND/OR RADAR

If there is an appreciable change of range with time between the radar and the
target, a limit will ordinarily be set on the number of pulses which can be integrated.
This is because the returned pulses will just fail to overlap when the target has
moved through a distance d = 7 _C/2 where ¢ is the velocity of light. The effective
distance over which the pulses can be assumed to contribute their full amplitude is
about % this value. If the rate of change of range is v, the time available for in-
tegration is

T, = ;’ . , (21)

The maximum number of pulses which can be integrated in this time is

. Tpfrc
N = Tifr = 4y ’ (22)

maXx
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This quantity N is the maximum number of pulses that can be integrated,’ provided
that it is not greater than N;c, the number of pulses per scan. In the case where
N;ax>Nsc, then N_ is the maximum number of pulses which can be integrated.

In the case of approaching targets, one may be concerned with the probability
that a target will be detected by the time it has reached a certain range. Assuming
the target to have started its approach at range R, the probability that it will have
been detected at least once by the time it reaches range R is

R
P = 1-]] [1-P(R):l (23)
Bl

where R progresses from R to R in units of AR. The length of the AR intervals
and the number of pulses integrated per interval are determined from the considera-
tions given above.

An example follows in which (23) can be reduced to a particularly simple form: ’
Assume a continuously directed beam (no scan) and the target moving toward the radar
with a constant range rate v. The finite product in (23) may be approximated by

_ R ) R
10g, |l [1—?(3)] X AR § a-Pyar (24)
' R, R, .

T ¢C
P

and using AR = d = —7— equation (23) becomes

4 R
T { (1-P)dR
P = 1-e 1 (25)

The integrations necessary in the solution of this type of problem must be performed
numerically, using the graphical data of figures 1 to 50.

In problems where the antenna is scanning, equation (23) may be approximated in
different ways depending on the exact values of the parameters involved. These are
~rather simple to work out in any specific case.

* A system could presumably be built incorporating one or more velocity gates. Such a velocity
gate would travel with a given preset velocity. In this case, the relative velocity of the
“target to that of the gate, w=-v, , can be used in Eq.(22) in place of the target velocity,
v. The greater the number of vef%city gates used, the greater will the probability be that

~ the difference between the target velocity and some one of the gates will be very small.
Therefore, in this gate the allowable value of Npgy will be large, and the probability of
detection in this gate will be increased.

In any multi-channel receiver, such as'this, the number of pulse intervals per sweep, 7, must
be multiplied by the number of channels in calculating n.
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EXACT EFFECT OF THE NUMBER OF PULSES INTEGRATED ON THE RANGE

One might expect that for a given n and a given probability of detection, the
range to the fourth power would vary as N, as was stated on page 73. This would be
true with coherent integration, but with video integration the variation is between
N% and N (assuming a threshold signal). This effect is due to the so-called "modula-
tion suppression" of the weak signal by the stronger noise in the process of detection.

Fig. 55 shows the exact variation of the exponent of N, here called O, as a
function of N, and of n, for P fixed at 0.50. The effect of n is seen to be quite

small.

Fig. 56 shows the variation of the exponent of N for an incremental change of N
as a function of N and n. P is again fixed at 0.50. In both cases, & approaches 0.5
as N approaches infinity; though much more slowly, in the first case.

APPLICATION OF RESULTS TO CONTINUOUS-WAVE SYSTEM

Though this report is concerned primarily with pulsed systems, the results are
directly applicable to continuous-wave systems. To accomplish this, the following new
notation is introduced:

the average cw transmitter power.

ayv
Afcw = the combined RF and I F bandwidth of the cw receiver.
n' = the number of separate velocity channels incorporated in the receiver.*

The change-over is then made by means of these substitutions:

Replace Ep by P,/ Afw in R

Put Td.Afcw
Put n Tfa-Afw"n

0

H

N is now to be taken as the number of variates (of duration 1/ Aj;w) which are inte-
grated after detection.**

* In both the pulse and cw analysis it has been assumed that the range or velocity gates or
channels are fixed in position. In the case where such gates sweep as a function of time
in order to conserve apparatus (or for any other reason), the analysis is not strictly
valid. A good rule-of-thumb is that the gate should move through the amplifier pass band
in a time equal to the reciprocal of the amplifier pass band. In this case the effective
visibility factor is about 0.8, Curves of the visibility factor for other sweep speeds are
given in the Mathematical Appendix(z.a) (a separate report).

** Integration of N variates tefore detection merely corresponds to narrowing the RF (or I F)
bandwidth by a factor ofivl-.
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N must be less than 7y for the theory to hold. An optimum cw system is one in
which v = 1 (7, = 1/Af_), and N = 1. This gives the greatest range for a given
energy expended during the detection time, 7. This corresponds exactly to the case
N=1and y =1 in a pulsed system. If the number of range channels 7 in the pulsed
system is equal to the number of velocity channels 7' in the cw system, then the two
systems, with N =1 and 7y = 1, will have identical ranges for the same average power.

In either case, if N>1, a larger amount of average power is required, every-
thing else remaining equal. In the pulsed case, reducing N necessitates higher peak
powers, which may be impracticable; or it necessitates longer pulse lengths, which
reduces possible range-resolution and at the same time aggravates the effect of a
fixed Doppler shift due to the narrowing of the receiver pass band. In the cw case,
reducing N necessitates a target with reasonably constant velocity so that the signal
will not wander in and out of the pass band of the receiver, and also a sufficiently
slow scan so that each target "pulse" is at least as long as the reciprocal of the
receiver pass band.
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RANGE OF VARIABLES FOR FIGURES 1 THRU 50

Fig. P R/R n Y N
1 variable | variable 10* 1 1
2 " " . 10 1,3,10
3 " " . 100 1,3,10,30,100
4 " " . 1000 1,3,10,30,100,300,1000
5 " " . 1,10,100,1000 1
6 . . " 10,100,1000 10
7 . . . 100,1000 100
8 » . » N 1,10,100,1000
9 " . 10° 1 1
10 . " . 10 1,3,10
11 " " " 30 1,3,10,30
12 " " . 100 1,3,10,30,100
13 » " » 300 1,3,10,30,100,300
14 g . " 1000 1,3,10,30,100,300,1000
15 . " " 1,3,10,30,100,300,1000 |1
16 . . . 10,30,100, 300,1000 10
17 . " . 30,100,300,1000 30
18 " " " 100,300,1000 100
19 . . " 300,1000 300
20 " " . N 1,10,30,100,300,1000
21 . " 108 1 1
22 " v » 10 1,3,10
23 . . . 100 1,3,10,30,100
24 * " " 1000 1,3,10,30,100,300,1000
25 . . . 1,10,100,1060 1
26 . . " 10,100,1000 10
27 . . " 100,1000 100
28 " " » N 1,10,100,1000
29 " " 10° 1 i1
30 » " " 10 1,3,10
31 " " " 100 1,3,10,30,100
32 " . " 1000 1,3,10,30,100,300,1000
33 " " . 1,10,100,1000 1
34 . . C 10,100,1000 10
35 . " . 100,1000 100
36 . " " N 1,10,100,1000
37 . . 100% 1
38 " . » 10 1,3,10
39 . . . 100 1,3,10,30,100
40 . " . 1000 1,3,10,30,100,300,1000
41 ” . " 1,10,100,1000 1
42 " ’ . 10,100,1000 10
43 . " » 100,1000 100
44 " . " N 1,10,100,1000
45 0,50 . variable| N 1,10,100,1000
46 0,90 " . N 1,10,100,1000
47 0.99 " . N 1,10,100,1000
48 0.50 " 10%* 10° N - variable variable
108 101°
49 0.90 " 10* 10® | N - variable variable
108 10t°
50 0.99 . 10* 108 [N - variable variable
108 10t°
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ERRATA

In Figs. 13 thru 24, all of the ordinates appear as
percentages but are labeled as probabilities. Therefore,
in order to make the two scales conform, the decimal

place should be moved two units to the left on all the
ordinates.
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SUMMARY

In a previous report(?®) a statistical theory of radar
detection was presented in outline form. The mathematical
details were omitted, in order that the main ideas and results
might be made available as soon as possible.

This report contains the mathematics that led to the
results presented in Ref.28.

In addition, several subjects are briefly discussed
that were not covered in Ref.28. These are collapsing loss,
antenna beam shape loss, the effect of signal injection, limiting
loss, and moving target indication.

For references see page 264.
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SYMBOLS

amplitude of sine wave relative to R.M.S. noise level

one of the independent variables in the function Q(a,f)
it® central standard moment

one of the independent variables in the function Q(a,b)
hal f-power antenna beamwidth

coefficient in the Gram-Charlier series

characteristic function

delta function

base of natural logarithms

frequency

confluent hypergeometric function

Campbell and Foster notation for characteristic function
Campbell and Foster notation for anticharacteristic function
the gamma function

probability that the sum of N noise variates will exceed the bias level
i*® Hermite polynomial '

index, subscript, or V-1

incomplete gamma function as defined by Pearson (%)

modified Bessel function of the first kind

Bessel function of the first kind

it" cumulant

standard i*" cumulant, or sometimes a modified Bessel function of the
second kind

integration loss

collapsing loss

generalized Laguerre polynomial

number of excess noise variates integrated with N signal plus noise variates
false alarm number

n/N

number of variates integrated

*This

symbol has a different meaning in RA-15061.

**This symbol is used in more than one sense in various places, but other meanings should
be obvious, ’
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iw= w/~T
sine wave amplitude
probability

probability that noise will exceed the bias level at least once within false
alarm time

probability that the sum of N‘variates of signal plus noise will exceed the
bias level '

ith derivative of the error function

R.M.S. noise level

modified Lommel’s function

envelope amplitude or radar range in R/R,

idealized radar range

collapsing ratio, ratio of total number of variates integrated to those
containing signal

cathode ray writing speed

standard deviation

(y-¥)/o, semi-independent variable in Gram-Charlier series

incomplete Toronto function ' o

t*® moment about the mean

Lommel’s function

normalized envelope amplitude

1t® moment

power spectrum

2nf

power signal-to-noise ratio

normalized detector output

integrator output for the sum of N variates

bias level

*This symbol has a different meaning in RA-15061.

-**This symbol is used in more than one sense in various places, but other meanings should
be obvious.
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A STATISTICAL THEORY OF TARGET DETECTION
BY PULSED RAbAR: MATHEMATICAL APPENDIX

BASIC FORMULAE RELATING TO THERMAL NOISE

Both the thermal noise voltage across a resistor and the noise voltage due to
the shot effect in a vacuum tube approach a normal distribution when the number
of electrons involved per second in the processes tends toward infinity. In prac-
tice, it may usually be assumed that the total noise voltage between any two points
due to any combination of thermal, shot, and cosmic noise sources can be represented
by the distribution function

V2
1 '2@5

= dV 1

dP /5533 e (1)

where , is the mean square value of the noise voltage!*®), This distribution is
valid provided all elements involved in the composition of the total noise voltage
have been linear.

If such noise is now passed through a linear filter of center frequency f,
having a pass band which is narrow compared to f , the output will have an enve-
lope, which has a probability density function

R :
= ~——= 2
dP %o € dR (2)

For references see page 264
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where R is the amplitude of the envelope and Y, is the mean square noise voltage,

given by
f w (f)df (3)
o .

w(f) is the so-called power spectrum of the filter and is simply the square of the
absolute value of the amplitude transfer function of the filter.

Vo

If the input to a filter consists of a sine wave of frequency f , as well as
noise, then the probability density function of the output envelope is*

R2+P2
e (RP
IO

R
dP = %o e T/J_o-)dR’ R>0 (4)

dP =0 R<0

where P is the amplitude that the sine wave would have at the output of the filter
in the absence of noise, and 16 is a modified Bessel function of the first kind
(see footnote, pageil67).

The envelope of the output has a correlation time which is approximately equal
to the reciprocal of the bandwidth of the filter. In simple language, it is im-
probable that the envelope will change by an appreciable percentage in times much
less than the correlation time, but it is quite probable that it will change by a
goodly percentage in times large compared with the correlation time, It is probably
a good approximation to assume that values of the envelope 1/Af seconds apart are
independent, where Af is the bandwidth of the filter. By assuming such a discrete
process it is possible to materially simplify calculations which would be very
tedious if exact integration processes were used, while at the same time sufficient

accuracy is obtained for most practical purposes.

A further justification for this assumption in the pulsed case shows in the
results. Changing the factor 1/Af to k/Af for the correlation time has only the
effect of changing the false alarm time by the factor k. The probability of detec-
tion turns out to be a very insensitive function of the false alarm time, so that
if k is any factor of the order of magnitude of unity, the results are affected to
a negligible extent.

* It is of some interest to note that the same form of distribution function occurs in other
problems. For instance, if y,, represents the mean square velocity of a gas due to ordinary

. turbulence, and P represents the translational velocity of the whole mass of gas relative
to some fixed reference, then the density function of Eq.{4) gives the probability that
thevto%gi)vector velocity at any point in the gas will have a magnitude between R and
R + dR .

The same density function also represents the probability that a bomb will hit at a distance
between R and R + dR from a given point if it is initially aimed at a point whose distance
from the given point is P. The mean square aiming error is represented by yy, the distri-
bution being assumed Gaussian (47},
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DEFINITION AND EFFECT OF DETECTION

A detector is defined as any device whose instantaneous output is a function
of the envelope of the input wave only. Thus

] .
y = f(m) = F(v) (5)

where ¥ is the output of the detector and v is the normalized amplitude of the envelope.

If P/J, is replaced by a, Eq.(4) may be written

_vz*'az
dP = ve * I (av)dy, v>0 (6)
dP = 0 v <0
Eq.(5) solved for vis v = g(y) . ' 7

If v is eliminated from (6) and (7), an equation of the form
dP = f(a,y)dy (8)

is obtained for the probability density for the normalized voltage at the output
of the detector which has the characteristics given by Eq.(5). For example, if y
= v2/2, then Eq.(8) becomes

dP = e-¥* I (2vzy)dy, y>0 (9)

dP = 0 y <0

where a%/2 has been replaced by x. The quantity x may be identified with the power
signal-to-noise ratio, commonly used in radar literature.

EFFECT OF VIDEO AMPLIFIERS

Since a complete radio receiver usually has one or more stages of video ampli-
fication following the detector, it would seem that one would want to calculate
the probability density function for signal-plus-noise at the output of the video
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amplifier. This can be done theoretically, as has been shown in an excellent paper
by Kac(23%)  but the mathematical labor is great. On the other hand, it has been
shown experimentally(®8) that the signal threshold is practically unaffected by
the video bandwidth until it becomes less than about % of the IF bandwidth. Since
video bandwidths less than % (f the IF bandwidth are quite uncommon in practice, it

appears best for the sake of simplicity to assume the video bandwidth infinite in
all the work which follows.

When the results have been computed, assuming an infinite bandwidth, it will
be possible to modify them in an approximate manner so that they become valid for
any video bandwidth. This is explained on page.213, under the title "CollapsinglLoss"

PROBABILITY OF DETECTION WITH NO INTEGRATION

The calculations necessary to determine the probability of detection when
exactly one correlation interval is available are quite simple compared with the
case where the output over many correlation intervals is available, and hence the
former case is taken up first. In a pulsed system this corresponds to using a single
pulse, while in a c-w system it is equivalent to observing the output for a time
t = 1/Af, where Af is the over-all effective bandwidth. In either case this amounts
to observing the receiver output for one correlation interval. If the output exceeds
the bias level, the signal is observed or detected (see pages 9-14 of RA-15061,
A Statistical Theory of Target Detection by Pulsed Radar (28), hereafter referred to
as No.l, for complete definitions of detection and bias level).

It will now be shown that the probability of detecting a given signal x is
independent of the detector fiinction, everything else being held constant and only
one variate being taken from the density function of Eq.(8). The false alarm time
has been defined as the time in which the probability is % that the noise alone
will not exceed the bias level (Eq.(15), No.1l), but it will be best here to keep
things general and denote this probability as P, rather than as 4. Eq.(15), Ne.l,
then becomes

P=1-pVn =T (10)

where the subscript N denotes the number of variates and I is simply an abbrevia-
tion. From Eq.(8),

F(®)
[ = f f(o,y) dy (11)
-y,
where the symbol y, is now used for the bias number. Then the probability of detec-
-tion is ’
F(w) :
R = f fla,y) dy (12)
%
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but since y = F(v), or v = g(y), Eq.(11) may be written

@ &%)
I = f ve 2dyv = e 2 _ ' (13)
£(yy) .

and
1
g(y,) = V2 log, T - (14)

Therefore Eq.(12) becomes -

@ ‘ v2+02 Lo
P = f ve 2 I,(av) dv ' (15)
V1 log, 171'; : :

which is independent of the detector function.

The integral of Eq.(15) must be evaluated by approximate methods. This function
will appear in several places subsequently, and is defined as*

@« v3+a. ’
0(a,B) = f ve 2 I(ov)dv . (16)
B

Footnote on Q Functions

* It does not appear possible to express the Q function in terms of a finite number of
known functions. The Q function is similar to Lommel’s functions and in fact can be ex-
pressed as :

a®+s®

QB =1-€ [t (~ig* iag) -U,(-ig%iap)]

where Uy and U are Lommel’s functions of the first kind. This identity may be proven
using the definite integrals given in Watson(1), pages 540 and 541, especially Eq.5 of
page 541. By successive integration by parts, the Q function may be expanded in infinite
series giving

-g'—:.!— r=0m a,r
. = 2 s (=
Q,B8) = e r=o(,/3) I (ag)
or

a®+s® r
Q(avﬁ) =1-€ # 'zm(.g) Ir @p) .

r=a

The similarity of the first of these expansions to the series for Uy (»,2) given in Eq.(1),
page 537 of Watson, is interesting. A simple expression for Q(a, a) analogous to Egs.(9)
and (10), page 538 of Watson is

Qa,a) = [1 + € -a? I (a.“)] (Continued on next page.)
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In terms of this notation, Eq.(15) may be written

P, = Q(a,v2 Tog 1/T7) . ()

This is the probability of detection only if Tu = 1/f, where 7, is the time available
for detection. In general the probability of detection is given by Eq.(18), No.l,

B .= 1-(1-7,)” (18)

which follows from the definition of detection given on page 9, No.l. The double
subscript notation PN y is used here in place of P', If N = 7, PN.N is written
simply as PN . ' :

'Px y (R/Ro) can be calculated by means of Eqs.(18), (17), the tables of Q, and

the simple relation

R 2

(19)

o]

(=]
i)

»
3
~
s
N

(see Egs.(10), (11) and (12), No.1).

Footnote on Q Functions (Cont’d)

which is useful in special cases. An asymptotic expansion for Q which is of value is
given by Rice (}8)  page 109:

(8-a) 2
- B-a 1+(g~-a)
Q@B = 30 - ¢ (g-a)] + 2_0'_;;; e l:l T ____]

where ¢™1(T) is given by the error function of Eq.(100). This expression is most useful

in the region where a8 >> 1 and a >> |p-a .

The @ function is a special case of the incomplete Toronto function described in the
footnote on page 182.! The relation is

Qe =1 -1, 1,.o.i)
,—,‘;( V2

The Q function is graphed in Figs.13 and 14.

A table is available in Ref.47 but the intervals are too large to be of general use. Project
RAND is computing an extensive table of the  function which will be published as a sepa-
rate report. :
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A very good approximation for -the quantity I, which apﬁears‘in Eqs.(10) and
(17), may be derived from Eq.(10) by writing

'] ]
t/n’ 1/n log P 1
B e e 0 & -

n

log, (20)

SV

which is valid when n’ >>1, a condition nearly always true in practice. Eq.(10)
then becomes

N 1

Fﬂm;logez . (21)

If By = 1/2, as is assumed in all the curves in No.1,
0.693 '
L= "h (22)

Eq.(17) may consequently be written
R)? '

F =0 ﬁ(ﬁ) ,V4.60 log, n + o.730] . (23)

As an example, let R/R0 = (.595, and n = 10*. Then P = Q(4, 4.37), which has the
value 0.410 from the table given in Ref.47. Note that this is a point on the graph
of Fig.l, page 22, No.l.

GENERAL CASE — INTEGRATION OF N INDEPENDENT VARIATES

If the output of the receiver (or filter) can be observed for a length of time
much greater than one correlation period, it is of advantage to integrate the out-
put. The simplest concept of an integrator is a device which linearly adds the
voltage output of N samples from the detector. The time elapsing between samplings
must be at least one correlation period, in order that the samples may be considered
to be independent. If the sum of N variates® of signal-plus-noise exceeds the bias
level calculated from the probability density function for N variates of noise
alone, then the signal is said to be detected.

* Readers with some statistical experience will recognize that here is a case of testing a
statistical hypothesis. It is known that the n observations y,, y;, ~~-- y come from
a universe whose density function f(y,a) depends on the unknown parameters a; it is required
"to decide, on the basis of these observations, which of the two values a4, or e, is a better
estimate for g. If a, is the true value of a, let p, be the probabf&ity of making the
mistake of choosing a, as the correct value; similarly, if a, is the true value, let p, be
the probability of choosing a,. Suppose p, = .05. Then a statistical decision method can
be devised for which p, = .05 and for whict Py will be less than for any other method with
the same p, . See, for example, Kendall, vol.2, pp.272-275(6).
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The integrator may take the sum of the squares of the N variates, or, in general,
the sum of N variates where each variate has been processed by some general func-
tion. As long as the same weight is applied to each variate, the integrator will be:
called linear. The function which the integrator applies to each variate will be
called the law of the integrator. Any nonlinear integrator will be inferior in opera-
tion to a linear integrator with the same law and would ordinarily never be used
intentionally in practice. Cathode ray tubes are nonlinear, however, and thus fall
short of other types of linear integrations.

The law of the integrator acts in exactly the same way as the law of the detec-

tor. Thus, if the detector output is y = (F(v) as given by Eq.(5), the 1ntegrator
output is

N N '
Y = El‘i’("’ = ZﬁS[F(v)]. (24)

It is obvious, as far as the theoretical problem is concetned that the only
function of importance is

Ylv) = ¢[F(v)] . - : (25)

There will be an infinite number of combinations of‘¢.and F functions which will
produce the same function Y and hence the same theoretical results. In all the work
that follows, the output of the combination of integrator and detector for one
independent variate will be called y = y(v), and the sum of N variates will be

Y= y. - (26)

1

The symbolic solution for the case of N variates corresponding to Eq.(15) for one
variate is not too difficult to obtain. The starting point is Eq.(8) for the proba-

bility density function for one variate. The characteristic function for this
distribution is '

C, = f fla,y) et dy . (27)

The characteristic function -for the probability density function for the sum of N
independent variates is then simply

Gy = ()" - (28)
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and

-+
. dw
dP, de Cyla,w)e ™Y o (29)

@

or
dP, = G(a,N,V) dY . (30)
Corresponding to Eq.(11) is

r, = f G(0,N,Y)dY (31)
Y
b

and to Eq.(12),

P, = f G(a,N,Y)dY . (32)
Y, .

b

1f Yb is eliminated from Egs.(31) and (32), there results a solution for I;, as a
function of l; , N, and @, which is the desired result.

It is found in most cases that the integrations required in Eqs.(27) to (32)
are not possible in terms of known functions.

THE SQUARE LAW DETECTOR WITH N VARIATES

It seems, by a process of trial and error, that the best possible function
for Y(v) in Eq.(25) to produce integrable functions in Eqs.(27) to (32) 1is

Y(v) = Av2 ="y . (33)

Though this represents a square law for the combined detector and integrator law, it
is usual to think of it as representing a square law detector coupled with a linear
law integrator. :
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In Eq.(33), the only effect of the constant A is to multiply the bias level
Y, in Egs.(31) and (32) by A. The value of F, in Eq.(32) is independent of 4. It is
convenlent toletd =1/2, ory = v2/2. By direct substitution from Eqs.(6) and (27),

]
cl=f e y-*I (2vzy)ePY dy (34)
0

where x = ¢*/2and p = iw.

This integral may be obtained from pair 655.1 of Campbell and Foster(¥). In all
pairs taken from Campbell and Foster it is necessary to replace p by -p, since they
use €P8 for the first integration. As long as the same notation is used in both
directions, the order of signs is immaterial. In order to avoid confusion, the minus
sign will be used in the exponent in the first transformation and the plus sign in
the second transformation. Thus all of the characteristic functions which appear
hereafter are really C(-p) rather than C{p). In this way there is direct agreement
with the Campbell and Foster tables as well as with tables of the Laplace trans-
form. Equation (34) becomes

C. = —-*I;_ie ep+1 . (35)

The characteristic function for the sum of N variates is then simply

e_Nx _NA :
ePtl | (36)

=

C. =
¥ (pe)¥

By means of pair 650.0, Campbell and Foster, the probability density function is

ap, = (32) eV ™I, (WET)ar >0 (37)°
0

Y<o0

Graphs of this function are shown in Figs.1-7. The .denéity function for noise alone
(x = 0) is found most easily from pair 431, Campbell and Fqster, to be

N~1 _-Y

s T (38)
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BIAS LEVEL FOR SQUARE LAW CASE

The bias level, Y,, is by Eq.(31)

®
. yN- le-Y

e ) e (39)
b

The incomplete gamma function, as defined by Pearson(®), is

uvptl -y
I(u,p) f etd (40)
0 p-

In terms of this function, Eq.(39) bezomes

)
=1 - Il—, N- ) 4
FEBES (W38 (41)

The tables of I(u,p) extend to p = 50, and values of the function are given to seven
places. Thus, for N < 50, and n’ < 10%, the bias level Y, may be obtained directly
from Pearson’s tables. Other methods must be evolved for N > 50 or n' > 10°. The
normal approximation to Eq.(39) is unsatisfactory for N less than several thousand
because of the fact that the integral is over a region which is far out on the tail
of the curve. This can be seen from the Gram-Charlier series which will be taken
up presently.

The integral of Eq.(39) may be evaluated directly by successive integration
by parts to give

vy le N-1 = (N-1) (N-2)
- b =11 FARaP MYZ1/ANN=e) L . 42
LYY [ "R T T } (42)

In the regionsof interest ¥, >N>>1. The series in the brackets may be approximated by

1 + N;l 4 mmema ~ 1 (43)

o
fu—
|
IZ
ek
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in this region so that Eq.(42) becomes

r vy et | _Nrpe™ (44)
v N-1\ N!(Y,-N+1)
ot ()
b
By the use of Sterling’s approximation for N!, Eq.(44) reduces to
Yy
N exP |-Yp+N\1 +log, N
v Vs = . (45)
Vor (v, -we1)

Though the expression looks more cumbersome in this form, it is actually much simpler
to use in calculations than i1s Eq.(44). Substituting for l—l;l from Eq.(21) gives the
expression

log,n = 0.24 + 3 log,, N + log,, (¥,-N+1) (46)

Y,
+0.434 (Y,-N) - N log,

Graphs of this function are shown in Figs.8 and 9. For N = 1, the exact expression

for Y, from Eq.(39) is

Y, = 2.3 log,, n +0.37 (47)
whereas Eq.(46) for N = 1 reduces to

¥, = 2.3 log,, n + 0.45 . (48)

The difference is seen to be practically negligible.
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CUMULATIVE DISTRIBUTION FOR N VARIATES OF
SIGNAL PLUS NOISE - SQUARE LAW DETECTOR

Knowing the required bias level for a given false alarm interval, it is now
necessary to integrate the density function of Eq.(37) from this value to infinity
" to give the probability of detection for a signal of strength x, thus

a1
p - (L) ermy (2VNzT)dY (49)
N . Nx) € N-1 x ¢ :
h .

This integral is not soluble ‘directly in terms of well-known functions. The order
of the Bessel function*® can be reduced in steps of 1 by successive integrations by
parts, so that the last remaining integral is of the type given by the Q function

* The following are some of the useful identities concerning the modified Bessel functionsof the
first kind: :

nt+2 n
e ® () - ‘
= (=g 4 — e 12 et PR .
I(2) = if'J (iz) = z = 1+ 5ray * TR OOt

r=o0 r!(n+r)! N
2 2
- = 2o+ 2 ...
L =1+ +%1

Asymptotic expansion:

I(x) m S [1+ 140 , (1~4n2)(9-4n3) ____]
v2nx 11(8x) 2! (8x2)

I (x) =..1r__1_.__ ‘2'!)" J;" ei’“’“‘/’(s.in V)3 dy
2

zI;(z) =nl (2) + zInﬂ(z) = -nIn(zj + zI"_l(z)

Ii(2) = I(

f z"In_l(z)dz = "1 (2)

J 2L (n)dz = 20 ()

By =1,_(2) =1, ()

J’e*:o(;idx = 2e*{I (0 - I ()]

f e"'_"Io(z)dx = xe"‘[Io(z) + Il(x)]

Jer L (ndx = e*[=n I () + 51, (0]

J e (ndx = e[ (0) + 21, ()]

Relations between the I, functions and the hypergeometric functions will be found in the foot-
note on p. 175.
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of Eq.(16). An easier way to arrive at the same result is by the use of the charac-
teristic function. To get the cumulative distribution from -® to Y of any density
function, it is only necessary to find the anticharacteristic function of C/p, where

C is the characteristic function of the given density function (see pair 210, Campbell
and Foster). Thus from Eq.(36),

[+ ] -Nx E_x_ .
p=1- | S _eptiflbast . (50)
N | o P(p+1)¥

The term 1/p(p+1)" may be expanded in a series

1 1 11
plp+1)V  p(p+1)  (p+1)?  (p+1)?  (p+1)¥

(51)
The mate of the first termof the series, by pairs 210, and 655.1, Campbell and Foster, is

Y
e‘”‘fbe'on(ZVny)dy . (52)
0

"The first two terms of }I)V are thus

Y
l-f be'y'”’Io(Zx/ﬁxy')dy (53)
0

® _v2+2Nx
= f ve 2 [ (vw/2Nx)dv
vay,

= Q(VfN;,VﬁT:)

using the definition of. Q from Eq.(16). All the succeeding terms may be obtained
by using pair 650.0 Campbell and Foster.

Bx r=1
+ 2
Mate of &’:_1’7 is(L) eI (2/) (54)

* As in Campbell and Foster, f is here used in place of w/27 or p/2mi.
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From Eqs.(53) and (54),

1

-l

P, = Q(/2Nz,/2%,)+ e"b‘”"z(%)z I_ (/W) . (55)

r=N
r=2

This form of solution for Il)v is practical for numerical calculation only where N is
less than about 10.

The characteristic function in Eq. (50) can be expanded in another manner using

r=o

: 1 1 .
p(p+1)~ erE“ (p+1)" . | (56)

This leads to an expression for Il)v complementary to that of Eq.(55) of the form

=1
- ¥, -Nx r=w Yb LZ—
Py=1-c¢e Z(E) I_, (2/AzY;) . (57)
r=N+1

By equating (55) and (57), one obtains one of the known expansions for Q given in
the footnote on page 159. Equations (55) and (57) may also be obtained directly from
Eq.(49) by repeated integration by parts. Equation (57) may also be obtained di-
rectly from Eq.(55) by means of the identity

Aled) "fftnzn(x) (58)

n=-o

given in McRobert (), page 32, and one of the known series for Q.

" For the special case § = Nx, the function Q of Eq.(55) is simply
-2y,
Q= %[1« e "10(2)/6)] (59)
(see footnote, page 159), and Eq.(55) becomes

1 -21, | 1 '
B = 34 ™ Rnn) ¢ 1(2%) v 1(3%) oo I, (28) (60

| SSSS— |
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This formula is useful for checking special points for values of N around 10 or below.

None of the methods developed above are suitable for calculating I;'for large
values of N.

In the next section the general method of Gram-Charlier series is developed,
which will be useful in a number of succeeding problems concerning distribution
functions over large ranges of variation of N.

EXPANSION OF FUNCTIONS IN GRAM-CHARLIER SERIES

The function ¢(y) is defined by

2z
Z

¢(y)-$e : (61)

The Hermite polynomials may be defined by the relation

¢ (y) --(l)iel"ﬂ( ) (62)
VRS AW |

where the superscript i stands for the i** derivative with respect to y. The ¢
functions and the Hermite polynomials are biorthogonal, that is

w

f H(y)d (y) = 8;; = 0,i 7 (63)

= ]_’iaj

Therefore it is possible to expand any reasonable function in a series of the form(%)

]

iz i
F) = 3 e di(y) . (64)

1=0

The coefficients a, may be evaluated in a manner analogous to the Fourier series
methods by multiplying both sides of Eq.(64) by H(y) and integrating from -« to ®.All
terms drop out but one, giving

N CS DL b
°i~'(—i,')“ H, (y)f(y)dy . (65)
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It is usual to make the substitution t = y - y/o before making the expansion, thus
causing the second and third terms of the series to vanish, The notation is

Yy =1y-= the average value of y, or the first moment
ol = v, - 1/12 = the variance

v, = the n** moment of the distribution.

Y, =f Y f(y)dy (66)

Equation (64) is replaced by

i=® .
fly) = g(t) = c; ¢t (t) (67)
‘ - i=e
and Eq.(65) by
-0 M N d

¢, = (i!)fw H, (t)g(t)dt =(_:')—f Hi(% f . (68)

It follows at once from Eq.(68) that c¢j = 1/0, ¢, = ¢, = 0. The moments about the
mean, or the central moments, are defined by

w, = f (y-¥)f(y)dy ' (69

and the standard moments about the mean by

-(70)
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The coefficients c; in Eq.(68) may be easily written in terms of the a’s. The first

- few are
3!
1
€ = ﬂ("‘4'3)
s ol -
c 5!(a5 10a3)
1
G = a (a5-15a‘ *30)
¢, = -_717 (a,-21ag+105a,)

cg = ﬁ(%-28a6+210a4-315)

¢, * -;17 (a9-36a.,+37 80.5-12600.3)

(71a)

(71b)

(71c)

(71d)

(71e)

(711£)

(71g)

Formulae for the u’s in terms of the v's can be obtained directly from Eg.(69), giving

Ky = V3 = 31,V + 2V,

My = Yy = 43V, + 61,1 - 3V
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Hg = v = S,y + 10,17 - 1011.21113 + 4 (724d)

He = Vg = 6ugvy '+ 153,00 - 200,10 + 15p,0% - 5uf . (72e)

Continuations of this series are obvious.
The process of obtaining the Gram-Charlier expansion is now evident:

1. Find the moments of the distribution.
2. Obtain the central moments from Eq.(72).
3. Obtain the standard central moments from Eq.(70).
4. Obtain the coefficients from Eq.(71).
5. Write the series for f(y) from Eq.(67).
It turns out that the best grouping for the terms of the series of Eq.(67) is

different from the natural sequence (%), Such a regrouped series is termed an "Edgeworth
series" and is actually used in this work. The grouping used by Edgeworth is

0 (73a)
0, 3 (73b)
0, 3, 4, 6 (73¢)
0, 3, 4,6, 5,7, 9 . (73d)

This means that if the 0 and 3 terms are used as the first approximation, the addi-
tion of terms 4 and 6 gives the next order approximation, and so forth.

MOMENTS OF SIGNAL PLUS NOISE, SQUARE LAW DETECTOR

The moments of a distribution may be obtained by using the characteristic
function as a moment generating function*, Thus

i [ d'C
V. = (-1)'(——) (74)
' dp'/=o :

* Kendall, p.54(®),
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In the case of the distribution function for the sum of N variates of signal plus
noise with a square law detector, the characteristic function is given by Eq. (36),
and the moments are

d* e-Nxe#ﬁ

P (pe1)? (75)

= (-1)¢
y = (-1)
p=0

Though the first few moments may be obtained by direct differentiation, it is better
in this case to expand in a McLaurin’s series and obtain the coefficientof pYil. Thus

Nx

ep‘*’l _ 1 Nx (Nx)z . (76)

(p+1 W (p+1 )V ' (p+1 W*1 i (p+1)¥*2. 2!

The coefficient of p¥/ilis, by direct expansion of each term in Eq.(76),

, (N+i-1)! (Wei) | i) (N+id)) (Ne)? -
(-1) N1 [1 + Nx + VD) o1 +- ] (77
; (N+i-1)! :
=(~1) WIFI(NH,N,N::) (78)

where lF1 is the confluent hypergeometric function.” Thus the moments are

* The following are some of the useful relations concerningthe confluent hypergeometric function:

Lo §° _Tiatr) -

1+
T(a) rzo r!' T (ctr)

1F1 (a,c,2) =

ola

2 4 alatl) 22 e = z
X M 91 2F1(a’b'c'7;)

Lim b~ o

Asymptotic expansion:
' - -
Flaen Tele [1 + U=a)(cma) -...]

(a)2°"° z1!

Kummer’s first transformation:
= z - -—
1Fl(a, c,z) =€ 1F1(° a, ¢, ~2)
Kummer's second transformation:
F (a,2a,22) =e*F ('+l 2
11 ®ed o\
Recursion relations:
a1Fx (a+l, c,'z) + (a-¢) 1I;'1 (a=1,c, z) = (z+2a-c¢) 1F1 (a,c,2)

ac F (a+l,c,2) + (c-a)-le1 (a, c+l,2) = cla+z) 1Fl (a,c, 2) (Continued on next page.)
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(N+i-1)!

Ralrrrey e~ ¥* F,(N+i,N,Nx)

oF¥

(N+i-1)! .
v, = -(—N-:i—)—'-— Ji(-i,N,-Nx)

Hypergeometric function (Cont‘d)
a,F (atl,c,2) + (1-0) F (a,¢-1,2) = (atl=c) F (a,c,2)
cli; (a=1,¢,2) + z F (a,ctl,2) = ¢ F (a,¢c2)
(a-c)ll"1 (a=1,¢,2) + (c--l)lF1 (a,c-1,2) = (z+a—1)1F1 (a,c, z)

(c-a) lel (a,c+l,z) + ¢ c--l)ll“1 (a,c=1,2) = c(z+c-1)1§ (a,c,2)

=2
3 lFl(a,c.z) =2 I"l(a+l,c+l,z)

1
Relations between hypergeometric functions and other functions:

- z
1Fl(a.a.z) =€

. - - -G : -t G} -
1l';(a.«H-l. z) = az _]; e~ dt = 4 F(aﬂ)I(—;;-, a-l)

using Pearson’s notation for the incomplete gamma function.

= e~%,0 z -
1Fl (1,a+l,2) = €° % r(a+\1)1(7_;. a l)

13 _2 L% -2, _Ym
11"1(;.3. Az) -;_f; e~ d —{-;erfz
Lenl2) =L (2)

(original Laguerre polynomial)

. 1T a41) o
F (=n,a+l, z) =50 28000 1%(3)
13 [ (atl4n) ®

(generalized Laguerre polynomial)

(_;)v v

(W-;—.2V+1.—z) - 22 Twsne ? (—%)
(

i (h1) = Efaenr @) ¢ (9]
( [ron,6) + 13)
a(Eem) =@ -1@)

2
F; %oln-l) =€ 3
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Eq.(80) being obtained from Eq.(79) by Kummer’'s first transformation. The first
four moments are

v, = N(1+z) (81a)
v, = (Nx)? + 2Nx(N+1) + N(N+1) (81b)
vy = (Nx)® + 3(Nx)?(N+2) + 3Nx(N+1)(N+2) + N(N+1)(N+2) (81c)
v, = (Nx)* + 4(Nx)3(N+3) + 6(Nx)?(N+2)(N+3) (81d)

+ 4Nx(N+1)(N+2) (N+3) + N(N+1)(N+2)(N+3)

The generalized Laguerre polynomial L{*Xz) is defined b
{ y

Ma+1+n)

@ -
L7 () nll(a+1)

JFi(en,a+1,2) . (82)
Comparing (80) and (82), it is seen that the moments expressed in terms of the
Laguerre polynomials are

y, = LMD (-Nr) (83)

Another generating function for these polynomials is available through the relation

- n
L’fa)(z) = Szf':jiz.; (e-zzmta) | (84)

The moments about the mean may be expressed in terms of the moments about the origin
by means of Eqs.(72a-e), resulting in:

Ko =1 (85a)

p, =0 (85b)
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M3

Ha

s

= 2Nx + N = N(2x+1) = o2

6Nx + 2N = 2N(3x+1)

12(Nx)? + 12Nx(N+2) + 3N(N+2)

120(Nx)? + 20Nx(S5N+6) + 4AN(5N+6)

(85¢)

(85d)

(85e)

(85f)

A generating function for the central moments may be obtained by multiplying the
generating function of Eq.(75) by ePY1giving (see pair 207, Campbell and Foster)

“i = (_l)ie'Nx[it_

dp? (p+1)¥

e#¥%+p(Nx+N

)
p=0

(86)

The moments of Egs.(85a-f) are most easily obtained by logarithmic differentiation

in Eq. (86).

The standard moments about the mean are obtained from Eq.(70), and are

a, = 1
a, = 0
a, = 1

2(3x+1)
=T 3
NY2(2x+1)2

6(4x+1)
3+ N(2x+1)2
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“There is an approximate method of computing the significant part of a_ which is

based on the fact that ¢, of Eq.(71d) is always nearly equal to q:/2 (see page
259, Fry(®)), Thus g

a, & 15a, + 10a) - 30 (88)
or
10(108x2+78x+13
Y ( 3 ) (87£)
¢ N(2x+1)

For noise alone, the moments are given by

(N+i-1)!

v, (89)
Yoo(N-1)!
and the central moments by
(N+i-1)! L
y,i = WIF‘(-I'I-l-N"-N) . (90)

Equation (90) was obtained from Eq.(86) by putting x =0 and expanding in a series.

THE GRAM-CHARLIER SERIES FOR THE SQUARE LAW CASE

The coefficients of the series may be obtained by use of Eqs.(71la-d) since
the standard central moments are now known (Eqs.87a-f). They are:

e, =1 (91a)
e, =c, =0 (91b)
cs = 3x+1 (910)

3
3NV2 (9x41)%
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4x+1
2 — d
c, IN(2211)? (91d)

(3x+1) 2

c, = m (91e)

From Eq.(67) the required series is
dP = i{[c ¢%(t) + c (L) + ¢ Pt(t) + ¢ gb‘(t)----] (92)

o |% 3 4 3
where
Y-y
t = "o__ ’ (93)
Yy = N(1l+x) . (94)
o = VN(1+42%)

and the c’s are given by Egs.(9la-e).

Note that the grouping .of terms is according to the Edgeworth scheme given in
Eq.(73). Note further that as N tends to infinity, all the coefficients go to zero
except ¢, . Thus .

1 _(y"‘i):a
dP = /5_7? e 20* dy (95)
o
as N - ®, In terms of N and x
[y-N(142)]3
dP = ~m—do— e""m—r—z 2xx dy (96)
VarN(1+2x)
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Eq.(95) is precisely a statement of the central limit theorem, and the derivation
given is essentially a loose proof of the theorem.

The cumulative distribution is easily obtained from Eq.(92) by means of the
simple relation

qu"(t)dt = ¢m1(t) (97)
giving

B, = f fydy = 3[1-¢HD] - ¢ () - ¢, ¢ (T) - ¢ ¢ (T) ----(98)

%

where

(99)

and

FUT) ———f "2' . | (100)

The function ¢~1(T) is tabulated in the W.P.A, tables(®}), This differs from the
definition given for ¢"'(y) in Fry, page 456 but is used here because of the W,P.A.
tables.

The series of Eq.(98) was used to calculate all the curves of Figs.1-50, No. 1,
with the exception of the cases where N = 1. In most cases the first two terms of
the series are sufficient, though in some regions of small P four terms are needed.

SAMPLE CALCULATION
Assume N = 10, n = 106
From Fig.8, or Eq.41, ¥, = 30.0

R
Let g~ = 1.0 so that x = 1,0
o ,
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From Eq. (94),

‘From Eq. (99),

From Eq.(91c),

From Eq. (91d),

From Eq.(91e),

Yy = N(Ql+x) = 20.0

o = VN(1+42x) = 5.48

Y-v  30.0-20.0
b 1 . M
T = o = 5.58 = 1.830

¢ 1(T) = ¢1(1.828) = 0,9325

#(1-¢"XT)) = 0.0338

c, =-—3%l__ - 0,081
3NV2(2x+1);
c AX1L o 0.0139

4 7 4N(2x+1)?

2
c, = —A3x1)° . 0, 0033

18N(2x+1)

¢*(1.828) = 0.174 (See p. 218 for references on
tables of the derivatives

$%(1.828) = -0.470 of the error function.)

¢5(1.828) = 0.990

"

e, #*(T) = -0.0141
¢, (T)

¢ (T)

-0.0007

+0,0032

P =0.0338 + 0.0141 + 0.0007 - 0.0032 = 0.0452

This point, P = 0,045, R/R = 1, may be found on Fig.20, No.l.

INTEGRATION LOSS,

SQUARE LAW DETECTOR

It is of interest to express the effect of noncoherent integration as a loss
with respect to coherent integration(*®), This may be done by defining the integration

loss as

Nx,
L, =10 logld—;: (100a)
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where

(]

number of pulses integrated

x, = required value of signal-to-noise ratio to produce given probability of
detection for N = 1,
x, = required value of signal-to-noise ratio to produce the same probability

of detection for N = N.

Thus L; is a function of P and n. However, it turns out that the dependence on P
and n is very small.

In the case of coherent integration, ¥, is always equal to xl/N’ so that L, =
0. With noncoherent integration, %, is always greater than xl/N, so that noncoherent
integration 1is never as efficient as coherent integration. The results of calcula-
tions are given in Figs.10 and 11. One observes that the dependence of L; on P and
n is quite small. Thus by means of the graph of Fig.12, which gives x as a function
of P and n for N = 1, and any one of the curves of Fig.l0, it is possible to obtain
a fairly accurate value of x for any P, n and N,

GENERAL CURVES OF THE CUMULATIVE DISTRIBUTION FUNCTION

The integral of Eq.(49) is a function found in other applications than the one
discussed in this paper. It is desirable to have graphs of this function available
in general form rather than the specialized form of Figs.1-50, No.l. The integral
is a special case of the incomplete Toronto function* described by Heatley (4’ and
Fisher (*7), which is defined as

B
T(m,n,r) = 2r”'”‘+1e"2f et I (art)dt . (100b)
0

Using this notation, Eq.(49) for the cumulative distribution function becomes

P, = 1‘- aﬁi(zN-l'N—l’/ﬁ;) . (100c)

* In normal correlation theory, the quantity

n -2
(B ) : -%(Bg-ﬁz) . in2
df \i5 e J, (iaB)d(3B*)

(M%)

is given by Fisher (17) as the lmut:mg form, for large samples, of the frequency element
of the quantity B2 = n,R? where R® is the sample estimate of the multiple correlation
coefficient of a random variable y with other variables x Xy==== 2% _ , N is the size
of the sample, and Bp = ngp? where p is the population mult.lple cortelation coefficient.
The eumulative dlstrlbutlon is

f= Tg_(nl—l,;-nl—l.-‘/%_)

vz

and can be obtained from the curves in Figs.13 to 32.
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The function plotted in Figs. 13 to 32 is

T(2N-1,N-1,V7) (100d)
and B may be found easily from these curves for any values of ¥, N and z.

THE LINEAR DETECTOR — N VARIATES

The linear detector is usually more difficult to deal with than is the square
iaw detector. The distribution function for one variate of signal-plus-noise is

_vPta?
dP = ve ? I (av)dv . (101)

In attempting to find the distribution for the sum of N variates by the method
of characteristic functions, the immediate trouble is that the characteristic function
of Eq.(101) does not seem to be obtainable in closed form. To give an idea of the
difficulty involved, the characteristic function for one variate of noise alone is
obtained as follows:

az ® vz .
C = e-Tf ve 2 -mmdv . (102)
‘ 0

This is pair 903.3, Campbell and Foster, and may be evaluated directly by completing
the square or by forming a differential equation, giving in either case

3
P
C=1 -VZ;- pe X erfc —% (103)

or in terms of w

Nl Y G 7
Csl-wezf ezdx+i—2— (104)

To raise this expression to the N** power and then obtain the anticharacteristic
function is practically hopeless,
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The distribution function for the sum of two variates of noise alone is ob-

tainable by use of the convolution theorem, giving

y-l; /F-Y;yz Y
7 e t—5 e S -lerf 5 dy

and the cumulative distribution is also obtainable, giving

© 2 2
- I
%=f f(y)d}'=elr+-—27—7-ye‘erf%
y

(105)

(106)

However, when N > 2 there seems to be no closed solution corresponding to Eq.(105)
or (106). Since these cases are for noise alone, the signal-plus-noise situation

must be attacked by other means,

It turns out that if the moments of the distribution for one variate are known,
the moments of the distribution for the sum of N variates may be found directly.
Formulae are given, for instance, in Cramer, page 345, () for the first few central

moments, which are

Ky = Ny,
py = Ny,

uf = Nu, + 3N(N—1)#;

p¥oa TON3u3 + 15N3ud + 15N2u,u, - 45N%u3

The corresponding coefficients in the Gram-Charlier series then become

%3

3 7 T3z

a*-3

4 41N
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The a's in Egs.(108a-c) are the central standard moments for one variate. Note
that, in the square law case, if N is put equal to 1 in Egs.(85c-f) and the resulting
#'s used in Egs.(107a-d), the i’s for N variates are correctly given. If a moment
generating function can be found for the case of N variates, then it is immaterial
which method is used; but in the case in which such a function is not available, the
Eqs.(107) must be used (or some method essentially equivalent).

To handle the linear detector it is now sufficient to find the moments for one
variate only. Rice (%), page 107, gives the required expression as

v, = 220(1eg) F, (E1,-2) : (109)

Rice also gives the first two moments as

nir

1;; -yZe [(1+x)Io(-;£) ; xIl(‘;-)] (110a)

v, = 2(1+x) (110b)

To calculate 7 one needs to know the function,lq(-3/2,1,-x). This may be obtained
by use of the recursion relation

a F(a+l,c,2) + (a-c) F (a-1,¢,2) = (2a+z2-c) F (a,c,2) (111)

by putting a = -%, ¢ =1, z = -x. The result is

v, = 2v, (2+x) -\/ge-%Io(%) (110¢)

also

v, = 4(2+4x+2%) . (1104d)
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The corresponding central moments are

Ky = o? = 2(1+x) - Vf (112a)
3 7.7

e = 24 - 2y (1e22) -\ Ze 71 (3) (112b)

te = 4(2+4x42%) - 30} - 4y, [(1-x)v, -\/g:e'*Io(é‘-)] . (112¢)

The standard central moments, and then the ¢’s of Egs.(108a-c), are directly obtain-
able from these formulae, though the process is somewhat tedious due to the cumbersome
form of Eqs.(112a-c). The functions Y, to 1, are shown graphically as a function of
x in Fig. 34.

To obtain the bias levelle for the linear detector for N > 2, one can use the
G.C. series for noise alone. Setting x = 0 and v, = V773 in Eqs.(112a-c) gives

py =0t = 2 -2 = 0.429 (113a)
m
Koy ='\/'-2:(7r-3) = 0.1772 (113b)
372
My =8 - =— = 0.598 (113c)
and
ay = ﬁ’; = 0.632 (114a)
ag .
0.1053
¢, = - N2 (114b)
and
a, = E—} = 3.26 (115a)
Q :
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. N (115b)
0.00555
c, = ——

s N ' (115¢)

The cumulative distribution function is now equated to m, giving

0.693N 1. ., 0.1053 , 0.0108 _, 0.00555
= = [ ] ¢ BN - SR () - TR ---(116)
where

CYewN oy -ME

For any given n and N, Y;may be found from Eq.(116) by trial and error methods.
If an approximate value of T is found by neglecting all but the first term in Eq.(116),
a more accurate value obtained by Newton’s method is

T
A1) (117)

It is better, however, to plot Eq.(116) giving n as a function of T and N from
which is finally obtained the bias level graph of Fig.35 showing Y, as a function
of n and N for the linear détector.

Since for finding the bias level it is necessary to know the distribution

functions only for large values of the argument, it is possible to find an ap-
y g g . -p - . .
proximate solution valid in this region. Consider a distribution function given by

dP = ve ? dv (117a)

for v going from -~ to+ . The N*™ convolution of this function will be nearly
the same for large values as if (117a) went only from 0 to ®, because the large
values in the sum of N variates are most probably produced by addition of large
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values of every variate, and for large values (in fact for all positive values)
the two distribution functions are identical. The characteristic function of Eq.
(117a) is given by pair 710.1 of Campbell and Foster to be

2

P
C = -/27 pe? . (117b)
For the sum of N variates
N NP2
Cy = (-D¥(2m?ple 2 . (117¢)

The probability density function is obtained from pair 740.2 of Campbell and Foster as

L

n 2T W (L ~

dPy & e Mo (Ldy ¥ >>1 (1174)
N 2

where D, is the parabolic cylinder function of order N, In terms of the derivative
of the error integral as defined in Eq. (62),

N
(2m)? y
dP, ~ ~i; QSN(FN)dy y>>1 . (117e)
N ? :
Note that for N = 2, Eq.(117e) becomes
2
J 2
VT STy

Referring to Eq.(105), the exact expression for this case, it is seen that Eq.(117f)
can be obtained by neglecting the first term and replacing erf y/2 by 1, both of
these approximations being very good if y >> 1.

The approximate cumulative distribution is easily obtained from Eq.(117e) by
direct integration and gives

I=

N ("’7”)2 P () (117g)
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The bias level is easily obtainable from this expression by equating it to [ and
solving for ¥ by means of the tables of ¢*, or by plotting graphs. The method is
not very practical for N > 20 since suitable tables do not exist.

It is interesting to note that no such approximation as Eq.(117g) is obtainable
for the square law case.

Graphs of the probability density functions for signal-plus-noise have been ob-
tained by numerical convolution for some selected cases and are shown in Figs.36 to4l.

RESULTS OF THE LINEAR DETECTOR CALCULATIONS

The difference in results for the linear and square law detectors turns out
to be so small that extreme accuracy must be used in the calculations to show the
relation in its true form. One such comparison graph was calculated and is shown
in Fig.42. Also, in Fig. 43 is shown the difference in db in the two cases at P =
0.50. The two are identical at N = 1, the linear law becomes better by a maximum
of 0,11 db at N = 10, the two are again equal at N = 70, and the square law then
becomes better and asymptotically exceeds the linear law by 0.19 db as N = @ having
reached 0.16 db at N = 1000. These results show conclusively that there is little
to choose between the linear law and square law as far as theoretical signal threshold
is concerned,

EXPANSIONS IN LAGUERRE SERIES

In certain cases, particularly for low values of N, the Gram-Charlier series
may not be the best-suited type of expansion for distribution functions which are
zero for all negative values of the amplitude. For low values of N, a suitable
expansion for such functions is the following:

1=®
f) =Y e, ey L3y (118)

i=0
where L7(y) is the generalized Laguerre polynomial defined by Eq.(82), or by

z. -0 di .
T2 2 (ezzite) | (119)

a -
Li (z) = il dzt

The orthogonality relation which makes the expansion possible is

_'—'_—_i! ® - ara a
r“(ct+i+1)‘/‘ e * 28L3(2) Li(2) = (120)
0
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(see Copson (%), page 269).

Thus, from Egs.(118) and (120), the coefficients are determined by

i ®
L a . 121
a; Ma+i+l) L Lt(y)f(y) dy ( )

Note that Egs.(118), (120) and (121) are analogous to Eqs.(64), (63) and (65), re-
spectively, for the Gram-Charlier expansion.

Let a new variable t = y/8. Then

iz

fly) = g(t) = c,e”tt*LS(t) (122)

i=0

where

i ) a il ® afY dy
€ F(a+i+1)j(: Li(t)g('t)dt =r(a+i+1)_[ Li(ﬁ)f()’) 5 (123)

The first few Laguerre polynomials are

L:‘(z) =1 (124a)
L°1‘(z) = l+a-2 (124b)
2L5(z) = (a+1)(a+2) - 2z (a+2) + 22 (124¢)

6L3(z) = (a+1)(a+2) (a+3) - 3z(a+2)(a+3) + 322 (a+3) =23 . (124d)

There fore

. -t -1

¢ = (22" [1+a( ] (125)
= .__l_l e} -2 (126

c, (ae3) B (a+1)(a+2) 3 (a+2) + ,32] . )
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Since there are two arbitrary constants, & and B, in the expansion of Eq.(122), it
is possible to make ¢, =¢, = 0 by a proper choice of a and 5. These relations are
easily determined by equating Egs.(125) and (126) to zero and solving simultaneously.
The results are

3 Y, |
a = —-1=—-1 (127)
V2"7/1 o
y-p? 2
Be—— - | (128)
1 1
and
1 L . '
i, - (129)
Co ﬁr‘(a-f-l) 2]_1(7/_12) N
0-2
¢, = ¢y = 0 (130)
L 12 (44 K (131)
X TAmL— — a - — Y
‘s T Bl(a+s) |32 8 |

The coefficients past ¢, are so complicated that the whole value of this type of
series seems to depend on the fact that the first term alone is often a good ap-
proximation. This approximation is

1 A AN
dp = ———e O |— dy - (132)

and the corresponding cumulative distribution function is

2

. @ y [} )
P=f fly)dy =1 -1|=,— -1 (133)
o 0.2
y
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where I is the incomplete gamma function as defined by Eq.(40).

There is a striking analogy between Eq.(132) and the corresponding normal
approximation. In both cases the distribution for the sum of N variates is simply
obtained by multiplying both 3, and 02 by N. As N = ®, both the normal approximation
and Eq.(132) approach the true distribution (and each other). In any particular
case, however, the convergence properties of one approximation will be more useful
than the other.

In the square law case, for x = 0, v, = N and 02 = N, Substitution of these

1
values in Eq.(132) gives

1
I'(N)

dP = e YyN-1dy . (134)

Note that this is the same as Eq.(38), the exact expression. Thus in this particular
case the first term gives the whole correct result. The third coefficient from
Eq.(131) is easily shown to be zero, as all the following coefficients will be.

In the square law case where z # 0, 1 = N(1+x) and o? = N(1+2x). Substitution
of these values in Eq.(132) gives

N(1+x) 2
1+x “1¥ax

dP = 1+x e~(1+2x)y [(ﬂi) y:I (135)

N(1+x)? 1+2x

(1+22) [T o3
and from Eq.(133),

y N(1+x)?

Pp=1- . - =11 . (136)
1 I,[/N(hzx) 1+2x )

A comparison of the particular case N =3, x = 1 is shown in Fig.44. Curves are
given for the exact distribution function {(Eq{37)) and the two approximations given
by Egs.(96) and (135).

For the linear case with x = 0, 1 = W7/2 and o? = N(2-71/2), the cumulative
distribution is, from Eq.(133), '

y N
a - -1 .
P 1 I{ N(2-m/2) ' a/m-1 ] (137)
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OTHER SERIES APPROXIMATIONS

It is theoretically possible to develop still other series approximations for
the various distribution functions. For _instance, it might be thought advantageous
to use a sum of terms of the type y*€~Y/2 particularly in the linear case. While
this turns out to be possible, even the first coefficient is so difficult to calcu-
late that the process is impractical.

METHODS OF INTEGRATION INVOLVING

SUBTRACTION OF NOISE

Certain practical difficulties arise in maintaining the bias level at the
correct value in an electronic detector, particularly if the number of pulses inte-
grated is large. The trouble may arise from fluctuations in amplifier gain, the
bias supply, or the noise level itself.

A solution of this problem is to have the gain of the amplifier, or the bias
level, or both, controlled by some sort of average value of the noise output. Ob-
viously the time constant of the control device must be neither too long nor too
short. One scheme which has been used is to subtract a pulse known to consist of
noise only from each possible signal-plus-noise pulse* (see paragraph 3, pagell,
No.1). Thus in the absence of a signal, the average Wélue of any number of composite -
pulses will always be zero, and the required bias level will be comparatively low.

DISTRIBUTION FUNCTIONS FOR COMPOSiTE PULSES

OF SIGNAL-PLUS-NOISE MINUS NOISE

When a noise pulse is subtracted from each signal-plus-noise pulse, the theo-
retical distribution functions will be entirely different from previous cases. The
square law case is the only one that can be treated in any reasonable fashion. The
distribution function for one variate of signal plus noise is given by

dp = e*¥ I (2/%Y) dY (138)

and the characteristic function is

C = oy e, (139)

* This subtraction can be accomplished by means of a gate which operates at double the
repetition frequency. On every other gate only a noise pulse of reversed phase goes through
the integrator. ’
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Subtracting a positive noise variate is equivalent to adding a negative noise variate.
The distribution function for a negative noise variate is

dP = ef Y<O0 (140)
=0 Y >0
and
c =1 (141)
1-p

To obtain the characteristic function for the sum of a variate from the distributions
of Eqs.(138) and (140) it is only necessary to take the product of the characteristic
functions given by Eqgs.(139) and (141), giving

eP*1 (142)

This is the characteristic function for one so-called composite pulse. The characteris-
tic function for the sum of N composite pulses is simply

e~ Nz Nx

= ———— eP*1 (143)
(1-p2)¥
In the case of noise alone (x = ),
1
2 — (14)
(1—p2)N
and the anticharacteristic function is, by pair 569 Campbell and Foster,
1
dp, = —— Z”N--K lY| dy (145)
¥ V/r(N-1)! |2 N3

where K, , is a modified Bessel function of the second kind and is given by the
finite series

by (N+r-1)1
_'V.l’_ -z
Kyy(2) = 2z ° ; rt(N-r-1)1(2z)r (146)
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The cumulative distribution for the sum of N composite noise variates may be found
by use of the series (146) and term by term integration. However, for N greater
than 3 or 4 the process rapidly becomes impractical. :

Again, it is necessary to find moments and proceed by means of Gram-Charlier
series. For noise alone, the moments are easily found from Eq.(144) to be

v, =p =0, i odd (147)

(N+§-1)!(i)!
v, = Wy = , 1 even

(N-l)!(;i).'

in particular,

fy = 2N = o2 (148)
p, = 12N(N+1) (149)
te = 120N(N+1) (N+2) (150)
and
a; =0 (151)
a, =3+ (152)
4 N
45 30
a6=15+7+7v—2 (153)

The only coefficients different from zero in the first six are ¢, and ¢, to the
order of 1/N.

g = 5-11;; ‘ (154)
Thus
dY Y 1 Y
dP, = O e —pH == ---- 1
y fzvv[d’ ) * o () ] (153
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and similar to Eq.(98) is the cumulative distribution

P, = %[1-¢-‘(7§=N—)] - ﬁcﬁs(ﬁyw) (156)

The bias number is found by setting this expression equal to I and plotting A
as a function of n and N. Results are given in Fig. 45. In the special case N = 1,
the cumulative distribution function is simply e“Y/2 for Y > 0, and the bias number
is obtained from this expression rather than from Eq.(156). The anticharacteristic
function of the general case, Eq.(143), may be obtained by use of the convolution
theorem, pair 202, Campbell and Foster. Let

e-Nz p—Nf-l-
L = W (157)
1
= 158
2 (1-p¥ (158)
Then from Eq.(37),
it §
)
G, = (I_V%) e~Y-Nx IN_1(2V1ny) y>o (159)
=0 y<o
and by pair 525.2, Campbell and Foster,
G, =0 y>0 (160)
—y)N-1oY
= —-—-——-———( y) y <90
(N-1)!
Applying the convolution theorem gives
N-1
e YNz ® y_z Nel o2
dP, .= dY - ~Y)V-leW] 2VNxy)d >
Y (N-D! ,(Nx) ()t e 1, (WRxy)dy ¥>0 (161

For Y < 0, the lower limit of the integral in Eq.(161) is 0 rather than Y.
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PROBABILITY DENSITY FUNCTIONS FOR Y < 0

To evaluate the integral in Eq.(161) when the lower limit is zero is straight-

forward but tedious. First one evaluates the integral

M
2
) e~ I, (2VNxy)dy

k) = mk_’;
f(k) _/(:y(Nx

(162)

by use of characteristic functions in a manner entirely similar to that used in
Eqs.(74) to (80). The characteristic function of the function of Eq.(162), with

k =0, is
N
eP*?
T (pe2)V
and
Nx
e 2(N+k=1)! Nx
0 = e R ()

Then by expanding (y-Y)¥-1, one obtains the coefficient of

kL (N-1)1 (-Y)N-1-k
k! (N-1-k)!

and from Eqgs.(164), (165), and (161),

Y-Nx k=N-1 1V (_yyN-1-k
e Zf(k)(N Nt (-y

dP -
NoWN-D! & k! (N-1-#)1
or
Y_Nx _ ' _ -Nx
T k=n-1(N+k-1)! F (-k,N,
dP, = dY = - 1( _2-)(—1/)”"'" Y <0
VOO WN-D & (N-R-1) eI

197

(163)

(164)

(165)

(166)

(167)



In terms of Laguerre polynomials, using Eq.(82),

y Nz k=N-1 LZ'I(-'Nz—x)
= dYe ? (W(_Y)N-k-l Y<o . (168)

dp,
i k=0

The first few polynomials are given inEqs.(124a-d). Some special cases of Eq.(168) are

y-%
2
N=1 dp = dy= Y <0 (169a)
eY-x
N=2 dp, = ar®—(1Z-Y) y<o (169b)
3z
r-= 2 '
N=3 dp=dr [3'+‘3x+3x—-(2+1’5)Y+v2] Y<o .  (169)
_ 16 16 2

The cumulative distributions for Y < 0 may easily be obtained by integrating (169a-c).

Obviously, the expressions in Eqs.(167) and (168) are practically useful only for
small values of N.

PROBABILITY DENSITY
FUNCTIONS FOR Y > 0

To find a general expression for Eq.(161) giving the distribution function
when y > 0 is a task of tremendous proportions. Consider, for instance, the special
case N = 1. Equation (161) becomes

[+ 4]
dP, = dYey":/' e I (2/xy)dy Y>o0 . (170)
¥ .
By means of the substitution y = v?/4, this becomes

R LI
dP, = dY—Z-f e * I(vwx)dv Y>0 . (171)
' /Y :
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This can be expressed in terms of the Q function defined by Eq.(16).

Y-
2
dp, = dvS—Q(/x, ) v>o0 . (172)
Eq.(169a) was
y-X
2
dP, = =

, = S—dr Y<o . (169a)

Thus, for the case N = 1, the whole distribution function is described by Eqgs.(169a)
and (172). A graph of this function for various values of x is shown in Fig.46
Note that if x = 0, Q(0,2/Y) = e~?Y, and Eq.(172) for Y > 0 reduces to

&Y
dpP, = —2-‘dY Y>0 (173)
and from Eq.(169a)
el’
dP, = —2—dY Y<o (174)
when * = 0, Thus over the whole range of Y
e"yl
dp, = —2—dY (175)

which checks Eq.(145) when N = 1,

For N = 2, Eq.(161) becomes

® 1
dP, = dYey‘z"f (i)z(y-Y)e'zy I,(2v/2xy)dy
y ‘2x

This integral may also be evaluated in terms of the Q function. The process requires
a large number of integrations by parts and is very time-consuming. The result
turns out to be

Y>o0 (176)

-X

eY x [ ‘/_ e—Y-Zx
dp, = dY| = (1+§~Y)Q( %, 2T) +

- {YI0(2\/§_x7) + (1+x)@11(2M)l

§

(177)

Y>o .
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This equation is already so complicated as to be nearly useless. Thus it was not
thought worth while to seek a general expression of this: type for arbitrary N when
Y>o.

Note: If x = 0 in Eq.(77), it reduces to

~Y

dP, = dYZ- (1+Y)  ¥>0 (178)

which may also be obtained from Eq.(169b) by substituting -Y for Y.

CUMULATIVE DISTRIBUTION FUNCTIONS

The effort in Egs.(161) to (178) has been concerned with obtaining the proba-
bilivy density function for N variates of signal-plus-noise minus noise. To find
the cumulative distribution functions exactly is difficult, especially for Y positive.

A case which can be solved, however, is that for N = 1, For Y negative the
answer is simply obtained from Eq.(169a) and is

y-x

. e *
A AR (178a)
For Y positive, using the result of Eq.(172),
X
e 7
P = Tf e’ Q(vx, 2/y)dy Y>o . (178b)
Y

X
Since the value of e at Y = 0 is, from Eq.(178a), 1 - e 2/2, Eq.(178b) may be re-

written as

| 5 A
Bo=1- - eYQ(vz,2Vy)dy (178c)
0
but from the definition of Q in Eq.(16),
[++] ‘uz+x _£ «© 21
vz, 2/y) = f ve ? I (wx)dv = 2e 2f e I(2/3z)dz . (178d)
2y y v
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Replacing Q by its defining integral in Eq.(178c) gives

X
-2 v ®
P =1 - -e-;--e'”f dye3ff eI (2/7z)dz .
0 Y

Integration by parts is now used, letting

@©
u = f e I (2/32)dz
Y

dv = e¥dy
du = - "on(z/aTy‘)dy
v = eV
@ 3
-2z Jxiv)d €
luvl) = e f eI (2/xy)dz - e
Y
= 2 Q(‘/x_:zﬁ) - 7
Thus
Y“E Y
e
P =1 - —;—Q(/;,z‘/?) + e"‘f vdu
0
or

y-£

1

2 Y
P =1 - SE-Q(/;,%/Y’) - e"‘f eI (2/xy)dy .
0

(178e)

(1781)

(178g)

(178h)

(1781)

(1783)

The integral term in Eq.(178j) is just 1 - Q(V 2x,V 2Y), and the final result is

"

P« QVERVIT) - SIQUEVE) Y0

B

For x = 0, Q(0,8) = e %, and
ef e!
Pl = e'y‘_z e‘zy) = Ty

201

(178k)

(1781)



agreeing, as it should, with the result obtained from Eq.(145) by letting N = 1
and integrating. For Y = 0, Xa,0) = 1, and

P =1- 5 (178m)

agreeing with Eq.(178a) when Y = 0,

The bias number for use with Eq.(178k) is obtained by

g — (178n)
or

Y, = 2.30 log,, n-0.327. (1780)

In Fig. 47 is shown a graph comparing Eq.(178k) with Eq.(23) for n = 10%, where
P is plotted as a function of x,

Though it might be possible to calculate the cumulative distributions for N
> 1 by a method similar to that used for N = 1, it would be very tedious. Therefore
resort is made to Gram-Charlier series, as before. The moments are directly obtainable
from the characteristic function given in Eq.(143),

‘ Nx
-Nx
€ e p¥1

(_l:pTS-N— (179)

. dt
v, = (—l)fﬁ

P=0

There seems to be no readily obtainable expression for Y, in closed form. The first
six moments obtained directly from Eq.(179) are:

v, = Nx (180a)
v, . (Nx)? + 2Nx + 2N (180b)
vy = (Nx)® + 6(Nx)?* + 6Nx(N+1) | (180¢)
v, = (N)* + 12(N2)® + 12(Nx)2(N+3) + 24(N+1) + 12N(N+1) (180d)
vg = (N2)® + 20(Nx)* + 20(Nx)°(N+6) + 120(Nx)2(N+2) + 60Nx(N+1)(N+2) .

(180e)
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e = (Nx)° + 30(Nx)® + 30(Nx)*(N+10) + 120(Nx)*(3N+10)
+ 180(Nx)*(N+1)(N+6) + 360Nx(N+1)(N+2)

+ 120N(N+1)(N+2) . (180f)

.The corresponding central moments are:

Ky = 2Nz + N = 2NQ1+x) = o (181a)
py = 6Nz (181b)
My = 12(Nx)? + 24Nx(N+1) + 12N(N+1) (181c)

Mg = 120(Nx)® + 360(Nx)2(N+3) + 360Nx(N+1)(N+2) + 120N(N+1)(N+2) .
(1814d)

The central standard moments are:
ay = —E—0 (182a)
VON(1+x)2
3(1+2x)
= 3 —_— 182b
% ' N(1+x)? (182b)
45 (3x2+3x+1)
a.6 ~ 15 + N( 1+x)3 (182(:)
The coefficients of the series are, from Eq.(71):
¢, = - —;3 (183a)
2/2_N(1+x)-5
1+2x

= T 183b
i 8N(1+x)? (183b)
R - (183¢)

6 T T6N(1+x)°
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The Gram-Charlier series for the probability density function is given by Eq.(93) where

y-v :
t =——, v, = Nz, o= /2ZN(1+7) (184) -

o

and the cumulative distribution is given by Eqs.(98) and (99). Figures 53 and 54,
No.1l, showing the comparison between the ordinary case and the composite case, were
computed using the Gram-Charlier series developed above. There appears to be no
significant difference in the probabilities of detection for N between 1 and 10. For
N between 100 and 1,000, the composite case gives an effective signal-to-noise ratio
about 1 db lower than the ordinary case.

ANOTHER APPROACH TO THE DETECTION
CRITERIA-PROBABILITY THAT SIGNAL-
PLUS-NOISE EXCEEDS NOISE ALONE

The method of setting a bias level and calling any signal-plus-noise or noise
alone which exceeds this level a signal is not the only possible way of defining
detection. Another method is based on asking what is the probability that any given
signal will be larger than any noise pulse during a given interval of time(*?), The
interval of time taken would logically be the false alarm time, as defined previously.
In this time there will be n/N = n’ independent groups of noise pulses. If the proba-
bility that a single integrated group of signal-plus-noise pulses exceeds a single
group of noise pulses is called F(x,N), then the probability that the group of
signal-plus-noise pulses exceeds all of the n’ groiups of noise pulses is simply

P = [Pl(x,N)]"' (185)

This probability is a little difficult to interpret properly. It means that if
during the false alarm time a signal of strength x appears, it will have this proba-
bility of being larger than any ndise pulse group appearing during the same time. The
difficulty is how to pick out the largest signal over a period of time, and what
to do when many signals are present. These are reasons why the earlier detection
criteria are thought to be superior, since they provide clear answers for the above
questions. The criteria presented above may be of special value, however, when a
target is known to be present. Such is the case when a target is being automatically
tracked, and one wishes to calculate the probability that it will be subsequently
lost due to the noise exceeding the signal.

The probability dens1ty function for N'51gna1 plus-n01se pulses minus N noise
pulses has been indicated in Eq.(161).

To obtain the probability that the sum of N signal-pius-noiée pulses will be

greater than N noise pulses it is only necessary to integrate Eq.(161) from 0 to -
©, Tt will be easier to obtain the probability that N noise pulses exceed N signal-
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plus-noise pulses, however, since this requires the integral from -® to 0, and an
expression is available for Y < 0 in Eq.(167). Thus

N Nx
k=N- -1)1! - N2
P = _E_f__ 0dYeY pr (N+k 1)°1F}( kN, 2)(-Y)M¢-l (186)
N>S+N (N-1)! -0 %=o (N-k=1)1k!oN*k

Now one substitutes z for -Y and interchanges the summation and integration signs,
obtaining

_Nx _ _ 1 - _& 0
eT k—N—l[(N“'k 1)-1F1( k,N, 2>f e..zzN-k-l dz
0

TEYY e L (N-k-1) k!N (187)
The integral is simply (N-k-1)!, and therefore
'Ezk N-1
e 2 "' (N+k-1)! Nx
= - AL 88
T & [(N-l)!k!2”+k"‘F(k’N’ ) (188)
Or in terms of Laguerre polynomials, using Eq.(82),
-lik
2 k=N-1
N
p -~ 21-N-’°L’;;‘(-—") (189)
2 o=t 2

From Eq.(188) a more convenient form may be obtained by introducing a dummy index
i and interchanging summation signs, leading eventually to

"% {=N-1 - k=N-1 ~1)!

2 1=0 1!(N+1-1)! ~7 (k"l)!2N+k'1

Ne (Nx)i

The outside summation in Eq.(190) is obviously a polynomial in x of the N-lth degree
and with N terms. It is rather curious to note that if one puts t = 0‘'in Eq.(190),
the following identity results:

k=N-1 1
N-1 (N+k'1).
2T s Z,,:o (N-1)Tk! 2k (191)
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In other words, the constant term in the polynomial is always unity,

The first few cases for low values of N are:

1 _x

P, = -2-e'f (192a)
1 . x

B - Ee"‘ (hZ) (192b)
1 -%f( 9x 92\ :

Bo=3e 143542) (192¢)
L geas (1, 22,2, 20)

P, = S e T . (192d)

5= 3 s
B - le x (1+325x+§75x2+4375x . 625x ) (192¢)
256 1024 6144 . 32,768 :

Obviously for N-very large, these expressions rapidly become useless, and it is
necessary to use the Gram-Charlier series of Egs.(184) and (98). The lower limit
Y is replaced by zero, giving for the series

P e sl (D] ¢ @3(D) - (D) - ¢ (D) e (193)

where

< N
2 4 = 194
T += x\é%;;;; (194)

and ¢;, ¢, and ¢ are given by Egs.(183a-c). A graph of P as a function of x and N
is shown in Fig.48. For very small values of P, more terms may be necessary in the

series of Eq.(193).

USE OF CUMULANTS IN OBTAINING
"GRAM-CHARLIER SERIES COEFFICIENTS

It is often much simpler to obtain the cumulants for a given distribution
function rather than the various moments. The cumulants may be defined by

. ) di
K, = (-1)l(—-—7 log c) (195)
i dp? e p=0
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where C is the characteristic function of the given probability density function
(see pages 61-65 of Kendall ¢®)). The cumulants, except the first, are invariant
with respect to a change of origin. Also, for the distribution of the sum of N
variates, it is only necessary to multiply every cumulant by N, as is evident from
the defining Eq.(195). The coefficients of the Gram-Charlier series in terms of
cumulants are given on page 149 of Kendall. The cumlants in standard measure may
be defined as

K

i
Ki =;TE (196)
In terms of standard cumulants, the coefficients of the series are:
=1 ¢ =2¢=0 (197a)
K,
c, 3-:-3—! (197b)
K,
¢, = :" (197¢)
1 2 (197d)
¢ = —6—!—(K6+10K3) ,
The first term in Eq.(197d), Kg» is omitted in the 0,3,4,6 approximation.
Consider the square law case where, from Eq.(35).
X
-k @ ——
p+l
c=2° (198)
p+l
x
log, C = - x +—p_+1 - 1ln (p+1) . (199)
From Eq.(195),
k; = (i-1)1(ix+1) i £ 1. (200)
For N variates,
K, = N(i-1)!(ix+1) . (201)
and
K. : ] .
K o=t GzDICixel) (202)
13 o.l. 1

N (2x41)2
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In particular,
K3 = __ESEfill_g (203a)
NY3(2x+1)2

6(4x+1)
Ky = W(2xe1)? (203b)

and it 1s at once evident that €31 Cos and ¢_ obtained from Egs.(197b-d) are iden-
tical to the values given by Eqs.(92c-e) by means of a much longer process.

In the case of a composite pulse of signal-plus-noise minus noise, the charac-
teristic function is given by Eq.(142) and

x
log, C = -x + ;:I - log, (1-p%) . (204)

Again by means of Eq.(195) it is easy to derive, for N variates,

K, = N(i-1)![ix+2] 1 even
= N(i-1)!(ix) iodd, 71 (205)
or
< = N1 [iar1e(-17] ~ (206)
and
K. SRy BN _1t
. 12.1[1x+1+( i) (207)
v NW-[2(x+1ﬂ7
Special cases are:
K, = Sr (208a)
N2 [2(x+1)] 2
3(2x+1)
K, = N(ze1)? (208b)

and again by Egs.(197b-d) the coefficients are seen to be the same as given by
Eqs.(183a-c).
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In a case such as the linear one where the characteristic function cannot be
obtained, the cumulants are still useful and may be found from the moments v; by
means of the formulae at the bottom of page 63 of Kendall. The first few are:

K =Y (209a)
K, = ¥, = (209b)
Ky = Yy - 3y o+ 2 . (209c¢)
K, = Y, - Ay, - 3k o+ 12yl - eyt (209d)

The «; are now obtained by multiplying by N and dividing by ot. The coefficients
are then obtained as before by Egs.(197a-d).

BEST POSSIBLE DETECTOR LAW

It is of considerable importance to know whether there may be some detector
law which will give results which are appreciably better than the linear or square
law cases which have already been considered.

The problem may be stated as follows:

These are available N samples

‘Ul, 1)2 con- ‘l)N

which, it is assumed, are known to have come from either the distribution

dP, = ve 2 dv (210)
or the distribution
_yP+a?
dP, = ve 2 Io(av)dv (211)

the former being the distribution of the envelope of noise alone, and the latter
the distribution of signal-plus-noise.

The probability that all of the variates v ~==--V, came from the second dis-

tribution is simply

dPy, = d%(vl)dpz(vz) S sz(uN) (212)
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whereas the probability that they all came from the first distribution is

dByy = dB(v,)dP, (v,) ===~ dB(%) (213)

The ratio of dP to df is the best measure of the likelihood that all the variants
came from the s1gnal plus-no1se distribution. It can be shown that any monotonic
function of this ratio gives an equally good significance test. One arbitrarily
picks a constant which the ratio must exceed to say that it shows that the variants
came from the signal-plus-noise distribution. This constant determines the false
alarm time.

Taking the ratio of Eq. (213) to Eq.(212) and substituting values from Eqs. (210)
and (211) gives

. Uaﬁ+a2
i=N _t '
P I ve v! %(a%)
.= ~ (214)
dPNl ﬁ "1
or
1=N

_Tf—’ (av;) 2 , (215)

where A is the constant which determines the false alarm time.

Taking the log of both sides of Eq.(215) gives

1=

=

. 2
log, I,(ay) > log, N + — (216)

(=]

1=

Note that nothing has been said in the foregoing discussion about integration.
Now, however, Eq.(216) says that the best thing to do is take the log of I, of
each variate, add these functions for each variate, and require the sum to exceed
a certain value, Clearly this calls for a detector and integrator which has the
combined law

y = log I (av) : (217)

The meaning of this result is really quite remarkable (at least to one who is not
a statistician). It says, in effect, that by having the sum only of N variates
which have been subjected to the law y = log I (av), one has as much useful in-
formation as if the individual values of each of the variates were known (as far
as determining to which distribution the variates belong)*.

* If the two distribution functions to be distinguished are normal, then the simple sum of
the N variates, or the mean, is the best criterion. In other words, a linear law would
be the best if the envelopes of noise and signal-plus-noise were normally distributed.
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Suppose that the signal strength is very small (which would make N large for
any reasonable probability of detection). Then'lb(av) 21+ azv%/4 and

(218)

~

a’vz) a? v?
~s
4 4

y = log I(av) x log’(1+

In this case, the square law is seen to be the best possible choice. If, on the
other hand, the signal strength is large, I (av) a;e“ﬂ/v2nav and

eav

v2mav

1
y = log I,(av) ~ log xoav -7 log 2mav ~ av (219)

Thus, for large signals (usually small N) the linear law is best.

It should be pointed out that the results for the two extreme cases, square
and linear law, are not very different (see Fig.42), and in practice a linear de-
tector would usually be preferred on account of its relative immunity to saturation
by large signals.

In the case of a human operator it is difficult to say what law is used in
the process of integration. Thus if a linear detector were used in the receiver, it
is conceivable that the operator might mentally take the sum of the squares in his
integration process, with a net over-all square law effect.

SIGNAL-PLUS-NOISE MINUS NOISE —‘LINEAB LAW

This case is of special interest because of the method which must be used in
obtaining the solution. Since the characteristic function for the linear case cannot
be found, it is necessary to determine the moments for a composite variate directly
from the moments for the signal-plus-noise distribution and those for the noise
distribution alone.

Using a double subscript notation, in which the first index represents the
number of the distribution function and the second index represents the order of
the moment, the following formulae can be derived at once by successive differen-
tiations of the product of the characteristic functions of the individual distribution
functions:

Y o=y, t Yy, (220a)
Y, = v, Yy, v 2 Y, (220b)
Yy = Yy + Y, + 3(Y 0, t Vi Va1 ) (220c)

Uy = Yy t Y 4V Vg t Yy Vig) t 60 (220d)
Vg = Yg -+ Ypg + 6(Vps¥yy + VisVar) * 15(Va¥p * VpWe) * 20V (220e)
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The first set of moments are those for one variate of signal plus noise given
by Eqs.(109) and (110a-d). The second set of moments are for one negative variate
of noise alone. These are simply obtained from the first set of moments by putting
x = 0 and multiplying the odd moments by -1.

The details will not be given, since the results bear the same relation in
general to the square law case as they do when a noise variate is not subtracted
from each signal-plus-noise variate.

USE OF SO-CALLED DETECTION CRITERIA

Lawson and Uhlenbeck have made use of a quantity which is the shift in average
value of a distribution of signal-plus-noise from that of noise alone divided by
the standard deviation of noise alone, which they call the detection criterion. In
symbolic form

k= —mm . (221)

This quantity is also called the deflection criterion, and it is implied that it
must be of the order of unity or greater to have a reascnable probability of detection.

For the square law detector, using the results of Eqs.(8la-b) and (85c), the
criterion becomes

k = x/N (222)
and for the linear detector
SR
k= =N 0. 957/F (223)
) %—1

assuming ¥ to be small.

The object of these criteria is to show the variation in necessary signal-
to-noise ratio as a function of the number of pulses integrated. The results for
k in Eqs.(222) and (223) may be derived rigorously from the basic distribution
equations if the central limit theorem is assumed to hold and for probability of
detection equal to 0.50.

However, it is found from the actual results presented'in No.1, Figs.1-50,
that the square root of N law given by the detection criteria is not closely fol-
lowed, even for N as large as 1,000. If a law of the form

k = xN° (224)
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is assumed, the exponent & may be obtained from the data of Figs.1-50, No.l. The
results are given in Figs.55 and 56, No.l. It is seen that & goes from 1.0 at N =
1 to around 0,75 at N = 1,000. As pointed out earlier (page 182), § = 1 for co-
herent integration.

It has been said that the N* law seems to fit observed data fairly well. It
is the belief of the author that this is a coincidence that arises from the fact
that the losses due to nonlinear integration by cathode ray tubes, and human operator
losses, tend to just about equal the difference between N¢ and Néﬂ so that the N%
law actually seems to fit the observed data.

It 1s rather interesting to note that if the detector law is assumed to be of
the form y = v, the detection criterion turns out to be

Iy

ko= _3) = N . | (225)
2 n!-(§4)

A graph of this function shows a very broad maximum of 1 at n = 2, Thus this is a
special case, showing that for large N the square law is the best of the particular
class of functions v"., This is not as general as the proof on page 210 which shows
that the square law is the best of all possible functions for small x.

COLLAPSING LOSS — INTEGRATION OF GREATER NUMBER
OF NOISE VARIATES THAN OF SIGNAL-PLUS-NOISE VARIATES

In many radar applications, an additional number of noise variates are integrated
along with a given number of signal-plus-noise variates. Such is the case when
three-dimensional data are compressed onto a two-dimensional presentation, or with
a C scope where range is not shown., The loss so occasioned is called a collapsing
loss (3®), An effect of the same kind is caused if the spot of a cathode ray tube
indicator moves less than its diameter in a pulse length(*!), Again, if the video
bandwidth is narrow compared with the IF bandwidth, the same sort of thinghappens.
All three effects are handled by assuming a given collapsing ratio, p, which is
defined by

M+N
= (226)
P N
where
N = number of signal-plus-noise variates integrated
M = number of effective additional noise variates integrated.

In the case of loss caused by low writing speed of the cathode ray beam, the effective
collapsing ratio is given approximately by

‘ d+sT
Pett = " o1 (227)
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where

d = spot diameter
s = writing speed

T = pulse length.

Where the loss is caused by a video amplifier, the equivalent defining equation is
_ Bif+Bv
fett = p (228)

v
where

B}i = IF bandwidth (or total combined RF and IF bandwidth where RF
amplification is used)

B” = video bandwidth.

Mathematically, the treatment necessary to take account of M extra noise variates
is rather simple. It is only necessary to multiply the characteristic function for
N signal-plus-noise variates by the characteristic function for M noise-alone variates.
In the square law case, this results in

. ve(3)
e_mye?’-‘é‘i e-Np(%)e pt1

C = (p+1M = (pe)be (229)

It is apparent, by comparison with Eq.(36), that the results obtained for p = 1
can be used directly to obtain results for any p.

Care must be taken in obtaining the bias level, however. Without the M extra
noise variates, the relation n’ = n/N is used to find the required signal-to-noise
ratio, x, With the added noise variates, the number of groups of pulses integrated
may or may not remain the same. In the case of video mixing, where the output of
two independent radars is superimposed on the same indicator, the number of groups
of pulses integrated is constant, which means that n’ is constant.

In the other cases where the loss is caused by narrow video amplifiers, col-
lapsing of coordinates, or slow writing speed, the number of independent groups
of pulses integrated is reduced by the factor p,¢¢ so that n remains constant as is
easily seen from the equations

n=nnN (no loss) (230)

n = (pn')(M+N) = n'N (with loss). (231)

The collapsing loss is defined as

%,

L, = 10 log, =~ (232)
1

(4

where x, is the required signal-to-noise ratio with ¥ extra noise variates, and
%, is the signal-to-noise ratio required with no extra noise variates, such that
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the probability of detection is the same in both cases. This fixed probability
level will usually be taken as 0.90.

The procedure, after finding %, is to get the required bias from either Fig.

8 or 9, depending on whether n or n’ is held constant, using oN as the number of

variates. From the cumulative distribution functions graphed in Figs. 13 to 32, the

value of %, is found by multiplying the finding x for pN variates to give P =0.90

and multiplying this value of x by p, The reason for multiplying by o is apparent
on referring to Eq.(229). '

The results of the calculation are shown in Figs. 49 to 52 where L is plotted
as a function of N for P = 0.90 and N = 10°%. Also given are curves of €, defined by

— = N°, (233)

It has commonly been said that €, should be 1/2(26)+ (38), This statement is sometimes
derived from the detection criterion given on page 212.

From Fig. 57 it is seen that if n' is constant, & does approach 1/2 as N— @,
However, & is much smaller for reasonably small N. In the case of n constant, the
square root law is not even approached as an asymptote.

It was found that the values of L and 6 are only slightly dependent on the
original values of n and P.

ANTENNA BEAM SHAPE LOSS

It has so far been assumed that the antenna pattern was flat over the half-power
beamwidth and zero elsewhere. In any practical case the beam shape may usually be
approximated by a Gaussian curve which will hold fairly well out to % the beamwidth
from the point of maximum gain. In the case of a searchlighting antenna, the re-
turned pulses will all fall at the same place in the beam, and if this does not
happen to fall at the maximum of the beam, the loss may easily be taken into account
by modifying the expression for gain used in Eq.(9), No.l for calculating R, such that

92 62
-41n2<—§-+——;->
B2 B
G=G _e e ¢ (234)

= azimuth angle between target and antenna axis

where

elevation angle between target and antenna axis

half-power azimuth beamwidth

R~ o A 8D
u

half-power elevation beamwidth

If the antenna is scanning, the problem is entirely changed because the suc-
cessive returned pulses will be of different magnitude. It is obvious that as the
antenna scans past a target, pulses should be integrated out to some point where
the principle of diminishing returns sets in. It is not too difficult to determine
this point and to calculate the loss occasioned due to the beam shape as compared
with the ideal case(43), A complete treatment which covers the general case of delay
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of the received pulse relative to the transmitted pulse, off axis in elevation
while scanning in azimuth, and random orientation of the pulse pattern relative
to the antenna pattern is quite involved. However, the solution of some special
cases has shown the general character to be expected of the results.

The integration of pulses should be carried to about 1.1 times the half-power
beamwidth. This figure is practically independent of the signal strength (range)
and the number of pulses per half-power beamwidth. When the optimum number of pulses
are integrated there will be an average loss over the ideal case which assumes
constant gain between the half-power points. This loss is in the neighborhood of
1.5 db and does not depend much on signal strength or number of pulses per half-
power beamwidth. Since this loss is so small it was not considered worth while to
reproduce all the detailed calculations here.

It should be mentioned that special care is necessary when one considers rates
of antenna scanning so fast that about only 1 hit per beamwidth is obtained. In
this case it may be expedient to make the receiving antenna lag the transmitting
antenna to compensate for the time of travel of the pulse, or to step-scan, that
is, move the antenna in discrete steps rather than continuously.

In order to calculate the probability of detection in any case where the suc-
cessive returned pulses have different signal strengths, it is necessary to obtain
the over-all characteristic function by multiplying the characteristic functions
for each pulse. Using this method it is not difficult to work out the needed results
in any particular case.

LIMITING LOSS

If limiting occurs anywhere in the receiver, the probability of detection
will be lowered, everything else being held constant. The video amplifier is the
first place where limiting will probably occur. Let the limiting ratio be defined
as the ratio of the limit level to the R.M.S. noise level. Limiting can then be
represented mathematically by replacing the probability density function at the
detector output by an equivalent function below the limit level, and a delta func-
tion at the limit level having an area equal to all of the area of the original
function to the right of the limit level. The moments can be calculated for these
new functions (noise alone and signal-plus-noise), and the probability of detection
found by use of the Gram-Charlier series as usual, The calculations are quite tedious
and will not be reproduced here. The main conclusions are that if the number of
pulses integrated is large, the limiting loss is only a fraction of a db if the
limiting ratio is as large as 2 or 3, but if only one or two pulses are integrated
the limiting ratio must be in the neighborhood of 10 to prevent a serious loss.

Limiting in the output of the integrator can also cause a loss, but this loss
is small compared to the loss caused by limiting of the individual pulses in most
practical cases.

EFFECT OF SIGNAL INJECTION ON PROBABILITY OF DETECTION

It has been proposed that the minimum detectable signal can be decreased by
the injection of an RF or IF carrier voltage that adds linearly to the received
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echo and the receiver noise (%Y, The theory is that the total signal will then be
large compared with the noise, and thus the so-called modulation suppression that
occurs in the process of detection with small signals will be eliminated.

In such a process, the coherence of the injected signal with the received
echo must be taken into account. If the target is moving, then the successive re-
ceived pulses may be considered to be random in phase, so that the injected signal
will necessarily be noncoherent with the echo. Analysis has shown that in this case
the probability of detection decreases continuously as the magnitude of the injected
signal increases, assuming a linear or square law detector. However, it can be
shown that the best possible detector law starts to change radically as soon as
the injected signal strength becomes comparable to noise. The analycis of proba-
bility of detection when the detector function is altered to take into account
the injected signal has not been completed. Preliminary estimates indicate that
there will be only a small decrease in sensitivity in this case.

It might be imagined that coherence could be obtained in a system using only
one hit per target but having, say, 20 separate receiver channels with 20 separate
injection oscillators having phases spaced 12 degrees apart. Thus, the return echo
would be nearly coherent with some one of the chamnels. Theoretically, the improvement
in this channel would be about 1 db. However, even this improvement would be just
offset by the increased false alarm number due to the multiple channels, so that
the over-all system improvement would be nil. It seems that there is no way to
increase system sensitivity to moving targets by signal injection.

There is some possibility of increasing sensitivity for stationary targets
by coherent signal injection, but it is difficult to imagine a practical situation
where such a method would be of any use.

PROBABILITY OF DETECTION WITH MOVING TARGET INDICATION SYSTEMS

The analysis of the probability of detection for MTI systems is quite compli-
cated. It depends on the type of receiver (lin-log limiting or IAGC), the type
of detector, and the characteristics of the storage device used. For a nonfluc-
tuating clutter and no scanning noise, the effect of the clutter with or without
the addition of a coherent oscillator is much the same as that of the injected
carrier discussed in the previous section. If a suitable detection system is used, the
sensitivity may be reduced by a small amount, due to the addition of the coho, perhaps
by 1 to 3 db.

The sensitivity of an MTI system for high probabilities of detection is further
reduced due to the fact that the target may be moving at a speed differing from
one of the so-called optimum speeds. This effect is quite complicated and is similar
to that caused by a random variation of the cross section of a target with aspect.
A method of quantitatively treating these problems has been developed and will be
presented in detail in a future report.

If there is a fluctuation component in the clutter, due either to the movement
of the clutter itself or to the scanning of the antenna, the effect will be to
increase the amount of noise at the receiver input. This can be taken into account
by an appropriate adjustment in the value of the noise figure of the receiver that
will change R by the correct amount.
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TABLES OF THE DERIVATIVES OF THE ERROR FUNCTION

In order to make efficient use of Gram-Charlier series, it is necessary to
have a good table of the derivatives of the error integral (the ¢ functions of Kq.
62). No satisfactory table was in existence at the time this report was written.,
Typical of the available tables(®) were

i

1(1)6, *
1(1)6, x

0(.1)4 5 decimals
0(.01)4 7 decimals

Fry (® n

Jorgensen n

and an unpublished table of the W.P.A., giving
n=1(1)14, x = 0(.1)8.4 20 decimals
RAND therefore decided to calculate a suitable table with the aid of its IBM
equipment., This has resulted in a table of Hermite polynomials, as well as in the
derivatives of the error integral, giving

n=1(1)10, ~ = 0(.01)12.0 6 significant figures

A limited number of these tables are available at the present time. (RAND Document
D-350, A Table of Hermite Polynomials and the Derivatives of the Error Function.)
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