FPGAs Make a Radar Signal Processor on a Chip a Reality

Ray Andraka, P.E., Andraka Consulting Group, Inc
Andrew Berkun, Jet Propulsion Laboratory

Abstract

Radar signal processors heavily tax the capabilities of
conventional microprocessor based signal processing
systems. Higher performance systems using custom
silicon cost too much for the typically small production
volumes, and are not flexible enough for research
applications. Field programmable gate arrays offer
the performance of custom silicon while maintaining
the economies and flexibility of the microprocessor
based solutions. Recent devices possess the density
and performance to realize a complete radar signal
processor in a single FPGA, including complex down-
conversion of the IF to base-band. Performing the
down-conversion and matched filtering in the FPGA
eliminates the specialty chips previously needed for
these functions, making it possible to use commercially
available FPGA boards. Our system packs 4 channels
into a pair of FPGAs. Each channel (a demodulator, a
matched filter and a Doppler pulse pair processor)
executes over 5 billion multiplies per second.

1. Introduction

Radar works by bouncing electromagnetic energy
off a target, recording the echo and making some
useful observation from the data. A fundamental
problem in radar is that the vast majority of the
reflected energy does not make it back to the receiver.
Much of the processing in a radar system is to improve
the signal to noise ratio of the received signal. Our
system is intended to measure the amount and velocity
of rain in and below a cloud from an aircraft above the
cloud layer.

Our radar uses pulse compression, that is to say we
spread the transmitted pulse out in time and then
process the received echo with a matched filter to de-
spread it. We also band-limit the return and digitally
demodulate the signal to a complex baseband. Finally,
we measure and average the echo power and the
doppler shift between successive echoes to obtain the
desired measurements. Our system uses four channels
with different frequencies and field polarizations to
obtain a more accurate picture of the weather.

The net processing for each channel requires over 5
billion multiplies per second - well beyond the
capabilities of traditional microprocessor solutions.
The low production volume and the desire to be able to
adjust the processing in the future has driven us to an
FPGA based solution. Furthermore, by doing the
demodulation and matched filtering in FPGAs rather
than with specialty devices, we can use commercially
available boards, thereby avoiding the cost, risk, and
schedule of designing our own. Application of a few
algorithmic tricks, careful FPGA floorplanning and the
remarkable density and performance of the current
FPGAs allows us to put all the processing for two
complete channels into a single FPGA.

2. Doppler pulse pair radar basics

2.1. Pulse pair processing

The echo for each radar pulse is demodulated and
digitized into a large number of complex samples
(range gates in radar terminology). Each sample index
corresponds to a specific time offset from the start of
the radar pulse, so each sample represents the reflected
energy at a specific range. The complex time series of
samples at a given range gate can be processed with a
Fourier transform to obtain the doppler spectrum of the
echo at that range, from which the mean velocity and
variance can be obtained. For a pulsed radar, it can be
shown that the pulse pair algorithm provides a reliable
estimate of the mean doppler frequency[l] at each
range gate:

1N
R= N S5k
k=0
where s are successive samples at a range gate
and * indicates the complex conjugate.

Since this algorithm is simpler to compute than an FFT
and is not biased by receiver noise, it is the algorithm
of choice for most meteorological applications. We
need to compute the average power along with the
mean doppler shift to provide a reference and for
measuring the total area of the raindrops at a given
altitude. The average power at each range is:

Copyright 1999 IEEE. Published in the Proceedings of the Asilomar Conference on Signals, Systems, and Computers, October

24-27, 1999, Monterey, CA, USA.

Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component

of this work in other works, must be obtained from the IEEE.

Ray Andraka

Ray Andraka
Copyright 1999 IEEE. Published in the Proceedings of the Asilomar Conference on Signals, Systems, and Computers, October 24-27, 1999, Monterey, CA, USA.
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

N-1 .
Re|s,s |
k=0
The mean doppler frequency output for each range
gate is a complex value. Its phase indicates how much
the raindrops have moved from one echo to the next.
The magnitude gives a weight to the phase value
(stronger echoes count more than weaker ones). The
difference between the average doppler magnitude and
the average power measurement provides a measure of
the “spread’ of the velocities in a set of echoes.

R=—

2.2. Pulse compression

Transmitted pulse power plays a large part in the
signal to noise ratio of the received echoes. Higher
power means better detection. The range resolution of
radar is inversely proportional to the width of the
transmitted pulse, so we desire to make the pulse as
narrow as practical to obtain the best range resolution
we can. Unfortunately, narrowing the pulse means that
the peak pulse power has to be increased to keep the
total pulse power constant. High peak powers present
many practical problems in the transmitter design [2].

Instead, we can transmit a long coded pulse, and
then compress the echo into an impulse in the receiver
using a matched filter. The idea is to spread the
transmit energy out over time to limit the peak transmit
power, then use correlation at the receiver to recover
the range resolution. In our case, the coded transmit
pulse is a linearly swept frequency ‘chirp’. The
transmit pulse can be viewed as a convolution of an
impulse and a filter with an impulse response equal to
the desired transmit waveform. Ideally, the receive
filter is the inverse filter so that filtering the transmit
waveform restores the original impulse. The impulse
response of this receive filter is the complex conjugate
of the time-reversed chirp. In practice we need to
window the filter to suppress range sidelobes [3] and
we will apply corrections for non-linearity and noise in
the transmitter and receiver. We desire to do the
matched filtering in the digital part of the processing to
give us the flexibility of changing the transmit
waveform and frequency, optimizing the filter for a

Real input signal with 4 MHz

particular doppler range, and applying corrections for
the analog front end. The matched filter’s reference
waveform is as long as the transmit waveform, which
in this case is 40 psec. In order to keep the number of
taps in the filter to a minimum, we operate the filter at
the lowest sample rate possible. At 5 MHz, this
translates to a minimum filter length of 200 complex
taps. We’ve extended the filter to 256 taps to
accommodate longer chirps in the future.

2.3. Demodulation and video filtering

Quadrature phase detection is used to obtain the real
and imaginary parts of the complex echo envelope
necessary for doppler pulse pair processing. By doing
the demodulation from IF to complex baseband in the
digital domain, we avoid the channel mismatch and
drift problems associated with an analog quadrature
phase detector. Additionally, using a digital video
filter gives us a much better and more flexible filter
than we can afford to build in the analog domain. The
final analog IF is a 4MHz wide signal on a 5 MHz
carrier. By oversampling at 20 MHz we can use an
anti-alias filter with a fairly gentle roll-off, and as we
will see shortly, we gain a significant processing
advantage for the digital demodulation.

The digital video filter attenuates the noise outside
the 3 to 7 MHz passband. That noise is mostly receiver
thermal noise, so it is Gaussian and is spread evenly
across the digitized spectrum. The video filter
attenuates the out of band noise by 20 dB. Quadrature
demodulation requires the removal of the negative
frequency passhand image either before or after the
complex mixer. Since decimation aliases that image
onto the desired signal, the phase splitter has to
attenuate the image by at least 85 dB.

The complex mixer shifts the echo spectrum down
by . so the positive frequency component becomes a
complex baseband signal. The phase splitter suppresses
the negative frequency part which is shifted to -2u.
The resulting complex baseband signal has a 2 MHz
bandwidth, so we can decimate it 4:1 without aliasing
to minimize the processing load in the matched filter.

Avg power

¥ K Fifo

] Avg doppler
—| g dopp

¥ K Fifo

¥ K Fifo

Bandwidth on 5 MHz carrier)

sampled at 20 MHz Delglnlate 50 Hsec
12 bit Video Bh y Matched

> Apc [—+{Bandpass Sa['ste Filter

Filter pi (256
complex

gjwet coefficients)
(5 MHz)

':>Complex samples * Complex Conjugate

Figure 1. Radar signal processor (one of four channels shown)

3. Making it happen in an FPGA

The matched filter in each channel alone requires
over 1000 multiplies per sample, a processing load that
easily overwhelms a microprocessor. By taking
advantage of the parallelism available in an FPGA and
using a few algorithmic tricks, we can easily handle the
processing for two channels in one FPGA.

3.1. Algorithmic efficiencies

The video filter and the phase splitter (a Hilbert
transform filter) can be combined into a single analytic
filter, which is still a bandpass filter, but it only passes
the positive frequency components of the real input
signal. The impulse response of that filter has to be
complex, so the filter requires two real filters for
implementation. That composite filter response can be
demodulated to move it to the other side of the
mixer[4] as shown in Figure 2. Note that the translated
filter response is a low pass filter. Rearranging the
demodulator provides an opportunity for significant
computational optimizations.

Decimate
Video by 4
Bandpass Phase
> Fiter [Split

2f(t) cos(Wct)

e =cos(Ut)-jsin(&.t)
a) conventional arrangement

cos (&t) Decimate

Lowpass Filter by 4
V2 f(t) '
Lowpass Filter o)
V2 £(t)
-jsin(Cet)

b) Filter translated to follow mixer

Figure 2. Equivalent demodulator structures.

Decimating the filter output involves discarding
three of every four output samples. Since we do not use
the discarded samples, there is no need to perform the
associated computations [5]. Figure 3 shows the
computations for three successive retained outputs for
a FIR filter when the output is decimated by four.
Inspection reveals that each coefficient only multiplies
every fourth sample. The filter can be decomposed into
a sum of 4 sub-filters, each of which filters a particular
“phase” of the input signal. One filter phase is
highlighted in the illustration. Each sub-filter operates
at the decimated sample rate rather than the input rate,
so even though there are as many taps as the original
filter, the processing load is a quarter of what it was.

Figure 4 shows the resulting decimate by four filter
structure.

Yo =[XkCo |+ Xk1C1 + Xk2C2 + Xk3C3z HXkaCsa |+...
Yi+a =[Xk+4Co [F Xks3C1 + Xks2C2 + Xks1Cs HXkCa |+...
Yise =[Xkt8Co [+ Xks7C1 + Xk6C2 + Xis5Ca H X +4C4q+...

Figure 3. Filter output after decimating by 4

Xo,X4,Xs...—» 16 Tap FIR

20MHz ., xs,xs...— 16 Tap FIR 5 MHz
nput Output
X2,X6,X10...~ | 16 Tap FIR

15 Tap FIR

X3,X7,X11..._>
Figure 4. 63 tap decimate by 4 FIR filter.

The N coefficients of a FIR filter with linear phase
are symmetric so that C; = Cy;. The number of
multiplies can be cut in half by folding the tapped
delay line and pre-adding sample pairs before
multiplying by the coefficient as is shown in Figure 5.

Yk = XkCo + Xk1C1 + Xk2C2+ Xk3C3 + ...+ XknChn

Y= (Xk+ Xkn)Co + (X1t Xkns1)Ca + ...+ (Xkn2)Criz
Figure 5. Symmetry reduces multiplications

As with many systems, we have some freedom in
the selection our input sample rate. If it is set to be
exactly 4 times the local oscillator, then the complex
local oscillator, e, is represented by the repeating
complex sequence: 1, -j, -1, j. When followed by a
decimate by four filter, the LO value is constant for
each phase of the filter. The mixer can be eliminated
by weighting each of the sub-filters with the LO value
corresponding to that phase [6]. Note that the phase
angles selected weight half of the sub-filters with zero,
eliminating those sub-filters as shown in Figure 6.

20 MHz Real Input
1+0j Xo0,X4,X8...— >

O+j X1,Xs5,X9...~» 16 Tap FIR 5 MHz
Complex
-1+0] X2,Xs,X10... > 16 Tap FIR Output

0- Xsxzxu...~ ™ 15 Tap FIR
Figure 6. Complete decimating downconverter
with 63 tap video filter

If the length of the filter is odd and its coefficients
are symmetric, the | and Q filters each use only half of
the 32 unique coefficients (I uses 16, Q uses the other
15). Using the symmetry cuts the multiplications in the
filter in half again. We took advantage of decimation
and symmetry in our demodulator. The matched filter
is non-symmetric so these tricks do not apply there.

3.2. Bit serial arithmetic

Modern FPGAs can easily handle synchronous
designs with clocks faster than 100 MHz with
extensive pipelining and careful design. In designs like
this, where the data rate is a comparatively low 5 MHz,
a conventional bit parallel design leaves much of the
FPGA'’s capability unused.

Bit parallel designs process all of the bits of a data
word simultaneously. In contrast, a bit serial structure
processes the data one bit at a time. The advantage is
that all of the bits pass through the same logic, result-
ing in a huge reduction in the required hardware. Typi-
cally, a bit serial design requires only about 1/n™ of the
hardware needed for the equivalent n-bit parallel de-
sign[7][8]. The price of this logic reduction is that the
serial hardware takes n clock cycles to execute, while
the equivalent parallel structure executes in one.

3.3. Distributed arithmetic

Bit serial arithmetic alone doesn’t reduce the size of
the complex matched filter enough to fit it in an FPGA
(A thousand 12 bit serial multipliers alone would just
about fill a Virtex XCV1000. Another trick, distributed
arithmetic [9][10], is the key to compacting the filters
to a manageable amount of hardware. This technique
rearranges the multiplies and adds of a sum of products
at the bit level to take advantage of small tables of pre-
computed sums.

The distributed arithmetic approach is an inherently
serial process, but the computations for each bit can be
performed in parallel to obtain more performance if
necessary. Figure 7 shows a four tap FIR filter made
of serial by parallel “scaling accumulator” multipliers.
The AND gates compute a 1 x n partial product which
is added to the shifted sum of the previous partial
products for each bit in the serial input. The
coefficients, C;, are generally constants. The first shift
register serializes the input and the remaining ones
delay the input by one sample time each.

Scaling Accum

Scaling Accum

Scaling Accum
AeCo+ BeCi1+ CeCo+ DeC3

W

Figure 7. Four tap serial FIR filter

Each of the scaling accumulators simply sums the
1 x n partial products for the multiplication of the
associated coefficient. The adders can be rearranged so
that the 1 x n partial products from all the coefficients
are summed before adding the result to the previous bit
sum as shown in Figure 8. Note that the 1x n multiplies
are still done at the beginning; all we have done is
changed the order that we sum the partial products.
This simple change directly eliminates k-1 registered
adders in a k tap serial filter.

Scaling Accum

<<1
aéa
I

AsCo+ BeCa+ CeCa+ D+C3

Figure 8. Serial FIR filter rearranged to adder
tree and one scaling accumulator

Since the coefficients are constants, the AND gates
and adder tree can be reduced to a look-up table with a
four bit input. The sixteen table entries are the sums of
the 1 x n products of the inputs and coefficients for all
the possible input combinations, as shown in Figure 9.
The table is made wide enough to accommodate the
largest sum without overflow.

. AN

A Addr [Data
Cy 0000 |O
B; 0001 |Co
Cs > 0010 |C:
0011 |Co+Cy
Ci
Cs 2 S
Di 1710 [Ci+ Co+ Cs
1111 |Co+ C1+ Cy+ C3

Figure 9. Serial adder tree and coefficients
can be implemented as look-up table in ROM

The size of the look-up table grows exponentially
with the number of inputs. Rather than creating a
larger table, we combine the outputs of smaller tables
with adders. That way, the size of the circuit grows
linearly with the number taps instead of exponentially.
This architecture is well suited to FPGAs that use 16x1
look up tables as their basic logic resource.

The actual circuit is heavily pipelined to increase
the circuit throughput at the expense of clock latency.
A serial distributed arithmetic filter with 12 bit
coefficients implemented in the slowest speed grade
(XCV1000-4) Xilinx Virtex is capable processing at
more than 150 Mbps, regardless of the number of taps.
A 256 tap filter with 12 bit coefficients occupies about
715 Virtex configurable logic blocks (CLBs), which is
less than 3 CLBs per tap.

3.4. Interleaved processing

The filter design can be clocked at more than twice

the bit rate we require for 12 bit inputs, even in the
slowest parts. We can take advantage of the excess
capacity by multiplexing two channels through one set
of hardware when the processing for both channels is
identical. A distributed arithmetic filter is modified to
handle two channels by simply doubling the delay
between taps and adding a clock delay in the
accumulator feedback loop. The delay in the
accumulator loop lets us accumulate two sums
simultaneously: one sum is accumulated on the odd
clocks, and one on the even clocks. The input to the
filter is interleaved serial data so that one channel’s
data is shifted in on even clocks and the other on odd
clocks. Both channels must use the same filter
coefficients.
The demodulator circuit uses the same filter
coefficients for all the channels, so by interleaving bits,
one demodulator circuit can handle two channels. The
matched filter coefficients are unique to each channel
so it cannot be shared among channels. However,
since the matched filter has complex inputs and
coefficients, it processes the | and Q data streams with
identical pairs of real filters. We can interleave the ‘I’
and ‘Q’ samples so that we implement the complex
matched filter with a pair of two channel filters instead
of four filters as shown in Figure 10.

1,Q —

Re[h(4)]

Im|h(@)] T

Q. —*

Figure 10. Complex filter using interleaved
sample 2 channel filters

4. The FPGA solution

A two channel processor fits into one Xilinx Virtex
XCV1000-4 FPGA using the optimizations described.
The two channel processor consists of a 2 channel
decimating demodulator, (Figure 4 modified for 2
interleaved channels), a pair of complex matched filters
(Figure 10) and a pulse pair processor for each channel.
The decimator and matched filter both have 12 bit
coefficients and 13 bit inputs (we added a 13" bit to
take advantage of the SNR improvement out of the
video filter). The demodulator and complex matched
filters for two channels occupy approximately 3100
CLBs - about half of the FPGA’s logic cells.

The complex multipliers in the doppler pulse pair
process are implemented with 24 x 26 scaling
accumulator multipliers, (the 24 bit parallel input is the
previous pulse sample). The FIFO buffers for the

previous pulse and averaging are implemented in the
Virtex Block RAM, so even the memory for the
processor is inside the FPGA.

The entire 2 channel design occupies approximately
55% of the logic plus all of the block RAM in the
XCV1000. The design is implemented on an
Annapolis Microsystems Wildstar™ board which
contains 3 Virtex XCV1000-4s. We’ve used two of the
FPGAs for the four channel processor, leaving the third
for future processing needs. The design is clocked at
130 MHz to allow two interleaved 13 bit 5MHz
processes. Timing analysis indicates the design is
capable of better than 150MHz, a healthy 15% margin.

5. Conclusions

In this paper we have discussed the implementation
of a doppler weather radar processor in an FPGA. We
presented a series of design optimizations and
hardware tricks that allowed us to perform the
equivalent of over 10 billion multiplies per second in
one part. The tricks and techniques discussed here are
extendable to a large class of signal processing
applications in communications, imaging and other
areas, all of which can benefit from an FPGA
implementation.

6. References

[1] Serafin, R.J., “Meteorological Radar,” in Skolnik, M.,
Radar Handbook, 2™ Edition, McGraw-Hill, 1990.

[2] Weil, T.A., “Transmitters,” in Skolnik, M., Radar
Handbook, 2™ Edition, McGraw-Hill, 1990.

[3] Farnett, E.C. and Stevens, G.H., “Pulse Compression
Radar,” in Skolnik, M., Radar Handbook, 2" Edition,
McGraw-Hill, 1990.

[4] Lee, E.A. and Messerschmitt, D.G., Digital
Communication, 2" Edition, pp. 203-206, Kluwer Academic
Publishers, Norwell, Massachusetts, 1994.

[5] Vaidyanathan, P.P., Multirate Systems and Filter Banks,
Chapter 4, Prentice-Hall, Englewood Cliffs, NJ., 1993.

[6] Frerking, M.E., Digital Signal Processing in
Communication Systems, Kluwer Academic Publishers,
Norwell, Massachusetts, 1993.

[7] Denyer, P. and Renshaw, D.,VLSI Signal Processing: a
Bit Serial Approach, Addison-Wesley Publishers LTD,
England, 1985.

[8] Andraka, R.J., “FIR Filter Fits in an FPGA Using a Bit
Serial Approach,” Proceedings, 3™ Annual PLD conference
and exhibit, March 30-31, 1993. CMP Publications,
Manhasset, NY, 1993.

[9] Peled, A. and Liu, B., “A New Hardware Realization of
Digital Filters,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-22, pp. 456-462, Dec. 1974.

[10] Goslin, G and Newgard, B., “16 Tap, 8 Bit FIR Filter
Applications Gude,” Xilinx Application Note, Nov, 1994.
Available: http://www.xilinx.com/appnotes/fir_filt.pdf

