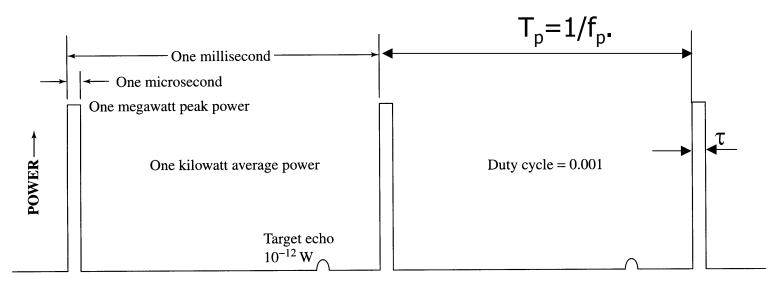

Lecture 1:

- •Radar: Radio Detection and Ranging
- •Block schematic diagram
- •Radar bands
- •Radar range equation

The transmitter "fires" a signal and the receiver waits until it detects the echo.



Lecture 1, Page 2

The waiting time between the epoch of transmit and the epoch of receive gives the range.

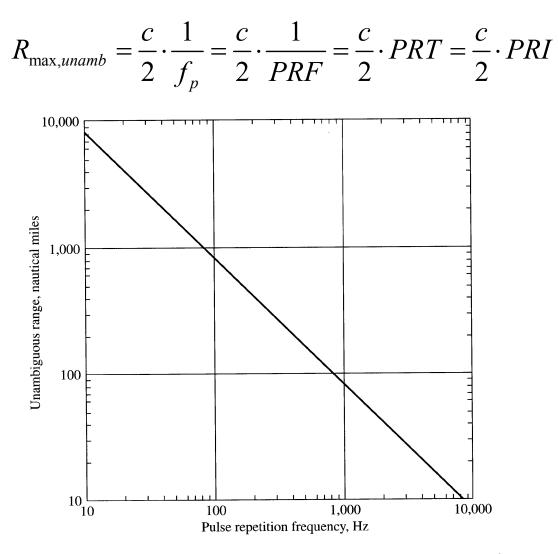

TIME→

Figure 1.3 Example of a pulse waveform, with "typical" values for a medium-range air-surveillance radar. The rectangular pulses represent pulse-modulated sinewaves.

(note the orders of magnitude!!)

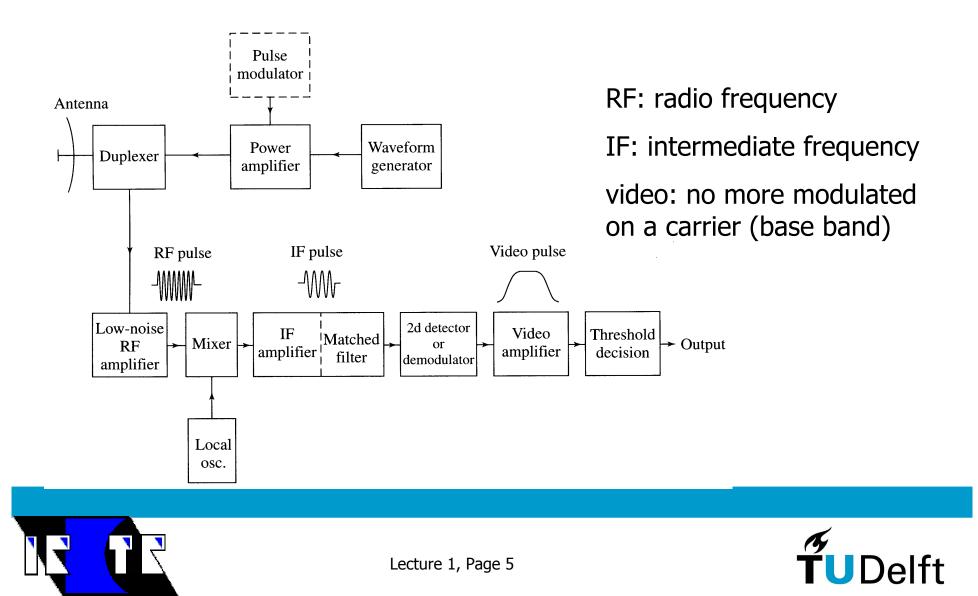
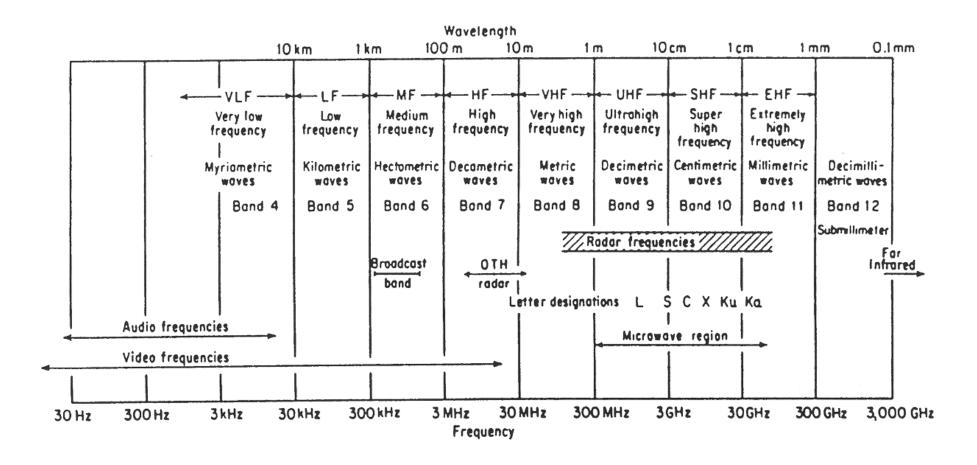


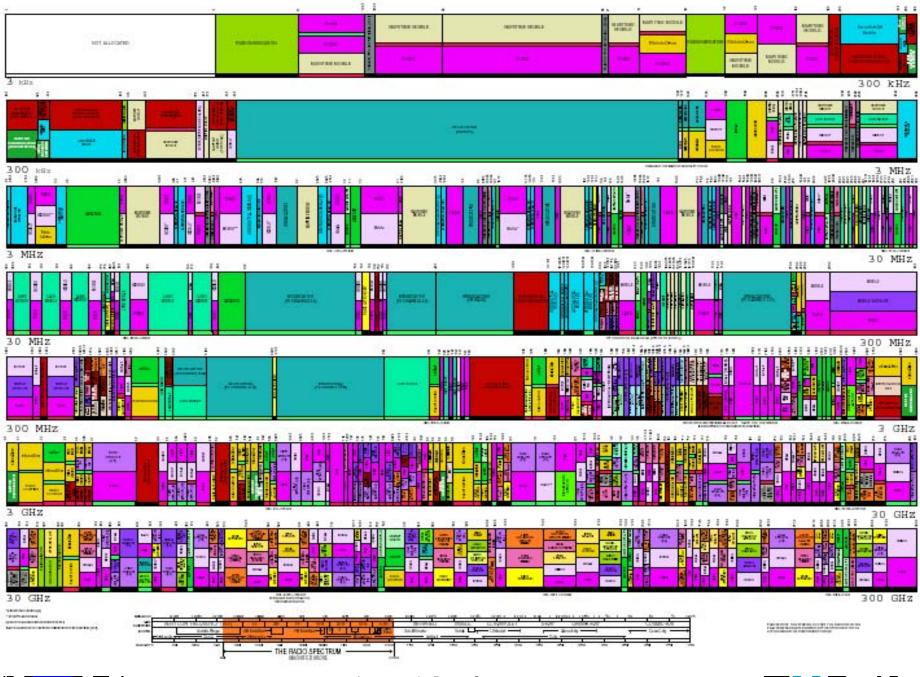
Figure 1.2 Plot of Eq. (1.2), the maximum unambiguous range R_{un} as a function of the pulse repetition frequency f_p .

Lecture 1, Page 4

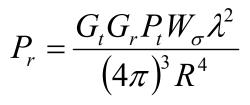
Basic block diagram of a pulse radar

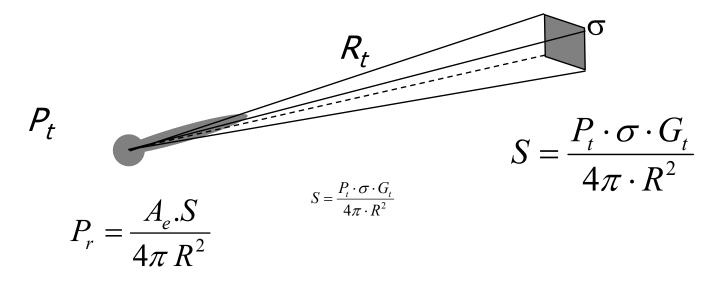

Band Designation	Nominal Frequency Range	Specific Frequency Ranges for Radar based on ITU Assignments in Region 2	
HF	3–30 MHz		
VHF	30-300 MHz	138–144 MHz 216–225 MHz	
UHF	300–1000 MHz	420–450 MHz 850–942 MHz	
L	1–2 GHz	1215–1400 MHz	
S	2–4 GHz	2300–2500 MHz 2700–3700 MHz	
С	4–8 GHz	5250-5925 MHz	
X	8–12 GHz	8500–10,680 MHz	
K _u	12–18 GHz	13.4–14.0 GHz 15.7–17.7 GHz	
K	18–27 GHz	24.05–24.25 GHz	
K_a	27–40 GHz	33.4–36 GHz	
V	40–75 GHz	59–64 GHz	
W	75–110 GHz	76–81 GHz 92–100 GHz	
mm	110-300 GHz	126–142 GHz 144–149 GHz 231–235 GHz 238–248 GHz	

*From "IEEE Standard Letter Designations for Radar-Frequency Bands," IEEE Std 521–1984.



NATO designations are different from IEEE's standard!





Lecture 1, Page 8

TUDelft

Radar Range equation

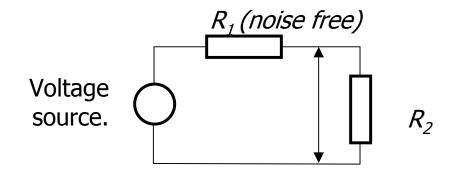
With
$$A_e = \frac{G_r \lambda^2}{4\pi}$$
 one arrives at $P_r = \frac{G_t G_r P_t \cdot \sigma \cdot \lambda^2}{(4\pi)^3 R^4}$

$$P_r = \frac{G_t G_r P_t \cdot \sigma \cdot \lambda^2}{(4\pi)^3 R^4} \quad R_{\max} = \left(\frac{P_t G_t G_r W_\sigma \lambda^2}{(4\pi)^3 P_{r,\min}}\right)^{1/4}$$

Or by isolating R:

$$R_{\max} = \left(\frac{P_t G_t G_r \sigma \cdot \lambda^2}{(4\pi)^3 P_{r,\min}}\right)^{\frac{1}{4}}$$

Indicating $P_{r,min} = S_{min}$ the equation yields:


$$R_{\max} = \left(\frac{P_t G_t G_r \sigma \lambda^2}{(4\pi)^3 S_{\min}}\right)^{1/4}$$

The open terminal voltage of a noisy resistor is sqrt(4kTB) Volts.

The power that can be dissipated by this resistor can be computed according to the following substitution model:

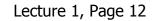
Then the maximum power that can be dissipated in the load R_2 is, when $R_1=R_2$. In this case this maximum power is:

$$\frac{4kTR_1B}{4R_1} = kTB$$

Introducing the noise figure F as:

$$F = \frac{\text{noise out of a practical receiver}}{\text{noise out of an ideal receiver at temperature } T_0}$$

$$F = \frac{N_o}{N_{ideal}}$$


$$F = \frac{N_o}{kT_0BG_a}$$

After $G_a = S_o/S_i$ one finds:

$$F = \frac{S_i N_o}{kT_0 BS_o} \qquad \text{and} \qquad S_{i,\min} = \left(\frac{S}{N}\right)_{o,\min} kT_0 BF$$

UDelft

Substituting this in the radar range equation and including loss factors on transmit and receive:

$$R_{\max} = \left(\frac{P_t G_t G_r \sigma \lambda^2}{\left(4\pi\right)^3 k T_0 B F \left(\frac{S}{N}\right)_{o,\min} L_t L_r}\right)^{1/4}$$

Example: Radar range equation

$$R_{\max} = \left(\frac{P_t G_t G_r \sigma \lambda^2}{\left(4\pi\right)^3 k T_0 B F\left(\frac{S}{N}\right)_{o,\min} L_t L_r}\right)^{1/4}$$

			numerator	denominator
Peak power	10log(P)	P=50 kW	47	
Antenna Gain	20log(G)	G=33 dB	66	
RCS	10log(RCS)	RCS=1 m ²	0	
Wavelength	20 log(λ)	λ= 0.1 m	-20	
(4π) ³ kT ₀				-171
Bandwidth 10 log(B)	B=1 MHz			60
Noise figure		3 dB		3
Required S/N	Pd=80%; Pfa=10 ⁻⁶			17.9
Transmit and receive losses		1+2 dB		3
Subtotals			93	-87.1

40 log Rmax = 180.1 dB \rightarrow Rmax=31805 m.

