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The book 15 a monograph written as a result of research by the
author. The diffractlion of plane electromagnetic waves by ideally
conducting bodies, the surface of which have discontinuities, is in-
vestigated in the book. The linear dimensions of the bodies are
assumed to be large in comparison with the wavelength. The method
developed in the book takes Into account the perturbation of the fleld
in the vicinity of the surface discontinuity and allows one to sub~-
stantfally refine the approxiﬁations of geometric and physical opties.
Expressions are found for the fringing fileld in the distant zone.

A numerical calculation 1s performed of the scattering characteristics,
and a comparison is made with the results of rigorous theory and with
experiments. ‘

The book 1s intended fcr physlcists and radlo engineers who are
interested in diffraction phenomena, and also for students of advanced
courses and aspirants who are speclalizing 1n antennas and the
propagation of radio waves.
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FOREWORD

First of all, one should explain the term "physical theory cf
dtffraction”. In order to Jdo this, let us discuss briefly the histo-
rical development of diffraction theory.

If one Investigates, for example, the incldence of a plane elec~-
tromagnetic wave on a body which conducts well, all the dimenslons of
which are large in comparison with the wavelength, then the simplest
solutlion of this éroblem may be obtained by means of geometric optiecs.
It is known that in a number of cases one must add to geometric opties
the laws of physical optics which are connected with the names of
Huygens, Fresnel, Kirchhoff and Cotler. Physlcal optics uses, together
with the field equatlions, the assumption that in the vieinity of a
reflecting body geometric optics is wvalid.

At the start of the Twentleth Century, a new division of mathe-
matical physics appeared - the mathematical theory of diffraction.
Using it, rigorous solutions to the problem of diffraction by a wedge,
sphere, and infinite cylinder were obtained. Subsequently, other
rigorous solutions were added; however, the total number of solutions
was relatively small. For sufficiently short waves (lIn comparison
with the dimensions of the body or other characteristic distances)
these solutions, as a rule, are ineffective. Here the direct
numerical methods also are unsuitatle.

Hence, an interest arose in approximation (asymptotic) methods
which would allow one to investigate the diffraction of sufficiently
short waves by varilous bodles, and would lead to more precise and
reliable quantitative results than does geometric or physical optics.
Obviously, these methods must in some way be considered the most f
important results extracted from the mathematical theory of diffraction.
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In the "pecnetrlce theory of diffraction" proposed by Keller, the
rezults obtained In the machemattcal theory of diffraction of short
waves were exactly the ones which were used and gencralized. Here,
the concept of diffractlon rays advanced to the forefront. This
concept was expresscd rather az a physical hypothesls and was nct
sultable for representing the fleld in all of space: 1t was not
usable where the formation ol the diffraction fleld takes place (at
the caustlie, at the boundary of light and shadow, etc.). Here it is
imposslible te talk about rays, and one must use a wave interpretation.

What hacz been said above makes it clear why a large number of
works appeared in which the diffraction of short waves was investi-
gated by other methods. Among those applled to reflecting bodies with
abrupt surface discontlinuities or with sharp edges (strip, disk,
finite cylinder or cone, etc.) one should first of all mention the
works of P. Ya. Ufimtsev. These works began to appear in print in
1957, and it 1s on the basls cf them that this book was written.

A\

P. Ya., Ufimtsev studled the scattering characteristics by such
todies by taking into account, besides the currents being excited on
the surface of the body according to the laws of geometric optics
(the "uniform part of the current"” according to his terminology), the
additional currents arising in the vicinity of the edges or borders
which have the character of edge waves and rapidly attenuate with in-
creasing distance from the edge or border (the "nonuniform part of the
enrrent”), Cne ma, Jind the radiation field created by the additional
currents by comparing the edge or border with the edge of an infinite
wedge or the border of a half-plane. In certain cases, one is
obliged to consider the diffraction interaction of the various edges
- that 1is, the fact that the wave created by one edge and propagated
past another edse 1s diffracted by 1t (secondary diffraction).

Such an approach to the diffraction of short waves has great
physlcal visuallzabllity and allows one to obtain rather simple
approximation expressions for the field scattered by varicus metal
bodies. This approach may be called the physical theory of diffraction.
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Thlc rame 1s applled to many works on the diffraction of siort waves
in which the mathematical difficulties are bypassed by means of physi-
cal conslderations.

It 15 clear that the physlcal theory of diffraction 1s a step
forwWward 1in comparison with physical optics, whiceh in general neglects
the additional (edge) currents. The results obtained in thils book
show that with a glven wavelength the physical theory of diffraction
glves a better precision than physical optics, and with a given pre~
cision the physical theory of diffraction allows one to advance into
the lonrer wave reglon and, in particular, to obtain a number of
results which are of interest for radar where the ratios of the dlmen-
sions of the bodies to the wavelength do not reach such large
values as in optlcs.

In addition, the physiecal thecry of diffraction encompasses a
number of interesting phenomena which are entirely foreign to physical
optics. Thus, in a number of cases the additional currents give, not
a small correction to the radlation field, but the maln contribution
to this field (see especlally Chapters IV and V). If a plane wave
1s diffracted by a thin stralght wire (a passive vibrator), then the
additional current falls off very slowly as one goes further from the
end of the wire. Therefore, the solution is obtalned by summing the
entire array of diffraction waves (secondary, tertiary, etc.) which
successively arlse as a consequence of the reflection of the currents
from the ends of the wires. It has a resonance character. Thus, the
problem of the scattering of the plane wave by a finite length wire
which 1s a diffraction problem of a slightly unusual type 1s solved
in Chapter VII. The resulting solution i1s applicable under the condi-
tion that the diameter of the wire 1s small in comparison with the
wavelength and length of the wilre, and the ratio of the lenpgth of the
wire to the wavelength is arbltrary.

The final equations which are derived 1n this book u«nd are used
for calculations are not asymptotic 1n the strict sense of the word.
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Therefore, 1t is rnatural to pose the question: 1in what way wlll the
subseguent asymptovic equatlons differ from them when at last one
ohtalns them in .. mathematical theory of diffraction? One can say
beforehand that the maln term of the asymptotic expansicn will not,

in the general case, agree with the solution obtalned cr the basic of
plivsiral congiderations: other (az a rule more complicated) slowly
varying functlions which determine the decay of the fields and currents
a8 one goe«{further from the edres and borders, and also the diffrac-

.tion interactlion cf the edges and the shadowing of the edge waves will

fiwur> in the main tern. However, the refinement of the slowly vary-

functions in the expression for the diffracticn field is not avle
to seriously influence the quantitative relationships. This is seen
from a comparison of the results obtained 1In this book with calcula~
tions based on rigorous theory and other approximation egquations, and
also with the results of measurements.

The relationships obtained in this book also should help the
developnrnent of asymptotic methods in the mathematical theory of dif-
raction, since they suggest the character of the approximaticns and
the structure of the desired solution.

L4

L. A. Vaynshteyn
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INTROLUCTION

In recent years, there hac been a ncticeable increase of interect
in the diffraction of electromayrietlce waves by metal bodles of complex
shape. JSueh diffraction problenms with a rigorous methematical formu-
lation reduce to an interpretation of the wave equatlion our Maxwell
equatlons with consideration of the boundary conditions on the body's
surface. However, one cannot succeed in finding sclutions in the
case of actual bedles of a complicated configuration. This may be
done only for bodies of the simplect geometric shape — such as an
infinitely long cvlinder, a sphere, a disk, etc. It turns out that
the resulting solutlions permlt one tc effectively calculate the dif-
fraction field cnly under the condition that the wavelengtn 1s larger
than, or comparable to, the finite dimensions of the bcdy. In the

"quasi-optical”case, when the wavelensth 15 a great dezl less than the
dimensions of the body, the rigorous sciutions usually lose their
practical value, and 1t 1s necessary to add to them laboricus and
complicated asymptotic studies. Here, the numerical methods for the
soiution of boundary value problems also become 1neffective. There-
fore, in the theory of diffraction the approximation methods which
allow one to study the diffraction of sufficiently short waves by
various bodie:z acquire great importance.

The fleld scattered by a given body may be calculated approxi-
mately by means of geometric optics laws (the reflection equations,
see,for example [1-3]), from the principles of Huyzens-Fresnel anli
from the equations of Kirchhoff and Cotler [3-61].

The most common method of calculation 1n t'.e gquasi-optic cnse
13 the princirle of Huygens~Fresnel in the formulation of Kirchhoff
and Cotler — the so-called physical optics approach. The essence
of this method may be summarized as follows.
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Let a plane electromagnetic wave fall on some ideally conducting
body which Is found in frec space. In the physical optiles approach,
the surface current density which 1s induced by this wave on the
irradlated part of the body's surface 1s (in the absolute system of
unita) equal to '

jo=5- [nHy). (A)

where ¢ 1s the speed of light 1n a vacuum, n is the external normal
to the body's surface, Ho is the magnetic fleld of the incident wave.
On the darkened slde of the body the surface current 1is assumed to be
equal to zero (Jo = 0). FEquation (A) means that on each element of
the body's irradliated surface the same current is excited as on an
ideally conducting surface of infinite dimensions tanprent to this
element. The scattered field created by the current (A) is then
found by means of Maxwell's equations.

It 1s cobvious that 1in reality the current induced on the body's
surface will differ (as a consequence of the curve of the surface)
from the current Jo. The preclse expression for the surface current
density has the form

J=P4 5 ®)
where Jl 1s the surface density of the additional current which
results from the curve of the surface. By the curve of the surface,
we mean any of 1ts deviations from an infinite plane (a smooth curve,
a sharp bend, a bulge; a hole, etec.). 1If the bc s convex and
smooth and its dimensions and radii of curvature are larre in compari-
son with the wav:length, then the additional current is concentrated
mainly in the vicinity of the boundary between the illuminated and
shadowed parts of the body's surface. But if the body has an cdge,
bend, or point, then the additional current also arises near them.
The additional current denslty ls comparable to the density JO, as a
rule, only at distances of the order of a wavelength from the corre-
sponding 2dge, bend, or point. Thus, if the body's dimensicns
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silgnificantly exceed the wavelength, the additlional currents ocecupy
a comparatlively small part of its surface.

Since the current excited by the plane wave on an ldeally con-
ductlnp surface io distributed uniformly over 1t (the absolute magni-
tude of its surface density is constant) then the vector JO may be
called the "uniform" part of the surface current. The additlonal
current Jl which 1s caused by the curve of the body's surface we will
henceforth call the "nonuniform" part of the current. In the physical
optics approach, only the uniform part of the current 1s considered.
Therefore, it 1s no wonder that in a number of cases 1t gives unsatis-
factory results. For a more preclse calculation, it 1s necessary to
also take into account the nonuniform part of the current.

In this book, the results of the author relating to the approxi-
mation solution of diffraction problems are discussed and systematized.
Essentially, these results were briefly discussed in a number of
papers [7-14]. Roughly at the same time, the works of other authors
devoted to simllar problems appeared. We willl discuss them 1n more
detail (in §25) after the reader becomes accustomed to the concepts
being used in diffraction problems of this type. For the present, let
us only note that 1In these works, as a rule, other methods are used.

In the book, problems of the diffraction of plane electromajynetic
waves by complex metal bodies, the surfaces of which have discontinui-
ties (edges), are investigated. The dimenslons of the bodies are
assumed to be large in comparison with the wavelength, and thelr
surface 1s assumed to be 1deally conductling.

Obviously, 1f the edges are sufflclently far from one another,
then the current flowing on a small element of the body's surfacc in
the vicinity of its discontinulty may be approximately considered to
be the same as on a corresponding infinite dihedral angle (a wedre).
In fact, in Chapter I it is shown (see also [5] §20) that the nonuni-
form part of the current on a wedge has the character of an vdpe
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wave which rapidly decreases with the distance from the edge.
Therefore, one may consider that the nonuniform part of the current

1s concentrated mainly in the vicinity of the discontinuity. By means
of thls physically obvious assumption, the field scattered by a strip
(Chapter 1), by a disk (Chapter II), by a finite length cylinder
(Chapter III) and by certain other bodies of rotation (Chapter IV)

is calculated.

For a more precise calculation, however, it is necessary to keep
in mind that the actual current distribution in the vicinity of the
body's edges differs from the current distribution near the edge of
the wedge. Actually, the edge wave corresponding to the nonuniform
part of the current, propagated along the body's surface, reaches the
adjacent edgé and undergoes diffraction by it, exciting secondary edge
" waves. The latter in turn produce new edge waves, etc. If ali the
dimensions of the body are large in comparison with the wavelength,
then as a rule it 1s suffliclient to consider only the secondary dif-
fraction. This phenomenon 1s sivudlied in Chapter V using the'example
of a strip and disk.

In the case of a narrow cylindrical conductor of finite length,
the edge waves of the current decrease very slowly with the distance
from each end. Therefore, here 1t is impossible to limit oneself to
a consideration only of secondary diffraction, and it 1s necessary to
investigate the multiple diffraction of edge waves. Chapter VII is
devoted to this problem.

The uniform and nonuniform parts of the current are more than
auxiliary concepts which are useful 1n solving diffracticn ’problems.
In Chapter VI it is shown that one is able experlimentally to separate
from the total fringing field that part of it which is created by
the nonuniform part of the current. There, it is also shown that the
depolarization phenomenon of the reflected signal is caused ggil‘by
the nonuniform part of the current.

FTD={IC=023-259-71 x1
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Let us note the following feature of the method discussed in the
book. A physical representation of the nonuniform part of the current
is widely used in the book, but nowhere are its explicit mathematical
expressions cited. This part of the current 1is generally not expressed
in terms of well-known functions. Obviously a direct integration of
the currents when calculating the fringing fleld 1s able to lead only
to very complicated and immense equations. Therefore, we will find
the fringing field created by the nonuniform part of the current on
the basis of indlrect considerations without direct integration of
it (see especlally Chapters I - 1IV).

The method by which the diffraction problems are solved in this
bock may be briefly summarized as follows., We willl seek an approxi-
mate solutlon of the diffraction problem for a certain body by first
having studled diffraction by its separate geometric elements. For
example, for a finite cylinder such elements are: the lateral surface
as part of an infinite cylindrical surface, each base as part of a
plane, each section of the base rim as the edge of a wedge (the curva-
ture of the rim in the first approximation may be neglected). Having
studled the diffraction by the separate elements of the body, we will
obtain a representation of the nonuniform part of the current and of
the fileld which 1s radiated by it. Then secondary, tertiary, etc.
diffraction is stuuled — that 1s, the diffraction interaction of the
various elements of the body 1s taken into account.

This method appeals to physical considerations, not only when
formulating the problem but also in 1ts solution process, and in this
way differs from the methods of the mathematical theory of diffraction.

Therefore, such a method may be referred to as the physical theory
of diffraction.

A whole series of other diffraction studles whilch appeared in
the last five to ten years also are able to relate to the physical
theory of diffraction. The first work which contalned the idea of
the physical theory of diffracticn is evidently the paper of
Schwarzschild [157 which was published at the beginning of thlis
century and was devoted to diffraction by a slit.
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One should note that approximate solutions of diffraction
problems would be Impossible without the use of the results obtained
In the mathematical thecory of diffraction. 1In particular, the
rigorous solution to the problem of diffraction by a wedge which is
attributed to Sommerfeld [16] is widely used in this book. In
Chapter I this solution is obtalned by another method. The works of
Fok [17, 18] served as the starting point for numerous studies on
diffraction by smooth convex bodies. The rigorous solution of the
problem of diffraction at the open end of a wave guide [19] revealed
the mechanism for the formatlion of primary diffraction waves, and
their shadowing by the opposite end of the wave gulde. The rigorous
theory as applied to a strip and disk allows us to examine the
precision of the approximation theory (see Chapter V).
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CHAPTER 1

DIFFEACTION BY A WEDGE

As was already sald in the Introduction, the fleld scattered by
a body may be Investlipated in the form of the sum cf the flelds being
radlated by the uniform and nonuniform parts of the surface current.
The uniform part of the current is completely determined by the geo-
metry of the body and the magnetic field of the incldent wave. The
nonuniform part generally is unknown. However, one may arproximately
assume that in the vicinity of the discontinuity of a convex surface
it will be the same as on a corresponding wedge. Therefore, it 1is
necessary for us to begin by studying the diffraction of a plane elec-
tromagnetic wave by a wedge. This chapter will be devoted to this
problem, First we will investigate the rigorous solution of this
problem (§ 1 and 2). Then we will find its solution in the physical
optics approach (§ 3). The difference of these soluticns determines
the field created by the nonuniform part of the current (§ 4).

§ 1. The Riporous Solution

The rigorous sovlution to the preoblem of diffraction of a plane
wave by a wedye was first obtained by Sommerfeld by the methed of
branching wave functions [16]. Later, the diffractlon of cylindrical
and spherical waves by a wedre also was studled. A rather extensive
bibliography on these problems may be found, for example, 1in the
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paper of Oberhettinger [20]. Since the problem of diffraction by a
wedge lies at the base of our studles, we considered it advisable not
only to present the results of its rigorous solutlon, but also to give
them a new more graphic derivation. The 1dea for this derivation
follows directly from the work of Sommerfeld. Sommerfeld found the
solution to the problem in the form of a contour integral, and then
he transformed it to a serles. However, one may proceed in the oppo-
site direction: first find the solution in the form of a series and
then give 1ts integral representation. Such a path seems to us more
graphic, and 1s discussed in thils section. The necessity for a
detalled derivation 1s caused by the fact that the results of Sommer-
feld [16] are not represented in a sufficiently clear form, which
hinders thelir use.

Let us assume there is in free spane (a vacuum) an ideally con-
ducting wedge and a cylindrical wave source Q parallel to its edge
(Figure 1). Let us introduce the cylindrical coordinate system r, ¢,
z in such a way that the 2z axis coincldes with the wedge edge, and
the angle ¢ 1is measured from the irradlated surface. The external
wedge angle wlll be designated by the letter a, so that 0<?<a . The
coordinates of the source Q we will deslgnate by Ty, ¢O.

Let us investigate two particular cases for the excitation of an
electromagnetic fleld. 1In the first case, it is excited by a "fila-
ment of electric current"

fi==—inp3(r—r, 9—9) (1.01)
in the second case, 1t 1s excited by a "fillament of magnetic current"

a=-—:iwm'6('.—r°s ?'_?o)- (1-0?)

The quantities P, and m, here designate, respectively, the electric
and magnetic moments of the filament per unit length along the z axis,
w 15 the eyclic frequency (“’~—‘-"‘—C——) 8(r—roy @~=99)==8(r - -ry)3ir (9 — 9y)

1s a two-dimensional delta function which satisfies the condition
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Figure 1. The excitatlon of a wedge-
shaped regicon by a llnear source.

@& - source; P - the observation point;
L. - the Integration contour in Equation (1.10).

Sga(r-—ro. @ — 7p) rdr dg =1
with integration over the neighborhooed of the point Tg» ¢0.

Here and henceforth, we will use the absolute system of units

{the Gauss system}, and we will assume the dependence on time is 1in
the form e™™ .

In the first case, the "electric" vector potential AZ satisfies
the equation (see, for example, [4])

o 41 .0
AA 1A= = (1.03)

and the boundary condition

/‘:’—-—«o with 9::0 and Pp==a, (l.Oll)
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In the second case, the "mapgnetic" vector potential AZ‘ satisfies the

equation
AN+ k’A”'=. __.': i (1.05)
and the boundary condition
14 .
‘»-J:-::O with ¢==0 and ¢~—=a. (1.06)

It 1s natural to seek the solutlon of the nonhomogeneous
Equations (1.03) and (1.05) in the form

a0
i \'a,J, (2r) ' (kry)sinly, gpsinvg withr<ro,
= ‘ ::l
i \'a,/, (kry) H'" (kr)sinv,gsin w9 withr>>fo; (1.07)
.
’ N6,/ (k) H”' (kry) cosv,Gacosv@ with r< ro,
.|
o
i Y ,J, (kro)H"’(Lr) COS v,7, COSV,P With 7 D7y (1.08)
s=0 Y
The products - a
J' (kr)sin 9 J' (kr) cos v, P
and
H‘_':(kr) sinv,@ H'" (kr) cos v, (1.09)

are the partial solutions of Egquations (1.03) and (1.05) without the
right-hand member which satisfy the boundary conditions (1.04) and

. (1.06). The remalning factors entering into Equations (1.07) and (1.08)
ensure the observance of the reciprocity principle and the continuity

of the fleld on the arec r = r The Bessel function Jv (kr) enters

. O' N3
these equations when r < Too because it remains finite when r » 0,

and the Hankel function flt'.’(kr) is taken when r > r, in order that the

0
solution satisfies the radiation condition.
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The coefflclients a, and bs may be determined by means of Green's
theoren '

§ ot ;:Smu/s. dS=:rdrdp (1.10)
. ..
for the contour L in the plane z = const which 1s shown in Figure 1.
Here, the external normal to tihe contour L 1s designated by the letter
n. Applying Equation (1.10) to the functions A: and A: and performing
the limiting transitions ry *r, and r, *r, in it, we obtaln

/ fiE M 1, ek

SO a5k vt =5 o it v,
dA""
“or

Since here the integration limlts are arbitrary, it follows from the
equallity of the iInteesrals that the Integrands are equal:

(M""

— e

et 7

) rde=1 3:'3 n, j 3(p — 94) rede.
ry=0 .

e LE . drkp,
W B e L (LR (1.11)
0A 24T . Azhm, .
'57:-] r.w-“?ir"' ,...o=' Ty O (P —9)- (1.12)

Now let us substitute Expressions (1.07) into Equality (1.11) and
multiply both members of the latter by sinwe . Then 1lntegratings the
resulting equality over ¢ in the 1limits from 0 to a, we find
a,=""tp. (1.13)
In a similar way, let us determine the coefficients
b.-_-_:...f.;:kmh (1.1“)

where

l‘.:.‘—;*. l".':‘:!.::.,,:;:‘. (101%}

FID=i{C=23=261=71
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Consequently, tne electric current filament excites, in the space
outside the wedge, the fleld

f o
i i;-’— k’px x H "" (kry) J,, (kr)sinvig, sinv,g
sm)

with r<ry,

o .
iy, 2 J, (krg) HY (kr)sin vgosinveg
sl
g with r>>r,,
Ei=‘-E’=0. H=-‘%-rotﬂ. (1.16)

and the magnetic current filament excites, outside the wedge, the

field
as? el ’ :
i -f— k', E c,ll‘,'.' (kro).l'. (A7) cOS v, COS v, .
=0 :

_with r<ry,
[_J
"i::' k’m.z ‘.J' (k’o) Hi‘:(k')cosy.vo cm'.,
with r>7e \
1
.H'=H,=0. EE—’}FYOtH', (1.17)

Now using the asymptotic equation for the Hankel function when
kro. >0 [21], we have

T el L BT PR DRSS

Then Expressions (1.16) and (1.17) in the region r < r, take the form

0

Ee== i 22 Kp.H (ko) X

(- J
—f =
X E e ? ’J.. (kr) sin v,y sinv,@,

s=)
(equation continued on next page)
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Ur’

Ho=1 32 km HY (ke X
o —1%
X 2 e ° 'J_. (kr) cosv.9,cos v,

820 .

or

E.=ilk’p,H;"(kr,,) lua(r, ¢ — o) —ulr, 2+ %)l

H.:—'—‘iﬂk"nlﬂg’(kro)lu (’. ? —?°)+u(f. ?+?°)l. (1- 19)
where

- had -—l:- v
u(r, '?)="-£E°2 we ° U, (kr)cosvg (1.20)
s ’ .

(h=9%xM) -

Let us note, furthermore, that in free space the fleld of the
electric filament with a moment P, is determined by the relationship

L]
E,=ixk'p,HY (kry), (1.21)

and the field of the magnetic fillament with the moment m_ 6 is determined
by the relationship

s == ixk*m H{ kry). (1.22)

Therefore, the expressions in front of the square brackets in Equations
(i.19) may be regarded as the primary fileld of the filament — the
¢ylindrical wave arriving at the wedge edge. Now removing the fila-
ment of current to infinity (ro + ), let us proceed to the incident
plane waves

E,= E,,-e-"""” (r--%o) TE,== E'—_-=0 (1.23)

and

FTD=-HC=-23-259-71 7




Hy = Hos e MR M 0, L 1.em

The fleld arisins with the diffraction of thece waves bty the wedge

will obviously have the component

E,==Eylulr, 9~9,) —ulr, 9-+ ) (1.25)

and

Hl::HM["(rv '?“?0)'*'“(’- ‘9+?«)]‘ (1'26)

-

Let us find the Integral representation for the functlon u (r,
¢v). For this purpose, let us use the equation (see [16], p. 866)

j'. ‘kr)=§:—’l‘(le([u cos P4, ( _;—)]dp,
(1.27)

where the 1limits I - III mean that the integration contour goes from
region I to région III (Figure 2). The cross-hatched sections in

the plane of the complex variable 8 (B8') shown in Fipure 2 are regions
in which Imcos3>0 (Imcos¥<C0), Therefore, in the sections of the con-
tour exterding to infinity the integrand strives to zero, ensuring

the convergence of the integral. Substituting Expression (1.27) into
Equation (1.20), we cbtain

u(r, 9)==
1"t

had co
=%_5eikycos;[l+ Z eiv.w-ﬂw) L el (;_._,')]
. s=1 s=1

After summing the Infinite geometric progressions and replacing the

variable 8 by 8' = 8 - m, the function u (r, ¢) acquires the form
i (r, 9)=
1 " , (| ! ]
— e»ikrcos 8 L S S — d%
2’5 15940 —is -9 .
l—e 1—e
FTD-HC~-23-259-71 8




Fizure 2. The invegration contours Figure 3. The integration contour
in the complex plane B. in Eguation (1.28).

As a result, we cbtain the well-known integral of Sommerfeld

u(r r'f)sl—l— .-—Ilrml dg
’ 2! !_ -
J_Jamw (1.28)

The integration contour C is shown in Flgure 3 and consists of
two infinite branches. Since the integrand expression has poles at
the points Bm=2am —9 (m=0, =1, =2,...), then for the values of ¢ corre-
sponding to the space outside the wedge (0<$<&} the function u (r, )
may be represented (with =<{a<2r, 0<9,<z ) in the following way:

ulr, P=o(r, P+ yith—2<9<n,
u(r, 9)==0o(r, ) withz<9<22—=,
u(r, §)=0(r, §) e~ ®=9

with 28— y<2a, (1.29)

where

1 e—ﬂu:oa [ ]
ol ¢>=-.;,-5 T
.

{—e

FTD-HC-23-259-71 9




or

i°. =t eltrcosCyp
9(’. *)'_;: — $if) ~— . . . P
R 5*“'1-'“-“'%«% (1.30)

The integration contours D and D0 are shown, respectively, in Figures

3 and 4. *

With an arbitrary incidence of a plane wave nn a wedge, one of
two cases may occur: (1) the plane wave "illuminates" only one face of
the wedge (0<{9,<{a—%), and (2) the plane wave "illuminates™ both
faces of the wedge (a—=<{9,<{7) . Let us write out in more detail the
functions u (r, ¥ ) corresponding to these cases. In the case p<a—=
.(Figure 5), we have '

u(r, 9 —9,)= )
==0(r, 9 —g,)-f-e et
n{r ;:::9)_- !ﬂitho<q)<g__‘%.
. o —
=u(r, 9+?0),*_e—ilrem(§+;.) l .
"(" ?—'70):: ‘

=o(r, p— ) e M TE T withe--@ualnteq |
u(r, 9-+9)=0(r, -+

n(re 9-—Po)==0(r, ¢—Pp) } with 249 <9<a,

u(r, p+9)==v(r, 9490 (1.31)
and Iin the case a—=x<{9<{x (Figure 6) we have
u(r, ¢-— %)==, )
=0(r, 9 — ) e T
u(r ;+?o)= IR O e
' . |
=0 7ba) b
u(r, @-—9)==
—ikr cos (g — - with
==v(r, p—9,))+¢ krcosts e } 27, <223 —q,,
u(r, p-f o) =v(r. - 9)
u(r, — )= _ .
=uv(r, ¢._?)+e~~n&rcm(s~=..) with
u(r, 7= ‘21--=—?o<?<“- . (1.32)
=v(r, g-Fgg) e T j -

FTD-HC=23-250-71 10




The direction ¢ = n - °0 corresponds to the ray reflected in a specular
fashion from the first face (we will consider as the first face that
face from which the angles are calculated), and the direction 9=
=2a—x— 9, corresponds to the ray reflected specularly from the second
face (Figure 5 and 6). The functions e~°*® describe plane waves of
unit amplitude: e~ ®0~™  gegcribes the incident wave, e~/ o+
describes_the wave reflected from the first face, and o-iveosa—v=—ed —
the wave reflected from the second face.

Figure 5. Diffraction of a plane
wave by a wedge. The plane
wave 1irradiates only one face of
the wedge. ¢0 is the angle of

incidence. The line ¢ = n - ¢O

1s the boundary of the reflected
plane wave, and the line
¢ =7 + ¢0 is the boundary of

the shadow.

Figure 4. The integration contour
in Equation (1.30).

Figure 6. Diffraction by a wedre.
The plane wave irradiates both
faces. The line ¢ = 2a - 7 = ¢O

1s the boundary of the plane wave
reflected from the second face
(¢ = a).

FTD-HC-23-259-71 11
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§ 2. Asymptotic Expressions

The integral

Y i ] [4
v(r,qw)-_-.%slnf.— g e [T a4

b.ml.if-emﬁ(¢+:)' (2.01)

in Equations (1.31) and (1.32) generally is not expressed in terms of
well-known functions. However, when kr >> 1 1t may be calculated
approximately by the method of steepest descents [21]. 1In integral
(2.01), changing for this purpose to a new integration variable

1=
s=y/Te " sin-%—. s*=1i(1 — cos{),

we obtain

[ -]

o(r.9)= " '('”.T) e=tretyy
RO (AL W
y 2

AR a a (2.02)

where
Rz, (2.03)

It 1s not difficult to see that the point s = 0 is a saddle point:

as one goes further from it along the imaginary axis (Re s = 0) in

the plane of the complex variable s, the function e ™" most rapidly
increases, and as one goes along the real axis (Im s = 0) it decreases
most rapidly. Therefore, when kr >> 1 the main contribution to the
integral (2.02) 1is given by the integrand in the section of the
contour in the vicinity of the saddle point (s = 0).

The method of steepest descents is carried out by expanding the
—hrs?

integrand (except for the factor e ) into a Taylor series in powers
of s. This series is then Integrated term by term. 1If the integrand

FTD~HC-23-259-71 12




expansion converges only on part of the 1lntegration contour, the re-
sultant series obtalned after the 1integration will be semiconvergent
(asymptotic). Limiting ourselves to the first term in 1t, we obtain:

n
cos%-—cou—:‘ Y 2ekr (2.04)

The remaining terms of the asymptotic serles have a value on the order
1
of (;"';ﬁ‘ and higher.

Expression (2.04) is valid with the condition (‘-‘N-E'—COS-,!;)/F;/B’I
and describes that part of the diffraction field which has the charac-
ter of cylindrical waves diverging from the wedge edge. With the
incidence of the plane wave (1.23) on a wedge, the electric vector of
which 1s parallel to the wedgé edge, the cylindrical wave 1s determined
in accordance with (1.25) and (2.04) by the equation

E:=‘—H,=En‘[°('n‘?"‘?o)—"(’-"l'?'":'
:(»4-{-)

[ ]
L T .09
where
’ slnT 1 1 )
I (2.06)

When the wedge is excited by the plane wave (1.24), in which the mag-
netic vector is parallel to the wedge edge, the cylindrical wave has
the form

”l==E,=Hn'[v(’-?"?o)"‘o('-?""?o)]:’

l(lr +%)
= H ot e
=Ml —

(2.07)

FTD-HC~23-259-71 13
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where

sy . P
8= Y ) ;_:_?_.r [ 49 (2.08)
"

In the vicinity of the shadow boundary (¢ ~ n+ ¢o) and near the
directions of the mirror-reflected rays (p==z—9, 9= 22—%—7%)
Expressions (2.04) - (2.08) are not valid, since the poles

1

s=yTe’ sm-—. |/2e sin kn:—-ﬂ

of the integrand in (2.02) are close to s = 0 and, consequently, its
expansion 1n a Taylor series loses meaning. Physically, this result
means that in the indicated region the diffraction wave does not re-
duce to plane and cylindrical waves, but has a more complicated char-
acter. An asymptotic representation of the function v (r, ¥) in this
region was obtained in 1938 by Paull [22]; here we will present the
derivation of the first term of the asymptotic series obtained in [22].

Let us multiply and divide the integrand expression in Equation
(2.02) by the quantity

c0s §} cosC==i(s* —is) s°_2cos’ ) (2.09)

and let us expand into a Taylor series 1n powers of s the function

cos §4-cos §
( L v+4 [
cos —-—co$ T)cos-y

which no longer has a pole at the saddle point (s = 0) when ¢ = ¢ +
+ ¢0 = 7. Limiting ourselves in thils series to the first term, we
obtain

" cos -E-—cos % ~isy

o=V " e e'(”-%)je_"—" ds.
-. st

(2.10)
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The integral here may be represented in the form

o . o »
5 ) ’-hn —-lkng S ds Le™ (s'—bZ) ] .
y . [

Changing the order of integration here, we find

[ -l'l' 5 = __‘." Teh’g df dd;-—'
_14

;' —-lhn’

(2.11)
ae ol

and finally

Yﬁ;l«n—: (2.12)

The next term of the asymptotic expansion for the function v (r, ¥)
has a value, whose order of magnitude depends on the observation
direction: 1n the vicinity of the border of the plane waves (= ===

1
its order of magnitude is Vie but far from it the order of magnitude
1s 1/kr in comparison with the term written in (2.12).

It is convenlent to represent Expression (2.12) in the following
form:

= ¢ —t
sin — cos 5~ 4
: 2 n 2 _ercosd ©
vrP=—n——— ¢ v X

Cm—.—C“T"

Vi cos 3
X j /fdq.

weon (2.13)

FTD-HC-23-259-71 15




Here the absolute value of the lower limit of the Fresnel 1ntegra1
always equals infinity, and its sign is determined by the sign of
cos §/2. Therefore, when passing through the boundary of the plane
waves (¢ = ¢ + ¢0 = 1) the lower limit changes sign and the Fresnel
integral undergoes a finite discontinulty, ensuring at this boundary
the continuity of the function u (r, ¥) and consequently of the
diffraction field. Actually, by means of the well-known equation

2 (2.14)

it 1s not difficult to show that

v(r,vu+0)=‘—';—'-, v(r,:—0)=-51;i ‘ (2.15)
and consequently
n(r.::()):—;-e'". - (2.16)
In view of the asymptotic relationships |
'fe"'dq---';;—,. —f e"'dq=—-’:1,—,';-, (with p> 1)
e e (2.17)

Pauli's Equation (2.13) is transformed with V/QE;FOSgF>1 to the
Expression (2.04). As was already indicated above, it determines the
cylindrical waves diverging from the wedge edge.

By means of Equation (2.13), one may also calculate the field in
the vicinity of the direction ¢ = 2q - 7 =~ ¢, — that 1s, near the
boundary of the plane wave reflected from the face ¢ = a; for this
purpose, it 1s sufficient to replace ¢ by a - ¢ and ¢0 by a - ¢0.

It is also interesting to note that in the case of a half-plane
(n = 2) Equation (2.13) gives the expression

FTD-HC-23-259-71 16




—l e Viircon -—
—idrcond &

o(r, ) ==e T ox ! dq,
| eemd (2.18)

which completely agrees with the rigorous solution. Actually, with
a = 27, when the wedge is transformed to a half-plane, integrali (1.30)
equals

i .numt
v =— g | —g®
T (2.19)

and 1t may be reduced to a Fresnel integral. For this purpose, let
us divide the contour D0 into two parts by the point £ = 0. Summing
the integrals over these parts of the contour, we find that

2
2

0(’,‘?).-:_._%;. J lkrcol(( : ‘+ : )dC==

2 2

2 Jtrm‘m%

i
=---;-cos-2t- S cos¢4cosd <
]

Now changing to a new integration variable :_.,/ze Sm-g' and taking

into account Equation (2.09), we obtain

lr—---) —ln'
v (r, )= — "5 cos _f.-..u* (2.20)

. The integral here was already calculated by us. Turning to Equation
(2.11), we arrive at Expression (2.18) which — together with rela-
tionships (1.25), (1.26) and (1.31) — give us the rigorous solution
to the problem of the diffraction of plare waves by an ideally
conducting half-plane.

FTD=-HC-23-25¢-71 17




§ 3. The Physical Opties Approach

In the physical optics approach, the fringing fleld is sought
as the electro-magnetic fleld created by the uniform part of the sur-
face current '

= [nH,}. : (3.01)

Let us recall that here n designates the external normal to the body's
surface, and HO designates the qagnetic vector of the incident wave.
First let us investigate the case 0y, <a-~=z, when the incident plane
wave 1rradiates only one face of the wedge (Figure 5).

From Equation (3.01) it follows that the‘density of the uniform
part of the current being excited on the irradiated face by plane
waves (1.23) and (1.24) has the following components, respectively

R =g Borsinge™™ %, =f0 =0 (3.02)

and
fr= g Hoe ™07, [0 =2 =00, (3.03)
For the purpose of calculating the field radiated by this current, we

will use the followlng integral representation of the Hankel function
(see [16], p. 866)

—ix ]
HY =4 | etiea g [ o
~-d4ieo Zx

(0=<8<1). (3.04)

Assuming here p = kd and changing to a new integration variable
z =d sh t, we obtain

FTD-HC-23-259-71 18




HY (kay=-1 () e 4
’ w ) Yaipe (3.05)

Y
It is easy to show by means of Equations (3.02), (3.03) and (3.05)
that the vector potential

VTR

. T ™ d
Vg (o—zp43 ¢ (3.06)

o0
A(x,y, 0) == -:_-Sj"(i)d:
1}

38

has the components

i

Ay= -5 Eorsinge-l,, Ag=4d,=0, (3.07)

if the wedge 1s excited by plane wave (1.23), and

[}

Ax=‘2_H“‘ll' AU=AI=0' (3'08)
if the wedge is excited by plane wave (1.24). Here, Il designates
the integral

] _—

1= e~ s gk /P (X )t (3.07)

3
Let us transform it by using the relationship

" e 1 - ol(M—-cn)

H (ky/TF7) =+ s’ - dw
-l
(0= B —u?, Imo>0, d>0), (3.10) -

It is not difficult to establish the correctness of this relationship
by verifying that 1t changes into Expression (3.04) with the substi-
tution w = k sin t, v = k cos t and kyd*Fz'=p. As a result

of (7 1yl--wx)

1
11—7; ‘ T (k cos gy — @) & (3.11)
-
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where the integration contour passes above the pole w = k cos ¢O.

Let us note that integral (3.11) is a function of Iyl, and let
us change to polar coordinates acccerding to tne equations

X==7C089P,
lyl=rsing with ¢ <=,
lyi=—rsinpwith 9> (3.12)
Furthermore, by carrying out the.substitutiou
w=—~kcost (o==*ksink), (3.13)

we obtaln

1 peitreosd—e) '
',=i‘—-; E&T.-l_-—c'o_;éd! With?(t',
[ 4

. ike coes (t4y)
L= (" fwithe>a | (3.14)

T ink ) cosg,+ cos§
’ .

The integration contour F is shown in Figures 7a and 7b. In Flgure Ta
the cross-hatched areas indicate the sections in the plane of the com-
plex variable £ in which ImcosG—¢)>0 ; in Figure 7b, the cross-hatched
areas indicate the sections wherelmcos(t-§-9)>0 . Now let us deform the
contour F into the contour G, (GZ) for the values ?#<=(? >¢), and let
us change to a new integration variable

{=t—9 withe<lzx, }
{=t—(2z—¢)withp>= (3.15)
As a result, we obtain the following expressions:
j Owithe>r—ag,
1 elkrcos!d: \
l'=;':'.7¢£c—os 7.-{-&3—(—;-—{-—;)-*- 2 a—ikreos(g+ca)
s l ksing, (3 16)
with ?<“"‘?o-_ * ’

if ¢ < 7 and \'
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Figure 7. The integration contour in
Eguations (3.14).

Owith ?<=+?n

7 1 eitrcos ‘d;
ek icus Yo+ COSG—~y) + 2 e ikrcosts — ey

ksin'.
withe>=+9,
(3.17)
if ¢ > n. The integration contour DO is shown in Figure 4.
By means of Egquation (3.06) and the equality
Ey=ikA, (3.18)

let us find the fleld which 1s radiated by the uniform part of the
current excited on the face ¢ = 0 by the plane wave (1.23)

0F (9, 9,)— e MBI yith 0< Pl 9y

e, | %@ withs—g, <9<,
B oi (e 90 withr<p< w4 2,
o (@ @) — eV T with =9 <9<, (3.19)
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where

+ g eihrcostd:
vl (?l ?.)-55'“?.{.CSS_?:-;'CO’(‘I,). (3.20)

It 1s not difficult to see that with a—=<¢,<= , when both faces of
the wedge are 1lluminated, the fleld excited by the second face

(¢ = a) will be described by the same equations 1f one replaces ¢ by
a - ¢, and ¢0 by a - oo in them.

Adding the field being radiated by the uniform part of the
current with the incident plane wave (1.23), we obtain the diffraction
field in the physical optics approach. It equals

( °: (9 90 )+ ot cos (650 o —ikrcos (see)

with0ge <<z — 9y
o) (7. 90) fe” e
e'_-{ with s—g,<p< %,
1] (3 °
07 (9, po) FeM et )
with 2o« =49,

| o (@ %) with st <e<n (3.21)

if one face of the wedge (0<?<@—%) is illuminated, and

(o} (9, 20+ 07 (a—9, a—o)+
4 ikrcos (s =9u__ o= lhrcosiy 4 ¢4

with Ocp<r—a,
o) (7 %) +0 (2 — 9 a—2)+F
JoemtreslE=t yith r-q<p<la—®,
g, | ot w)tol =9 21—+
Bo Tl pemtieente=ad ipp a—zle<n,
o7 (9 %)+ 0 (3 —9 a—%)+
Jemtreot =% yith =<9 < 2 —%—y,
vy (9 ‘?o)'*“”r (a— 9, 2a—y)+
+ e—l*rm(v—s.)__e—ikrcos (26 —9¢—~%g
| with 22—x—,<9<8, (3.22)

[y
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if both faces of the wedye (a—r<<o,<x) are 1lluminated.

Mow let us calculate the fleld arising during diffraction by a
wedge of a plane wave (1.24), The field secattered by the fir.t face
(¢ = 0) 1s determined by tﬁe”relationship

.I"l"—"‘_d-:‘;"o - ]
Ho==H,=0. | (3.23)

One may write the component HZ in the form

Hi=— 4 Hul 1, (3.24)

* Gy

or

i
H‘"_—-—- i‘H.g". with ’<"

H.=%-H..-I, with o>

(3.25)
The quantity 12 introduced here 1is the integral
! 1 o Jisl~es de
’-;-).Tm"'“w (3.26)

along the Infinite contour which passes abofe the pole w = k cos ¢0.
This Integral, precisely the same as integral Il’ is transformed to
an integral along the contour DO' As a result, we obtain

U7 (9, 9) e T 0 p g —0,

'". _ U: (?: %) withz—o, <P,
Ho 1 07 (9. 90) with 2< 9 < nwfgu
lva* (P, 9y) — & MO Lith ot 9, < B, (3.27)

where

. i .,n(( = ,)eikrm(
Uy (91 P) === ‘.”:i Csietcosh e
N .

(3.25)
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In the casc when both faces of the wedge are 1lluminated, the fileld
- scattered by the second face also is determined by Equations {3.27)

and (3.28) in which one need only replace ¢0 by a - ¢0, and ¢ by

a - ¢, :

Then adding the field radlated by the nonuniform part of the
current with the incident wave (1.24), we find the diffraction field
in the physical optics approach. This equals

o; (. ,.)+¢-'*'°°' (® ~ %9 + o= ihrcoriy +e)
5 (e = 0
™ With t—g,<9<t,
o7 (@, 9)) f e RO |
with ‘<?<'+,h

e oo il g e B e 0L -

o5 (9. 9) . with =9, <{pga,
. (3.29)
if one face of the wedge 1is 1lluminated, and
o (7 940, (a~9, a—7p,) 4
+ e—-llreol {s —9,)+ e—-llrm’(v +.9.)
with0goege—g,,
o (# %)+ 07 (a—9, a—9,)+
FeNEO th r— <o,
He V97 @ 9) 40 (a—9, a—g,) -
” '
’ _*‘e-lkreo:.('-q) with z-1t<?<ﬂ.
% @ 2)+o) (@—9, a—gq) 4
+e-lkrmi(9-v.) With"<?<2¢‘—f—?n
9 (9 90} +-0; (a—9, a—g)
+ e-lkrcos(p-y.) + e—l&rtos (¢ ~9p— gy

with2a—r—¢, < 9<a, (3.30)

if both of its faces are 11luminated.
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The inteprals Vi, vﬁ renerally are not expressed in terms of
weli-known functions, HBWever, by using the method of steepest
descents, 1t ls not difflcult to obtaln thelr asymptotle expansion
when kr >> 1, Far from the dlrectlons ¢ = 7 + ¢0 and ¢ = 2a -~ 1 - °0’
the first term of the asymptotic expansion gives us the cylindrical
wave diverging from the wedpe edeme. In the case of wedge excitation

by a plane wave (1.23), these cylindrical waves are determined by
the equation

.'("’1)
) Ixkr
E,:H,::O, (3.31)

E.a—H'=E.|""

and with the excitation of the wedge by a plane wave (1.24) they are
determlined by the equation

l(l'# —'.—)
— — - Om——.
Him By Ho g e,
H'=E,=0. (3.32)

The functions fo and go have the form

J[— sin g,
Cosy - Cus yq *
——tny
O == Gy Fern (3.33)

i1f one face of the wedre (g <La—z) , and

0= SiNw g sin{a--w)
T cus g cos g, cos(a— y)Fcus(r—yg) *. .
g e sinle-e) .
cosyFcosg, cos{3— )4 cos{a—yg,) * (3.3W)

if both of its faces (@ -a<¢<a) are 1lluminated. The Index "0" for

the functlions fo and go means that the cylindrlcal waves (3.31) and
)

{3.32) are radiated by the uniform part of the surface current (J().
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§ 4, The Fleld Radiated by the Nonuniform
Part of the Current

In § 1 and 3 we represented the rigorous and approximate expres-
sions for the diffraction field by integrals along the same contour
in the complex variable plane. By subtracting the approximate expres-
sion from the rigorous expression, we find the field created by the
nonuniform part of the current. It 1s determined by integrals of the

type

ip(a,v.va- Qeremta, (4.01)
PN
which, with the replacement of the variable { by s=}2e ﬁn;-, are
transformed to the form
we T s
¢ Sq(a.?.?..S)e" ds (4.02)
-0

and may be approximately calculated by the method of steepest
descents.

For this purpose, let us expand the function q(s) into a Taylor
series

(8, 2, 90 ) =q+9-s+q,-5' 4. .. (4.03)

Let us note that expansion (4.03) does not have meaning only in the
particular case

P==s:t9, with @p=0; =, }

P=22—2—¢, Withg,==a —1=, (4.04)

when the observation direction (¢) coincides with the direction of

propagation of the incident wave glancing along one of the wedge faces.
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Substituting sericc (4.03) into Equatlon (4.02) and then perform-
ing a term by term integration, we find the asymptotlc expanslon for
the fleld radiated by the nonuniform part of the current. We 1limit
ourselves to the first term of the asymptotic expansion, omitting
terms of the order (k)" and higher. As a result, the required field
from the nonuniform part of the current will equal

. ,(.,,.!)
B = Hy= B,

E,=H,=0 (4.05)

with wedge excitation by plane wave (1.23), and

e
i "0.‘)

L)
”:'-'-’E,:HME'W'
H,=E,=0 (4.06)

with wedge excitation by plane wave (1.24).

By calculating, with the help of Equations (4.05) and (4.06),
the nonuniform part of the current, it is not difficult to see that
it 1s concentrated mainly 1in the vicinity of the wedge edge. But the
field created in the reglon kr >> 1 by thils part of the current has
the form of cylindrical waves, the angular functions of which are
determined by the relationships(l)

,'=f""I.» 8'=g-‘-g'. (l‘.07)

where in accordance with § 1 and 3 we have

i sin—
n ] — ]
=~z = f—ve  __*® ¥ tte
g CO8 — ~ COS cos '7" ~— COS

n n

(=2)

(4.08)

(1)
Footnote appears on page 42.
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and

sine .
s =
!lﬂ!
‘.=-cos9+cosy.' i (4.09)

if one face of the wedge 1s illuminated (that is, when l<o<a—z ),
and

sin g, sin (s — ¢,)
P=grrwn toe—prme=m’
= siny —- sin (s —»)
T cosyHcospy cOS(x—yg)cosa—y,) (4.10)

if both faces of the wedge are illuminated (that is, when a—a<q<a ).
Let us recall that the functions f and g describe the cylindrical
waves radlated by the total current — that is, the sum of the uniform
and nonuniform parts, and the functions fo and go refer to the
¢ylindrical waves radiated only by the uniform part of the current
3%. '

" Let us note certain properties of the functions fl and gl. The
function £l = fl(a, ¢, ¢,) is continuous, whereas the function gl =g
(a, ¢, ¢0) undergoes a finite discontinuity when ¢O =g - 7w. The
~reason for this discontinuity is that the uniform part of the current
differs from zero on the face along which plane wave (1.24) is propa-
gated (with ¢O = o - m). In the case of radar, when the direction to
the observation point coincides with the direction to the source
(¢ = ¢o), both functions fl and gl are continuous. There 1s no dis-
continuity of the function gl with ¢ = ¢O = o - T, because the current
element does not radlate in the longitudinal direction.

1

On the boundary of the plane waves (that is, when ¢=axge and
¢=2a—1—¢o ) the functions f, fo and g, go become infinite, whereas
the functions fl and gl remain finite. 1In accordance with Equations
(4.07) - (4.10), they take the following values
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P %é-% ' .
_-—— gl s,
F'y cos%—cos‘——-:" 2 Chad (4.11)

1f¢=n-¢o,and¢0<a-n,

! ] :
siay - ) '
L S .Y ol =
! =cw-£—cos'_.._.— "0+2 \dg?‘+2" g3

) a .

- sin (e = ¢,)
cos(a=g)4-cos{a—g)) *

lln
Aty

“= p " v

-~ Yo

€03 o — €08

) sin{a —¢)
+cos¢a—,)+m(._.~ . ) (4.12)

+;"-ctg7.—2lnc!g 'E""‘

if¢=n - @0 and a - 1 < ¢0 < m, and

1
[‘\ _ reLry . .
& [:"‘cu._-:_m‘,+,,-—7“8?.—5;‘:18;.
» . (4.13)

1f¢-w+¢0, and¢0<a—w. Thevalue¢-n+¢0witha—1r<¢0
< 7 corresponds to the angle Inside the wedge, and therefore is not
of interest. In the direction of the mirror-reflected ray ¢ = 2a - =
- 00, the functions f‘l and gl are determined (with a - 7 < ¢0 <7 )
by the following equation:

I ]
p L s g, +
cos%—-cos!:-;-u o3yt cotne
1 1 ]
-I--,‘,-ctg(a.-—?.)-l-ﬁdg-;- (4.,148)
-l—!sln-?-
=t mr+
cos—:--—cos'—;" m,-{-c-:s,t

+retgla—a)—gegs.
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The functions fl and gl have a finite value everywhere, except
for the particular values ¢ and ¢O enumerated in Equation (4.04). The
graphs of the functions fl and g (Figures 8 - 13) drawn in polar
coordinates give a visual representation of the effect of the nonuni-
form part of the current which is concentrated near the wedge edge.
In particular, they show that thls effect may be usbstantial for the
fringing field not only in the shadow region (1+@<¢<a), but also in
the region of 1ight (0<e¢<a+®) , The continuous lines in the flgures
correspond to the functions fl (fl < 0). The dashed and dash-dot lines
correspond to the functions gl — the dash lines refer to the case

gl < 0, and the dash-dot lines refer to the case gl > 0.

m— ’ t‘
[ — '(‘

._.__.",.

Gotia* o-300°

Cv’“;.
Figure 8. The dlagram of the =%

field from the nonuniform part
of the current excited by a
plane wave on a hilf-plane. The
function £l (or g'!) corresponds
to the case when the electric
(or magnetic) vector of the
incident wave 1is parallel to the
wedge edge.

Figure 9. The same as Figure 8
for the case ¢ = ¢0.

Let us turn our attention to the next important aspect. As 1s
seen from § 1 and 3, the nonuniform part of the current on the wedge
is described by a contour integral which is generally not expressed
in terms of well-known functions. But in order to calculate the fleld
scattered by some convex, 1ldeally conducting surface with discontinui-
ties, (edges), the indicated expression still must be integrated over
the given surface. Obviously, such a path 1s able to lead only to
very cumbersome equations. Therefore, henceforth, when calculating
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1 and

Figure 13. The functions f
gl for a wedge (¢ = ¢0, a = 210°).

Figure 12, The same as Figure 10
for the case ¢ = ¢0.

the fleld scattered by composite bodles, we will not Integrate the
explicit expressions for the nonuniform part of the current, but we
wlll endeavour to express these integrals directly in terms of the

functions fl and gl which have been found.

§ 5., The Oblique Incldence of a Plane Wave on a‘Wedgg

Above, the diffraction was studied of a plane wave incident on
a wedge perpendicular to its edge. Now let us investigate the case
when the plane wave

E=E.eu(xmn+'ycos'+uos” (5.01)

falls on the wedge at an oblique angle 7 <°<:Y<:;) to the wedge edge
(Figure 14).

From the geometry of the problem, 1t follows that the diffraction

field must have that same dependence on the z coordinate as the field
of the incldent wave, that 1s
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E=E(x, y)euuos:' "
H==l'l(x y)elﬂtebl]‘ (5‘02)

Using Maxwell's equations

rotH=—ikE, rotE==ikH, (5, ,03)

Figure 14. Diffraction by a one 1s able to obtain the follow-

wedge with oblique incidence of 1ing expressions for the radial and
a plane wave. Y is the angle .
between the normal to the incident azimuthal components of the fleld:

wave front and the z axis.

_ 1 f1em, o,
Ev—“m(';w'l'“ﬂzf)-
1108, M.\
H'=iism‘1 7‘(7,'—':“7—7’" d
- 1 oM, cosydE
E'—ihsm;'l(??——r—,—&")'

1 0E, , cosydH
”9""”'»::::"1' (“o;"*"'}‘ ‘3;")

(5.04)
The functions Ez and Hz in turn satisfy the wave equations
AE, 4 & E,=07AH, 4 &} H,=0, (5.05)

where

A""'E’?};""b%'f and A, = ksinY. (5.06)

In § 4 we found the flelds (4.05) and (4.06) which satisfy the
equations

AEl+k‘Et=O' AH,+k'H;=0 (5'07)

and which are created by the nonuniform part of the current excited
on the wedge by the plane wave
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E=E.e—ll(?en'.+lun;va. (5.08)

Representing Expression (5.01) in the form

E=E,e""""""‘"“"f""" (5.09)
and comparing Equations (5.05) and (5.07), we easily find the field
ereated by the nonunifori part of the current with the irradiation of
the wedge by plane wave (5.01). For this purpose, it is sufficient to
replace in Equations (4.05) and (4.06) k by Kq» and EOz and Hoz by
E,e™*™' and H,e"* ., As a result, we obtain

.
] .gl#-‘-

| Ei=—H =Eu'(% %) L}’_ﬁ e'tr e,

ifar s :—)
ikt cos ¢

Hi=E =H.g' (%, ?')Ly_z.—j;_‘;' ¢ ,' (5.10)

The angle @0 introduced here is defermined by the condition

ell(xcouorycosfl)=e-lh.(umo.+yslnq.) , (5.11)

hence

__cos}
‘g%—cou . (5.12)

The remaining components of the fleld created by the nonuniform
part of the current witnh the obllque 1incidence of a plane wave are
found from relationships (5.04), and when kr >> 1 they equal

E,=—ctgyF, H,=—ctg1H,
E,=—-H, H=—_\_F, (5.13)

7=nn1 siny
The equiphase surfaces for these waves have the form

rsiny <z cosy==const (5.14)
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and are conical surfaces, the generatrices of which form the angle

- ®/2 + y with the positive direction of the z axis. Thus, with oblique
irradiation of the wedge by a plane wave, the fleld created by the
nonuniform part of the current 1is a set of conical waves diverging
from the wedge edge. The normals to the phase surfaces of these waves
form an angle y with the positive direction of the z axis and are
shown in Figure 15. These waves may be represented in a more graphic
form if one introduces the components (see Figure 15):

E,=E,cosY— E,siny, }

H,=H,cosY—H,siaT. (5.15)

Then the final expressions for the fringing fleld in the far zone will
have the form

E'=”’=—;";1-Ep
1
H'=-E$=_.;-‘-ﬁ-ll.. (5.16)

Now we are able to proceed to the application of the results
which have been obtained for the solution of specific diffraction
problems. The simplest of them is the problem of diffraction by an
infinitely long strip which has a rigorous solution [23] in the form
of Mathieu function series. However, in the quasi-optical region
when the width of the strip 1s large in comparison with the wavelength,
these series have a poor convergence and are not suitable for numeri-
cal calculations. Therefore, the requirement arises for approximation
equations which are useful in the guasi-optical region. The derlvation
of such equations for a field scattered by a strio will be given in
the following section.

§ 6. Diffraction by a Strip

Let us investigate diffraction by an infinitely thin, ideally
conducting strip which has a width of 2a and an unlimited length.
The orientation of the strip in space is shown in Figure 16.
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Figure 16. Diffraction of a
plane wave by an infinitely long
Figure 15. The cone of diffracted strip. The sectlon of the axis
rays. y (-a <y < a) shows the trans-
verse cross section of the strip
with the plane z = 0; a 1is the
angle of incidence.

Let a plane, electromagnetic wave strike the strip perpendicular
to the edges. Let the direction of propagation of thilis wave form an
angle ¢U¢l<:§) with the plane y = 0. The field of this wave 1is

represented in the form

E= E.e“(x coss 4 yun a). H='H.e" (xcosa+ gsin o (6.01)

The uniform part of the current excited by the plane wave on the
strip has the components

,:.—_—.0,

,o=fc_” Leltveine
v g OO ’

[ iky sine
[:=§;E°.C08¢e L » ’ (6.02)

Substituting these values into the equation for the vector potential
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At f]'( Y > Y AT &
=t N)ay v Tty 2 A
4 Y —1)t 3 G
CA LA &+ -0t + (6.03)
and taking into account relationshipc (3.05) and (1.18)}, we obtain
the followlng expressions in the region r >> kaz;

ifars
sinfta(sina—sing)] ¢ ( ! )

2
A=+ Hu sina—siny ¥ Zzkr

tfars
sin[ta(sina—sing)] e ( ! )

2
A= x £y, cosa sina—slny Y Zikr

(6.04)

L

The components of the fringing fleld in the cylindrical coordinate
system equal

E'*—-—"'H’:ikA‘, ”.=E,=ikA’, (6.05)
where
A = A, cosp— A,sing. (6.06)

Substituting Expressions (6.04) here, let us determine the field
radiated by the uniform part of the current
. 1['}»3‘1)

— . sin[ra(sin: —sing) e
Ey= H'-—2E.,cosz sina—sing ¥ 2ar °

" i(bu’i})
T I sin (ko (sina—sing)] e
E!"”""?H"COS? sina —giny VY 2ehr (6.07)

This fleld may be represented in the form of c¢ylindrical waves diverg-
ing from the strip edges
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F, 2 ”' i Epee[f*(1) ol 0ina - stn .)_*‘
{vr3)
yan '

_ 5"._.:_”. c2 Mo [go (1) MW=t

4(»0‘)

+¢ (.))e -ida(sine--sin ﬂl 2 ..
nhf

+l. -))e {0 (¢in & un.)'

J ((\,()ﬂ\

Here the flest topms correspond to the waves from edpe 1 (y = a), and
the second terms correspond to the waves from cdpe O (y = =a),  The

. L Q R "
funetions 1 and 0 are determined In the right half-plane (lﬂ<3;)

by the equations

f(ﬂ [ ]

I’(l) [0 “slna--sing*
cos g

(1) == g*2 Tsma--sng"’ (6. 09)

Now let us find the field radiated by the nonunttform part of the
current.,  Assumbing Lhe stretp Iz suffletently wide (ka >> 1), one o
able to approximately consfder that the current near (ts upper odee
fx the same as on the Hdeally conducting half—plane  -eosyag , and
near the lower odpe tt s the game as on the haltf-plane —~ad s pge o

Therefore, tn accordance with § I the fleld from Che nonuntrorm part

oft the current flowlnge on the stelp may be reprecsented I'n the form orf

the auam of the odpe eylinderleal waves,

Ey s or M == Eype ][t (1) 0700

o)

Voo

E' e ]l. - ][".lg| (‘) c'M (sina- sng} +
l(hr# )

" e (sine--sing) g
*R ( )e l .2ntr ' )

*‘j. .,) ~un(-|n. nlnq)l

(o, 1)

where the functlons l‘l and p_l' are determined In the eight half=-plane

. "
(H[“ '2) by the equat tons

-
-
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FY=[m—s0), I‘(?)=l(2)—~lf(2)-}

eM=gM—g'() & @D)=2@—2" (6.11)
in connectlion with which
eus"“.i.'—— slui-;-!
f()== - “sma=may "
Cns.ji-—’+sln ;.-;;-!
L e P
cmi;’+un:%!
g)= "“m’:‘.ﬁ;‘r" -
~cos ) +sla————'
“2"_‘""":1"—:." )
(6.12)

The functions fo and go are described by the relationships {6.09).

A
As a result, the fringing field (the sum of the flelds radiated
by the uniform and nonuniform parts of the current) will equal

___H __E" "(l)enn(:ln--ohs)_'_
l lr+-)

+ , (2) e-—lka {(sin ey9in ﬁ)] ; 2,."

E’=H.== H.,-[g(l)e""‘""“"““-{-

)

¥ 2k ) (6.13)

—1ha (st a—sin q)l

+g@Q)e

Consequently, the resulting fleld is expressed only in terms of
the functions f and i which determine the cylindrical wave in the
rigorous solution (see § 2). The fleld 1ls the superposition of two

-

such waves which diverpe from the edpes 1 (y = a) and & (y = -a).

Substituting into Equations (6.13) the explicit Expressicns (o,1.M)

for the functions f and g, we obtain
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E,=—H, =E, |—<ltetine —shagl 4

i
+‘sln|?a(sln:-sln7)] .‘{ +‘)
way! } yia
E =H,=H, cos [ha(sina—sing)] ,
R B
e
+isln(§a(sln:-—slny)| c( *’)
:ini-;l l 37 ]
(6.14)

These equations are valid when r >> ka2 and l,h‘%. Moreover, it 1s

assumed that ka >> 1, since only under this condition 1s one able to
consider the nonuniform part of the current in the vieilnity of the
strip's edge to be approximately the same as on the corresponding
half-plane. In the case of normal incidence of a plane wave (a = 0),
Equations (6.14) change into expressions corresponding to the first
approximation of Schwarzschild [15].

From relationships (6.03) and (6.05), it follows that the elec-
tric field is an even function, and the magnetic field an odd function,
of the x coordinate measured perpendicular to the plane x = 0 (in
which the current flows)

4

E;(x)=E;(—x), H:(X)=—Hg(-—.t'). (6.15)

Therefore, on the basis of Equations (6.14) and (6.15) one is
able to write the expressions for the fringing field in the region
x < 0 (where ‘;‘<l?l<‘)

cos [ta(sino —sin’y)]

sin 1—}!

&=—m=:&{

—i sin{ka (sina— siny)] }e‘ (”"T)

cosi—';—' Y ke
E' =Hy=2H,,- E.’!.’i?_(_s_“;:_:: sin §)] +
sia ] k4

(6.16)
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el (hﬂ' :-)

¥ 2akr

in|ta(sina— sing)) 3
.pg?-.-.m“.:«-“«m
oL

(6.16)

Here one must select the upper sign 1in front of the braces when
¢ > 0, and one must select the lower sign when ¢ < O.

The resulting Equations (6.14) and (6.16), in contrast to
Equations (6.07), satisfy the reciprocity principle. It is not diffi-
cult to establish this by verifying that Equation (6.14) is not
changed with the simultaneous replacement of a by ¢ and of ¢ by a,
and Equation (6.16) 1s not changed with the replacement of a by 7 + ¢
and of ¢ by a - n (if "'<:?<:-;:) and with the replacement of a by

T -¢and of ¢ by n - a- (if -;<:9<::).

However, the indicated equations lead to a discontinuity of the
magnetic vector tangential component Hz on the plane x = 0. This is.
conne~ted with the fact that, by considering the nonuniform part of
the current in the viecinity of the strip's edge to be the same as on
the corresponding half-plane, we actually assume the presence of
currents on the entire plane containing the strip. In order to refine
the resulting expressions, it 1s necessary to solve the problem of
secondary diffraction — that 1s, diffraction of the wave travelling
from one edge of the strip to its other edge. In other words, it is
necessary to take into account the diffraction Interaction of the
strip's edges. As we see, 1t 1s also necessary to take Into account
the secondary diffraction in the case ?=:=€} when the Hz component
of the fringing field must equal zero.

In Chapter V, we willl return to the problem of diffraction by a
strip, and together with the 1nvestigation of the secondary diffrac-
tion, we will present the results of the numerical calculation bhased
on Equations (6.07), (6.14) and (6.16).
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Footnote (1) on page 27
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FOOTNOTE

The designations used here differ
slightly from those used in the
papers [7 - 11]. The functions f
and f+ there were deslignated by
fl and f, respectively.
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CHAPTER 1II

DIFFRACTION BY A DISK

The problem of diffraction by a disk has a rigorous solution
[24-26]; however, it 1s not suitable for numerical calculaticns in
the quasi-optical region when the dimensions of the disk are large
in comparison with the wavelength. The physical opties approach

used in such cases sometimes gives erroneous results.

the fringing fleld calculated in thls approach does not satisfy the

recliprocity principle.

In this Chapter a refinement of the physical optics apprecach is
carried out. First the diffraction of a plane electromagnetic wave
by a disk with normal incidence (§ 7-9) 1s investigated, and then
(5§ 10-12) diffraction by a disk with oblique ineidence of a plane

electromagnetic wave 1Is lnvestigated.

Normal Irradiation

§ /. The Physical Optics Approach

In particular,

Let an 1deally conducting, infinitely thin disk of radius a

(Fipure 17) be irradiated by plane wave
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E,=—H,=—H,e",
E,=H, 6=0. } (7.01)

The uniform part of the current
excited on the disk by wave (7.01)
is determined by Equation (3.01)
and has the components

lh=—3Heu ii=01=0. (7.02)

Figure 17. Diffraction by a Let us find the field created by
disk of a plane wave propagated
along the z axis. this current.

Since the diffraction field in the far zone (R >> kaz) is of
interest to us, the vector potential

. f 2 o
Al, g z)=-;5rdr‘fm» Py (7.03)

may be simplified by using the relationship

r=y R4 p —%pRcos 0= R —pcos 0, (7.04)
where Q@ 1s the angle between p and R, and
cosQ=sind cos(y —9). (7.05)

As a result, we obtain the simpler equatlion

- a 2
1 14 . ik
Alr, g, 2)= pdvo\u.», ) et dy, (7.06)
; Continuing by using the equations
H=rot A, rot H=— ikE, . (7.07)

it 1s easy to show that in the spherical coordinate system the

fringing field components with R >> ka2 equal
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--—'”.-—ka ‘7.08)
Ey=H,y=0,
where
A'sA,COSQ-—A.sin?,
Ay=(A,cos94 A sing)cos8—A,siny, } (7.09)
Substituting here the values
. y . ]
A,:.::»H.,.-‘-;?i-.l,(kasm.a)-'—“r,} (7.10)
A,al‘.so.

which result from Equations (7.02) and (7.06), let us find the field
radiated by the uniform part of the current in the form

Ey=H_ = —iaH.- -‘—;5 cos &/, (ka sin O))-'“-:-

E‘z—H.:-—iaH.zth|(kasin’)T. I (7-11)

The function Jl(ka sin #) is a first order Bessel function. By
using its asymptotlc expresslon

J(katinﬂ).-l/““‘“ cos (kasmb--‘—). (7.12)

which is applicable when ka sin #>> 1, one is able to rewrite Equa-
tions (7.11) in the following form:

. a sin
Byt =it | gy cosd b X

(ras .-3,5)] R

*oi (nun 0-?-5'-)

Xie +-e

e (7.13)
— — 3 __cose
E = —Hy=—iH.Y sqimimy X

" -e-l(n-hi'-—i‘:)+el(h¢sln'-—i—.)]'._::‘.

L
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The resulting equations show that in .the region R » ka', kasin® > 1
the fringing field may be investigated as the sum of the spherical
waves from two "luminous" points on the rim of the disk, the polar
angles of which respectively equal ¢ = ¢ and ¢ = = + ¢. It is not
difficult to see that thesewaves satisfy the Fermi principle.
Actually, of all the points on the disk's surface, the point o = a,
v = ¢ 1is the closest to the observation point(R,8,¢), and the point
p =a, p = 1 + ¢ is the furthest from it.

However, Equations (7.13) describe the radiation not only from
the two "luminous" points, but they determine the fileld radiated by
the entire "luminous" region which is adjacent to the line connecting
the points o = a, ¢ = ¢ and p = a, ¢ = 1 + §.

Let us show that the luminous region actually makes the main
contribution to the fringing field. For thls purpose, let us cal-
culate the field radlated by the currents which flow inside the
sector encompassing the line ¢ = ¢ (Figure 18). Let us take the
angular dimensions of the sector in such a way that its arc, which
equals 2a¢o, would occupy the first Fresnel zone. When this is done,
the angle ¢0 will satisfy the equation

'4 . ' a(l-—coso.)sinh-%—. (7.14)
v In the case being investiga-
. \ ted by us, when the condition ka
3 3 sin »1 is fulfilled, we have

from Equation (7.14)

A %
co‘s¢.=l~mal-——§-, (7.15)
hence
Figure 18. Calculation of the
field radiated by the "luminous" —— (7.16)
region of the disk. ¢.Vm. .
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The vector potential of the currents flowing In the indicated
secter Is determined by the equation

] .I.R H R
4. -— ”"',_.R— dd S.—ll’aln Scos % dp,
-0

‘.-‘.-a

Taking into account the condition ka sin #»!, one may show that the
field created by the currents of this sector will equal

'."'75‘_.5 -munoy} 1
X e T +°(Vram)'

Eym—Hy~ Y 2Dy (7.18)

coss et —imosinapiz ( 1 )J

ssd ¥ kasin b

The amplitude of the expressions which have been found 1is approximate-
ly\fg- times larger than the amplitude of the first terms in Equation
(7.13). Moreover, expressions (7.18) and the corresponding terms

in Equation (7.13) differ slightly in their phases: the first have

the factor :f', and the latter — the factor.-:r. The result obtained
is simllar to the well-known thesls in optles that the effect of a
wave 1s equal to the effect of half of the first Fresnel zone (see,
for example [27], p. 132).

In the vicinity of the directions 0=0 and O=x, when the
azimuthal components lose their meaning, for the purpcse of studyinge
the fringing field it 1s more convenient to use the Cartesian
components

s =(E,cosd}E sind)cos 9 — E,siny,
E, =(E cosd 4 E sind)sing - £ _cosg. (7.19)

Turning to Equations (7.11), we find that when 8—=0and ==«

Ee=0, E,=—il 5% . (7.20)
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Conseyuently, in the physical optics approach the field scattered
in the directions 8==0and #:=rpreserves the polarizaticn of the
incident wave.

§ 8. The Fleld From the Uniform
Part of the Current

Let us proceed to calculation of the field created by the non-
uniform part of the current with normal irradiation of the disk.
Since the latter 1s concentrated mainly in the vicinity of the disk's
edge (p = a), the vector potential corresponding to it will equal,
in accordance with Equation (7.06),

'A=_E_ Nt 5"’51‘(’ ?)‘_:”.:nleu(¢—q)d¢ (8.01)

The inner integral is calculated with ka sin33>»1 based on the
stationary phase method (see, for example [21], p. 256), and Equation
(8.01) is transformed to the form

& I T
A o =F ¥ Saar T

¢ : (8.02)
x[ ‘f Plo e dp —i )'J‘ @ )€™ -'"'d,],

which allows one to interpret the fringing field as the fileld from
a luminous line on the disk. This 1line 1s a diameter, the polar
angle ¢ of the points on which equals

$1==¢ and ‘Pn="+?' (8.03)

Assuming the dlameter of the disk is sufficiently large in com-
parison with the wavelength (ka >> 1), one may approximately assume
that the nonuniform part of the current near the disk's edge will be
the same as on the corresponding half-plane (Figure 19). On the basis
of § 4, the field from the nonuniform part of the current rlowing
on the half-plane —®<y <4 may be representedin the form
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] l.#r

—~ika
e 1l unl.

E, (1)=1kA, (1) = E,, -[* (1)’ v oy
H, ()y=—ikA, (1)cos 8=

1{an+}

(8.04)

e —ikasin §
a”.,.-l'(‘) "Y"'"“““‘i;;n " .

and similarly the fleld from the current flowing on the half-plane
~a8<Y<® may be represented in the form

“'#f
E, (2)==uA (2)==E.,. 2% yew dhosins,
i} . "*T (8.05)
H (2)=---uA (2)cos0-— H., P LT P R AR 1T 3
Here
1(nc+.)
A(l)z"—'Vﬁ: f’l(.‘)e—liﬁlll.dn'
(8.06)

r\o=+Vi °‘(m'_) I P petintay,

1 1

and the functions £~ and g
(°<3<-;-) by the equations

are determined for the right half-space

» ]
cos~5~ 4-sia
I’(1)==f(1)+;r.:-3-' f(1)="-—‘—z;Tn"z"
v (8.07)
. cos 5~ —3sin
f‘(2)=I(2)—-;,,l5-' )= 2.:.0 T‘ ]
cos cos -;:—sh-;-
eM=gM+ g5 s()=— ey .
ot g 3 (8.08)
eA=g -G e = — . l

From relationships (8.04) - (56.06), it follows that

FTD-HC-23-259-71 kg




L ]
5 i}. (1)2-""“”. d!=
* .
= By (e
R (8.09)
o
i
=—2{;Eo,.'f'(2)eu"ln. J
and
’ e
. {II ("l)e.“"m.d’):"
Pigure 19. Diffracticn by a disk. e
The half-plane L lies in the = __H, .gt(l)e eNIn®
plane of the disk. The edge of 2zkcosd "0 * (8.10)
the half-plane is tangent to the e . the 51 & ’
circumference of the disk at the j/h(ﬂ T dy=
point Yy *a, xy =0 (a is the —~» .
le H 19 tha sin §
- radius of the disk). =tcoad 0,8 2)e .

In accordance with the assumption of equal currents on the disk and
on the half-plane, one may consider the following equalities to be
valiad:

jjl (P- ?.) e—nnmdp = ]‘ j' (’l) e—lh_ 2in .d’l' '

. . ) 8.11
JIo st tde= | et tan o)

Therefore, the fleld from the nonuniform part of the current flowing
on the disk will equal

_ 14k, ' (Aa sin 0-:-3)
B =—Hy= [ e -
—i.(l)e-i(kn’sln,—:l)].—‘i
o R (8.12)
_ _ "Hog lkasln.—-—%—)
Ey=H =g @)e -~
~t{rasing 3
~g'(l)e ( ") %;f.
where in view of (7.01)
E, = —Hoycos9, Hyy==— Hozsing. (8.13)
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For the directiond=0, we have according to Equation (8.@1)

= o
“=_¢.".‘;“2‘J‘l‘?‘[j'(’- ¥)dp. (8.14)

but in accordance with equalities (8.09) - (8.11)

[l ) o= G Hus-con
H (8.15)

[ 1.6 Do=35 Huxsing. l
[ ]

Consequently,
con[3 e
A‘=_T‘ JCOS’{!‘I?JI,.(P' ?)d"*-

¢

] 8
‘ +J‘sin Ydy J 11, e 9 dp]=°-

N

2
Y H (8.16)
A, 3':" T“["‘Jc"s ﬁ"d'{'fl:, . $)dp+

) e .

+‘f=iﬂ M?Ji},(p. +)49]=0.

_ S

that is, in the direction of the main fringe (80=0) the field from the
nonuniform part of the current equals zero.

By using the Bessel functlons Jl and J2 for the fleld from the
nonuniform part of the current, one may write the equations

E,=—Hy="3 (I @ — ' (O, (kasia 0) +

+ill' @+ ()], (kasin®) S,
Ey=H, =" {1 @) g" )], (kasind) +

ilg' @+ (D], (kasin )} G-

(8.17)

which with ka sin 8> 1 change to Expressions (8.12), which were already
found. 1In the directiond =0, these equations give a field which
equals, in accordance with (8.16), zerc, and with intermediate value.
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Substitut tnys here the explicit expressions for the funet fono
£ oand 7, we areive it the final expressions for the tringinge tield

. o _daly, 1] (ka slnd) -
E'... - H._,... “" LAY e
lll:i'
' (]
—i .L.(tg:!..'). t s,
cos 3°
B, = H, == — Moo [hbastel) o (9.03)
i ' 2 [ dn-;-
AR
+ i .’.'.‘_..‘!.':'.”. gk- sin ’.
cos 3~

These equations are valld in the right half-space (0<0<-;~) . In the

left half-aspace (";'<°<") » the reinging fleld Is easlly found by

assuming that 1ts electric fleld ts an even function, and 1ts mapnetic

fleld an odd funetion of the = coordinate:
E' )= E' {(— 2.

H (2)=—H (—2). (a.0m)

]
Consequent iy, in the replon 2 < 0 (that 1s, when 5 <8<s) \

laly | I (kastad
E,j=—Hy= - .:Lz.-s. ) (-‘.;.__2 -
cos g~
ne
) _l.iiﬁ_’:ﬂ“)_] ..R,.. cosy,
sla EN
Ey=H,=""w [ Lrastaly .
COCT

R
.+. i .I.!(k_" flll n_).l 1._ sin 0.

(9.08)

[ R
!llT

Assumine that In Fauations (9.03) and (9.05)8=0 andd===, rcinect ively,

we obtaln

ita? ot
E.:: —‘2"’,’.8"“—' E‘:—.O, (')-“{‘\

which Iz equlvalent to the physieal optles approach [see Faquat ion

(7.2 ).

D= HU = S0 b0 b3




Expressions (9.03) and (9.05) agree with the result obtalned by
Braunbek [29] for the scalar fringing field in the far zone. It 1is
also interesting to compare these expressions with the precise numeri-
cal results obtained by Belkina [3%] by the separation of variables
method in the spheroidal coordinate system. It turns out that even
with ka = 5 a satisfactory agreement is observed between our approxi-
mation method and the rigorous theory. In Figures 20 and 21, graphs
of the functions V'(0) and V™ (8), are presented which allow one to
calculate the fringing field on the basis of the equations

E'=—H.=i—;—¢-.-5.,.\""(8) 2“:‘5005‘?- ]
E.=H'=%—'—':E.‘.y(ﬂ(s)f;:sin?. I (9.01)
The continuous curve corresponds to the rigorous theory [34]. The
dash-dot curve corresponds to the field from the uniform part of the
current, and the dashed curve corresponds to the field calculated

according to Equation (9.03) and (9.05).

Oblique Irradiation

§ 10, The Physical Optics Approach

Let us investigate the general case when the plane wave

E= E. ell(yfiln'1+reos b1 ( 10.01 )

falls on the disk at an arbitrary angle to its axis. Let us take
the spherical coordinate system in such a way that the normal to the
incident wave front, n, would 1lie in the half-plane ?=={; and form
an angle vy (0<1<—’;—) with the z axis (Figure 22). Adhering to the
investigation procedure used in the previous sections, let us first
calculate the fringing fileld 1n the physical opties approach.

The uniform part of the current excited on the disk by wave
(10.01) is determined by Equation (3.01) and has the components

- ¢t thy sl i .
]:"‘.‘ﬁﬂ.v'e Vlnt. I:='—_;—u'Ho:eky’l"r! ’:’=0' (10.0:)
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Flgure 20, The function e for a disk

with a normal incidence of the wave. The

varicus curves correspond to different
approximations.

The fleld radiated by it is found
(With the conditfon R »» ka?),
incident wave (E.Lyoz),

s 85 was done 1in s 7, by inteprating

In the case of E-polarizaticn of the
this field equals

e
Ed = H =iak,, cosycos 8 cos g Lrltay T LY o

Yy 1 *f-' ( )
10.03
STIoT, LR
l:",=---h',-.-z----iaE.,,-cosrsiﬂqvll-‘-'-'i-’ﬂ--"’lM : .

o

FTD-HC-23-259-71 55

e . " ]




1%

Ka-$ "?V?'(""‘
T T T T T
I V) argV" ) eieg?
J ./ 4
AV ]
4 |
ﬂ.
» A\l
¢
[ |
! {
é ' Y
|1
'\ Il \4§ ._.ao
\ V¥
/
r 7 Fry 7] 10t fur
Figure 21. The function VO for a daisk
with normal incidence of 3 plane wave,
The various curves correspond to different
approximations.

and in the case of H-polarization (H,lgoz)

— — . Iy(ta ij_‘_‘i) oitR
Ey=H =—iaH, cos ¥ sin 9 -l—}a.'-;;‘. - l .
ITE oikR g.c4;
E’ == Hy = —ial,, cos P f!i’f.‘!)."_’; i) oK

Vigsd R |

The quantities ) and u in Equations (10.03) andg (10.04)

are getep-
mined in the following way:

p=sinPsine —siny,

2==sind cos g, }
/l’ + ot =0,

(10.0%)

FTD=-HC-23-259-73 56

PR Fe-

BCa




Assuming ?'-=---;- and 8== '—7(';'<“<=).1n the resulting expressions,
~let us find the fleld scattered by the disk in the directlon toward
its source. With E-polarization of the incident wave, it equals

(14
B, = Hy=— 8520y, (2basina)"—,-. )

E,=H, =0. (10.06)
and with H-polarization
E ___” _iaﬂ..c_)a)__j 2a i ”c""
. o3 e hdeasiome, | (10.07)

E'——”.=o.

Using the asymptotlic expressions for the Bessel functions, one
1s able to show that when R >> ka® and kay/ PF@»1 the fringing field
is radiated from a luminous region on the disk. In the case when
/ #'+0, the luminous region is increased and in the 1limit (when
A =y = 0) the entire surface of the disk starts to "shine".

§ 11. The Fleld Radiated by the
Nonuniform Part of the Current

Let us calculate the field in the nonuniform part of the current.

Plo, §)=2p, p)eirrre, (11.01)

Its corresponding vector potential

A==_0e*R ¢ L) o= MY T TR cos (3 =) o
-——c-—n—ﬂdjj(r'.we et by (11.02)
[

by means of the stationary phase method 1s transformed with
kay 44> 1 to the form

& Iz Lr f Vo L —-ikp ViTERr
B A = ;;*,';'.‘—:'1-__—.;'. [J [SJ(P, %) € de
0
s - (11.03)
- Y 4.y el TEY PR et
'_P‘ )e lp] -
v
Here
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n=2% ¢=z-}38 (11.04)

are the stationary phase points
and the quantity § is determined
by the equalitles

ind= —-"_
sind= Ve

¥ Y S
el cusa--—y.,._l:;,-- (11.05)

From Equation (11.03) it
follows that with R >»> ka2 and
kay/ ¥y > 1 the main contribution
to the fringing field is given
= ¥y Thus,

Figure 22. The oblique ineci-
dence of a plane wave on a disk.
n 1s the normal to the lncident

wave front.

by the luminous region adjacent to the line ¢ = Vs ¥
the stationary phase points wl, wz physically qprrespond to the
luminous line on the disk surface.

In order to calculate the vector potential (11.03), it is
necessary for us to first express the nonuniform part of the current
on the half-plane in terms of its fleld in the far zone. For this
purpose, let us introduce the auxlliary coordinate systems X1 ¥y
and x,, Y5 (see Figure 23), and let us take the following designations:

a5, Bl(u2, 82) are the angles between the normal to the incident
wave front and the coordinate axes X1s ¥y (x2, y2);

¢g(¢2 = -¢g) is the angle between the z axls and the projection
of the indicated normal on the plane Xy = C;

¢1(¢1 = -o2) is the angle between the z axis and the direction
from the coordinate origin to the point p(yl, z) which lies in the

plane X = 0 and 1s the projection of the observation point P(x, v, z);
ry is the distance from the origin to the point p(yl, ).

The quantities introduced here are determined by the equations:
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CUS @, ==z —=SinYcosy,, cos, ==sinysiny,,
By == B =12y, h=r—f,

.0 _ sy v !l CUBY

sing) =72, oy =gon,

L diaden(n—g)

Vi—smtisini(h,—y) (11.06)
eS80

Vizin bant(l—g

Ps == 9:="'??-

sing, —=

CO5 7, ==

ro=RV T—sin’bsin’ (3, —9) -

Furthermore, let us write the expressions for the field from the
nonuniform part of the current excited by wave (10.01) »nn an 1deally
conducting half-plane —oco<y,<a. In accordance with § 5, they have
the form

L
.'(.’ﬁ.") 4,8 (sin vg-cla o)
Var: © ’ (11.07)

l(u. + %)
H =ell:. LYY . ibststn '?—un )

A ol (P 9)) Ve %

E:, _— em. cos s, Enz ,’l(7l- ,\: )

where

k.:’-kSiﬂl,. (11-08)
Ry (sing, —sing) ) =4 Vi gy, }

e o
mh 27: +c“h‘l2'9|

cos 91
!m,‘:—lin,| ’In’?_.‘ln" s
0 9
L Sl /] ht e
- in ¢
& 9)= z_t —_ (11.09)

sin gf — sin g, sin fi—sing ° }

I, ¢)=

. 3¢
(—'-;"<,‘<“2—).
On the other hand, this fleld may be expressed 1In terms of
the vector potential '

S e e v
P e e

] o0
A"—"::"j J(n)e”""“"dqsem“"' (11.10)

- -89
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By means of equation

- YOye .
oyt (L0 TFT o-in
HYWDy= 1 | gt ™" (11.11)

- .
¢g==yYp'—18, Img>0, D>0,
which follows from Equation (3.10), if one substitutes z = t, w = ¢,
¢ = -ip, k = =1D, in 1t we find that

a
f! " IR T ———
A= g et (o) H ' TG = U] e My (11.12)
-0

Taking the fact into account that
the nonuniform part of the current
is concentrated mainly in the
viecinlty of the half-plane edge
and using the asymptotic repre-
sentation of the Hankel function,

we obtain

e

s iR(xyCO8 ayry 9i0 @ M-l — -
1 28 4 kv ®,
A=t '/m e jl(n)e . (11.13)
—c»

_

Figure 23. Diffraction by a disk where b, ==cos ¥, -—sinz,sinQ, =
with oblique incidence of a plane

wave. The half-plane L lies in =sin 7sin, — sin d cos (P, — 9)

the plane of the disk. Its edge . .

is tangent to the circumference Posinfreosidy (11.14)
of the disk at the point x; = 0, V- sintosin® (s —v)

y, = a (a 1s the radius of the

disk). In the case when v, = § [see

Equations (11.04) and (11.0%)]

the function ¢. takes the value

1
®,=— /2 Fpl. (11.15)
Starting from expression (11.13), it is not difficult to show

that the fringing field in the far zcne 1s described Ly the following
equations:
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e tE

E, =s—iksina, cosa, sin PA,, +ksin"a,A,, }

(11.16)
H, = —iksina,cos |

where

A, =81, (). A, =81 @) } (11.17)

1 “Bm M o8 ntrysine) b -.:-
OIB-C'V.T,;e ’

/) " ($):=" f j,. ) e_mr'md."

. v (11.18)
L= | J, (e TPsy,

Then by equating expressions (11.07) -and (11.16), we find the desired
connection between the nonuniform part of the current on the half-
plane —%<¥ <& and its field in the far zone
¢ Hy, 0y ~ikeVIT P
l,'(q’|)='—m;———-‘m"w,h .E'(‘?n gy ) eite T .
| .
’:.(?J“Té;m (ol 00 ’:)"

(11.19)
—cosa, tg 9. H,, g (9,0 ¢ ))&,

One may show in a completely similar way that the nonuniform
part of the current excited by wave (10.01) on the half-plane
—0<y,<a creates, in the far zone, the fringing field

Ex."—‘ — ik sin 2, cos 2, sin ?'Au. 4 ik sin*a, A, , (11.20)
H" =—iksinz, cosp, A , )
where
A,.:: 83’,.“’1" A;. == 9:’,. ("’h)v }
1 Ta iktry<ina, v cos Bpbi -:— l (11.21)
S.==V i .
’
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[ X g
lh(-{,,)-.e:_ Sj”.h”e.k.h.:?wd".
-0

]
. e ' o (11.22)
L= {J, et "y |

-2 )

On the other hand, in accordance with § 5 this fleld equals

: ] Hhrt —:-) ikga(sin 2V =sin ¢g

Ex.= e—‘.'. s Eo;," (?h 9;’ _V-QE*—"; e 2 ’
) (11.23)

, R TT) i aGin ¢¥ —sin g9

e a~ikrycos 0, € v 2
H‘.—Q ihrecos e, Hm,.g'(?,. ?,) v-.—’7§;—k="_:-- . .
Here

k, (sin 9, —sin §) ) = — VAT 7, (11.24)

and the functions [(ps 92) and g'(?, %) are determined by the equations:

W, nt " et
P ow 93)= sin g} — sin g, sing? : |sm '
C o sln,';,?+cusﬁ‘:'? conyy (11.25)
g )=—‘ sing)—siny, 7 sin ) —sin ")
<;?<%<;)
Equating the quantities (11.20) and (11.23), we find
1= — 75z %',',—QT{'— Ho 8" (@ % )
. I, ) =5 i";g?ﬂ'_lgmxm o) — (11.26)

- cosa, tg q,HO,‘g" (Pas ?2 ))- )

In this way we established the relationship between the nonuniform
part of the current on the half-plane and its field in the far zone.
Now let us return to a calculation of the field from the nonuniform
part of the current flowing on the disk.
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Since the disk is assumed to be large in comparison with the
wavelength, the nonuniform part of the current in the vicinity of 1its
edge may be approximately considered the same as on a corresponding
half-plane. Consequently, the integrals in Equation (11.03) will
approximately equal the corresponding integrals from the current on
the half-plane:

f 0 4 e T G =1, (g,
JJ,, b0 e T = 3,),
(11.27)

¢ ks Viv g
j I, 90 " Pl =1 (@)

JQM%NWWﬁw=um»

L

As a result, the vector components of (11.03) may be represented 1in

the following form:
1 R |

A=tV s G, |
ne i = .
A"S -:-— y Tf_;%—-‘—; lk‘ ¢ ‘ ,l,' (';’1)+i’;. (4")]' l

Then substituting these values into the equations

(11.28)

E,=ikA =ik|A,sin (3 —9)— A, cos(y, — 9)l. } (11.29).

Ey=ikAy=ik[A,cos (), —9)+ A, sin(),—9)]cos B,

we find the field from the nonuniform part of the current flowlng
on the disk

-
——Hy— ot ] [sln(q,,_,,__

! *T Viaeyica R or, | Tinia, cotps

4y —
— =t cos 1, tge, | X
X 18" (@ 9] ) et T ig (q,, 9 ) eiteV THw] (11.30)
T . .
—E,, 2t g, of)emite Vi

= if' (e 7p) et TR }
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§ =

ry .
Ey=H = -2 80 e[ Luslh —y)
o * VokaVirgat R\ "“[ SiNagcos g +
F R oo g9 I8 (g 7 ) eirel I —
. _ (11.31)
—ig (,’. % * ) eltaV TE ) 4 Eov. 3':‘(“:- L)) X

XIF @ #)) e T — i[9, 9}) enaV T

The resulting expressions are valid when kay/A"Fu* >1. They
may be slightly simplified to

ale

. .

iR
E=—Hy=—=22____°¢

' Y Vo vEs R

X{ H , €OS 8-’_'."_@'_:’lwl (9o 9’)e-m"f-1‘?_.

sin®a,

—igh (@, 9) YT — B, b9 50

X" (9., 9, )e"‘“v"’ﬂ’ if' (e, )euahuw]}
T g
== X

} 2zka ¥V A% pt
X{— H,, cos (¢, ~9),g (7.0 @, )e—IMYPT'

s S8 ay

(11.32)

E'=H =

ikuV-"d-A'l ) s""(iﬂ"’?’x
u.\ sinlo,

. - ig’(?n ?g) e
_ i n' £)
XIP @ 9)) e T if g, ) T L
if we use the identities

sin(¢, —9) “cos(d,—39)
sin a, c'os v sinta, - 00 % tg ==

= \.OS(n—-,) ] (11.33)

“¢in’a, cos B °

cos ¥ sin (3,—¢)
sinfs, ’

cos (Y, —¢) + sin ($y —

sina, cos ¢y sinta,

cos a, tg o,

The operations carried out above may be briefly summarized in
the following way. The field from the nonuniform part of the current
on the disk

2s
R
T. dy j-’ (o, )e“*® dp
[}

[

A==

n|=

is found (without direect calculation of the current) in terms of the
known field of an auxiliary haif-plane
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lie(s, co8 8y > 7, 8l0 -.)H

] l.'.'d

by a replacement of

jJ () e oy [Iensday

in those cases when ¢ = ol. The functions ¢ and °1 are determined
by the equations

®=sinysiny—sindcos(y —9),
¥, =sin ysiny —sin d cos op—,)‘/ l.__._’___._'—.;:;’ ‘i:f(%"i) (11.34)

Solution (11.32) was determined exactly in this way with ka)Au'> 1,
when, for auxiliary half-plane whose edge touches the rim of the
disk at the peints vy = §, ¢y = 7 + §, the phase 01 was equal to ¢.

A solution to the problem using this method also is possible

in the case
AN

d=1. 9=v. (11.35)

when ¢y =0 = 0. The direction 8=y1, 9::%} corresponds to the prineci-
pal maximum of the scattering diagram, and therefore 1s of specilal
interest. Substituting the relationships

—__F "Or sin ,I — 1 |
N iRAT SN, gogt ,'
sin ! i : (11.36)
—_—— 0 1y 7| -
llu IM' sm’ ( + cusa, ig ? 01-’ cos ’ }

which follow in this case from (11.19) into the equations

A=o” e” f 1,cos 41, sing)dy,
» (11.37)
b1 3

a,=2 __'.a[u siny —1I, cosd) dd,
c R n ] ]
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cos Y z Vi, ey
E, H, .0 '

and with o the Hepolaetont ton 0 Lees) o Che tneldent wive, 11 equals

Fo o -Hyro o Fyy 20X

8 ginly

X ('.‘K cosy. Mt "'w.":‘:')'

cosy

E. -H, -0,
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R
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detull the fringinge fleld in the incldent plane (t 0 o=x 1) where
the expressions (11.32) take the form

EymeHy=5 0t Bl (e ™ Pl
with g=12, 0>V,
"
. ika ~ide
E s Hymy S Bl @) € i (e 5, ‘W (12.01)
with?==- <1
.—H ‘7 E "‘(2)0"" "g(l)e—i.”
e T 2m|‘ o
with 9= — i ]
'%H —~ikap ibup
EO=Hv=Fﬁm [—g'(1)e™ ™" ig'(2)e l——
withe=—, 8>1,
1'”
N ox ey sy eiten €
Ey==H, = Hf“l»ll 2'(2)e +IL (e “'l (1707
. 2.0M
withe=-5, 81,
‘v
- ae  Ha, itap __ o1 s Lo
Hv“‘y» A“’Mlg (2)e™™* —ig'(1)e l—R
with 9=—-';‘-

The function:s :'1(1‘) and p".l(l) correspond to the fleld of the auxiliary
half-plane —ocsyeca | and the functions 1‘1'(.“.) and gfl(.‘.) correaspend
to the field of the halfeplane —as¥<oc,  In accordance with

Squattons (11,00 and (11.25), they ore deterriined by the expressions

8-y L {
sin +co:———
‘=)= S () = e
/ =/ siny—sind ' )= “siny —sind *
cos D -—sln!-- “heos +
g'(l):—:g(l)—“n‘_-u &= sinp—sin#® ' (1.8

(Manat Ten continued o onexs pomel)d

T I R T vy

[ SR P T S




8— L
sin -~2~I ~—Co8 :7

I'2) = f(2>+,‘,, ,‘i’;’m, . )=

siny—sind *

cosd sln.z +cos-'—t! (12.03)
£ =g@H siny —sind +8(2)=—- siny—siné
ir ?=°;' and <3 ; and
cos sin L’;—" —Cos ?:2.—1
(l)—,(l) s‘n-‘.’.:lnb' '(‘,:: sm’{-}-smb

41 by
In—-~~ o8 5~
cos ® : + 2

8'(1)’—‘3(‘)"?{'{{?{.?&»'. el)= snyLsind '

‘ (12.04)
sin ?j;_’l +cos t;—!

r@=1@+ s 1@=~ —my i

[ I
sin -—::;] '] ~‘~!
cos® 2

g'@)=a(2 )+,|n~‘+s|nt ’ g(z)s-*sﬁn-flmb *

if g=—3 and <3 .

It was mentioned abové that when ka >> 1 In the direction
0=y (0°<7<55°), ?=';' the field from the nonuniform part of the current
is negligibly small in comparison with the field from the uniform
part. Therefore, for the fleld from the nonuniform part of the
current one may write, with the help of Bessel functions, the
following interpolation formulas: with 9=%

iaf,,

E,--—H = —32{[i* () — ")} /(8) —
_ eitR '
—ilff M+ Q) 5
o (12.0%)
.:H'=g:z"'(lel(l)“gl AN4L G —
' oitR
_"[g‘(1)+g‘(2)]":(:»-k—’ )
and with ?=—-%
E,=—Hy =22 () = ' @14 0+ (17.00)

kR
+illr M+t @05,

(Fguation ot fred v mens 10,
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Ey=H, =" (g () —g* QUL GH

el (12.06)
+ile' W+ 240N -
where
§= Ra(sin 8 —siny)
t= ka(sind® +sinY) (12.07)

These expressions are valid in the reglon 0<8<; when I»1 and f{>1
they change to Equations (12.01) and (12.02), and in the direction
d=7, = they give a field equal to zero.

Using specific expressions for the functions fl and gl, it 1is
not difficult to establish that the total field scattered by the
disk in view of Equations (10.03) and (10.04) may be represented in
the following form:

with =3

E,=-- Hy ="E11 (1)~ [(D] 4 O — |
ol
— idf )=+ 12 O =+

,m“ (12.08)
Ey=H,=={le)—e @, O—

—ig(H)+g@) !.(C)}T R
and with p=——4
E,=—H, -’3’5"{[1(1)-:(2)1! 0+
1P ) -+ D), @) 7;—-

(12.09)
Ey=H ="{"{lg)--g 2,0+

+ ilg () +2 @M, @) o

It is convenient to write these expresslons as follows
ig!_!‘_.j?» otR
Ey=—Hy="3"X0 1)~
. ar (12.:2)
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where the functions I and I are determined in the region 0<8<—;- by

the equations:

v — LK 1,6
0, 9 \=— e '"’ -withe= 7,
g(a. Y) sin -3 L
T O s 5 .
£, 1) }= i B yith e=— (12.11)
:(&' 7) SIOT CO'T
[
and in the reglon -;-<»<s

0, D V= 2O i 2O th o=,

} cos-——l+ sln——-—I ¥= T
20 : (12.12)
8, 1) LE) 18 with e=—3. )

s

0, )

)

Here assuming y = 0, we obtain the previous relationships (9.03) and

(9.05).

In the directions 8=y and 8=

=—71 (with 9-‘2'-), where the

scattering diagram has a principal maximum, it follows from Equations

(12.11) and (12.12) that

'f(f)=x(f)=';kac°37 (12.13)
and
Yz —y)=—X(r--7) = —kacos 1. (12.14)
In the directlion toward the source (8_-1-—-7 cp-——-—) the f‘tmctiom‘
(M and E(9) take the values
£(9) '
x(a)}.—_:___mol(c)—-ll ®. (12.15)
Here considering #--x, we obtain
v(f)_____(,.) - ka, (12.16)
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which corresponds to the physical opties approach [Equation (7.20)].

The functions T and I allow one to calculate

o=} | XD, 3, =wa’|Sp (12.17)

which are the effective scattering surfaces with the E- and H-polar-
izations of the incident wave. Let us recall that, by definition,
the effective scattering surface is a quantity equal to

omduprlt, (12.18)

where

S= g Re[EH' (12.19)

which 1s the energy flux density averaged over one oscillation cycle
(the Poynting vector) in the scattered wave, and S0 is a similar
quantity for the 1incident wave.

In this way, we obtained the expressions for the fringing field
which approximately take into account the nonuniform part of the
current. In the incident plane(?=ﬁtf1), they have a form which 1s
rather simple and convenlent for calculations. It is also interesting
that in this case they satisfy the recliprocity principle as distinct
from expressions (10.03) and (10.04) which correspond to the unifornm
part of the current. It 1is not difficult to prove this by verifying
that Equations (12.11) are not changed with the simultaneous replace-
ment of y by # and of » by y, and Equations (12.12) are nect chanred
with the replacement of ® by n -« y and of y by =0 [in the case
p=—7 1.

However, Equations (12.11) and (12.12) lead to a discontinuity
of the magnetic field tangential component H¢ on the plane z = 0 in
which the disk lies. As in the case of diffraction by a strip, the
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reason for this is that we did'not consider the interaction of the
edges. It is also necessary tb take into account this interaction
in the case of glancing incidence of the plane wave(¥=$€}).when

the fringing field components E. and H¢ must be equal to zZero,

Let us point out once again in coneélusion to this section that
expressions (12.11) and (12.12) near directions 0=y, 0= w1 (with
7:='}0 have an interpolation character, but in return they allow
one to représent the fringing fileld in the incident plane x = 0 in
a convenient (uniform) form which frequently 1s of greatest importance
(compare § 24).
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CHAPTER III

DIFFRACTION BY A FINITE LENGTH CYLINDER

The distinctive feature of this problem 1s that, 1n addition
to the nonuniform part of the vurrent on the cylinder's surface
which 1s caused by the discontinulty, there also exists a nonuniform
part of the current arising as a consequence of the smocth curve of
the surface. This part of the current has the character of waves
travelling over the cylindrical surface along geodesic lines [36] —
that 1is, along spirals on the cylinder. These waves, which as they
move strike the edge of the cylinder, undergo diffraction and
exclite secondary surface currents., In turn, the nonuniform part of
the current resulting from the discontinuity undergoes diffraction
while being propagated over the cylindrical surface. It is clear
that specific consideration of all these effects 1is a verv compiicated
problem.

However, i1f all the linear dimensions of the cylinder are
sufficiently large in comparison with the wavelength, these effects
may be neglected when calculating the fringing field in many cases
which are of practical interest. 1In particular, theyv may be neglected
when calculating the field scattered in the directlon toward the
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source [5, 37]. In this case it is sufficient to consider only the
nonuniform part of the current which 1s caused by the discontinulty
of the surface, and we will do this In thils Chapter. The equations
obtalned in this way are generalized to the case when the observation
direction does not coincide with the direction of the source.

§ 13. The Physical Optics Approach

Let us investigate the diffraction of plane electromagnetic wave

E= E. eik(nln Y+2009 71 ] ( 1 3 .01 )

on a finite, ideally conducting cylinder of radius a and length 7. - Let
us position the sphericzal coordinate system in such a way that its
orligin is at the center of the cylinder, and the normal n to the
incident wave front lies in the half-plane ?==;— and forms an angle

1 (0<'{<-—;-) with the z axis (Figure 24).

!‘ An incident wave having an
arbitrary linear polarizaton always
] A may be represented as the sum of

¥ s two waves with mutually perpen-
J v dicular polarizations. Therefore,

3 for a complete solution of the

v a

problem, it is sufficient to¢ in-

Figure 24. Diffraction of a plane vestigate two particular cases of

wave by a finite cylinder. n 1is v .. .
the normal to the incident wave incident wave polarization:

front.

(1) E-polarization, when the incident wave electric veeser is

perpendicular to the plane (Eo L yoz)and
(2) H-polarization, when Ho Llyoz .

The uniform part of the current excited on the cylindrical aur-

face by wave (13.01) has, with the E-polarizaticn, the compeneate
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r

f'=— o Boysinysinge’®,
]:=i ;;E..sinzcowe"' .
. f

m o Byecosteos e

and with the H-polarization it has the components

L=£=0

== f‘;ﬂ.,sinc,'»e’”. ’
where

== gsinysing 4 {cosy.

Let us calculate the field created by these currents In the region
R
=7 .

The vector potential of the fringing fleld 1s determined by
the equations

]
2 7
{4
"5‘:-;‘{? j (4 ?)g;'at with =0
['] ]
2

and

-
i
aln
lg"&c
a
-

jo? o f_"_'d(
G D 5dC with >0,

R

where

r=yfF =D FE=0" -

Since the fleld in the far zone (R ka®, R > kl%)

(13.05)

(13.02)

(13.03)

(13.04)

(13.06)

(13.07)

these expressions may be simplified by using the relationshino

r=R-+4-usindsinp—§{cos?d.
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As a result, we obtain a simpler equation

‘
T o
A=%—1‘;:Je""'""'“"d¢ j' PE, et g,
1
T

(13.09)

Since the current components are described by the functions

f(@)e™®
to a calculation of integrals of the type
]

T 0
Seiﬂ(m*[—eos.)d: j f(*)elpllIIOd‘p:

-

2
1 ] -:-‘ (cos 7—~cos §) —
= Tk {cos y—cos 9) [

- {cos g—cvs §)

—_ 2 ‘ ] ff(weip.in.; dy.

The integral

[} .
i (7)€?M* dy, p=ka (sin{ +sind)
i (?) Y

when p >> 1 is easily calculated by the stationary nhase method.
stationary phase point is determined from the condition 4,

and equals
y R ]
Te=—-3"-
Then assuming ¢=-—--+3, we find )

¢ 1 ";
Si("{)e""”d‘{azf(n'{.)e"’ e P 3=

niu"‘o“l'

= }/_m yemir [ et V—f s

As a result, we obtain the following exprecsions

vector potential:
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for the

., then the problem of finding the field reduces essentlally

(13.10)

(13.11)

The

Siﬂ? :=0

(13.12)

(13.13)




with E-polarization
‘e . oMt
Ar=g Epdiny =21, Ay = A, =0 (13.14)

and with H-polarization

A= Ho S A=A,=0, (13.15)

where

Iz!(m 1—<coe ) - ;-l (cvs g—cos §)
)

ik(cosy —vosd) X

——— -mwnuuuﬂw} (13.16)
XV YT EENTY )

I=

The fringing fleld in the reglon ,==__%} 1s determined by the
relationships

E’-----H.=ikA,.
Ey==H, = —ikA,sin®. (13.17)
Therefore, with the E-~polarization it equals
ika ;. _e't%
E,=—Hy=752 Eusint 1] (13.18)
E,=H,=0, |
and with H-polarization
14
Ey=H,=—52H,-sind 1,
B’==H.=0. \13'19)

The resulting equations show that the field scattered by the cylin-
drical surface 1s created mainly by a luminous band adjacent to the
cylinder's generatrix with @:#?.==--;~ . The radiation from this

band may be represented [see Equation (13.16)] in the form of spheri-

cal waves diverging from its ends (points 2 and 3 in Figure 2h).

Now let us write Expressions (13.18) and (13.19) in a form which
is most convenient for calculating the effective scatteriny aren
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: MR &0
B =—-H =-£g.£'.£.—_.- D' 7‘
) E 3 2 ° R 21;( )

(13.20)
ia Lol 2
E. =H, =5 Hog"‘R—"zu ® 1)
Here
<) . ~+¢ .
Y, =0sioy. ¥, =—Gsind, (13.21)
and
» () .———-—-—-—2 -
9=2Vnka(sln'(+sln D)X
sin [%’ (cos y — cos il)] ~ika (sin p+sin Ou»l:- (1 3. 22 )

X cosy —cosd —e "

The index "0" on E: and Ei means that the field was calculated in
the physical optics approach (based on the uniform part of the
current), and the index "c¢" shows that this fringing field is created
by a cylindrical surface. The effective scattering area, in accord-
ance with (12.17), is determined for a cylindrical surface by the
relationships

~—{ 3t}
o= | T [ =watsinrrior

°.'..n="‘a'lznl'=ﬂa'5iﬂ'°|0|'-. (13.23)
In the direction of the mirror-reflected ray (3=y), we have
% g =9 y=rhal'sind="2psins. (13.74)

In the direction toward the source (3==z—y) , the funetions EE:

and 2'0

equal

~2ika vin B+

'.’io _ °o sin ¥ sin(kl cus ) E
Lu—_zu—i/‘%—. cost ¢ ’ (13.23)

These expressions are valid 1f ka sin 0®»1 . It is not difflcult
to see, by means of equations (13.02) - (13.05), that the frincins

field equals zero if v = 0 and 0=a. Thus in the case cof radar (that
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is, in the direction toward the source) we find an expressinn for

the fringing fleld in the region ka sin p>»1} and in the direction
#=a1. Naturally the desire arlses to write lnterpolation equations —
that is, equations which would provide a continuous transition from
the region ka sin®®»1 toc the direction #=x . Now let us note that
the fleld scattered by a cyllinder 1s comprised of the flelds scattered
by the lateral (eylindrical) surface and the base (end) of the
cylinder. In the physical optics approach, the fleld scatfered by

the end of the eylinder 1s equivalent to the field scattered by a
disk. But the field scattered by a disk i3 described by Bessel
functions. Therefore, it 1s also advisable to express the fleld
scattered by the cylindrical surface in terms of Bessel functions.

As s result, the desired interpolation equations for the field
scattered by the cylindrical surface may be represented in the form

_2:2 — 2;-, __;Ln): (en(eos _ e-mmo) V@ —1J, @l
’ (13.26)

{ == 2kasin®.

From this 1t follows thatz:s =Z:% = 0 In the dlirection 8==x, and with
the conditions ka sin 8% 1 we obtain Equations (13.25).

The field belng scattered by the eylinder's end {(by the disk),
in accordance with equalities (10.06) and (10.07), 1s desecribed in
the physical optics approach by the equations

2,}__;-0:»}‘(:)‘;“«.:, (13.27)

= *sind
X,

Consequently, the fileld scattered by the entire surface of the

cylinder will be determlned in the plane ?==~'%% by the equations:

. "R 3¢

i ethR O\
E.::H'=—§‘!-Har’ R—"}J (0)' ’

where
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Yo

[ ) O -kl co 1
= e Bl a1 PAUEA L By

ye - | (13.29)

T a—

These equations allow one to determine 1n the physical optics
approach the effective scattering area of a finite cylinder.

§ 14, The Fleld Created by the Nonuniform
Part of the Current

Let us find the field from the nonuniform part of the current
caused by the surface's discontinuity. Figuratively speaking, the
field scattered by the cylinder is created by the "luminous" regilons
cn its end and lateral surface. Mathematically this field is
described by the sum of spherical waves from the "luminous" points 1,
2 and 3 (see Figure 24). Obviously the fleld from the nonuniform
part of the current alsoc will have thé form of spherical waves diverg-
ing from thcese same polnts.

In the case when the length and diameter of the cylinder are
sufficiently large in comparison with the wavelength, one may
approximately consider that the nonuniform part of the current near
the discontinuity 1s the same as that on a corresponding wedge. The
field radiated by this part of the current in principle may be found
in the same way as in the case of the disk. However, such a method
is rather complicated. We willl find the desired field by a simpler
and more graphic method, starting from a physical analysis of the
solution obtained for the disk.

For this purpose, let us investlgate the structure of waves
(12.01) and (12.02) which are radiated by the disk. These equations
include the factor

ia el"—i ohR - '
VikaGiay Femg K = vaaw V ® vy (14.01)
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Here )/;5 Is the untolding coefflcient of the wave., It zhows how
the fleld 13 formed with increacing distance from the disk: the
diffracted wave which is c¢ylindrical near the disk unfolde intn a
spherical wave as the distance from 1t increases., The coefflclent
(sin7--sin9)~"* is proportional to the width of the luminous resion on
the disk or, in other words, to the wldth of the first Fresnel zone.
Thus, in Equaticas (12.01) and (12.12) the functlons fl and ml depend
only on the body's geometry — more precisely, on the character of
the discontinuity.

Therefore, it 15 entirely natural to assume that the similar
wéves which are being scattered by a cylinder have the same structure
and differ only in the functions fl and gl which correspond 1in this
case to a rectangular wedge. Consequently, in the direction toward
the source, the field from a nonuniform part of the current flowing
on the cylinder may be represcnted when ka sin %) in the following
way:

ca?)+Mcu0

X i
£ = —Hy= i Bl e -

ol
—1i*(2) oftiems 0.+,|'(3)e ~iklcos Ol e_' (‘-T)} e:'.
e
£0=H9="'LLH,,.:8| (l)e‘ (t—r) +iklcos 8 _ (15.02)

s

| 423

— (¢ @y g gyemrsy (T e
T

In accordance with § 4, the functions fl and gl are determined by

the equations

=
I,u) llu-;.-( ) _
= e
g " cos— 1
boynd ! )4-'2.0"
Lad "“_1;:_-“”::—"20 2sind "’ (14.03)
=
r@y ' ! _
PAb)) =" " T @ |
.cn.-;'--—l €08 -~ — CoB -

(Equation continued on next pace.)
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o S0s® __sind
~2%in® * o5k *

F@y_ " ( L .

g (3)‘ coc—:--vl
. ) )_._ sind (14.03)
i n TTRE N [T~ Fcosh *
COIT—(‘O’
~whepre
3
=-5- (14.08)

In Chapter IV, we will show [see Equation (17.25)] that in the
direction #==x-—-y==x one may neglect the fleld from the nonuniform
part of the current flowing on the cylinder in compariscn with the
field from the uniform part, if ka®» 1. Therefore, for the fleld
from the nonuniform part of the current, one may write with the help
of Bessel functions the fellowing Interpolation equations:

,=—H, _.L‘!.E" "'2 (),

(14.05)
Ey=H,=221,2Y'®

T (0) = AT, €+ T, @] —
— PO Q) — iy @b,

T @) =M, Q) +iN*S, €)™ — (14.06)
— 2 O @~ Qe Mt

—

and the functions M7, | and M], Nl respectively equal

=]

l

M

} =rmar@ Wl=em=g @ (1h.07)

2

or
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M n TR x — 20 —
n

cos —= — cos

3 7 )= fnd " Teos¥

v
- L . Cos#? _ sinh
cos ‘u‘ —-COI'_u‘

ﬁl} m%( )
N " con-:--—l

il

The resulting Equations (14.05) change when ka sin®» 1

PR g S s o e 0

(14.08)

into Equations

(14.02), and in the direction 8%== they gilve a value equal to zero

for the field. \

§ 15. The Total Fringlng Field

Summing Expressions (13.28) and (14.05), it is not

difficult to

see that the total field scattered by a cylinder will equal

E —""H. TE.’"‘" 2(0)'
Ey=H, =2 Hu b F O,

where
Y, ) =137, )+ iNJ, Q) ™ <0 —

1]
—f (3) [./ (C) — (C)] e-llko‘ ’ l
Y (0) =M/, )+ iNJ, ©)] Y ‘

)

—g Q) —ily())e ibicos
{=2kasind .

(15.01)

(15.02)

and the functions ﬁ N and M, N are expressed only in terms of the
functions f and g which correspond to the asymptotic solution for a

rectangular wedge
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=) ¥

}=i(l)::l(2). :‘}=g(1)::g(2). - (15.03)

or

- fod . .
My "3 _ 1 . )
M[T A (*" n =20 % 2f)'

cos T cos n CO“";‘ MST

(15.0%)

N "W, 2 ! — 1
NI ( " RV I I L _ﬁ: '
cos—“-—l _cos—4 cos— cos—-—~cos~—

The functions f£(3) and g(3) in turn are determined by the equation

) _mw, 0 TR R o
20) 3 (co . =+'2') (15.05)

ot ] COg ———
85 —1  cos—pr— y

Thus only the functions f and g are included in the final expressions
for the scattering characteristic of a plane wave by a cylinder.

In the direction ===z, the functions 2 and £(3) take, as in
the case of a disk, the values

(%)= — S(x) == kae™™ (15.06)

and with v"=~;- they respectively equal

2 =
$/21 AT s :
V(3 )=t & ek S i UG — 4
COO-“‘—-J .

4 3

2(‘;‘)——:,- (47"2"_":'.-.;"_ cg © _,-,,.,)J’(CH_' (15.07)

cos—n‘--l

+(—%— ctg —;—‘l""kl) 4 Q).

where ¢ = 2ka. The terms in this equation which contain the factor
kil refer to the fielcd from the uniform part of the current, and the
remaining terms refer to the field from the nonuniform part cf the
current.
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In agccordance with (12.17), the effectlive scattering area of
the cylinder is determined with the E~polarization of the incldent
wave by the function

3, ="' |E®)), (15.08)

and with the H-polarlzaticn of the incident wave by the function
y =va’| S(8)" (15.09)

Let us note that Fxpressions (15.02) for the scattering fleld
may be obtained directly on the basls of an analogy with the
Equations (12.06), omitting the calculation of the fields from the
uniform and nonuniform parts of the current. 1In the same way, one
may obtaln the expressions

20, b= [P O+l TN
I F ot pconty

— @O —~ih@le \

S Mt tenty (15.10)
(9, 8,)=[M/, () iNSy(B))e? —

T !fﬂ cos
~g@MU@—isepe T

which are suiltable for calculating the fringing field in the region

"“-"‘—;‘, -;-(”i 8, <% (8,=%—Y), The quantities here equal

E=ka(sin & 4-sin9,)

(15.11)
- n
5 Ml sy
M{Ta X
- t ) t
x("' = e O mn By " LR
\ cos— - cos ———cos ~——
- \ .
) 2 - (15.12)
N - " (co:-‘-—-col’—"
A n
— ! — '
- TR - ’
cus-;-—cos -3—-07-—’-'— co:{-—cou ’r”') : ]
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]
[ _ 7 ' _ '
g ( A=At s :.i"_ﬂ:_"_o) 115.13)
ccs -=Cos —=  cos - —cos -
Expressions (15.10) satisfy the reciprocity principle — that

15, they do not change thelr values if one interchanies & and ¥,
When 8=8,, they change into the previous Expressions (15.02).

Equations (15.02) and (15.10) describe the radiatlion from the
currents flowlng only on part of the cylinder's surface: on ithe one
end (when z = é) and on half of the lateral surface (-7 < ¢ < 0).
Moreover, thes; expressions do not take into account the nonuniform
part of the current caused by the curvature of the cylindrical sur-
face. Therefore, they must be refined with values of # and &,
which are close to % and =, Howeveb, in the case # =0, — that is, in
the direction towards the source — these correcticns may be neglected
if the parameters ka and kil are sufficiently large. lumerical cal=-
cglations performed by us on the basis c¢f Egquations (15.02) show
tnat this evidently may bte done already when ka = n and ki = 10 .

The graphs of the functions :f,—:lf(i’);’ and .:%,.=;zm,: constructed for
this case in Figures 25 and 26 agree with the experimental curve<1)
(the dashed 1line): the pecsition of the maxima and minima basically
agree, and the number of diffraction fringes is the same. For the
purpose of illustrating the effect of the ends, we Eonstructed a mraph
of the effectlive scattering area for those same values of ka and kI
takine Into account only the uniform part of the current on the ’

cylindrical surface (Flgure 27). A comparison of Firures 25, 2¢ and
27 shows that tne effect of the ends begins to aprear when # = 120°,
Footnote (1) appears on page 89.
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Figure 27. The effective scattering area
of the lateral surface of a cylinder in
the physical cptiecs approach [see (13.26)].
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FOOTHLOTES

1. on page B86. The experimental curves shouwn in Figures 25 and 26
and also those In Figures 31, 32, 65 and 71 were
obtalined by Ye. li. Mayzels and L. S£. Chugunova.
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CHAPTER IV

In this Chapter we will refline the physlical cptil
for certaln other hiodles of rotatlion, whose surf

c
discontinuities, We willl 1imlt curselves tc the case when a pla

4y

electrcmagnetic wave falls con the tedier alons thelr cvrmmesry ax

ssume that the linear» Iimerncicnsg ¢of the
tedd n with the wavelen.~tn, In +*his care

o)
currents In the vicinity cf a circular diceontinul
e

3
Us
W
*3
D
—
W
vt
My
17
[l
Q
O
=
3

surface of rctaticn may be aprreximately eccnside
as that on a ccrrespending conilcal tedv., Ceoncejuently, it is

sufficlent to ztudy the field from the norw

pod

which 13 caused bty the circular discentinuitsy of the sur

zuch a body as an example.

§ 16. The Field Created by the MNonuniforn

Part of the Current

Let a plane electromagnetic wave fall on 2 conical body In
he 2

roecltive direction of th

z axls (Firsure 28). Trom the relatione

i

ace, ual

<

M

form part of the curren
fal
EY




*

=

E = —- @raddiv A+ FA). |

) (16.01)
H=rot A |
we find the followlng expressions fer the fringing fleld in the wave

Zone s

Eoo=H,=ikAn |\ ..., s_p -
E,=—H.=ikA, | '~ (16.02)
and
e =“-H'=ikA . 1
. * ith 8==x .
E,=H,=ikA, }W th * (16.03)

The vector potentlial 1is determined by the equatlon

I *
Iy

A= [ fa@en o ta - 2sineyat 4
L ] (16-0“)

b » o
+6! Bt 2 @ —Lnin () 8] dy.

Here r i1s the distance from the discontlinuity to the observaticn
point, Jl(c) is the surface current density flowing cn the irradiated
side of the body, and Ja(;) is the current density on the shadowed
3ide. The upper slgn in the exponents refers to the case #=¢, and
the lower sign refers to the case 8=0. <Cince the ncnuniform rart of
the current i3 concentrated mainly in the vicinity of the discentin-
ulty, the vectcr potential ccrrespending to it may be represented In
the feorm

A=2 e—:'.f (I B@et®etar
(16.05)
+

Iy §

j; © o¥ iNcoe 'dt) dy.

Obviously the nonuniform part of the current near the discontin-
ulty of a conical surface may be considered tc be approximately the
same as on a corresponding wedge (Figure 29). 1In the local eylindri-
cal coordlnate 3ystem Ty, ¢1, Zys the fleld from the nonuniform part
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Figure 29,  The dihedral anpgle

corrceponding to the discontlin-

utt o a conles surtace.
Flyeure 28, NMerfraction of a ty of a conteal surtae

plane wave by a contcal body.
The plane wave {s propapated

e plan '3 propay of the
alony the 2 axiz,

current. flowinge on such

a wedee s determined in the

ot sone (kv1 > 1) by the followlny equations:

Eoem My e o, |

H (0 1 e i) o (16

'
whore

ks A I TR
. " : (16

L06)

.07)

= . e " )
+{roe e
1]
Here the upper abpyn In the exponents refers to the case .pl = 1+ w,
and the lower sirn — to the case @1 = w. On the other hand, [n
§ 4 it was shown that this field equals
I‘hl, i . ' '
Eator Lo tini } 2ikr, !
Y +
s ) ' Lo, oR)
+ v
Ho@= H gt == e |
| BN }
where E,(9). H, o) nre the values of the Ineldent wave amplltude ot
*

02,

. 1 . . .
the wodpre edpe, and 7 and & are anpular function: eharnctericine

thie scatteringe diavram.
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Let us introduce the designation

- N -
J=[h@e * ‘°"4C+.S LS (16.09)

Equating Expressions (16.06) and (16.03), we find

g =y, o), (16.10)

% ik2n L thin
The components le and J’l are mutually perpendicular, and when
8=0 and %=s they are parallel to the plane xOy (Figure 30). The
different orlentation of the unit vector e¢1 when 8=0 and 8==x 1s
connected with the fact that the angle ¢ is measured from the irrad-
iated face of the wedge. In the original x, y, z coordinate system
the vector J has the components

Je=/, sinp—J cosp, | =0 16.11
Jv"“""’zﬁ‘”?"’nﬁn‘* ,w“':h B e

and

Jy==J si J .
asin g+, cosd with d=r. (16.12)
Jy=—J, cos¢4-J sing |~
Substituting Expressions (16.10) here, we obtain
Jy= ‘:2' "‘Em‘('{‘)smq"“g' og,«’)cos’ln

=75 amll 'E,, ($) cos 9+ g'H,, (9)sin¢)

and

Je= g "By, (9)sin y + g'H, ($) cosg). ,
;- with d-==  (16.1h)

'E 160 - 0" Ho, (§)sing)

- —— .

£
ik2n

Now identifying the current near the conlcal surface discontinuity
with the current on the wedpe, we find the components of vector
potential (16.05)
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Figure 30. The relative

orientation of the
unit vectors e¢1 and

ez, in the cases ¥=0
and d==,

,w- IU o, (P)NiIN Y —

— g No) cos 3]y,
A= ,‘.2, - j.ll r..(‘r’)tlbf ¥+
+u'H,, @sin 2] k>

and
Ay == e SN IPE,, esing 4
+g'H, : ., ($) COS D)y, |
Az BE Su‘b",(u) cosd- -

—&'H,, (Psiny)dy,

with ® =0(16.15)

with® =% (16.16)

Furthermore, let the plane wave be polarized in such a way that

E, |10x. Then

Em,(*) = Eq, siny, Hu,.“')‘—_'— — Eo CG*

Considering these relationships and substituting Expres
and (16.16) into Equations (16.02) and (16.03),

(16.17)
sions (16.15)
we find the fileld

from the nonuniform part of the current which is caused by the

circular discontinuity of the conical surface

Eom Hy= 250 (g g &Y
x L r with 8=0 (16.18)
F_":_Hx:n ' . .
and
Fomo M. - tlL..‘ A u)f'_'_f
z L ’ R 4 'With L IETE (16.10)
I:“,-_—_ H,:O : *

Equation (16.18) is applicable for the values 0<«.<12'~,m<;95;a , and

Equation (16.19) for the values <<,

FTD-1C-23-259-71
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In the case of a
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disk(~f:“;- W -‘). the fleld from the nonuniform part of the current

equals zero on the = axis, »lnce el ol . ~1/2 whenf—0 , and

tloa gl w S22 when &g Do orrore (EL1O)).

Usiny the reculslo oo 000 = iyt 1y the followlng sections,we
will calculate *ae o 50 ¢ 70 “+ ot qrea (In the directlon d=:2)
for specific t . d'ex. & <y viat they are {rradfated by

the plane wave
F,: M, —~F, e, (16.20)

and thelr linear direncton: are livee in comparison with the wave-

'length.

§ 17. A Cone

Let a cone (Figure 28) be irradiated by plane electromasrnetic
wave (16.20). The unitorm part of the current which 1s excited on
the cone's surface has the components

[ . |}
I:"‘..:‘i: Eg'sln-e'.’| !

=0,

7 Fun Conmcospet

(17.01)

i

o e

and creates in the direction ® == (with R®> #i®, R>»RB) the field
. i 'A'll
E:="‘HD=“Eu:ﬁ‘tg“"§“+

tEue (5 180t -t ) e, (17.02)
Ey,=—=H,=0.

Here the first term describes the spherical wave divereing from the
vertex of the cone, and the remaining terms describe the spherical
wave from its base.

The field caused by the discontinuity of the surface at tne
cone base 1is a spherical wave, and is determined in accordance with
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(16.19) by the expression

: el N
E;=—H,=—~3E, (tg«--!-c-;-__:“::j_;._ )ET et, ! (17.03)
E,=H,=0, . ! )
where
n=142%2 (17.04)

An asymptotic calculation of the rigorous diffraction series
for a semi-infinite cone [38-40] shows that in the direction® ==
one may neglect the effect of the nonuniform part of the current
caused by the conical point. Therefore, summing (17.02) and (17.03),
we obtain the following expression for the fringing field:

Eyo=—H, = —E..[% tge(1 — ety

2 ] (17.05)

Let us point out the followling important feature of the resulting
equation. In the problems which were investigated in the previous
chapters, the edge waves of the fringing field were expressed only
in terms of the functions f and g¢. But now inthe equation for the
spherical wave from the cone's base, in addition to the term which
depends on f and g [the last term in the bracket of Fquation (17.05)1,
there is an additional term [term --ifa@®we®™ {n Equation (17.05)]
which does not depend on these functions and 1s determined by the
uniform part of the current. Therefore, it is impossible to rerresent
the resulting spherical wave from the cone's base only in terms of
the functions f and g which characterize the total edge wave diaprram
from the corresponding wedge edge. Thls important fact was not
considered in [41, 447, as a consequence of which thelr authors did
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not succeed in obtaining correct results for a cone with am arbltrary
aperture angle w(0 < w < n/2).

The effective scattering area in accordance with (12.18) is
determined by the equation

1=z |LJ, (17.06)

where the function I 1s connected with the fringing field by the
relationship ‘

Ey=—H, = & Eu ok
s = "I, =— 4 -Lex €17.07)
and equals
1}
- sin —
D= Ligtesin b et f T T ek, (17.08)
tos = cos -

The analogous function in the physical optics approach may be written
in accordance with (17.02) in the form

v:%'lg'usinkle‘*'—tgoe‘“" (17.09)

With the deforming of the top part of the cone into a disk

, Equations (17.08) and (17.09) are transformed, respec-
tively, to the form

. H [ §
S=—ika——cig—. ] (17.10)
29— ke l

Furthermore, it follows from (17.08) and (17.09) that for large
values of the parameter ka(ka >> tgzw) the functions £ and :G may
be represented in the form

Zun > (17.11)
eding,

n 2w
cos ~ —cos >
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o igaen, (17.12)

Thus even in the case of short waves ( ka >> tgzw, but R »>> klz),
our Expression (17.08) does not change into the physical optics
equation, but substantially differs from it because

i e !
==m'l 7@ (17-13)
cos —-—cos -
and
,Q:g.“.tg‘.' (17.1"‘)
With this
! 2 = s
;sln; l
2=P| el (17.15)
!

: (cos '-;—-cos?;'-')tg. l

that is, for sufficlently short waves (or for sufficiently large
dimensions of the cone) the function o is proportional to oo. The
coefficlent of proportionality here does not depend on the cone
dimensions, but 1is determined only by its shape.

This result is graphically 1llustrated by the curves giving
the effective scattering area of a cone (w = 10°25', k = =, Q = 90°)
as a function of its length (Figure 31). Whereas our equation (the
continuous line) is in satisfactory agreement with the results of
measurements (the small crosses)(l), the physical optics approach
(the dashed line) gives values which are smaller than the experimental
values by 13-1% dB. For sharply pointed cones, the nonuniform part of
the current has an especially large values. In Figure 32, a curve is
constructed for the effective surface of a cone (ka = 2.75 », Q@ = 90°)

Footnote (1) appears on page 113.
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with its deformation Into a dlsk
(w + 90°). The discrepancyv. be-

i tween our curve and the physical
ifm. optlcs approach here reaches

;7”,,aﬂ’f almost 30 dB when w = 29,

=] Expression (17.08) obtained
by us also allows one, 1ln con-
l( !/4(T> trast to the physical optlcs
2 [ % - approach (17.09), to evaluate

7/ the role of the shape of the
Y shadowed part of the body and

shows that the reflected signal

Figure 31. The effective scattep- %111 be larger, the closer this

%]

Ing area of a finite cone as a shape is to a funnel-shaped form
function of its length. The

function ¢ (the continuous line) (@ =n - w). Thus, for example,
was calculatedson the basis of in the case w = 10°, kil = 10 r
equation (17.06) which con- .

siders the nonuniform part of (k = n) the signal reflected by
the current in the vicinity of the cone may exceed by 15 dB the
the circular disceontinuity.

The function o0 (the das%ed value corresponding to physical
line) correspcnds to the physi- optics (see Figure 33) if 0 =

cal opties appreoach. 170°.

Let us note that our Expression (17.13) is equivalent to the
expression presented in the above-mentioned papers [41, U4]. BEcwever,
the latter expression 1s applicable only for sharply polnted cones,
whereas we have, in addition to (17.13), Equation (17.08) which 1=
suitable for ccnes with any aperture angle w {"Zwi };.

The calculatlion method discussed may be generalized in the cnse
of asymmetric irradiation of the cone. However, with asymmetric
irradiation, generally speaking, 1t 1is necessary to take into account
the nonuniform part of the current caused by the point of the ccne.

In concluding this section, let us calculate the effective
scattering area for a body which is formed by rotation arcuni the
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Figure 32. The effective scattering area of a finite cone
as a function of the vertex angle.
"rr;O'lUu!"
53 L1 = ﬁj
’ z axis of the plane figure shown
in Figure 34. Integrating the
. uniform part of the current, it is Y
-bg not difficult to show that the
-
fleld scattered in the direction
' =1 by the lateral surface of the
truncated cone (Figure 35) is
determined by the equation
.’ -
i . N oM,
’ Et':“,,y:':on'{"'(;;‘.'g"'l‘}"az!‘g“’n}e"+
4 [ 4 [ 4 [ [ ’m‘
[ ]
Figure 33. The effective scatter- . \ sikorhy | ™R
ing area of a finite cone as a 4_\'4g’m Mg e TV LE T
ik t 2 J R
function of the shape of the )
shaded part. (17.16)
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Figure 35. The generatrix of
of a truncated conlcal surface.

Figure 34. The generatrix of
the surface of rotation.

Summing this expressing with (17.02), where the quantities I and a
must be replaced by Z1 and ay, we find the field from the uniform

part of the current flowing on the entire 1lluminated side of the

body

Ey=—~Hy=— 5'-595 {k}'x—. 15t wsin kl, et — tgw ey

1 . >, . Jan (17.17)
+ i tg* o, sin &/, o™ -]—(l —_ :: e““’)tg o,]em‘.' : = -
The fleld radiated by the nonuniform part of the current 1is
determined in accordance with § 16 by the equation

2 n
1Eox "; s'n;—l M,
Eo=—Hy=— —[( g HEe—tge)e™

Sl )
* ("Ié_l:?h o )«]-: (a7.18)
el
where
m=142T% a1 2R (17.19)

Now summing (17.17) and (17.18), we obtaln a refined expression
for the field scattered in the direction 8-==g

E,=—H..=*'a‘"§ﬂ(~:?. tg? o sin kle™ - (17.°0)

(Equatlon continued on next pave.)
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‘/ -
2.t
*‘ P sin ":
cos a0 'n,
2 i =
-~ sin —~
ay M M -
+'a; TR 2wy
€O$ ~— —=COg -~
s iy
Consequently,

2
g== m,

the effective scatter

hi {3 msin kLM
]

I .2 i Lf.al Mot 2k, 4 ay
+-‘»a‘ tgtm, sir &0 +;

In the physical optics approach,

When the top part of the cone is deformed
Equations (17.21) and (17.22) take the for

In these expressions assuming w
‘scattering area for a finite cylinie

FTD=HC-23-259-71

‘ a
d‘=m:

+ [m'?, 1gh ey sin klye™s - (1 2r ™) 1y w, | e [

3
cos PN = COS

Q2 + 1) ofhk
R

2 =

—_— l —

- 0O
cosn' CSn‘

2 "

;,—;sln;-.-

[ 2w,
ny

y n":

' ]

T ITRYY

(17.20)-

ing area will equal

(17.21)

the analcgous quantity equalsz

1'3‘. tglesin kl,e

*h g we

m

M,

+

P=a] | —ikay - Letg T L tgt o, sin kl,e .

+a, Ny R n ikl
M cos Z - cos 20 '
cos = cos g

2l ! o g it
=g | — ika, +f€a_,' tg? w, sin il ™"

_;.(1 ._:;’ e""') tge, !’.

1g2

r

(17.22)

N
into a disk (w-f;—. 1,_.0) ,

(17.23)

(17.24)

1 * 0, we find the effective

e e =




R BT | Ty M Mo,
3 = =4 =a, n.cg"s+¢osf—..| ' (17.25)
iy
3z xa} (ka,), (17.2€)
in connection with which
3 Q
nl:‘z‘o Il,’——“l'-l'" P (17.27)

Equation (17.25) is more preclse than Equation (17.06) which
was derived iIn § 15, where the value of the field in the direction
0=x was taken in the physical optics approach.

§ 18. A Paraboloid of Rotatlon

Let us calculate the effective scattering area of a parabolold
of rotation r2 =
(16.20).
surface has the components

2pz (Figure 36) which is irradiated by plane wave

f: _,‘;E.,ﬂhu
=0 , (18.01)
£ =1 F,;-cosacos 4e™. )

Integrating this current, it is not difficult to show that in the

direction #.==x it radlates the fileld
Ey= —~Hy= —Eo 3 5 (1—
E,=H,=—=0.

] 21 M aa
g }' (18.02)

Here a 1s tne radius of the base of the parabolold; h:;;==gdgm is
its length; a 1s the angle between the z axls and the tangent to the
generatrix of the parabolold (r2 = 2pz ). At the point 2z = I, the

ngle a takes the value a—:«m(tgw:—f;-) .
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The fleld from the onunifoprr papt

of the current enused by the diﬂconcinuity

o' the parsbelet 'S osurface ia determined
by Egquation (37.02). The riely from the

honunifors part of tie cirrent which s

rilised by the smootn curve of tne parn-

Loleid's surface Pluils zero in the case
Flgure 36. Ciffractlon  ©f symmetric radlation [45]. ‘herefore,
of a plane wave by 5 summing (15.02) ana (17.03) we find the

paratolold or Fetatlen. gxXpression for the resusting fringing
fleld.

(18.03)
( ==l-{-‘:-§?).

Consequently, the effective scattering area of the paraboloig
w111 be determineq by the relationship

(18.04)

which, when the paraboleid is deformed int. a disk (m~»:,l-~ﬂ.ﬂ
amﬁ) s 13 transformed te the forn

3:;na’fika+ v:‘ctg ;r (18.0%)

-

aring Express{.n (18.04) widh e equat fon

2

o

23
g

F=nattghe |1 — e, (18.06)

which physical optics gives for the ffective Scatterine area, we

See that they differ significantly from one anotner. PFipst of all,

the cscillating character of the function o draws our attenticn:
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! veted ’l'ndl cquals zerc 1 o whele number of hnlfewave:
‘==;”“ a:=-1,2,3. } 15 fltted ints the lencth of the parabcle’d, and
v takos a maximum value !'f a half-inte,ral number of halfenaves
l:=;<u—L ) n- L2.3...) 1o centained in this length.

A calculation perforred by us on the basic of “quatinn (1£.04)
r parabclelds with the parareters @ = 90°, tepw = 0.1 («

for ) shows
(Figure 37) that, althcugh the ceceillatingg character ¢f the effective
Scatter!ing area 15 preserved, the armplitude of the oseillatlons is
only 2 dB, and the maximum valuec of the function o exceed the corres-
ponding valuers In the physical optics approach by almost 13 4B, A
5t1ll stronger diverger:e between the results of our theory and
physical optics 1s detected when the paraboloid is deformed into a
disk (Figure 38, ka = 3n , k = n, 2 = 90°, w » 90°).
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Figure 37. The effective scattering area of a finite
parabolecid as a function of its length with a constant

value of the angle w (tgw = 0.1). The diameter of the
base variles.
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Firure 38, The eftective =scatterins area ~f a

finite paraboleid ac a function of fts leneth
with a constant radius of the base,

As in the case of a cone, the shape of the chadowed part turns
out to have a substantial Influence on the retlected stennl. Fop

example, for a paraboloid with the paramcters ka = 2s, kI = 10 =,

trw = 0.1 (k = 1), the reflected sirnnl increases by HE dio with an

increase of Q(w < 0 < 1 = w) (FPiggpre 39),
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P In concludlng thls sectlon,

‘ ﬂ————q-————;f=="f let us dwecll for a moment on

the question of calculating the
//( . o effective scattering area for

bodlies of rotation of a complex

18 Wi shape, whose elements are the
!zf lateral surfaces of truncated
a paraboloids. The fleld from the
nonuniform part of the current
» N arising in the vicinity of
41‘ Ai__# circular discontinuities may be
’ r ‘Jk . P determined without difficulty

from Equation (17.03). The field
Figure 39. The effective scatter- [-OM the uniform part of the

ing area of a finite paraboloid current is found by quadratures.
as a function of the shape of ,
the shaded part. Thus, the field being created in

the direction 0== by the uniform
part of the current which flows on the lateral surface of the truncated
paraboloid r2 = 2pz(p = a;tge, = astgu,; see Figure U40) 1s determined
by the equation

1 T

Eym = Hy= — T Egp (A)tg wy -— 22ty o0y Pl ‘,e""‘—‘ﬁ-. (18. 07)
E,=Hyma0

Here

l.s-}(a,ctgu,-—a,ctgu,) (18.08)

is the height of the truncated paraboloid (the distance between 1ts
bases). Let us ncte that Equation (18.07) is a simple alrebratc
corollary of Expression (18.02): it 1is the difference of the ficlds
scattered, respectively, by the garaboloid of helrht h+g==§; and

by the paraboloid of height h==;%-'
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§ 19. A Spherlical Surface

££f>”'—ﬂ Incident wave (16.20) excites a

N > surface current on the surface of an

.1deally conducting sphere (a radius of

% 4 i P and a center on the z axis at the
point z = p). The uniform part of

Figure 40. The generatrix of this current has the components

the lateral surface of a e e
truncated paraboloid of i:==--i,;_' 3 €08 6™, I
rotation.

f=o,

(19.01)
j8 =2 o= E,osin O cosgerte.

2=

The currents flowing on a spherical ring cut from the sphere's
surface by the planes z = Zl and z = Zl + 12 (Figure 41) create, in
the direction ¥===, the field

E:_-:;_HL »_;E.,[—-(%! lgm.——‘.‘-‘-) e'-‘itl,+ '

i . ikR
a LA Y T A Bl 19.02
+(Gtem—i) 0] S (9-02)
E,=H,=0,
where
lL=p(1 —sine,), (19.03)
1y == p(sin o, — sin w,);
U PO
P"‘msm"umu,' (19.04%)
Here a, 1s the radlus of the flrst cross section; a, 1s the radius

of the second cross sectiong wl(u7) 15 the angle between the z axis

1
]

and the tangent to the meridian at the point = = L1(37 = Zl + 150,
Furthermore, assuming in Equation (19.02)«%::;(mf=cmwu, we

obtain in the physical optics approach an expression for the field
scattered by the spherical segment (Firure 42)
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Figure 42, A spherical segment
with a conically shaped base.
Figure 41. A ring cut from the
surface of its sphere by the . '
planes z = I, and z = I, + I,. E,=—H,~E,, ["‘f‘e&'&"’ﬁ’*’
Jhl

+(%,g‘._.{i M ]._k., (19.05)

Here we used the new designations

3
G =a, ®=u,

=1,=p(1 —sine). (19.06)

Equations (19.02) and (19.05) are simplified if ka1 >> 1 and
ka2 »> 1. Thus, the field from the spherical ring will equal

' 2unl, el

Ez"—‘--—”,:—"—-E.x %tgﬂn"%‘g“le )e?i."s‘k"‘o (19’07)
and the field from the spherical segment will equal
B
Eo=—Hy=: =% (cca—tgoe™) . (19.08)
If here one assumes w = 0, then equation

af,, &% 19.69
E=—Hy===p ¢ (19 )

gives us the fleld scattered by a hemisphere. The value of the
effective scattering area corresponding to it wlll equal, in
accordance with (17.06),

ot =ra’. (19.10)
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Now let us find the field scattered by the spherical segment
considering the discontinuity of the surface; one mayv neglect the
perturbation of the current. as a consequence of the smooth curve of
the surface 1f ka »>> 1 [743]. The nonuniform part of the current
which is caused by the discontinuity creates in the direction O==
the field (17.03). Summing the latter with the field (19.08), we
find the desired field

=
iy o ) otR
B:="‘Hv="‘1’2i.!(¥o!s"é+““‘£“‘:—2ﬁe““)'e_ . (19.11)

R
cos - —cos

Consequently, the effectlive scattering area of a spherical segment
will equal '

2 sin = ’
LI n n 2kl
=g} ——F—
9= cos u+ s 7w © *

CO"‘;-—COS’; (19.12)
n=142+2,

In the physical optics approach, a similar quantlity 1is determined
by field (19.08) and equals
. sinlf®

1
3 == =a?® —"———-tg(ﬂe . (19.13)

Cos @

With the deforming of the spherical surface into a disk
n? . .
(c—»i}“l—.O.Q:;conu) » Equations (19.12) and (19.13) are transformed,
respectively, to the form

R

I o (19.18)

. 1
s=za’lika+ cig —:—

3* == ra? (ka)’.

It follows from Equations (19.12) and (19.13) that the effective
scattering area of a spherlcal segment 1s an oscillating function of
its length. The osciliation period equals-%. Numerical calculations
rerformed on the basis of these equations showed (Figure 43) that,
with small angles of the discentinuity (@ = 15°), cne may still
neglect the field from the nonuniform part of the current. In Figure
by graphs are constructed for the effective scattering area of a
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Figure 43, The effective scatter-
ing area of a spherical segment
as a function of its length with
a constant radlius of the base.
The function ¢ (the continuous
line) is calculated on the basis
of Equation (19.12) which con-
siders the nonuniform part of
the current near the discontin-
uity. The function o0 (the
dashed 1line) 1is calculated from
Equation (19.13), and corres-
ponds to the physical optics
approach.

el ngs

/&/

Figure 44, A comparison of the
effective scattering area of

a spherical segment (continuous
line) and a finite cone (dashed
line) which have the same bases.

spherical segment and a finite
cone (the dashed curve) which
have the same dlameter and tase
shape.

The results obtained in this Chapter show that the reflected
signal depends substantlally on the shape of the shaded part of the
body, and increases with an increase of the concavity. Howeﬁer,

since the nonuniform part of the current is concentrated mainly necar
the discontinuity, that part of the shaded surface which 1s several
wavelengths away from the discontinuity evidently will not have a

noticeable effect on the reflected signal and may be an arbitrary

shape.

o
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It 1s interesting that our expressions, which agree satisfactor—
11y with experiments, even with large (in comparison with the wave-
lengths) dimensions of the bodies, do not change into the physical
optics equations, but differ from them substantially. At the same
time, physical optics, contrary to the widely held opinion concerning
its reliability in such cases, leads to a significant discrepancy with
experiments. '

The method used in tﬂ&s Chapter allows one to calculate the
effective scattering area assoclated with the symmetric irradiation
of any convex body of rotation, the surface of which has circular
discontinuities. It may also be generalized to the case of asymmetric
irradiation. However, when doing this it 1s necessary to take into
account the nonuniform part of the current caused by the point and
the smooth curve of the surface. ‘
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FOOTNOTES

1. on page 98. See footnote on page B86.
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CHAPTER V

SECONDARY DIFFRACTION

In the previous chapters, an approximate solution of diffraction
problems was carried out which was based on the representation of the
fringing fleld in the form of the sum of the fields from the uniform
and nonuniform parts of the surface current. The first field was
found by gquadratures, and the second field by approximation; it was
assumed that the ncnuniform part of the current near the discontinuity
(edge) of a surface is the same as on a corresponding wedge.

However, the fields found by such a method are actually the
fields from the currents flowing, not only on the flat and curved
parts of the body's surface, but also to some extent on the geometric
extension of these sections. The error in the expressions for the
fringing field which is thus introduced is most significant with a
glancing incident wave, when the edge zone occupled by the nonuniform
part of the current is noticeably broadened, and also with a glancing
radiation, when the direction to the observation point forms a small

Vlt:><;ﬂ

angle with the given section of the surface.

In these cases, the

results obtained earlier are in need of substantial corrections.
already talked about this briefly in § 6 and § 12.
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For the purpose of refining the solutions which were found
previously, it 1s necessary to assume that in actuality the currents
flow only on the body's surface, and that a wave travelling from one
edge to the other will undergo a perturbation at the latter. The pro-
cess of forming the fringing field when this occurs may be investigated
in the following way. The edge wave propagated from one of the edges
is diffracted by the other edges; the waves arising with this in turn
are diffracted by adjacent edges, etc. In thils chapter, we will
investigate the case when the dimensions of the surface faces are so
large in comparison with the wavelength that it 1s sufficient to limit
oneself to considering the diffraction of only the primary edge waves.
This phenomenon we shall call secondary diffraction.

In this chapter, secondary diffraction by an infinitely long
strip (§ 20 - § 23) and by a circular disk (§ 24) is studied. The
solution of these problems may be obtained by means of the principle
of duality from the solution of the diffraction problems for an
infinite slit and a circular hole in a flat, 1deally conducting screen.
In the latter case, the physical treatment of diffraction of edge -

waves 1s significantly simpler; it 1s exactly for this reason, therefore,

that almost all diffraction studies of edge waves are related to holes
in a plane screen. However, we will not take such a path, but we
shall investigate a strip and a disk directly. This approach has the
advantage that it 1s easily generalized to the case of three-
dimensional bodies. '

§ 20. Secondary Diffraction by a Strip.
Formulation of the Problem.

Let an infinitely thin, ideally conducting strip of width 2a and
unlimited length be orientated in space as shown in Figure 45, A
plane electromagnetic wave incident normal to the strip's edges 1s
directed at an angle o to the plane xo0z and has the following form:

E=E.eih(:cou+ y-lnn' H___H.eﬂu cose + vsln-l. (20- 01)
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In§ 6 approximation expres-
sions were found for the fringing
field in the far zone which did
not consider the interaction of
the edges. 1In the case of E-
polarization of the incident wave
(E.ll 0z2) , these expressions may be

represented in the form

Ev=—H,= Ep|f(1)e™ =20y

-2
l(lr-r%)
. +,‘2) e—c.‘(!lﬁ.— sin g)’e Yrﬂ_’ .
Figure 45. The transverse cross =
section of a strip with the E,=H,=0,
plane xoy, x = 0, y = a and
X =0, y = -a are the coordi- (20.02)
nates of the strip's edge; n is
the normal to the incident plane
wave front, and in the case of H-polarization
(H,]]02)
”'=E’=”“[g(.1)e"ﬂ(llni-—“l Q)+
. ‘ . ‘ ei(lr#-%-\
- il (din @~ :
+g(2)e ™! N
H,=E/=0." ‘ (20.03)

Let us recall that the functions f and g included here are determined
in the region |q»[<-;- (when |¢[<-';-) by the following relationships:

cm.?’—ﬁntgg ) cm‘;'+sm‘;'
,“)= sina— sing -’ I(2)=— sina—sin g ’ (20.0“)
g()=—f@), g@=—[) (20.05)

The first terms in Equations (20.02) and (20.03) desecribe cylin-
drical waves diverging from edge 1 (y = a), and the second terms
describe the cylindrical waves diverging from edge 2 (y = -a). The
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nonuniform part of the current on each side of the strip also has the
form of waves which diverge from edges 1 and 2, and are an "analytlcal
extension" of the corresponding terms in Equations (20.02) and (20.03).
The current wave encountering the opposite edge is reflected from it.
Or else one may say that each of the cylindrical waves propagated from

edge 1 or 2 undergoes diffraction by the opposite edge (secondary
diffraction).

If the strip's width 1s sufficiently large in comparison with
the wavelength, then one may appr~ximately assume that the oncoming
current wave near the strip's edg< wlll be the same as on a corre-
sponding half-plare excited by a linear source, the moment of which
is selected in a definite way. It 1is also obvious that the current
waves reflected from the edge will also coincide. Consequently, the
problem of secondary diffraction by a strip may be reduced to the
problem of the diffraction of a cylindrical wave by a half-plane.

~ The field created at the point P by a current filament parallel
to the half-plane's edge and passing through the point Q (Figure 46)
may be found by means of the reciprocity principle. In the case of
E-polarization, it 1s determined by the relationship

5.=',L;;e.(a). (20.06)

and in the case of H-polarization

m,
He= 50 H: (@) (20.07)
Here P, (mz) is the electric (magnetic) moment of the current fila-
ment passing through the Q; Pz (moz) 1s the moment of the auxiliary
current filament passing through the point P with the coordinates

(¢", R), and H, (Q) or Ez (Q) is the fileld created by the auxiliary
filament at the point Q.

Now let us remove the auxiliary current filament to such a
distance that the cylindrical wave arriving from 1t may be considered
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to be a plane wave on the section
from the edge of the half-plane
to the point Q. In this case, in
accordance with § 1 and § 2 the

field created by it at the point
Q will equal '

E(Q)= Ey; (0)[u(d, ¥ — ¢") —u(d, ¢ 4 ¢"), }
H:Q=Hu(0)[uld ¢ —¢")+uld 749"

(20.08)

Figure 46. Diffraction of a

c¢ylindrical wave by a half-plane. The functions u introduced here
Q is the source, Q* is the
mirror image of the source, are determined (for the values.

and P is the observation point. 0<%'<*) by the equations

: i} Vet
u(d, § — ¢")=e e’ =) e}' 7 X et
. . . o =
+{ g = th 0P <+ ¢
. with s+ ¢ < ¥ < 2%,
. C -1} VEdeo T
" (d| 7 "*. d') = e-‘u‘ e iy._‘: x e"dq .+.
o tos ¢ ’;”
+{ MY 0P <~
Lo withs—¢" <¥ < 2=,

(20.09)

and the quantities E, (0) and H, (0) are the values of the primary
field created by the auxiliary filament at points corresponding to

the half-plane's edge. In accordance with Equations (1.21) and (1.22),
this fleld may be represented when kR >> 1 in the form

o ijRR—-
Ey(0)= ik’Pn V %e \ ! ),

— P[RR
l{.: (0)__: iksmu V %%e ‘ 4 ’

—— e g e

(20.10)
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Consequently, an electric current filament located above an
“1deally conducting half-plane excites, at the point F, the fileld

Ey=ik'plutd. 7 —-3")--uld, ¢ + 9')] V g—ie'l"—.‘-, L
2= IR P, .7 ?) . ") R R (20.11)

and a magnetic current fllament excltes, at the point P, the fleld

-3)

-~
’» ) " 2
s=iktm n(d, P --7") ud 9+ 7 )l}/ ,%t' - (20.12)

It is easy to see that the exponent e*F—4«®% N 45 these expressions
corresponds to the primary cylindrical wave arriving at the observa-
tion point P, and the cxponent g#IR-4 @4+l aoppesponds to the reflec-
ted cylindrical wave,

The moments m, and P, must be selected 1n such a way that in
the dlrection 9" = 7 (Figure 4f) the filament would create a field
equal to the field of the primary edge wave atcve an infinite, ldeally
conducting plane. We will conclude tnese calculations in the follow-

ing sectlons, but for now let us make still one other ccmment on une
formulation of the problem.

In the previous chapters it was shown that the scattering objJect
may be appreximated by a series cf sources — "lunirncuz" lines and
points. Therefore, the problem of serccndary 4iffraction may be formu-
lated as a rrotlem cof searchines for functions which describe the
continuous change of the field of each such s:turce during tle passage
through the boundary of the llsht and shadow zorresponding to the
source.

§ 21. S=ececnuary Diffraction by a Strip (H-Telarization)

A current fflament with the moment m_ which *s positioned abeve
an ideally conducting plans (h = 0, Figure 46) creates in space the
field
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M, - 1km,2:HY (kR,). ‘ (Cr.en)

Far from the £1lament (when kB, >> 1), this rleld o deseriboed by the

1

asymptotle expresston

Hr'ii "ﬂk'mns”‘ R (1 L)

But. the primary cdee wave In the direcetton ¢" = n takes the value

. [
LR, ¢+ s
[ ]

"’. ’!n‘Q’g(Q) 'y:,“‘k:‘ Ty (1.0 1)

whoere ll““(t.e) i the rleld of the tneldent plane wave at the point Qg
mlQY s ;‘hv viilue of Uw angular functton of the preimary cylindriceal
wave In the dircecetlon towards the opposlte cdpe of the streip, Foguat-
Ty Expresstons (U01.00) and (01.03Y, we find the tilament 's moment
the fleld of which we use to approximate the pieeimary odpe wave, tn

the form

My = e Mo QR Q- (100

A a result, the fleld ereated by the Chhaments loeated atove
the half-plane —~aQur<oo gnd correspondings to odye 1 (Flheaee 7)) aay

v = -
be represented for replon g« o In the fform

Ho(Wy-< HE) 417 (1) (o)
The funct fon

Yaacos ( :- - ;)

114
. 1 - e « ke (sIna. aing)
HE M= S Hag () N j SRRV o)

I}

. + .
deceribes the wave radiated by the couree ml.,. amd the funcet ton

FPP-HC = =M= ] 1y

~.

e




* ’
l;"'i ’.. ’ ‘ ‘ IViuem ‘-:——-;—) i
, H:(‘)-'?- l__H”g “) X j t“'lfq 7‘2_;.; eiumn a—sin ’)_*_
(4 . 3 '
3 . . t(uo-i- ‘
- . ne—wnge
; +Hag () s €T (01.07)
§ -
areg,
» descrlbes the wave radiated by
the source mIz. The sum of these

Figure 47. The problem of waves equals

secondary diffraction by a
strip. ‘ zi'iicu(—‘!o-:-)

+ -

m,_, and m,_ are the sources 2 - Y .

lz lz ’ H. l — . H l ew __?:euhlsun--sln (3]
the fields of which are used (=< Hua(hX j dqﬂ" +
when approximating the primary .
edge wave being propagated from - :P"T o
edge 1 (y = a); 4 Ho:ﬂ“,"‘yw_z-'_‘."‘ gftuvine sine

L 3 -
my, and m,, are the sources,

the fields from which are used
when approximating the primary
wave from edge 2 (y = -a). (21.08)

The first term 1n this expression 1s the desired secondary wave from
| edge 2, and the second term 1s the field radiated by the filament
which 1s loacted above the 1deally conducting plane x =0 and has the

i moment
= e Hog (e ", (21.09)
where
e(l)———-ml)',,_ e (21.10)
FTD-HC~23~259-71 120




: I e \" \ E

Summing the secondary wave which has been found wilth the unper-
- turbed primary wave from edge 1, we obtain

H(1-2)=
:vr.m(-:--_-;-)

2 = o ika (sin e =>in 3
=H..—,f—¢(l)x5‘ g yrgete T+
-

ifar o =

1 ’___==_ ke Illn.—sl")‘
 H e g | (21.11)

1Y

This expression reduces to zero 1f one assumes ¢ = - n/2; consequently,
the secondary diffraction eliminates the fleld discontinuitles which
occurred in the previous approximation when ¢ = - n/2, However, in
the direction ¢ = 7/2 the fileld (21.11) is different from zero. Since
H_ 1s an odd function of the x coordinate, the relationship
’5:',,_-__,-?‘0 means that the fringing field components HZ and E¢ will
undergo a discontinuity with a transition through the direction

¢ = /2. The reason for such a jump, as before, is that in our calcu-
lations the plane x = 0 is a plane of currents. By finding the
secondary wave from edge 2, we actually considered that the diffrac-
tion takes place not on the edge of a finite width strip, but on the
edge of an 1deally conducting half-plane —a<y<oo .

Again the resulting discontinuity has an order of magnitude of
iﬁi%ﬁf . It is clear that one may completely eliminate the field
discontinuities only with consideration of multiple diffraction.
However, the calculation of flelds arising with multiple diffraction
requires specific consideration of the following terms in order of
smallness in the expansion of the primary edge in inverse powers of
Y¥ (see, for example, [46]). All this greatly complicates the cal-
ailations. Therefore, we, using'the condition ka >> 1, will limit
ourselves to an investigation of secondary diffraction, and in order
to eliminate the discontinuities in the plane x = 0, we will proceed
in the following way.
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Let us consider the quantity E(l) in the Expression (21.11) to
be a function of the angle ¢ [see Equation (20.05)], that is, let us
replace E(l) by the function g(l). 1In this case the egquation

H,(1 — )=
‘.'Vﬁcu(—:---;-) .
= - ":‘8“) X S e"’dq 7.:"-25”““"”‘""*'
-4 .
IS
+”u¢(1)."7;—;f-€m‘""‘“"" . - (21.12)

will give qualitatively correct results not only when 72—--;-, but
also with all other values of ¢. Actually, the Fresnel integral is

.. glose to zero if VE&cos(—:——,—.})?" , and in Equation (21.12) only the
second term remains, as must be the case. Therefore, Equation (21.12)
may be investigated as an interpolation equation, and it may be
applied with any values of ?(l?l<-§, . It is easy to establish that
now the fringing field does not undergo a discontinuity with the

passage through plane x = 0, since Expression (21.12) becomes zero
when ¢=zx .

It is interesting to note that Equation (21.12) automatically
follows from Equation (21.08) if in the latter equation one replaces
E(l) by g(l). Essentially, this substitution is equivalent to the
assumption that the moments of the filaments, the flelds of which are
used for approximating the primary edge waves, depend on the radiation
direction (that 1s, on the azimuth ¢ of the observation point)

- 1 i .
ﬂl"=——m;‘:= ;RFH.'g(l)e‘.”n . (21.13)
Such a determination of the moments of the auxliliary linear sources
is used, for example, in the work of Millar [47].

Precisely in the same way that Equations (21.06) and (21.07)
were obtalned, we find (when x > 0)
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2 .acm(.
B

- ke
HT(2)= _;‘; Hog(2) j e ‘Iq.;'i;e—ihculn a—sing)

) (21.14)
Wiscos (=45
[ - "( * ,:0) .‘H -rba (sin a-sing)
Hi=wHa@ | dyge "+
e . e . ..
.(.',-..;. . (21.15)

—ika (sin a=sin off

'F’fu;(2)t;a§3$-¢
These expressions give the field created by the filaments which are
located above the ideally conducting half-plane —oo<y<e¢ and have
the moments

m = mh= Hng(2)e"‘"""‘ (21.16)

In acccrdance with Equation (21.04), here

D=zl _. (21.17)

—0-

Furthermore, summing (21.14) and (21.15), we obtain

‘r.ﬂ cos (“ '——) .
ibr
H(2)=H¢ 2 g 2) 3 :qu yiee e itatsine—sin y)+
. - .
ifar = ‘ .
—ika (sin a—sin e}

Here the first term is the desired secondary wave from edge 1, and

the second term is the fleld radiated by the fillament which is located
above the ideally conducting plane x = 0 and has the moment mgz.
Summing the secondary wave which has been found with the unperturbed
primary wave from edge 2, we have
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1V ia ro:(-:-+.;.)
- . (L4 3 )
Hi@2=h=Hul | <4 g ity
-«»
‘ »4--“5 .
+”u¢ (2).“""—"'Yi—;—" e-f'.“ln o—sln ’.- ‘ (21‘19)

It 1s not difficult to see that the resulting expression becomes zero
if one assumes ?=={} in i1t. Consequently, the secondary diffraction
eliminates the field discontinuity which we had earlier (§ 6) when
9==€F, but at the same time it leads to a field discontinulty when
p==—v;-. Again the resulting fleld discontinulty may be eliminated
by the above indicated method, replacing the quantity 2(2) by g(2)

- that i1s, by assuming the moments mgz and m;z depend on the obser-
vation angle ¢. Actually as a result of such a substlitutlon, we
obtain from (21.19) the expression

¥ ia LI A
2 'h"“!f':) ot T i
H.(?——l).—.—.- H“ ._'...‘(2’ 3 e"'dq y—-—z——__"e--l (rine-s n,'+

- .
ifws g

+Hug(2). Y.;,—;—" '-Ihnltln -~—Mnn. . (21‘ 20)

which vanishes when ?==::%} . This expression may be investigzated as
an interpolation equation which desceribes the fleld created in the

region IQL<~%' by the primary wave of edge 2 with conslideratlon of
its diffraction at edge 1.

Now summing {(21.12) and (21.20), we obtain the following expres-
sion for the total fleld scattered by the strip: '

H,= H“IG'(]' v)g(l)e"""""'""”-j-
°l(nq. T)

+0(2. ?)8(2)2—"'“'" a~9in y)l (21 . 21)

Here
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. Vier(3-5)

.
Glp=7=e ' X S erdg
]

(21.22)
is the shading function of the primary wave travelling from edge 1,
and

s : zfueo( :’;)
G2 p=g=e xs efdg
‘ ' (21.23)

1s the shading function of the primary wave travelling from edge 2.
These functions show that the primary wave from edge 1 undergoes the
greatest perturbation when 9:»—{} , and the wave from edge 2 under-
goes the greatest perturbation when ¢=-;.

An important property of Equation (21.21) is that it becomes
zero when ?==2=€} — that 1s, the fleld discontinuity which we had
earlier at the plane x = 0 is completely eliminated.

In concluding this section, let us return to Expressions (21.11)
and (21.19) which lead to discontinuities of the fringing field in the
plane of the strip (x = 0). One may show that the sum of these

expressions
QVlarm(T-..;.
2 ike - i kg tsin e—sin e
Hi=Hus 7=l 8D \ efdg e'* me) 4.
’r‘;rm‘-;--r-%
+;‘2) S. eiq'dqe- i2asin a—gin ) [
P .
(hr*—i.-)
a(sina—sinz ~iku (sin a~eing)) @ n
+H..{g(l)e"“ i )+g(2, il (91 1 5)] Y2R.r (21.“2‘)
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agrees, when Vk-icos(;—t-})>l , with the asymptotic solution obtained

in the book [50] by means of integral equations. The solution found

in [50] has the greatest precision when ax0'9=0 , and it is completely
useless 1f exz=4 Or g .

§ 22. Secondary Diffraction by a Strip (E-Polarization)

_ It is known that a current filament with an electric moment p,
which 1s found at a distance h from an infinite, ldeally conducting
plane (see Figure 46) creates in space the fleld

Ey=ik'p,z[HV(RR,) — H (RR,)). (22.01)

With small values of h (and Rl s 2> kh2), this expression 1s trans-
]
formed to the form

(e t)
,=—-i2p,k’hsin'?VuZ-;‘.e( “)t (22.02)
The primary edge wave is determined by the relationship
:(uu+%)
E:=Euld) (O gmm (22.03)

where Eoz(q) 1s the value of the incident plane wave fleld at the

point q (RO = (), Consequently, the primary edge wave in the direction
¥ = 0 may be investigated as the wave from a current fillament located
_above an ideally conducting plane 1f one assumes the fllament moment

to be equal to

i 1)
Pr ="y Ewu(q)5iag om0 (22.04)

The field, created at the point P by the current filament with
a moment P, which 1s parallel to the half-plane's edge and passes
through the point Q, is determined by Expression (20.11). Expanding
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the right-hand member of this expression into a series in terms of the
small quantity h(h » 0) and limiting ourselves to the first term which
is different from zero, we obtain

Ei=iNp, 5 ln(d, ¥ — ) —

e
—u( "+’”k‘ Viee . (22.05)
By means of relatior.ships (22.04) and (22.05), one may show that
current filaments with moments pIz and pIz which are located on the
ideally conducting half-plane —agygo and correspond to edge 1 (see
Figure A7) create in the region l?l<3 the field

Wiiem(3-3)
vosg 5 e“'dq-}- .

.‘H
Eyx= E..—;-F;;-

+2Y..:sm (--:---;./'a'hcmuou 70”‘““‘“-“"’-{-

T 0' Yo ke (sin a=-oin ¢} .
-I-Eal(l)c'”?"'y—ﬁ' ¢ S (22.06)

The current filaments with the moments p;z and p;z which are located
above the iceally conducting nalf-plane —ecgy<a and correspond to
edge 2 creatco in the same region the field

sﬁim(-:-o-:-)
Es=Eu-5 ’;.—'-_ cose S edo4

2',‘__’m( + ) mau-um .,‘(2”_,“(““,““,_*-

l e
ke {3in otin 9}

%)
FEd @ cosy e

(22.07)

FTD-HC=-23-259-71 127




— . - .

 :; The first terms 1r Expressions (22.06) and (22,07) zre the desired

- secondary waves, and the last *erms in the expressicns are the flelds
from the current filaments located abcve the ideally conductinZz piane
x = 0 and having the moments

P by B TNE ™, o e BT ™, (22.08) \

where . \
) - 1 22.0

- ,;.-!' .;;(2)-.:;,9-’,4“_;__.’ (22.09) \

Summing the secondary waves which have Yeen found with the

unperturbed primary waves, we obtain the total field scattered by the
strip

2Vieem ‘-;--—-})
Foin—l o= byt f;;{i(l)[cose X S '
-

itofsle s—sime) +

Whelt 4 shn u] ¢

twg(t-h)
L rrEe(ied)
+l‘2) [Co"x‘ j e"d’-’- \‘
+-§7‘Mdn ( =.+_,}) glirelt- sin vo] f—uqm —wanl gy
: +£~U(')"~"“"""’+[(2).;-:-»««.-‘» a)x
| K (:n-:-)
= e (22.10)

Now assuming, as in the case of the li-polarization, that the
veo moments p;z and p;, depend on the angle ¢, by replacing

fm by M ana jiy by L (22.11)

we obtailn

| By — H, = Ev [F1, 9)f (1) €000

-L’(’ 9)[(2).-0»'-......",. (..1)
| (22.12)
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\ ~ o -
P TEmnr " -
. where ’ o .
. 2 _‘_% ¥AGcos (T—-—’-—)
Flooi=c5e 5 “dq+
= i e2tali4sing) -
+ .
4 L) ‘
4 Mco.(-,_mi,-)
" _l_; 2"73:0:(—:-4- -;-)
F(2, ’)= -’-/—'_: [ I elqu_’_
i eZn'ta(l--sh! % =
+-L
4yk ]
Via ., (T +? j
' , (22.13)
are the shading functions, They show that the primary wave from edge
1 undergoes the greatest perturbation near {==r~% » and the wave from
edge 2 undergoes the greatest perturbation in the vicinity or y&;%.
§ 23. The Scattering Characteristics of a
. Plane Wave by a Strip
Expressions (21.21) andg (22.12) which were obtained above for
the fielq Scattered by a strip approximately take into account the
interaction of the wedges and are valid when (?L<{; . However, they
are not applicable with a glancing incidence of a plane wave on a
strip (when ¢==.._-;- ).

In order to find equations which are applicable in this case,
let us proceed in the following way. Let us write the expressions
for the field radiated by the Strip in the direction a with the inci-
dence of a plane wave in the direction ¢ (Figure 45)

Ervmm —H. = EL[F(2, 0)j(1)escion=siom 4
, i(l'-f —.1)
FROL apj@yeiecimesen i
Aim=Ey=HulG 2 a)g (1) eeeinn=sinn .
i(u+ -})
~iMma(sin a—sing) | € S
+G(1. ng(2e "N ;
(23.01)
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Here |¢|<.; » but ¢ cannot approximate 111/2‘ Now let us note that
the expressions for the fringing field must satisfy the reciprocity
principle — that 1s, they must not change with the simultaneous re-
placement of a by ¢ and ¢ by a. Comparing Equations (21.21), (20.12)
and (23.01), it is not difficult to obtain the expressions

Ey=—H =E.[F(1, 9)F (2, a)j(l)e/etine=siony

1 ]
i M#T)
e

.

TF@ DF, ayf@erenint ) e
Himm E = Ho,[G(1, 9)G (2, a)g (1) e =vmn
( l(hrOo:-}

-+ iha(sine— singy €
+ 32, ¢)G(1, 3)g(2)e ']'—7‘——9_.'::'_—:-- 1

(23.02)

which satisfy the reciprocity principle, have no discontinuities any-
where, and are suitable for making calculations with any values of @
and ? (12?"12'-. l?l<—;-) . From the second equation of (23.02), it
follows that Hz = E¢ = 0 when !=:-;- ~— that is, the fringing fieild
does not experience discontinuities in the plane x = 0. Moreover,

H, = E, = 0 with any values of ¢ 1f a==3 — that is, a plane wave

polarized perpendicularly to the strip does not undergo diffraction
with a glancing incidence.

The resulting Equations (23.02) may be investigated as interpo-
lation equations. Actually, with |aj€ when Vliicos(:,“—:zf_’.)>1 the
functions Fil, 1), F(2,2), G(),a) anda G (2, a) are close to one, and
Equations (23.02) change into the previous Expressions (21.21) and
(22.12). But ir {9[(—3;- and Vft;tos(-;—::—;-)>l, then the functions
Fil. 9, F2, 9) | ¢ (1, ¢) and G (2, ¢) are close to one, and Equations
(23.02) change into Equations (23.01). Let us recall that the fun--

tions F and G are determined by relationships (21.22), (21.23) and
(22.13).

In the direction of the principal maximum of the scattering
diagram (¢ = a), Equations (23.02) take the following form:
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E,:E.,!(;’ikacm:- .\‘o.:.;)m. YF(2, o)

: i {nes -
G F(1. 2) 2ER _ ppa, g 0D ol )
i L A B SR ) L

O TTR

V3 ] (23.03)
Hence when ===._-} we have
H.=0.
, I o L
E=E.(2) e [ovia( [ g4 =e")+
£ (3)7 T VR( [ ierga)
e '2 hw e‘."
e +Hive '“]Vf' |

(23.04)

It is interesting to observe that Expressions (23.02) to some
extent take into account, in addition to secondary diffraction, also

tertiary diffraction. Actually, for the values l=l<—} and I?l<-;‘- .
we have

6 0 9) 0(2 a) 'eua(sin s—~tin g} -~ emmln s—sing)__

i

>l

elm+ sina4sing)

*
i
taG—sina=sing ¥

e — e 4
2 ¥ xka cos (%—%—) 2 Y 7ka cos (—"-+—;-)

4

i elka“—sln atsing)
+4uk¢ ®

A LI B 23.0
cos (T 2):03(4 2) (23.05)
The physical meaning of the four terms in the right-hand mexter of

this equation is illustrated in Figure 48 (Figure 48a corresponds to
the first term; Figure 48b corresponds to the second term, etc.).

Taking into account condition (6.15), one may write the ecuations

® n
for the fringing field in the left half-space ( <<= but lal<-—,- )
in the same form as (23.02).

Thus, the functions G(l, a), G(2, a) and
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Figure 48. The schematic diagram of the

waves corresponding to the various terms
in Equation (22.05).

'

F(l, a), F(2, ) will, as before, be described by the relationships
The remaining functilons in Equations

(21.22), (21.23) and (22.13).

2 7a,in (-‘3- + -:!-)

(22.02) will be determined when + <|¢/<® by the following equations:
2

.G(Q, ?)‘-—‘72:‘ e- T, 5 e“'dq.

- ~2Via |ln(-:—--;—)

G2 9= Tz e j e'dg,
Q
)

L)

"h‘-

“t ngﬁ-m(—{- + ;—)
[ S e'dg =
(]
elikatl +sing) ]

.o¥ia sin (l‘._%)
..2_. * ‘[ S ei"dq _-’:
n

i o~ butl s ':)]
e - ,

W, (i-1%)
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Calculations of the scattering characteristics were carried out
based on the equations derived above. These scattering characterls-

tics are the functions h(a, ¢) and e(a, ¢) determining the fringing
fleld by means of the relationships

;(b##ﬁ.

(f*%}).

Ey=Ekae(a, ’)V:—{—

‘ .
H.=H, kah(a. 9)‘/;.3'.'% (23.13)

The calculations were performed for the values ka=¥28 and k=80 -
In Figures 49 - 62, the following designations were used: 1) the
functions h and e correspond to the rigorous theory; 2) the functions
h0 and g correspond to the field from the uniform part of the current
(the physical optics approach); 3) the functlons h, and e, correspond
to the field from the uniform and nonuniform parts of the current,

but without consideration of the interaction of the edges; 4) the
functions h2 and e, correspond to the fringing field with considera-
tion of secondary diffraction calculated on the basis of equatilons
(23.13), (23.02) and (23.10). Thus, in accordance with § 6,

e ermc a0 (ke (sin 2 —sin g)] }
Co N A S sin s — siny) *

__ sla [ka (sina — sin ¢)
ho=cos ¢ — e s i ,)"1 (23.14)

and

& sinjka(sin a—sing)] 08 {ta(sin 2 ~— sin )]

N =y SRR

where lsi< 3, |,|<-;- .

The results obtained show that our approximation equations ayiree
satisfactorily with the rigorous theory already when ka =} 28 ,
although 1n the given case approximately one and one-half wavelengths
are fitted into the width of the strip. In the direction toward the
source (‘P="'*+=- 0‘=<';‘ , and also with glancing irradiation of the
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Figure 51. The same as Figure 49 when
¢ = =7 + a.

strip (a = -n/2), when the functions e and ho, and ey and h1 lead to
qualitatively incorrect results, the functions e, and h2 give, as in
the remaining cases, fully satisfactory results. Actually, the curve
Ihzl coincides almost everywhere with the curve |h| (Figure 49-54)
within the 1limits of graphical precision. But the calculated values
of the function le2] differ from the corresponding values of the
function |e] only by hundredths of a percent (Figure 55 - 62). The
better agreement with the rigorous theory assoclated with the E-
polarization is explained by the weaker interaction of the edges in
this case. A certaln discrepancy of the curves ]h2| and |h| 1in the
vicinity of the principal scattering maximum 1s explained by the
interpolation character of our equations.

As a consequence of the Interpolation character of Equations
(23.02), the integral scattering diameter obtained from Expressions
(23.03) when a = 0 does not coincide with the integral diameter found
by Clemmow [46] in the form of the first terms of an asymptotic ex-
pansion in inverse powers of vka. However, our equations,as distinct
from the similar equatlons obtained by other authors, allow one to
calculate the scattering characteristics with any lnclident anples of
the plane wave,
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Figure S54. The same as Figure 52 when ¢ = -7 + a.

Let us note that the functions e(u, ¢) and -h(a, ¢) for Figures
49 - 52 were calculated on the basis of rigorous series which were
obtained Ly the separation of variables in the elliptic coordinate
system (compare [23])(1).

4

§ 24, Secondary Diffraction by a Disk

Let us refine the approximate solution of the diffraction pro-
blem for a disk which was found in Chapter II.

Let an infinitely thin, ildeally conducting disk of radius a be
found in free space. Let us orientate the spherical coordinate system
in such a way that the normal n to the incident wave front would 1lle
in the half-plane ¢ = n/2, and form an angle T(0<Y<=%) with the z
axis (Figure 63). Let us prescribe the incident plane wave field in

E= E.e""’ sinqgszcosy) H= H.emr siny 4+2con ﬂ. (21; .01 )

(1)Footnote appears on page 162.
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Figure 62. The same as Figure 59 when ¢ = -7 + a.

In accordance with § 12, the fringing fleld in the plane
¢ = tn/2 1s described (when R >> kaa) by the equations

ia Eo;

E,=—H, =25 [l 28— (00140 +]

' MR
ST XORN R PA) ey

[

H, = E, =" (152, & — g(1, 9040+

, "'IAR
+ilg(2 &+ H4LE) % - (24.02)

These expressions are valid when 0‘=§- and 1<:§ . The quantitiles
included in them are determined by the relationships:

cos-‘%—g—ﬂna—;ﬂ
,u’ 3)= nnd —snnd d
cos!-—-.;-a+ sina——;—g
‘ f@2 )=~ sind —sind °

g(l, )=—[2, 8., g2, 3=—~[1,3),

(24.03)

L= ka(sin® —sin8), (24.04)
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’ T with .9=h~%

3=

.!""'1 with?=-—-—'—;-. | (24.05)

Let us note that here

(1) with o=

-

@) withe=—

la ,wla wlu Nll

}f(2) with o=

F&% —lf(1)w1th9

g(1) withe=
g(L¥)=
8(2)with =

12(2) with =

l
c

Nl‘ ta'a Nu Oala »)

22, 9=

-

lg(Dwithg=~—
! (24.06)

and the functions f(1), £(2), g(l) and g(2) are determined by the
Equations (12.03) and (12.04).

When g >> 1, Expressions (24.02) take the form

=

R : (24.07)

They show that the fringing field in this region may be investigated
as the sum of spherical waves from two luminous points on the rim of
the disk with the polar angle ¢ = #1/2, The diffraction by a disk of
each of these waves may be studied as was done in the case of a strip,
but we shall proceed differently.
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Pigure 63. The cross section of
a disk with the plane y0z; n
is the normal to the incident
wave front.
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Pigure 64, Excitation of a half-
plane by an elementary dipole
which 1s located at the point Q.

Let us compare the shading of spherical and cylindrical waves
by a half-plane. Let an ideally conducting half-plane be found in
free space, and let there be an elementary dipole at the point Q
(Figure 64). Let us find the field in the plane perpendicular to
the half-plane's edge and passing through the point Q.

In accordance with the reciprocity principle, it is determined
for the electric dipole by the relationship

E:’-—‘-;:':Et(Q)- (24.08)
and for the magnetic dipole by the reiationship
my,
x=2;,:;H:(Q)- (24,09)

Here pz(mz) is the electric (magnetic) dipole moment found at the

point Q; Py, and m,, are the moments of the auxiliary dipoles which

are placed at the point P; Ez(Q) and HZ(Q) are the flelds created by
the auxiliary dipoles at the point Q.
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Now let us remove.the auxiliary dipoles to such a distance that
the spherical wave arriving from them may be considefed to be a plane
wave on the section from the half-plane's edge to the point Q. 1In
this case, in accordance with Equation (20.08), the field created by
the wave at the point Q will equal l

E,(Q=Eu(0)[nld, ¢ — ¢")—u(d.¢+¢)

; H,@Q=He: ()¢ —¢") +u(d¢ ") (24.10)
The expressions
1Y ]
Eul®) =¥, Hus0)= Ko (24.11)

determine the fields created by the auxlllary dipoles in free space
(with the absence of the half-plane) at the point 0.

Consequently, the fields excited at the point P by the electric
and magnetic dipoles which are found at the point Q above the half-
plane equal respectively

E=Rplud.d )= a7+ |

H,=k'm.[u(d,?'_.?'r)_*_u(d.?l_l_?p)]_‘_;f. ] (24.12)

With the absence of the half-plane, these dipoles create at the point
P the fileld

- .alkR e eos
E;=kp, G e M e, _
Hy= ks,,,.g:_’ eIt cos (5'—p') (24.13)

Comparing Expressions (24.12) and (24.13) we find the shading
functions

F: [l[ (d, ?' —— ?") —u (d’ ?'_!_ ?"” elhl cos (;'.-gn,'
5 (24.14)

== [u (d' ?' —— ?”) _:’_u (d' ?r + ?n)] el'.d ctos (;'_..'n).
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In the case when the current filament passes through the point
Q parallel to the half-plane's edge, the field at the point P 1is

determined — 1in accordance with (20.11) and (20.12) — by the
equations

nn——)

Ev=ik'pfu(d,¥ —9") —ud e+ ) 5 e

an-j

Ho=ibmu(d, ¢ — 9 tu(d.# N Y oo (24.15)
With the absence of a half-plane, these sources create at the point
P the fleld

E,= ik’ 23 ‘(..‘ “) —lueu('c.,n,
kR

TR ] n_...
—-lk’m. V --lMeal (|'—9").

(24.16)

Comparing Equations (24.15) and (24.16), we obtain the same Expressions
(24.14) for the shading functions. Consequently, a spherical wave in
the direction perpendicular to an 1deally conducting half-plane 1is
shaded by it the same as a cylindrical wave.

Let us note, however, that Expressions (24.14) arc not equivalent
to Expressions (21.22), (21.23) and (22.13), since the first represent
the shading function by a half-plane of a wave from a sirngle source,
and the latter represent the shading function of an edge wave which
we approximate by waves from two sources located on both sides of the
corresponding half-plane. Since the shading functions of spherical
and cylindrical waves are the same, the edge wave shading functions
of a strip and a disk also will coinecide.

Therefore, the approximation expressions for a field scattered
by a disk which take account of secondary diffraction may be repre-

sented in the region ?=::~;~. <3< —;— (with ¢ >> 1) in the following
form:
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Starting from Expressicns (24.18) and (24.19), it is not diffi-
cult to write interpolation equations for the fringing field which I
are suitable for any values of y and 8 in the interval (0; n7/2), a
but when ¢ = /2;

E,=—Hy="" —~{[F(2 8) F(1,3)}(2,8) ~
—FLY)YFRH[(LLQOFIFRYHFLY[ (2,3 +
FFLYFRHILNAO) S, (24.20)
E=H,="2 fe.n60.0g0.9—
=G(LYG22)g(L 4 Q) +ilG2.0)G(L2)g2.9)+
6962014 0] % - (24.21)

Let us note that when y = 0 these expressions will be valid for
any values of the azimuth ¢ , since then any point of space may be
considered to be located in the incident plane. \

In the direction of the scattering diagram's principal maximum
— that 1s, when ’==1-?==%% — the fringing field (24.20) and (24.21)
takes the form

E,=—H,=" £, FR.OF(, 1)——cosr.)
=H, ==—‘35'-H GG (1, 7) S cosT. (24.22)

However, these expressions have an interpolation character,and with
small values of the angle y 1t 1s impossible to consider them to be
more precise than the simple equations of § 9 and § 12. In particular,
with vy = 0, when the fringing fleld must not depend on the incident
wave polarization, they give values which are different for the E-
polarization and H-polarization by small guantities of the order of
\;%: . Therefore, 1n this case (when y = 0) 1t makes sense to use
Expressions (24.20) and (24.21) only far from the z axls, switching

to Equations (24.02) near the z axis.
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Equations (24.20) and (24.21) have the following important pro-
perties, They do not have discontinuities, they include the case of
glancing incidence of a plane wave, and they satisfy the reciprocity
principle. From them it follows that £,=H, =0 when 6~_—'..—;— — that
is, the fringing field does not experience a discontinuity on the
plane z = 0. Moreover, E.==H,=0 with any values of 9 1if 'f.=—:,—.
— that 1is, a plane wave polarized perpendicular to the disk's plane
does not experience diffraction with glancing irradiation of the
disk. '

As in the case of diffraction by a strip, the new approximation
expressions conslder to some extent tertiary diffraction [see
Equations (23.05) and Figure 48].

f
Using Condition (9.04), it 1s not difficult to write equations
=
for the fringing field in the left half-space (7 <¥<® ¢==7)

E,=— Hy="22lF2,x—0)F(1,5)[ 2. 8)—
—F(L,5—0)F2,8 (1,840 +

+ilF2,x—8)F(1,8)} (2. 8+

FFLE— ) FRAILNLON . (24.23)
Ey=H,=2{6e.«—0602e0.8-

—G(L.x—8G 23 g(1. L QO+
+il6@2.=—9)G(1.8)g(2.8)+

+6(L,2—0G2.3 (1 HILEO | . (24.23)

where the functions f and g are determined by the equations

340 —
cos —;-— +sia Lz_f '

sind —sin ¢ ' '}
13 cos ——-;.—!——sin";o i
f( ’ )—-g(2,6)= sind —sind ) (2“ 2u)
In the direction towards the source(5==t—-1.9==——i}) , the

fringing field equals
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IaE, '
E,=—y="22lr0.9129-

— P28 [LAAQ P15 28+
+ PR, 0

Ey=H,="= e 0,028 —

— G @Y (L@ +i(6 (L) g 2.+

+e 202 NL0) % | (24.25)

where

o d=-y
14siny
,("8)=8(2'8)=""2"'i‘$1‘- ! ¢
!

f{2'3’=8"-°)="z:.f£l- (24.26)
As was already noted, it makes sense to use Equations (24.25)
only far from the z axis, changing to Expression (12.15) of the pre-
vious approximation in the vicinity of the z axis. A calculation of
functions E(=—7) and E(x—71) (Figures 65 and 66) which determine
the effective scattering surface [see Expressions (12.17)] was per-
formed on the basis of these equations when ka = 5. A comparison was
carried out of this calculation with the results of measurements.
The two experimental diagrams (the dashed lines)(e) depicted in
Pigure 65 characterize the experimental precision. As distinet from
the previous approximations, which lead in this case to qualitatively
incorrect results [see Equations (10.06), (10.07) and (12.15)], we
observe a satisfactory agreement of theory with experiment.

For verifying the results obtained, a calculation was also
carried ou“ of the functions v(l)(o ) and V(2)(o ) [see Equations
(9.07)] when ka = 5 (Figure 67 and 68) with normal irradiation of a
disk by a plane wave. Curve 1 corresponds to the field calculated
from the rigorous theory [34]; curve 2 corresponds to the fileld from

(2)

Footnote appears on page 162.
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Figure 65. The diagram of a disk's effective
scattering surface when the plane wave's

magnetic vector is perpendicular to the inci-
dent plane.
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Pigure 66. The calculated diagram of a
disk's effective scattering surface when
the plane wave's electric vector is per-
pendicular to the incident plane.

the uniform part of the current (the physical optics approach). Curve
3 corresponds to the field from the uniform and nonuniferm parts of
the current, but without the interaction of the edges. Curve 4 corre-
sponds to the field with consideration of secondary diffractlon. 43
1s seen from these graphs, consideration of the edge interaction re-

~ fines the previous approximation and ensures better agreement with

the rigorous théory results.

The problem of secondary diffraction by a cylinder may be solved
by a simllar method. However, conslidering that the corrections which
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Figure 67. The function V(ﬂﬂ-for a
disk with normal incidence of a plane
wave {(curve 8). Curves 1, 2 and 3 from
Figure 20 are drawn for comparison.

depend on the secondary diffraction here are small (on the order of
1 dB) when ka = m, k1l = 10w, and the equations are substantially more
complicated, we shall not cite them here.

In the problems investigated above, the edge waves have the
character of cylindrical or spherical waves -— that is, they decrease
rather rapidly with the distance from the edge. Therefore, in the
case when the lilnear dimensions of the faces are approximately two
wavelengths, it 1s sufficient to 1limit ourselves to a consideration
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Figure 68. The function Y(\9) for a
disk with the normal incidence of a
plane wave (curve 4)., Curves 1, 2 and
3 from Figure 21 are drawn for
comparison

of only secondary waves. In Chapter VII we will investigate the
problem of a dipole in which the edge waves decrease so slowly that
it 1s necessary to consider multiple diffraction.

§ 25. A Brlef Review of the Literature

In thls and previous chapters, approximation expressions were
obtained for the scattering characteristics of a plane wave by various
bodles. These expressions were derived with the help of physical
conslderations which do not pretend to be mathematically rigorous,
and they are adequate for sufficiently short waves. In the literature,
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there are a number of works in whilch similar results were obtained.

A majority of these works also are not characterized by mathematical
rigor, and they are based on certain physical assumptions. Therefore,
one may relate them to the physical theory of diffraction. Only in

a few works (related to the simpler diffraction problems) did they
succeed 1n obtalning specific results at a higher level of mathematical
rigor — more precisely, while developing asymptotic methods of mathe-
matical diffraction theory.

We will briefly 1list the most important results obtained in a
number of papers and books, grouping the material in the following
sequence:

1. Diffraction by plane, infinitely thin plates (an infinite
strip, a circular disk) and diffraction by auxiliary apertures in a
flat screen (an infinite slit, a circular hole).

2. Diffraction by three-dimensional bodies with edges (a finite
cylinder, a finite cone, etc.).

3. Other diffraction problems.

When investigating the first group of diffraction problems, it
1s necessary to keep in mind the principle of duality [4] which enables
one to easily change from a strip to a slit, from a disk to a circular
hole, ete. In the literature as a rule, they preferred to investigate
apertures in an infinite flat screen, whereas in our book, diffractlon
by a strip and a disk was studied. This approach facllitates the
transition to three-dimensional bodies (see the remarks at the
beginning of this chépter). '

Based on the time of appearance (if we do not consider the works
of Schwarzschild [15] which we talked about in the Introduction), one
should first of all mention the works of Braunbek [28 - 30] which
were devoted to the diffraction of a scalar wave by a circular hole
in a flat screen. Assuming that the plane wave is incident normal to
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the screen, the author obtalned an approximation solution in the form
of a surface integral. The boundary values of the integrand were
taken from the rigorous solution to the problem of diffraction by a
half-plane which was found by Sommerfeld. The field was calculated
in the far zone on the axis of the hole and far from it, and also on
the axls near the screen. Using this approach, Braunbek recently
solved the problem of scalar wave diffraction by an aperture in a
concially shaped screen [31].

In the papers of Frahn [32, 33], this method was used for the
diffraction of electromagnetic waves. Diffraction of a plane wave
incident normal to an ideally conducting screen with a circular hole
was inveStigated. The field was calculated in the hole and on the
axis, and also the fleld in the far zon2 and the transmission coeffi-

cient (the ratio of the energy passing through the hole to the energy
falling on it) were calculated.

In these works of Braunbek and Frahn, secondary diffraction was
not considered. The expressions obtained by them for the fringing
field intensity in the far zone agree with similar expressions
following from our equations (§ 9).

Karp and Russek [51] studied diffraction by a slit in the case
when the incldent wave's electric vector is parallel to the slit edge.
They investigated each semi-infinite p.rt of the screen as a half-
plane excited by the incident wave fleld and a "virtual" source
locallized on the edge of the opposite half-plane. The moments of
these sources were determined from a system of two algebrailc equations
which were obtained by using the asymptotic expressions resulting
from the rigorous solution for the half-plane. Secondary diffraction
was considered, and partially the general interaction. Special
attention was allotted to calculating the transmission coefficlent,
but equations for the scattering characteristics which would be
suitable with all directions of incident wave propagation were absent.
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Clemmow [46] and Millar [47 - 49] in their works calculated the
transmission coefficients with normal irradiation of a slit and a
hole, and also the field in the hole. The solution was sought by
means of curvilinear integrals of the fictitious linear currents on
the aperture edges. The interaction of the edges was considered.

The case of inclined irradiation was not 1investligated, since it turned
out to be too complicated for investigation by this method.

The "geometric theory of diffraction" of Keller [42 - U44] which
deals with diffraction rays 1s of special interest. The phase and
amplitutude corresponding to each diffraction ray are determined at
each ray point on the basis of geometric conslderations and the law
of the conservation of energy. The initial diffraction ray amplitude
1s assumed to be proportional to the incident ray amplitude at the
point of its diffraction. The unknown proportionality constant be-
tween the amplitudes and the initial phase difference .s determined
from a comparison with the results of well-known solutions of diffrac-
tion problems. 1In thls way, the fields scattered with the normal
incidence of a plane wave ona slit and hole in a flat screen are
found. These flelds are obtained with conslderation of multiple dif-
fractions, but they are not preclse wave equation solutions, since
their calculation was started from approximation relations. Moreover,
geometric diffraction theory is not applicable near caustics, and also
in the vicinity of the scattering diagram principal maximum.

In a recently published paper of Buchal and Keller [52], a new
method for the solution of diffraction problems for holes in a flat
screen was proposed. The caustics and shadow boundaries here are in-
vestigated as thin boundary layers, inside of which a rapid {ield
change takes place. This method supplements geometric diffraction
theory, and in particular enables one to find the field at caustics
and on the shadow boundary.

Recently, the method of integral equations has been applied to

the solution of diffraction problems of holes in a flat screen. In
particular, Greenberg [53, 54] reduced the solution of this problen

FTD-HC-23-259-71 157




to an integral equation for a "shadow" current which 1s, in our termi-
nology, half the nonuniform part of the current. The resulting
integral equations may be solved (with any ratlo between tﬁe dimensions
of the hole and the wavel:ngth) by the method of successive approxi-
mations. Moreover, they allow one to obtain asymptotic expressions
which are suitable for short waves. In Reference [55] Greenberg found
an asymptotic expression for the current on a strip with ka >> 1 (2a
is the strip's width). Greenberg and Pimenov [56] obtained a similar
solution in the case of normal incidence of a plane wave on a circular
hole. Using the same method, an asymptotic expression was found for
the current on a flat ring [57], the width and inner diameter of which
are a great deal larger than the wavelength.

The above listed works [53 - 57] already relate to the mathemati-
cal theory of diffraction: in them the first terms of the asymptotie
expansions for the current were obtained with the desire evidently to
also be able to calculate the following terms. Unfortunately, the
asymptotic expressions which have been found up to now refer only to
currents, and one 1is obliged to calculate the scattering characteris-
tics by means of numerical quadratures [56]. As a consequence of the
rapid oscillation of the integrands, such a method leads to rather
unwieldy calculations and does not enable one to formulate a clear
representation of the fringing field formation, and also does not
allow one to study this fleld properly.

Millar [58] investigated the problems of electromagnetic wave
diffraction by slits in a flat screen. The system of integral equa-
tions obtalned by him for the current is solved by the method of
successive approximations. The fleld in the hole 1is calculated from
the currents which are found, and then on the basis of the fileld in
the hole the field in the far zone and the transmission coefficient
are calculated. All the indicated quantities are represented in the
form of an asymptotic expansion in reciprocal powers of the parameter
/ka. A solution also is obtained in the case of glancing incidence
of a plane wave. '
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Let us note that the asymptotic expressions obtained by the
method of integral equations are dlstinguished by thelr considerable
complexity, and frequently require tabuliation of the new special
functions appearing in the expressions.

In the recently issued volume of Handbuch der Physik [50], which
is devoted to diffraction theory, the complex characteristic of plane
wave scattering by a strip was studied directly, omitting the calcu-

‘lation of the currents. For this characteristic, a singular integral

equation was formulated, the solution of which was sought in the form
of an asymptotis series in reciprocal powers of vka. The first term
of the series corresponds to Equations (6.14) and (6.16). The follow-
ing term takes into account the interaction of the edges, and becomes
infinite with the glancing incidence of a plane wave and also for
observation points lying in the strip's plane. Therefore, the simple
expressions obtained in [50] do not allow one to construct the com-
plete scattering characteristic. 1In [50] diffraction by a disk, a
sphere, and an infinite circular cylinder was investigated, and also
a review of the general methods of diffraction theory and a biblio-
graphy encompassing a large number of works (mainly German and
American) were given.

The book of King and Yu [59] presented (as a rule without deriva-
tion) a series of asymptotic expressions relating to a slit and a
circular hole and also to other diffraction objects. Here, however,
equations from which one would be able to construct the scattering
characteristics of a strip and a disk with any incidence of a plane
wave also are missing.

Works on difrraction by three-dimensional bodies having edges
are ccmparatively scarce. In the paper of Siegel et al. [41], the
effective scattering surface for a finite cone with the incidence of

~a plane wave on 1t along the symmetry axis is calculated from clemen-

. ﬁary arguments. The expressions obtained here do not fully character-

.

\

“tze the fringing field, and are suitable only for sharp cones to which

we already referred in § 17. In the papers of Keller [44], the

A .
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diffraction ray concept is used for calculating the scattering of
scalar and electromagnetic plane waves by a finite circular cone with
a flat base and also by a cone having a spherical rounding off instead
of a flat base. The resulting expressions}are not applicable in the
vicinity of certain irradiation and observafion directions. In § 17
we showed that the fleld scattered by a cone and by certain bodies of
rotation is not expressed only in terms of the functions f and g,
which refer to diffraction rays diverging from a wedge edge. This
result evidently attests to the impossibllity of complete calculation
of the scattering characteristic with the diffraction ray concept.

Diffraction problems arising in antenna theory are usually dis-
tinguished by their great complexity, since the corresponding metal
bodies (mirror, horn, etc.) have a comyilcated shape. Since the dimen-
sions of these bodies and the dimensions of the radiating apertures
are considerably larger than the wavelength, the application of
physical diffraction theory to antenna problems 1s very promising.
only the first steps have been taken 1in this direction. Thus, Kinber
[60, 61] performed a calculation of the decoupling and lateral radia-
tion of mirror antennas. The feature specific to mirror Antennas 1is
that diffraction rays arising at the mirror's edge undergo multiple
reflection on its concave surface. This multiple reflectior. was
studied by Kinber in more detall as applled to the concave surface of
a cylinder and sphere [62, 63].

Diffraction problems relating to an antenna dipole — a thin
¢ylindrical conductor — are investigated in Chapter VII, and
references to the literature are also given there.

In conclusion, let us say a few words about diffraction of short
waves by smooth bodies. The basic principles relating to such pro-
blems were set forth in the fundamental works of Fok and Leontovich.
These principles were established by the following methods of
mathematical 4iffraction theory:
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l. By the methed of an Integral cauntion for the curront on
the surface of o pood conduct oy bedy (the tocal character of the
fleld tn the half-shade replon, gee 17D

Jo Ry the method of asymptomt te commlng of dECCetbon sertes
{(the curvent on a parabolofd ol ob ] the propagat Ton of radio waves

above the spherleat Earth [ 18, oo ),

1. 1y the parabolle equat tonn method (the propagat ton of pradte
wives above the Clat o7 ] and spherteal o8, o] Farth; the tleld of
a plane electromignet e wave tn the haltf=shade regton for oany convex
body [70]),

Reller f42], bastne his woek on the dIffeact ton ray concept ,
obtalned an expresston for the Cleld In g deep shadow with di0rract ten
By a econvex evitnder with a varkiable carvature, In the partticular
cazen o an elliptte and a parabolte eyitnder, as was ashown In the
worhs of V:tyn:‘:htv,\'n and Fedorov {711 and of tvanov F 30 ], heller's
cquat tons apree with the results of the more lporous machemat 1e In-
veast Teat ton. This allows one to more prectacly stuady (Gee {711 the

converaton of AUrreact ten eays to ordtoney vavs and vice versa,

The parabolbice cquat ton sethod deserlbed to so-ealled rav o coore
Jinates oo more meneral approach te dirreact ton by convex bt tens,
Thic methad allows one to obtatn a general expresston for the dreen
funct ton tn the case of a cteeular evthnder P70, vl Feldent by
thiz method can subsequent ly be saceeaafully applfed alao te ot

casen, amony Chem three-dinenstonal dUCCract ton peot lemn,




FOOTNOTES
Footnote (1) on page 138. These calculations were performed
under the guldance of P. S. Mikazan.

Footnote (2) on page 150. See the footnote on page 86.

FTD-HC-23-259-71 160

Y




CHAPTER VI

CERTAIN PHENOMENA CONNECTED WITH THE NONUNIFORM
PART OF THE SURFACE CURRENT

In the previous chapters, a theoretical investigation was
conducted of the field radiated by the nonuniform part of the current.
In this chapter we willl discuss a method for measuring this field
(§ 26) and we will investigate the phenomenon of the reflected
signal's depolarization (§ 27).

An experimental method for measuring the field from the nonuni-
form part of the current was first proposed for bodies of rotation in
the paper of Ye. N. Mayzel's and the author [12]. Later it was shown
that thls method has a universal character, and is suitable for
measuring the flileld from the nonuniform part of the current excifed by
a plane wave on any metal body [13].

§ 26. Measurement of the Field Radiated by the

Nonuniform Part of the Current

Let an ideally conducting body of arbitrary shape be found in
free space. A surface element of this body 1is chown in Fieare 692,




The coordinate system was selected 1n such a way that 1its origin would
lie near the body, and the source Q would be located In the plane

x = 0, If the distance between the body and the source 1s a great
deal larger than the body's dimensions, then the incident wave in the
vicinity of the body may be investigated as a plane wav~. Let us
reprosent it in the form

E‘_____B“euWnrncuﬂ. E,éo. (26.01)

Here v 1s the angle between the normal N to the wave front and the
Z axis.

Now let us place in front of the source, parallel to the radiated
wave front, a polarizer P which transformed linear polarized radiation
into a circularly polarized wave. Let the wave passing through the
polarizer with an electric vector En lag in phase by 90° behind the
wave with an electric vector E. (Figure 70). In this case, the pclar-
izer achieves a clockwise rotation(l). As a result, the incldent
wave field at the coordinate origin will equal

-

ol

PN
: :
E:"“'";"‘{-E-:' H.=—E,.. (26.07)

The field scattered by the body may be represented in the wave
zone 'n the followlng way:

} -
2k ¢ ' 0 ¢
By=—Hy=== = Y095
iaE.,:‘% ot
E=H =2y Y on % | (26.03)

where a is a certain length characterizing the body's size and LM«
and E(h,9) are unknown angular functions. In the general caze, the

(2

Toctnote appears on page T4,




field (26.03) is an elliptically
polarized wave. In the direction
toward the source (°==*—-Y- ?=——;-) ,
this wave passes through the
polarizef and creates behind it

the field

s
IGE., oftr 1 T
“5— 8

e,=_}1 -

E. - ME.. 2 lkR
Figure 69. The problem of elec- -
tromagentic wave diffraction by (26.04)
an arbitrary metal body.

dS - 1s a surface element of the

14

body. where
N - the normal to the incident
wave front,
Q - the source, Y =y=T)
P - the polarizer converting -y 2 ‘\;———' (26.05)

linearly polarized radia- .
tion to a wave with
circular polarization. If the source radiates a

wave of another polarization
(H, | yoz), then the wave reflected

e . by the body and passing through
& & the polarizer is described at the
fre . point Q by similar relationships
&y
H ‘a”“ E le elT ‘
’ H
Figure 70. wH {
Hy= ———"~2 j

(26.06)

Now let us Investigate in the physical optics approach the
diffraction of a plane linearly polarized wave by the same boedy.
According to definition (3.01), the uniform part of the current exci-
ted on the body's surface by é plane wave with E-polarization of the
incident wave (E; | yoz) equals
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’0133‘—'2‘:.‘5.3 (".J Si“"-’—n'cﬁs .nel'b‘ |
fl=f:- on'",-sin 1 ‘0‘*,

ﬁ:%E.,-",COSYC“c J (26007)

and with H-polarization (H, | y0z)

(26.08)

Fere on and Hox are the electric and
the incldent wave with E~polarization
y=kivsin7--2"cont) 18 the incident wave

magnetic field amplitudes of
and H-polarization, respectively;
phase at the point (x', y', z')

on the body's surface; Nys ny, n,, are the components of the normal
to the surface at the same point. '

FPurthermore, calculaﬁing the vector potential in the far zone

on the basis of this current and substituting 1ts values into the
equations -

E,:'“‘Ho:ik"‘c‘ }

E.__—.:H,zikA.' (24.09)
we find the fringing fleld. With E-polarization, 1t equals
. iR
E,=—H,= -:f. E“.S_R__-S[n, sin | cos ¢ -

L (n,siny - cosyIsin ?Io”dS. (26.10)

it otiR . . . .
Eo=H, =5 Ew firtsin g cos sing — cos 7sin i :
z J (26.10)

— (A, sin - '-nycos Py cos s cos ] '%a8,

and with H-prolarization
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! oitR
E=—Hz=7 H,cos¢ -E-—I n.e'%ds,

. Y ] .
By= H,=% Hys fk——j.(n, sin® < n,sin¢ cos 8) e'%4S. (26.11)

Here R, 8 , ¢ are the spherical coordinates of the observation point,
®=¢—krcosQ , and integration is carried out over the illuminated
elements of the body's surface. In the case of radar when the obser-

vation and irradiation directions coincide (”-'“"—‘f- = 3) .
Equations (26.10) and (26.11) yield

Ey=~Hy= — —;k; é‘,,—{l;:j'(n,sin1+

+ . cosy) e’ s, (26.12)
Ey=Hy,=0 )
and .

‘ R
Ey=H.= g Hy S-fin,sin1+

+ n,cos 1) e ds,
E;=H,=0. ) . (26.13)

Furthermore, assuming the incident wave amplitudes ar. specified by
Equation (26.02), let us write Expressions (26.12) and (26.13) in the
following way:

=
¢ R _
E;=—H.=M§” fﬁ_._e_k_. . ]
E.=H. =19Eu e_‘-:-e‘"z, !
yoTET T R ! (26.14)
where
."'=—-.“:°=;:-S(n,,sinr-}-n,cos'()e"ds. (26.15)

Now let us represent the angular functions of fringing field
(26.03) in the form
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——
:‘.’:—f: .‘:. "i“g'v
X =¥ B, l (26.16)
0 =0 1 =1
where the functions £, I and L~, I refer to the field radiated by

the uniform and nonuniform part of the current, respectively. S3ubsti-
tuting these expressions into Equations (26.04) and (26.06) and taking
into account relationship (26.15), let us find the fringing fileld

passing through the polarizer P toward the source Q. In the case of ~

E-polarization, 1t equals

)

: - RR i~
Ey=—H,= LI ) e’

Ey=Hy= e g w5y €2, (26.17)

and in the case of H-polarization

H-—E-n@%qw4_ﬁ)€i:}“
7= By = mytAs R

Hy=—E,=" 3" g 1o 2 5 | (26.18)
The physical meaning of the result obtained is as follows. The
field scattered by the body at the point Q 1s the sum of two waves
polarized in mutually perpendicular directions. The reflected wave
which 1s polarized the same as the primary radlation of the source 1s
determined by the function !,::%r(wlffﬁ , and is created only by the
nonuniform part of the current . The reflected wave with the perpendi-
cular polarization is described by the functlon 3.:=:28-I'—3'  ang
is the fleld radiated by both parts of the current. Let us note that
in the general case the functions 21 and fl do not coincide, and
therefore they are not balanced out in the expressions for I_. In
other words, the fileld radiated by the uniform part of the current in

this case may not be separated from the fringing fileld.
Thus, the investigated method allows one to separate from the

total field scattered by any metal body of finite dimensions *hat part
of the field which 1s caused by a distortion of the surface (the
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curvature, a sharp bend, a point, a bulge, a hole, ete.). One chould
note that, in the case of electromagnetic wave scattering by a system
of separate bodies, the separable part of the field 1s due not only
to the surface's distortion, but also to the diffraction interaction
of the bodies.

It 1s necessary, however, to keep in mind that 1t is possible to
realize the indicated fringing field distribution not in an arbitrary
observation direction, but only in a direction for which the condition
20 = -YO is fulfllled — for example, in the direction towards the
source.

Consideration of the nonuniform part of the current also enables
one to explain the reflected wave depolarization which we will inves-
tigate in the following section.

(2)

Figure 71 presents the results of measurements and calculations

of the effective scattering surface

,0#',:0!'5:‘,!:____{.r.a’lz’-{-ztl’- . (26.19)

which 1s dependent upon the nonuniform part of the current excited by

a p}ane electromagnetic wave on a disk. The disk's diameter equals
2a==%$ (A is the wavelength). The calculations were performed with
consideration of the secondary diffraction on the basis of the approxi-
mation equations for the functions I and I which were derived in § 24.
Since it 1s difficult to prepare a thin disk with a sufficiently flat
surface, the measurements were performed wlth an obtuse cone close to
the shape of a disk and having a height approximately equal to one
tenth of the d.aneter,

As is seen from Figure 71, the theoretical and experimental curves
are fairly close together. A certain dlvergence between them,
especially in the region of y values close to 90°, may evidently be
explained both by the model's conical shape and also by the

(@ pootnote appears on page 1T7h.
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Pigure 71. Diagram of the radiation from

the nonuniform part of the current flowing
on a disk.

approximation character of the computational equations. The value
‘ ¥ = 90° corresponds to the direction along the disk's surface, and

the value y = 0° — to the direction normal to the disk.

§ 27. Reflected Wave Depolarization

Let us again return to the problem of scatterine of an electro-

magnetic wave by an arbitrary metal body. The relative position of

the source Q, of a surface element of the irradiated body, and of the

coordinate system 1s shown in Figure 69. Let us recall that the
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source Q is in the plane y0z, and
radiates a linearly polarized wave.
Furthermore, we shall assume that
the polarizer P which is shown in
‘Figure 69 is now absent.

Let us designate by o the
angle between the plane y0z and
- Fligure 72. the 1inclident wave electric vector
EO (Figure 72). The field of
thls wave will be represented in

the form
E.,= o = E"elm sing4zcon v'
Hy=— Ey= H,pewin st scos (27.01)
where
E,. = E,sinx. H,,=—E.cosz,:—.;-:=tgz. (27.02)

The fleld scattered by the body 1s determined in the wave zone
by the equations

y=—Hy= B IEZE. (0 9+
kR
+ HosZh (1. 8. 9] S5~
E. = H? ] —l-;» [E.:}‘:’ (Y- i” ?,+

‘[l.
+ Ho::a (Y' a' ?)] T .

(27.03)
Here a 1s a certain length characterizing the body's dimensions, R,
9 , ¢ are the spherical coordinates of the observation point,
£,.(1.%,¢) and L, (1. 8, 9) are unknown angular functions.

It 1s obvious that the fringing field polarization — that is,

the orientation of its electric vector in space — depends in a com-
plex way on the observation and irradiation directions. 1In the
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direction toward the source, it may not coincide with the polarization
of the wave radiated by the source. Such a phenomenon 1s called
reflected wave depolarization.

It 1s easy to establish the reason for depolarization, if one
investigates tho fringing fleld as the sum of the fields radiated by
the uniform and nonuniform parts of the current. According to § 26,
the uniform part of the current radiates the following field in the
direction towards the source ("-‘-*-1- ?'-‘-‘*%)

E,--—-H ...'.".E.. _'_'_'.'.1;0 }
\

N, ¢
Ey=H="53% Sxe. (27.04)

The functlons fo and Zo satisfy the condition 20 = -fo, and are de-

scribed by Equatlon (26.15). From Equation (27.04), let us immediately
obtain the equality

£
5, =ik (27.05)

which means that in the physical optles approach the reflected wave

does not experience depolarization. Consequently, the reflected wave

depolarization 1s caused only by the nonuniform part of the current

or, in other words, by the surface distortion. !

Let us derive an equation for the magnitude of angle 8. This is
the angle by which the electric fileld vector of the reflected wave 1s
turned in respect to the electric vector of the wave radiated by the

source. For this purpose, let us represent the functlons 51(2) and
21(2) in the form

F 70 b
zﬂﬂ::z(ﬂ*'smr \

S "‘"nh)+ s’ ’ (27.06)

where the terms 21(2) and 21(2) correspond to the fleld radiatnd by
the uniform part of the current, and the terms Z 1(2) and 21( 2)
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correspond to the f'ield raaiated by the nonuniform part of the current.
Comparing Expressions (27.04) and (27.03), we find that

5=0 H=—5 (27.07)

Therefore, the fleld scattered in the direction towards the
source (8::—-1. 9=——-.:—), will equal

4 - - /]
E;=—H.=1:—[E,,(£'+}::)+H“S" o

E.=H,=’T‘[E.,§;—H.,(E-_:;:)]":'. ] (27.08)

This field's electric vector forms an angle B with the yoz plane.
The angle B 1s determined by the equation

_E, __f‘-{-.f:—!::ctgc
B =, =P _grgue o (27.09)

As a result, the desired angle 8§ which characterizes the depolarization
magnitude will equal '

d=a—f. (27.10)

Thus, the field from the nonuniform part of the current, separatle

"in a pure form" by means of a polarizer (§ 26), leads to derolarization

of the scattered radiation.

Specific results from the depolarization calculation of wave:
reflected from certain bodies may be found, for example, In the works

of Chytil [75 - 77] and Beckmann [78]. 1In particular, in Referewcs [77]

it was shown that the depolarization effect on the effective secatter-
ing surface of convex bodies 1n practice may be neglected only with

the conditilon ka 2 4,
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Footnote (1) on page 164,

Footnote (2) on page 169.

FTD-HC-23-259-71

FOOTNOTES

A system of metal riates parallel
to the €; vector may serve as the

simplest example of such a
polarizer,

See the footnote on rage 86.
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CHAPTER VII

DIFFRACTION BY A THIN CYLINDRICAL CONDUCTCR

In almost all the works devoted to the diffraction of plane
electromagnetic waves by a thin cylindrical conductor, the current in-
duced in the conductor was studled, and then, by integrating this
current, the fringing field in the far zone was calculated. However,
in view of the complexity of this problem, they succeeded in obtain-
ing relatively simple equations only in the particular case when the
observation direction and the direction toward the source coincided,
and was perpendicular to the conductor axis. In the general case
when these directions did not colncide and were arbitrary, the expres-
sions for the fringing field became very complicated and unsuitable
for making calculations. Since they were obtained by integrating
approximation expressions for the current, it turns out that they have
still one other shortcoming — they do not satisfy the principle of
duality.

In this chapter, expllicit expressions are obtained for the
fringing field which are suitable for making calculations with any
direction of irradiation and observation. We shall consider both the
primary edge waves excited by the incident plane wave and also the
secondary, tertlary, etec. edge waves. The total fringing field is
found by summing all the diffraction waves.
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§ 28. Current Waver in an Tdeally Conducting Vibrator

The electrodvnamic problem of determining the current in thin
cylindrical conductors (vibrator) usually is reduced to an integro-
differential equation. The latter 1s derived by meancs of boundary
conditions on the conductor surface, and is substantially simplified
in the case of thin conductors when the inequalitles

<1 and ka1, (28.01)

are fulfllled, where a is the radius and L 1s the length of the

econductor and k=—2x’5==—:i .

Its solution may be found, for example, by the method of succes-

@‘ ! sive approximations [79, 80] or by the perturbation method [85].

| Recently, Vaynshteyn [81, 82] proposed a new solution for this equation.
Since we will subsequently base our work on the results of References
[81, 82], let us discuss them in more detail.

Let us assume that the vibrator's symmetry axis coincides with
the z axls, and 1ts ends have the coordinates z = zy and z = z,

(L = zZ, = zl). In the case of excitation of the dipole by a concen-
trated external fleld

El=8i(2) (28.02)

the current J(z) in the conductor may obviously be written in the form
of the sum of the waves travelling along the conductor with a velocity
¢ from the excitation point z = 0 and the ends z = 2 and z = Z5e In

Reference [81] 1t was shown that the complex amplitudes of these waves
are slowly varying functions of the z coordinate. These functions

may be approximately expressed in terms of the function yY(z), so that

we obtalin the following expression for the current J(z):

J@y=Alp(zh e f Az — 2 4
+ A4z, —2) 0, (28.03)
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Here the quantity

4o S

So=—28 __ y=1781... " (28.04) /
Yha

determines the initial value of the current wave propagated from the
excitation point(l). The function Y(z) is the solution of the inte-
gral equation, and in addition to the variable z it also depends on
the parameters k and a. We will not list here all the properties'of
the function y(z), but let us note only that it satisfies the
conditions

$(0)-=1, H(c0)==0, (28.05)

and its absolute value monotonically decreases with an increase of z.
This decrease, which 1s rather slcw and does not have an exponential
character, is due to radiation.

The constants A1 and A2 determine the initial values of the
current waves originating at the points z = 24 and z = Z5s respectively,
and travelling in the direction towards the opposite end of the
conductor. These constants wre found from the conditions at the
conductor ends

Jz)=J(2,)=0 (28.06)

and equal
A= (- 20— Hzp(Lre e }
-2itey i (286.0
Ay = [z - § (= 2§ (L) e e, (28.07)
where

D==1--¢*(L) ™" (28.08)

'(l)Footnote appears on page 216.
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Considering that the quantity 1/D ic equal to the infinite geo-
metrie progression,

F= 1P p et (28.09)

Expression (28.03) may be written in the exparded form

J@)=J {3 (1 z))e™' " —p(—2,) e [$ (z—2,) ™~
— (L) ™ p(z, — 2) ™I g L) g (2 —
—2)e™ <= ¢(2,) e (¢ (2 — 2) N —
—(L)e™ ¢ (z —2) ™Vt
+ (L) ey (z, — z) ™ — ). (28.10)

The physical meaning of Expression (28.03) is seen from this. The
first term in Equation (28.10) is the primary current wave which coin-
cides with the wave excited by a concentrated emf in an infinitely
long conductor. The second term (in all brackets) corresponds to the
current resulting from the reflection of the primary current wave

from the conductor end z = Zqys arnd as a result of subsequent reflec-
tions from the conductor ends which arise from thils wave
—Ly(—z)e M™yz— 2)c™ " | Tne third term (in all brackets) corre-
sponds to the current resulting from the reflection of the primary
wave from the end z = z, and as a result of the subsequent ref}ections
froT the conductor ends arising from this wave - Jeptz) e §(z, - z)em -2,

It also follows from Equation (28.03) that external field (28.02)
excltes in the semi-infinite conductor (2, <2<'20) the current

)=l 2 e (=2 )e Fp(z — 2, e, (28.11)
and in the semi-infinite conductor (--o<2<2,) the current
J@) =/ [z e =z, g (2, — 2) €™ 7). (28.12)

Comparing these expressions with the proper terms in (28.10), we see
that the reflection of all the current waves at the end of a finite
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length vivrator occurs in the same way as at the end cf a semi-infinits

conductor.

In the case of a passive vibrator (s,<z-z) excited by trhe plane

wave
E;:::E.;e"-. i."'—‘:-—-kco.\”. (25-13)
the current alsc 1s represented in the form of the sum of waves (see

[82])

J(z2)=S [e"' —4.(z _z‘)ei.-:,qi:»(,_,., .
— ?‘ (2, — Z) ei-’:.'.#ib i?n-!l_*_z' ‘#(2 - Z.) c;b(:-.g,)+

+ A, 4(z, — z) €N, (25.14)

where the first term corresponds to the current excited by a plane
wave in an infinitely long conductor. Its complex amplitude S eguals

S= ) iwEys

-

%
eIt In oy (26.15)

The second and third terms are primary edge waves arising asz g conze-

ivz

gquence of the cut-off of the current Se . They are expressed in
terms of the functions ¢ + (2) and ¢ - (z) which depend, in additicn

to the variable z 2nd the parameters k and a, on the angle 8 Trese
functions satisfy the relationships
7. 0)=1, K (o) =0,
)
Yy (2 4e = ¥- (2)]4us =¥ (2]
3@y = 4. (D) g =1 (23.16)

The initial values of the primary edge waves are sucn fhat tizir sum
lwz

3

with the wave Se gives a current equal to zerc at the conductor

ends.

The last two ferms in Equation (23.1%4) correspond to seccndary,
tertiary, etec., 2dge waves, and have the same form as thevr do Tor 2




transmitting vitrator [compare Equatlon (26.03)]. The unknown coeffi-
clents Kl and kz are found from Conditions (28.06) and equal

A= ‘:j‘ e““'m'l"f. {L)—

- L) Lyt e,

:‘; - _2’)_ e-un»m:.w. (L) —

. "J. (L)':J(L) ei(lﬁ.‘)llel.l.. (28 . 17)

Using equality (28.09), Expression (28.14) may be written in the more
graphic form

J(z)=${e"~"’“‘{’_ (2 —2,) el:c,ﬂh(l—-z.)_'_ :

F 0. (L) e [ (2, — 2) M0
= L)eMy (z —2)) ML

+9 (L) oz, 2y ™ ] -
___\". (2, — 2) ei:':.wl (:.-:)+

+ 4o (L)t oz —z ) MW |
— 4 (L)t y (2, —2z) ™0t

(LM gz -2t~ ).

J (28.18)

Here besldes the wave Seiwz and the primary edge waves, which we
talked about in connection with Equation (28.14), the secondary, ter~
tiary, etc. waves diverging from the ends z = zq and z = z, are
explicitly written out; they correspond to the first, second, etc.
terms in the graphs.

Passing to the limit in Equation (28.14) when Zy > @, we find
the current in the semi-infinite conductor (:1, ®)

J(Z) .__,:S‘lcir! ___q'_ (Z --2,) ei.’.?.*l.(.‘»-.’.)l. (:8 . 19)

and, similarly, we find the current in the semi-infinite conductor
("m, 22)

\

J(2) =S [efer — 4, (2, -~ 2) NN (28.20)
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It 1s not difficult to see that in the cace of a pasusive vibrator
the reflection of current waves at its ends occurs in thoe cume way as

at the end of a semi-infinite conductor.

Thius, the complex amplitudes of current waves in a thin, finite
length conductor are proportional to the functions #(z) and ¢¢<:)
which monotonlcally decrzase with an increase of z as a consequence
of radiation. Let us note several properties of current waves in a
vibrator. Each advancing wave in sum with the reflected wave excited
by it gives a zero current at the conductor's end. In the case
L=2,--2,2n-,(n=:1,23..) and D v 0, a current resonance begsins in

>

the vibrator.

The precision of Expressions (28.03) and (28.14) obtained by the
metﬂod of slowly varying functions 1s different in various sections
of the conductor. It 1is comparatively low near the conductor's ends
(and in the vicinity of the point z = C of a transmitting vibrator)
where the current waves arise, and where their complex amplitude varies
rather rapidly. As the distance from these vibrator elements increases,
the precision of these equations increases without limit.

It should be stated that with a more rigorous atproach [7¢, 207
the amplitudes of all the reflected waves will be deternmined by dir-
ferent functions; however, the difference between them rapidly decreases
with an increase of the reflection number. The functions y(z) and
wi(z) only approximately describe these current waves, but on the other
hand they allow one to effectively sum them and to obtain closed

equations.

Using the variaticnal method ror the functions y¢(z) and ¢,(z),
we obtained the approximate, but on the other hand, simple cjuations

(see [83])

lll-:}‘
19
p(2)= 2ix ’
In K —E(2gxte-3iqs

(8.0
(Equation continued on next vagce)
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| 33
R tn gi‘rx‘“ E(::x)-"“*' ' (28.21)
where
to(—Y=ix, loi=ijF. (28.22}
_ x=2, g=(hay, g, = F (28.23)
and

E(y)::Ciy-l-isiy:—j-.—:"-d‘- (28.24)
»

The integral cosine Cl y and the integral sine si y are determined by
the relationships

» »
Cy=r[Sha, siy=—[Sta (28.25)
M »

and are thoroughly tabulated functilons.

The equations written above for the current in a finite conducter
are distinguishable by their visualizablllity, and they enable cne
to liken the conductor to a sectlon of a transmission line in which,
however, the attenuation of the current waves takes place, not accord-
ing to an exponential law, but according to a more complicated law
which 1s determined by Equations (28.21). 1In addition, the diffraction
character of the problem 1is retiected in the equations. The conductor's
specific features as a diffraction object are included in the very
slow attenuation of the current waves. As a consequence of this, it
is impossible to 1limit oneself to considering only secondary and
terciary diffractions, and 1t is necessary to sum all the reflected
waves., As a result of such a summation, a "resonance denominator”
D appears which takes into account the resonance properties of a
thin, finite length conductor.
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§ 29, Radiation of a Transmittings Vibrator

The radlatlion characteristic of a transmitting vivrator way be
éalcu]ated from a known equation by integrating the currents in 1it.
However, such an approach 1is not advisable because, as was indicated
above, the precision of Equations (28.03) 1s different in different
partc of the conductor, and ic low near its ends (z = zq and z = 22)
and the point z = 0. The principle of duality gives more precirce
results. This principle leads to the followlng expression for the
radiation field in the far zone [82]:

E =Hy=0. (29.01)

The function /

l(a)____ 1 - NTA eik:,(l-cns 0:___,{,_ (— z')e—iu“lw:o: ﬂ)+
+B4, (L) eittrll -cos & By (Lye-iratieos s (29.02) (29.02)

is connected with the current (28.14) excited in a vibrator by plane
wave (28.13) by the relationship

J(0) = Sf (B), {29.03)
The coefficlents Bl and 82 do not depend on the angle @ .

Expression (29.02) enables one to trace the formation of the
radiation. The first term (one) is the radiation field of an infinitely
long conductor excited by a concentrated emf. Propagating in the
direction 0 = 0, this field reaches the conductor's end z = =, and
-~ belng diffracted by it — generates a primary edge wave (vh; second
term). In a similar way, the primary edge wave diverging from the
1 is exc%ted (the third term). The last two terms
in Equation (29.02) determine the waves arising as a result of suboe-

conductor's end z = 2

quent diffraction (secondary, tertiary, ete.). The amplitudes B1 and

82 of these waves may be found from the conditions
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[ :=[(z)-=0, (29.04)

which means that the radiation of a finite conductor in the dlrectlion
of 1ts geometric extension muut be equal to zero. These conditlons,
together with a consiideration of the relationships (28.05) and (28.16),
lead to the system of equations.

B, - By(Lye ™" =gz, }

B,p(L)e™ + B, = }(2,) €™, (29.05)
from which we find without difficulty
! ) , . hiae, -—2j
Bi=p5lrl-20 - 7(l)rtz) e e are,
By= Ltz = L)y (-2 ) € 0 e, (29.06)

Keeping in mind (28.09), let us represent the functions f( &) in a
more graphic form

[(0) =1 ,‘.“ (2,) ei-t:,.l c0: + ? (Z,) eiNLn,) x
Xl (e yilyety (L)e et g
(L) e""qu_ (L) emitnend J--
- 7. ("‘21)9-'."'"*““ b +v(—2) e‘.""’"x
X ”’ (L) e-—n.-.ns L Q(L) c;u, oy (L) e~-ikt. cos 0+
L) g, (L) e, (29.07)

where the secondary, tertiary, etc. waves corresponding to the first,

second, and followling terms in the btrackets are explicitly written
out.

Thus, the fleld radlated by a transmitting vibrator arises as a
result of multiple diffraction of edege waves at the vibrator's ends.
Let us note in connection with this that the edge wave 1s diffracted
by the opposite end of the vibrator in the same way as at the end of
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a corresponding semi-infinite conductor. It ig not difricult to
establlish this by Investigating the radiation of a semi-Infinite

conductor exclted by a concentrated emf.

§ 30. Primary and Secondary Diffraction by a
Passive Vivrator

Let a plane electromagnetic wave fall at an angle d on a thin
cylindrical conductor of length L = Zy = 24 and radius a (Figure 73).
For purposes of generality, we will consider that the incident wave's
electric field’EO forms an angle o with the plane of t?e figure.
Then, its tangential component on the conductor surface will.equal

Ef=Ey-e*", , (30.01)
where

Ep=Esin®, E:=E,cosa, ©,=—kcosb,. ; (30.02)

The current induced in the vibrator by this field was investigated
by us 1n § 28. 43 was already indicated above, Expression (28.1%4)
which was obtained for it has a relatively low precision near the con-
ductor ends. . Therefore, it is inadvisable to seek the fringing fi=1ld
by integration of the current. Let us also note that the fringcing
field found by such a method does not satisfy the principle of duality.

We shall seek the scattering characteristic of a passive vibrator
by starting from the follow.ng scattering picture which naturally
follows from the previous results. An incident plane wave, bein;y dif-
fracted at the conductor ends, excites primary edge waves which are
radiated into the surrounding space. Being propagated along the con-
ductor, each of these waves experiences diffraction at the oppcsite
end of the conductor and excites secondary edge waves. The latter,
in turn, generate tertiary edge waves, etc. The total fringing field
is comprised of the sum of all the edge waves belng formed during
sequential (multiple) diffraction at the conductor's ends.
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In § 28 anl 29, we notea thut eurront waves are reflected fron
the ends of a finite lensth conduct r the same as from the end of a
semi=-infinice conducter, and that the diffractlon of these waver at
each end takes place In the came way ac at tre end of a seml-infinite
cenductor. Therefore, the prinmary edge waves may be found from the
crotlem of ccatterings of a plane wave by the semi-infinite conductor
(:l, @) and the conducter (==, 2,). The sum of such waves gilves tne
primary diffraction field )

.b-(.l’_; H:H P E c‘;_;:.[fll(n' n.,‘ (300 03)
where

1V, 8, =

. M a

i vte 7 e 2 i P48y 5 Fpcos V) - =
T s Feocuy RS W, - E s i)
Y
i g 2_’” e e-it.’,lrup.btﬂi..\’
T d {Cos B F cos U, D (k cos b, 5 cos B,) : (30.04) °
& The fuﬁction D(w, wy may be
~’ calculated by means of the rigor-
2 % . ous solutiocn to the problem of a
oy . semi~infinite vibrator (see [82]

§ 3 and [B3] § 4), and in this
case, 1t satlsfles the r=lation-

Figure 73. The incidence of 2 ship
plane wave on a thin ¢ylindrical
conductor; M 1is the incident

angle.
” oy e %
'b(w. .L.)‘p(— A | Hi] _‘~;:a'lﬂ 1‘7;‘-;. ‘
IR b SRR Rt g S (30.05)

Howaver, hencefcrth 1t will not be necessary to have the rlgcrous
expression for the functicn ¢. Let us note that Equations (20.03)
and (30.04) are simllar to Expressions (£.13) for a strip. These
latter expressions do not take into account secondary diffracticn.




The secondary edge wave propagated from the end 2 = 2, 1o ex-
L
cited during diftraction at this ond of the primary current wave

= 89 (2 — g )R itimn, (30.06)

where by w?(z) we mean the functions obtained from the functions wt(z)
by Pcplaciag d» by 8, . FPFor the purpose of calculating the desired
secondary waves, it 1is necessary for us, first of all, to find that
external field which, when applied to an infinite conductor
(--mw2zson), would excite the current (30.06) on its section (2,42 00,

For this purpose, let us study the current induced in an infinite
conductor by the external field

[;’; =2 [.:'.,ei"'-! (z--2) s(z—2) =

lwith z<2,
{nwitn?:>zr (30.07)

Let us assume that wy has a small negative imapginary part (Im Wy < 0).
We may regjard the quantity é“JWW( as a concentrated emf which, in
accordance with equation (28.03), creates in an infinite conductor

—Bu_ gz gettt i g, (30.08)

Therefore, In accordance with the principle of superposition, the
total current created in the region &y <2<oc by tihe external ficld
(30.07) will equal

»

Jz).=- ¢'l:=_.'.7 ) it B(z-= ) oD e
iin ]Ta_ J
e Bugea T ettt g
ML A (30.09)

The resulting; intepral may be expressed in terms of the functionas
V(z - zl) and wg(z -'zl), and the corresponding relationships derived
in § 2 of [82]. As a result, we find
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Jay= — ezl

Sk sin’ %’- Is T ry

— L : 4 (2—2,)¢'
2k sia® by lg ——— —

T yaacon o ' (30.10)

2 (2~ 3)

Thus, it turns out that external field (30.07) excites, in
addition to the wave wE, also the wave y. In order to excite a "pure"

wE wave, 1t 1s necessary obviously to apply an additional external
field

E: = @16(2 —2,)

(30.11)
such that
LS .
e ple —2) O
81k sint —§'~ n Ty
+ tc,T_¢ (2—2,) eu a-e) _ o
41a m‘ ( 30.12 )
Hence,
é.lel‘:.'.
&= (30.13)
2ik sin Tl

In order that the sum of external fields (30.07) and (30.11) would

create the current (30.06), it 1is still necessary to fulfill the
equality

"E.u

)
ik sin? y1n R 2%k sin? D‘]n;;:’;:m: (30.1“)

which determines the gquantity
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| Ilm (30.15)

Consequently, for the excitation in an infinite conductor (with
z > zl) of current waves (30.06), it is necessary to apply the external
field

[

Ra cos =

E;=E, = “7[ Ql..'.. 3(2—2.)~e""c(z—2,)].
hm ﬂt:ln'—i'-

. c(z‘—-z)={ with 2<2,
’ ; ' 0 with z>2,. (30.16)

In a completely similar way, one may show that the external
field

{

4
E’ p—1 EOI ———— .2‘ —
. ll'l ——— s
Yhasin ¢4y

Tka sin%’ eisi2s : ien
[ w—8(2,—2)—¢e “‘(z'-—‘:)]'
2il: cos? -5~
e1z._.«-z).—:{ (l) with i>/~’a
with <2, (30.17)

excites the following current in an infinite single-wire line (with
z < z2)

= Sty p Ly (30.18)
Now let us study the dif'fr:action of current'waves (30.06) by the
semi-infinite conductor (-, 22). For this purpose, let us use the

Lorentz lemma [4]
l”i;‘E_.—{-ji"!.’,’\,(.’\"':ﬂ. (30.19)

Here /== —iop iR -R’) 1s the current of the auxillary dipole with the

moment p, which is located at point 1 with the coordinates (R, §); H,

FTD-HC-23-259-71 189




1s 1ts fleld on the conductor surface, where the externzal currents

J? are specifled; E2 is the fleld created by these currents at point 1
{(Figure 74). :

The external current Jg is
determined by the well~known
equation

.

I} == 4 InE] (30.20)
Figure T4.
in terms of the electric fileld E
on the conductor's surface. In
view of the boundary condition

E, 4 E, =0 (30.21)
we have
[4 e
izy=—-5E.- (30.22)

Furthermore, defining the dipole moment P,y in terms of its field
in free space (at the point x =y = z = Q) '

E == kp ﬂ sin®
oz 'R (30.23)

and changing from the magnetic intensity H1¢ to the total current
J= 52“_H“, (30.24)

induced by the dipole in the conductor, we obtain from the Lorentz
lemma the following relationship:

Rtsin b eilR ’! . ;
iR \ E! J(z)dz. (30.25)

E‘:’ == HI-. .—’:

If the dipole p,; is moved to a distance R >> z, - z,, then the

field radiated by it may be investigated on the section z, = 2, of
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the semi-infinite conductor (-, zg) as a plane wave. Then the
current 1lnduced In this scction of the conductor will be determined

by the equation
J(2) = § [ — ey, (2, — z) e B, - (30.26)

where

o W e kcosd. (30.27)

24 sin*A |n -,‘-,;-}:-m
We will select the quantity zg in such a way that, at a distance
z, - 2, from the conductor end, the reflected current wave would be
practically equal to zero ($+(2,—2)=0). Substituting the function
(30.26) into the right-hand member of Equality (30.25) and taking for
the quantity EZ the external field (30.16), we obtaln

X

o= oy = e i
. 2sind 1o ooy -

»
X e‘;ﬁ S' E: [eim ""‘P; (z‘_z)eic:,ﬁul.—c)ldz =
—

Y . .
=‘“— 1 5 CR {(Bl [em:. —_ *’ (L) elwt.-HlL) +
2sindln Jka sind
&
- }w+me) 2, o . i e
+E.; —ei‘(w.‘.w—.')— . E”elﬂ +uda, S e (L J'¢¢ (z,-z)dz.} (30.28)

-~

An important feature of this relationship 1is that the integration
is performed here not along the entire conductor (-, z2), but only
along part of it (-, zl), where the function ¥.(2;,—2) describes the
current with good precision. The integrals here are calculated the
same as in Equation (30.09). As a result, the field radiated by the
semi-infinite conductor (=, z2) will equal

1 ofAR
Epy = Hz; =

R

. i
2:in\’ln‘-{5m

(Equation continued on next- pare)
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E 'el(ao B

x ('.5‘| lei:.“-’. - ?’ (L) e"."l. h‘l.l. ‘k (‘us l’+(‘03 |,‘) *

l

3 . - —
sin?-y ln --;- ‘- o
I ed PRI o U |
i ik(cos® -p cus ity) 7y 0 cost _02._ oo "“—]‘ $2(L) (30.29)
yha cos -

. iW'
The terms in the braces having the phase factor e “ correspond to
the desired secondary wave dlverging from the conductor's end z = Z5.

Using Equatlens (30.13) and (30.15), this wave may be represented in
the form

M, e
':’(Za =Hm(la)—' - 8 (1'2) 'ER" e—llr.coiO. . (30'30)
2siadln Tha sia®
where .
8‘?’ (z ) “ Eel-.«.:.ﬂll. x
3.
ksin ﬂ.(cos d 4 cos ™, )ln’“ ;—5'
x| cos? '2 cos® + = lo ——- — ¥ (L)-
. ﬂacot'-i-
— sin® %sint 30— ¢ wl.
1.'.-asln-.; (30'31)

In a similar way, let us find the secondary diffraction wave
beiny proparated from the end z = 21- In order to Jdo this, it io
necessary to Investipate the diffraction of primary wave (30.18) at
the end = = 2y of the seml-infinite conductor (z,*iz<*~). In this case,

the principle of duality lead: to the following relationship

Ey =M, - 2ot e SF'!(z)dz.

iwky, (30.32)
which, after subustituting the function (30.17) and the current
iwEoy e iz, ik (2— 2,)
J@)= oo ey [T (2-- 2)) € ]
2k sin2 8 la ?k‘:rifn_f . (30.33)

e 0= 3 L ] lazs




in 1t giVes us the fleld radiated by the'semi-infinite conductor
(zl, «}, The wave radiated by the conductor's end is the desired
secondary edge wave and may be represented in the form

. 2 (2 v
EY () =HP(g)= S0 © gmibacors, (30.3%)

2% R
Bindin —y-—pe
v tha sin ®

where

4i Eeic'-".l.-{-‘.'- ¢

X

AN ()= — 24
ksind,(cos @ + cos 3,)In Tka sin 9,

X [sin® 3-sin® 3 1o -2 g (L)—
1ka sis —23-

2 & 2 2 d
— cos® - cos 7"‘““"-5"‘"1“')]‘ (30.35)

TAa cos 5~

Otherwise, this expression may be written directly by replacing, in
Equations (30.30) and (30.31), z, by zq, ® by =—8 and 8, by x—8 .

§ 31. Multiple Diffraction of Edge Waves

The secondary waves (30.30) and (30.34) which were found are the
waves diverging from the ends of the semi-infinite conductors (-=, z2)
and (zl, @). If one excites an infinite single-wire line by the
external fileld

EY == 805z~ 2, (31.01)
where

¢, . '_
2itn o (L)
) tha T~ iRO—i
By== BN (2)],_ = E — o oy @Rl o
ksind, 18 }}O_QE_O; ] (31.02)

then a spherical wave arises which with 8=z coincides with wave
(30.30). With the excitation of an infinite 1line by the concentrated

emf
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E'= &M (z—1). (31.03)

where

]
2ila 42 (L
Yha 0 L ~ireord,
»

=80, =~ — ] (31.04)
. sla¥d,la ¥asinb,
a wave arices which coincides with wave (30.34) when 0=0 . It is
not difficult to see that these external fields actually excite in an
infinite single-wlre llne current waves which are equivalent to the
secondary current waves in a passive vibrator [that 1s, equivalent to
those.waves which are expressed by the first terms in the brackets of
Equation (28.18)]. Therefore, the tertiary waves may be investigated
as edge waves radiated by the semi-infinite conductors (zl, =) and
(=, 22) with their excitation by the external fields (31.01) and
(31.03), respectively. From Equations (30.25) and (30.32), we find
without difficulty the total field radiated with the indicated
excitation by the conductor (zl, ™)

&n R
By H g S [ g (™) (31.05)
2sin¥ In SEasin¥ .
and the total field radiated by the conductor (-=, z2)
&=Hu W’u %;wm_%“wmm%
‘28l dia tkasin® (31.06)

As a result, we obtain for the tertiary waves divergling from the
ends Z4 and Z, vhe following expressions:

. S (2,) oit® —ihe, co8 &
EV(2)=HP(2)= S TR
» \& ¢ €1 R (31.07)
’ 2siadin Ykasind
S {2, R
EP 2y HP (2} mp =i T e = S e -:kr.rmo’ ’
s (Z)=H](2,) ?slﬂ”ﬂ’{;m'i‘lrnf R . (31.08)

where
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&M (2)=— 8-4_(Lye", )

89 (2= — &4, (D" | (31.09)

In the direcctions toward the opposite end of the conductor, these
waves are equivalent to the radiation of an infinlte single-wire line
excited by the external fields

E‘=§"3(z ~2), 6‘.3’=5‘”(Zn)!.,°' o (31.10)

E:=(,;‘;’.a(:, —2). 8‘;": 8m (z,)[.=.. ’ (31.11)

Consequently, the quaternary waves again may be investigated as
edge waves radiated by the semi-infinite conductors (-, zg) and
(Zl’ «) with their excitation by the external fields (31.10) and
(31.11). Using the reciprccity principle, we easily obtain

~ » kR .
E‘."(Z,) —_ H‘:’(Z,) _ (.(0)(-12?“-“ e e-—;b:. cot 0'
25in ¥ in -,"-k;—;m
) v iNR s
E'." (z,)::H‘_:’(z,): B 6’(«)(-,)2i .R e—tncosd (31.12)
HindIn i ’
where
89 (2) = —8-9_(L)ye"",
£ (z)=—8" v, (L™, (31.13)
In a completely similar way, the nth order edge waves
’ 2R .
El:) (2‘) =11:n) (Z.) - &(n) (z.)2i o - e-.n. cos 0’ ]
2s1adin m‘sﬁ'g
LTI T WikR ‘a
EQ(z)=H(z,)=— _A‘ﬂﬁ‘.z;_- i'k-. g Rameos
’.'slnﬂln—-"—-,‘u“ng (31.14)

are found. Here
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8 (2)=— 8" ¢_()e, )

6‘”)(2')=__d"l-—l).‘?-’.(l‘)ei.L ‘ (31.15)

and

B =8, E=8"(z) = (31.16)

Thus, the fileld arising with multiple diffractions {starting with
the second) may be represented in the following form:

YIEY @)+ EJ (2=
w2

’ ip [ ®
= [E B (z)) e~ g
2sia ?ln -;.';a'-;'ﬁ nm
. o Stz 'e- hz,co0 ,
. +"§2 () _ ] (31.17)
where
¥ 8" (z,) =
Amd
=6(l) (zl)_}_ [é(x”":J(L)ei"'-—' &;2)] f—_[;ﬂ eﬂl’ (31 . 18)
X EM(z,)=
n=2 ‘ (L)
== G2+ (654 (L) — 87 25— e, (31.19)

and the functions £™(z,;) and (Ei are determined by Equations (30.31),
(30.35), (31.02) and (31.04). We will not write out here the rather
unwieldy final expression for this field, but we will proceed with

a calculation of the total fleld scattered by a vitrator.

§ 32. Total Fringing Field

Before beginning the derivation of the expression for the
scattering characteristic, let us make the following observation. The
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B

functions ¢ which enter into Equation (30.04) satisfy relationships

(30.05), and may be found by factoring. However, our Iinvestigation

of the successive waves arising with diffraction at the conductor's
ends was approximate. Therefore, it makes no sense to use the preclse
Expression (30.04) for the primary fleld. We shall use the approxi-
matlon expressions for the function ¢

i

®(—kcush, —kcosdp)=1In —— -,
tha sin -~ sin —i'—
¢Mcw”,kcm0“=ﬁn_mm”%_mmiw
1k cos -5~ cos —2'— (32.01)

!

’

which were obtained by the variational method and have a precision
which 1s sufficient for our purpose (see [83]). More precisely speak-
ing, we will use approximation Equations (32.01) in conjunction with
the rigorous Expression (30.05), and we will set

i

ln F Yamma
\ ' tka cos g o8 —i"
B Reosd, —keosdy W W !
' 0 Jkasiny '™ {kasind,
'n L v o ————— . -

tha sin —- sin -2'«

—
0 Jkasia¥ " Jéasin®,  (32.02)

e

1
H(kcos ¥, kcosny)

Then the primary field will equal

N__ g ___ iE N oitk
B o TR
Fleos i coshin Lo siuw I hasin®,
’, L] i —ikz, (cos B-}-cos By)
X|ctg5-ctg 5o —-—yp e Y

1ka cos LS g

e @

3 ke, (cos
—tg ,_21. tg _;__ in —ikty(cos 84cos 0.)] .

1khsln~:2—sln —2!- (32.03)

Now summing Expressions (31.17) and (32.03), we find the total field
scattered by a passive vibrator in the form
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(1 .
Ey=H=—E-SgF(0. ), (32.04)

where

F(3, 8)= l - s X

(cosd 4 cosd)sinVsind, In -

2 no—3
Jasin® " yeasind,

X Jeos* : cos’ _' In — — e itncos bion by
‘tha cos "3 ¢08 & ,-

""Iﬂ' [} an' . In —— — .l ___._e-in.{cos.kml,l_*_
ska sin S s ~2-
X S '
4 ¢t | sin® - sin® *1' n-———$_—
1%a sta -

] ] —~i¥acomd 42, co :
= cos® - cos —-ln—-«——-——,,-v:,] e s cah

1tacos 5

+ l.'- [Sln' d Sln' 2. !n ‘____’ ‘{’2."‘

1ha sis 5~
L] i ) ik (24608 842, co8 B9
-— l_ ] l . () e
\ cos cos” - In————-——-———k e
thacos -3
(cos ® + cosh)la —

-~

: ’t“ mr.[ 0 ¢ gitL—itzycordy
2D

N _jbz, cos O, -ll: cos ®
— .t T g e =

i
{cos ¥ 4 cusd))iIn Tka

ikl 40 . [RL=—ik2, cOs D,
20 e [§oye -

0
-—
.+c

—nqcmOﬂ?+r—nacm0}. (32.05)
in which all the functlons ¥, and wS have the argument L. The result-
ing expression, despite its ;omplexity, has a clear physical meaning.
Actually, the first term in the braces corresponds to the primary edge
wave radiated by the conductor's end z = zl; the second term corre-
sponds to the primary wave radlated by the conductor's end = = 2.

The terms included 1in the first pair of brackets refer to the secon-
dary wave departing from the end z = Zqs and the terms 1n the second
set of brackets refer to the seccendary wave departing from the end

z = z,. The remalning terms describe the sum of all subsequent waves
arising with multiple diffractlon and have a resonance character.

The resonance begins with L = 2, = 27 % n:A/2(n =1, 2, 3...) when D

-
o
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Another important feature of the scattering characterisiic is
that it satisfie: the reciprocity principle — that is, it does hot
change its vaiue with a mutual interchange of # and o . One may
also show that the vibrator does not radiate in the directions along
its axis, and {t does not scatter electromagnetic waves with glancing
irradiation, that is, '

F(0, 3)==F(z, By)==F D, 0)}= F (), =)==0. (32.06)

Furthermore, using representation (28.25) for the functions ¥
and y,, we obtaln the following expression for scattering character-
istic (32.05) in the direction of the mirror-reflected ray (0=a—00) :

Flz—By, 8)=— —
2n 1%a sin 8,
' »
WIE ( 2L sin? 1’—) +(OE ( 2kL cos? _;.)

2% 2
'X\ll sin '

kL +

510 =

fin T
. b
(s(nn 1A oo \? ka s

1 3, i 0 AL (i —c0s 8}
+(—2—¢+C0$.-—~ln—- W ).f+el (i—cos o+

-5+

tka sig 5
1 s/ i kL )
+ “f"??.sm"z“.' —~1la _______’_.__ q,o_.e (14coe 89
T2 eos 5=
i

‘n;;; 2ikL 4,0 ixL (1 ’. 01,40
0 - 08
—~—p—¢ l'f+?e‘ Y~¢]

i
LT AL
- __I;‘._‘f g A q{’_} . (32.07)

With glancing irradiation of a vibrator, when 9=0 or ¥==, it
follows from this that F(z 0)=F(0, 2):=0 |,

MNow assuming that 0.,=-—;— in Equation (32.07), we obtain the

relationship F(i =\ AL kL ¢ .':(kL) +
22/ N 2 2
-n.‘ka \ln-ka
i R A BRSNS T 4 AT
+—l-n l‘\ lln_‘ka 3 +\ P 2in -1--‘-;-/, pe
Tha )

Equation continued on next page
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.- In kn »
T e ul
?—?:!..-.,.o
(32.08)

which characterizes the reflected fleld magnitude with normal
irradlation. ’

Let us also write the expressions for the function F(# &) which

corresponds to the radar case when the observation and irradiation
directions colncide (3=1¥

F(9, D)-—
PSR cos® ——ln 4 - ~ kg, cos 9_,
(sln9 In - Ty sln r ) cosd Tka cos® 5~
— sin?t 'o‘ In '_____l__ _“_ e—'.'ik:.co- 0+
° yhasin? - ;-
2 [» - In —— g p_(L)—
Tk sin ~5-
—C0s* - I~ (L) [e it R s SR .
1ka cos T
__2cosn ln ¢(L;,ok(L)y,(L)e"""*”"“””““"+
. pod 2 —2ike,
+C_'?_!D_‘ ln Y.‘ (', (L) 2iks, cos .+

+ ?1 (L)e—ziu.co. .] e'.’ul} . ‘ (32.09)

We may show that when 3=={} Equation (32.09) leads to Expression
(32.03).

The scattering characteristic (32.05) which was found above was
obtained by summing all the waves formed with multiple diffraction.
Sﬁch a method 1s very graphic, but somewhat lengthy. Cne may arrive
at the same result more quickly if it 1is assumed .hat the edge wave
diffraction process at the passive vibrator's ends takes place, start-
ing with tertiary action, the same as at the end of a transmitting
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vibeatop,  Thepefore, the pacsalve vibrator®s seattepbng dbgeram nay

be direetly soupht o the form

F.9) - e ST IT R X

y : . o
.smﬂslnl’.lnﬂ_“ ™ in Yha sin b, (3o 1)

whe e

’

118, 8,) '

wos B cos by

hY

) M, i e pon

N Jew? 21‘«»s’~,.,° In <. e B b
']"‘u' Wiy cus 2. ’

e nin® ; sint Mg b e ).

’ ’ 2 L] »
(dasin-, sin ;
»t R » ] i
-4 ¢ [ sin® govin’ 2 o 2 Y_UL)--

ha sin ;
ce et 2 cuy? B In - i AT A LA Bl cwve 0+
N s VL )
]"d cos “.2' .
T g N {
4 ~[sm' o MR’ In

-

'S ‘P._ (L)
Yha sin 9"
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. [ { - ]
Cynz— -.’»D" e.:‘ﬂ An 1’.:_“_ '[q':('fc"‘ nzgxonly
— ,'f_'- e—-lu,cos.. "
LR 1A i 0 tL—ikzgond,
Cy=—g5¢ -lﬂ;,m"l'l'_‘i“?' ' —
__q‘le—ih,rosl.l' (38.1“)

§ 33, A Vibrator Which 15 Short In Comparison With
the Wavelength (a Passive Dipole)

The theory of plane wave scattering by a thin eylindrical
vibrator which is discussed In this chapter 1s based on a number of
physlcal considerations. One good aspeet of this theory is the fact
that its precision increases with the length of the vibrator, since
the current waves whose diffraction we are 1Investlgating are expressed
more clearly, the longer the vibrator. However, one may also show
that for short vibrators, the length of which 1s small in comparison
with the wavelength, the equations derived by us have good precision.

It is clear that a vibrator which 1s short in comparison with
the wavelength acts as a dipole, creating a fringing field

({11
Ey=H, =2 — kp, o= sind, (33.01)

where the dipole moment p,, may be calculated by solving the electro-
static probiem. This dipole moment depends on the dimensions and
shape of the vibrator. 1In accordance with [92], the dipole moment of
a cylinder in a2 uniform electrostatic fleld E | equals
L\
pr= D“)(‘f) Fe (3:.00)
where D(7) §z a dimenstonless function 7 = 1L/7a which 1s shown In

Firure 75 by the continuous curve, With 7 >> 1, one may caleulate the
function D(Z) by meanc of the asymptotie expansion

D(l)-:%(g;-{-?;;’;’i-{-...). 0, -.~.'2(ln4l - })

FID=HC =0 3= 20




If in this expansion one limits oneself to the first term, then

D(l) = —— e . ‘
3(mpb—{}) (33.04)

The results of numerical calculations based on Equations (33.04) are
shown in Filgure 75 by the dashed curve: we see that the latter
equation gives a good precision already with 1 2 9.

nm

e

Figure 75. Graph of the function D(7) which deter-
mines the cylinder's dipole moment.

Thus, the dipole moment of a vibrator which is short in compari-
son with the wavelength equals

T aa LIS (o TN

and 1ts scattering characteristic must have the form
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__ AL sindsind, . /o L\
gl i (GOl (33.06)
In thls section we find the first two terms of the expansion of
the vibrator's scattering characteristic F in reciprocal powers of
the large parameter L/a (with A » @), and we compare them with
Expression (33.06). We shall limit ourselves to the case 8= =,
when the function F is described by the simpler Equation (32.08).

With small values of the argument z, the functions y(z) and
1'(2)=’+|.,%=4’J..;. [see Equations (28.21)] may be represented in the
form

)=1— ‘-L"z’ﬁo:ﬂ +°(Ei'l(6)') . l

5 (2) = 1 — £(2)—R(0) o
$(2)=1 _—?.-@—-—-‘!‘0(‘:(0))‘ , (33.07)

The functions g and g included here are determined by the equations:

- |
8(?)—3(0)=ln’-!-:f.+e"mlj',_:_. ds, g(0)=|n;i‘_‘_ (33.08)
and
E(z)“‘i(o):ln k2 +e—-lhf_s_’"d, =0 — 9
é ¢ , 8(0)=In~—. (33.09)

Tha
z .

Let us note that Expressions (33.07) completely agree with the
corresponding terms of the aysmptotic expansion for the functions ¥
and ¢, which may be obtained from the initial integral equations which
determine these functions (see, for example, [81], § 4).

Limiting ourselves 1in the expansion for the functions ¢{z) and
$#(z) to terms of the order of (kz)3, we have
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$()=1- »-—-‘ r:kz (lnzﬂ: l)+

,,__-
1ha
:_ +k'z'\m°""—~~;’-)~u—-k’z*'n ""’-"—~-"~)] (33.10)
i o
and
?(2)—-1-———-———-—-[:k2&lnk‘h 1)+
2h~z; T
h’z' (l 72-..—-..)-—-;-"" /l 1&; "{:')j' (33.11)

In addition, terms of the order (‘“ ska )—- are omltted in Expressions
(33.10) and (33. 11). Now if we substitute these expressions into
Equation (32. 08), then one svhould omit terms of the order ("! T

it. Therefore, the funetion F\?, -—) may be represented in the form

(3 )y - e

+’°7§f?*-r+-re %(L)ln"- ety

[}
QInT-

ke 18
+;;‘_T(L')T,.7:? (L)e } (33.12)

Furthermore, taking into account Equations (33.10) and (33.11),
we find

LS [In ~-s(k1.>]=

Yka
itL 2 "L ATy
==5§—(101—5—1n kL+ / . (33.13)
lyTa” z+'"‘

A, kL kY page
=lo - “"rf"“'r”",‘fv (33.14)

l lel

2y(L)1ny—7-e ~2(1+l,4.~—-,~-:—— n;;:“

—ikL (m L 1) + k2L (gm—i‘—--})f
. +:k'1.'(-(‘5—1n1§£--,1§). , (33.15)
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and flnally
i
* 2'.7_k— ,. L L -
IFewet ¥ (De
=(1 gL — L =i gy L )in g

~in e L2 L+ S B g+

4ig L B ik'v’"+5"". (33.1¢

\7z (33.16)
Using these relationships, it 1s not difficult to show that
F(s . )___»L' 1 +T""’+o ]
, 7 24 lll'%‘ ( )i ‘, (33'17)

The equation which has been found may be rewritten in the form

FE P)=ommorr o (md) -
\" a

3 (33.18)
It completely agrees with Equation (33.06) which follows from [92].

This result confirms the correctness of scattering characteristice

(32.05) calculated by us, and shows that 1t 1s applicable for vibrators

of any length.

§ 34, The Results of Numerical Calculations

The function F(0, 0)) enables one to calculate the integral scatter-

ing thickness S and the effective scattering area o of a passive
vibrator. The integral scattering thickness is determined by the
relationship

Y P
where

(34.02)
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is the energy flux density in the incident wave averaged over an
oscillation period, and '

2 : '
P=Re Sn |EH*]dS = -%- Esin®, ReS J(2)ettecote gy (34.03)
, ., ,
is the value of the energy scattered by the vibrator into the surround-

ing space averaged over a period. Since one may represent the fring-
ing field in the far zone in the direction ®=a—0, by the equations

in . ) an %o
E.=H'=—-’;Slna.e-iﬁ—.jj(z)eﬂtcos.-dz (3u.0u)
. %
and
! 4 .
Ey=H,=—EST F(x23,3,), (34.05)

then, having determined from this the integral

2y .

j.l(z)e""“"dz =‘.7,—:f:';—v~.- F(z—190,8,) (34.06)

E 1 B
we obtailn

S=1S-c03’z-lmF(=—-0,'. ). (34.07)
Calculations of the quantity S/L2 (with ===0v%=4§- ,» performed by us
1

for vibrators with the parameter 7 =7y taking the values x = -0.05

and ¥ = -0.1, are found to be 1iIn agreement with the results of
Leontovich and Levin [85]. With x = =0.1, our curve (the dotted line
in Figure 76) 1is only slightly displaced in the direction of longer
wavelengths and gives slightly higher resonance peaks.

The effective scattering area o according to the definition
equals

3(®, 9= LR (34.08)
where p is the known quantity (34.02) and




/1 b 4 %
¥ + % w T -u
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Figure 76. The integral scattering thick-
ness of a vibrator as a functior. of 1its
“length (with normal incidence of a plane
wave). Curves 1 were calculated by Leontovich
and Levin [85]. Curves 2 were calculated
on the basis of Equation (34.07).

Pr = g | Ey e - LGN o

"’kERx (3“-09)

represents the average value of the energy flux density scattered by
the vibrator in the direction » . Consequently

a0y =" cosTa [ F (A, BP0 (34.10)
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If the receiving antenna operates with the same polarization as
the transmitting antenna, then the corresponding value of the effec-
tiye area will equal '

e . i o '
P P FLT b ,(o a.; ——cos: | F (9, 8,)]* (34.11)
: Pt oo . ‘ A

i N .
IR

-

In! the eaSe of radar whep the transmitting and receiving antennas are
coqbined and the polarization is arbitrary, the vibrator's scattering
properties ‘ape characterized by the average value R

\ i

: a(‘):-—;a (0 0,)(14—5-'”'(0 ’o)l - (34.12)

*

‘In Figures 77 and 78, the results of‘calculations performed on
the basls .of Equations (34.12) and (32.08) for the’ case of normal
irradiation (0==——) are represented by the dotted lines. Figure T7
illustrates the dependence of the function ¢ on the quantity kL with
.a-givenuvalue-of 0,==2m77-l& — that 1s, when the ratio of the
vibrator's»length to its diameter equals L/2a = U452.. In Figure 78
the graph of the function ¢ 1s constructed as a funciion of the fre-
quency f = ¢/\*10" (1n megahertz) for the prescribed parameters
L =5 cm and Qp = 15, Here the curves plotted by Lindroth [79] are
drawn with a continuous line, and the curve in Figure 77 calculated
by Van Vleck et al. [86] is traced by the dash-dot-curve.

"'The curves of Lindroth and Van Vleck were calculated by inte-
grating the current which 1s found as a result of the approximate
solution of the integral equation. However, this procedure was per-
formed in [79] and [86] in a different way. Lindroth obtained an
expression for the fringing field in the form of an expansion in
reciprocal powers of the parameter Q@ _ . The expression includes terms
of the order of Qp-3. In [86] a different kind of approximation was
used which led, as can be seen from Figure 77, to rather rough results
especially in the resonance region. Our curve (the dotted area)
agrees almost everywhere within the limits of graphical precisicn with
the curve of Lindroth. A noticeable divergence 1is observed only in
the magnitude of the first resonance peak.
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FPigure 77. The effective scatter-
ing area of a vibrator as a
function of 1its length with
normal incldence of a plane wave.
Curve 1 was calculated by
Lindroth [79]; curve 2 was
calculated by Van Vleck [86] by
means of the method of integral
equations; curve 3 was calcu-
lated on the basis of Equation
(34.12).
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Figure 78. The effective scatter-
ing area of a vibrator as a
function of the frequency
£ = ¢/2-10-6 (in megahertz) with
normal incidence of a plane wave.
The designations are the same
as those in Figure 77.

In Figure 79 and 80 radar
diagrams are constructed for vi-
brators of a length L = 0.5 and
L = 2) with the specified value
L/a = 900. Curves 1 were calcu=-
lated by Tal using the varlational
method [87]. Curves 3 were ob-
tained by the method of induced
enf [86]; curves B were obtained
by the above-indicated method of
Van Vleck. The results of calcu~
lations based on our Equations
(34.12), (32.08) and (32.09) -age
shown by curves 2. 3
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Figure 79. A comparison of the diagrams
for the effectlive scattering area of a
half-wave vibrator calculated by various
methods. '

Curve 1 was calculated by Tai [87] by the
variational method;

Curve 2 was calculated on the basis of
Equation (34.12);

Curve 3 was calculated by the method of
induced emf (in the work of Van Vleck

[861);

Curve U4 was calculated by Van Vlieck [86]
by the method of integral equations.

In the cited references, the fringing field was calculated by
the direct integration of the current. 1In order to determine the
current, varlous approximation methods were used. In the variational
method [87] a functional was constructed for this purpose which was
stationary in respect to small current variations. Then the current
was sought 1n the form of some function contalning undetermined con-
stants. These constants were found from the condition of the func-
tional's stationarity. This method enables one to rather easily
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Figure 80. Diagrams for the effective
scattering area of a vibrator calculated
by various methods. The designations
are the same as those in Figure 79:

L =22

obtain the first approximation; however, 1its results, especially for
long conductors, may depend in a substantial way on the form of the
trial function. 1In the induced emf method [86], the current 1is

sought 1in the form of a combinatlion of trigonometric functions with
unknown coefficlients. These coefficients are determined by using the
law of conservation of energy. This 1is the simplest method, but it

has a number of serious defects. Thus, as a consequence of incorrectly
accounting for the current component having the incident fileld phase,
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it leads to lnaccurate results in the case of odd resonances (c¢spe-
clally for long conductors), and it does not give the displacement of

"the resonance peaks from the values X = 2L/n (n =1, 3, 5....) in the

direction of longer wavelengths.

The results obtained by us are also approximate. However, our
Equation (32.05) satisfies the reciprocity principle, and is applicable
for any length vibrator. For very short vibrators L << A, it changes
into the asymptotic expression for the scattering characteristic of
a dipole (see § 33). For vibrators with a length of several wavelengths
(L&nx, n=1, 2, 3, 4), Equation (32.05) gives satisfactory results.
Calculations performed on 1its basis for radar reflection with normal
irradiation agree with the results of Lindroth. Good agreement is
also observed with the results of Leontovich and Levin for the inte-
gral scattering characteristic. With an increase of the vibrator's
length, the precision of this equation increases, and in this wiy it
is favorably distinguished from the equations proposed for the
scattering characteristics by other authors.

Moreover, the divergence between the various approximation
methods indicates the necessity of performing rather detailed calcu-
lations based on precise methods, for the purpose of evaluating the
actual error of the approximation methods. Such calculations may be
performed, for example, by means of the method discussed in
References [88, 89] or [91].
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Footnote /1) on page 177.
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FOOTNOTE

Let us note that one may rzfine
Equation (28.04) by multiplyinz its
righthand member by the factor 60

(usually 00 R 1) calculated in
Reference [84],




CONCLAL TON

In this book, the sotution of 4 number of Jdirfractlon problems:
wis obtalned based on the approximate constderation of the fleld per-
turbation tn the vicinity of a sharp bend of the surtace o a stharp
cdpe. Equations were devlved for the seatterine characteristics, or
in cu'x'li;lln caces (Chapter V), for the radar reflectlon thicknesses
with a aspeclffed lrradiation direction,  The expresstons whieh have
been found have a elear physical meantys, They satdsfy the reciproctty

princlple, and they are conventent for making ealenlat tones,

The results obtalned enable us Lo form a more complete concept
of the applicability limits of the physteal optles approach. It s
usua lly customary to assume that this approach elves relliable recuatts
onty 1 the boady's dlmenstons ave Larpe In compariseon with the wave-
tempeth, Such an opinton 1 based on the folblowine arvument . 'fhe
physteal optics approach constders only the radiat ton from fhe
unltrorm part of the current, and does not Tnelude In the ealeulattons
the nonuntform part of the cureent which o coneentrated In the
vielnity of the bends and the sharp cdpes. Theretore, when the body '
dimensiong are conslderably Tareer than the wavelemnyrth, the nonuant foem
part off the current oceuples o relattvely small part off the body's
surtface.  Therefore, one would think that te Influcnee woutd be

small.,

But. In actuallty It turns out that the veliab bty o phyateal
vpt;‘lv:'-_ results depends substant Iatly, not only on the body's dimen-
slons, but also on the body's shape and the Treadiat ton and obcervat ton
dipect tona, For example, with the planetos Inctdence off o wave on
the rlat face of a body, the edee cone oceuplod by the nonund Cope
part o the current Is constderably broadened and the et'fect o this
current. becomen substantial,  Theretfore, phyaleal opttes stves gquali-
tatively tncorrect results for the fleld seattered by Ciat plates
with plancine Treadliatlon fndependent of the ratlo between their

.

dimenstons and the wavelenpeth, The efffect of the nenaniform part ot
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the current becomes noticeable also in those directions where, accord-
Ing to physical optics, the fringing fi1eld must be equal to zZero or
have a small value.

The problem of diffraction of a plane wave with its incldence on
a cone along 1its axis (§ 17) serves as a clear example of how impor-
tant the above-indicated factors are. Although in this case the non-
uniform part of the current, concentrated near the cone's vertex, has
practically no influence on the scattering, nevertheless, the physical
optical approach gives values for the radar thickness which are tens
of declbels smaller than the experimental values, even with large
dimensions of the cone. The decidiny factor here 1s the nonuniform
part of the current flowing in the vicinity of the sharp circular base
rim of the conical surface; the nonuniform part of the current has an
especlially large value for sharply pointed cones.

Another intefesting example of a similar nature 1s the scattering
of a plane wave by a finite paraboloid of rotation (§ 18) where the
physical optics approach leads to qualitatively incorrect results.

The effective scattering area calculated in this approach turns out
to be a periodic function of the paraboloid length, and with certain
lengths 1t becomes zero which most certainly does not correspond to
reality.

The 1investigation of the diffraction of edye waves shows
(Chapter V) that for flat plates one may limit oneself to considera-
tion of secondary diffraction, if their linear dimensions are one-
and-a-half to two times larger than the wavelength.

Let us note that we attempted to obtaln equations for the
scattering characteristics which would possess physical visuallza-

bility and which would be convenient for making calculatlons. Tn

keeping with thils, we were obliped to Introduce various kinds of
interpolation equations and simplified eguations which satisfy the
formulated requirements, but in return are not in the general case
the domlnant terms of the rigorous asymptotic expansion in powers of
the small parameter 3/a.
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Our purpose was not to calculate the current on the body's sur-
face, the fleld In the near zone, or the intepral scattqrinv thickness.
These questions are investigated in a number of other works based on
the physlcal theory of diffraction which were already enumerated in
§ 25. In them, in particular, the first terms of asymptotlc expan-
silons in powers of A/a were obtailned for the integral thickness which
characterizes the total power scattered by a body. However, in these
works, as a rule, equations are missing for the scattering character-
istics which are valid with any direction of irradiation and observa-
- tion. Therefore, the results of this book and the indicated works
mutually supplement one another.

At present, only a limited number of diffraction problems have
yielded to theoretical studies, as a result of which experimental
studies of diffraétion by various bodies have taken on great Importance.
In Chapter VI an experimental method was discussed which enabled one
to 1solate in a "pure form", and to measure, the field from the non-
uniform part of the current excited by a plane wave on a metal body
of any shape.' In the same chapter, it was shown that the well-known
phenomenon of depolarization of the wave reflected from a body which
1s found in free space is produced by the nonuniform part of the
current, or, in other words, by the surface distortion.

The investigation carried out in Chapter VIT for the problem of
diffraction by a thin, finite length cylindrical conductor represents
a natural development and completion of the method of considering the
multiple diffraction of edge waves which was applied in Chapter V.

In Chapter VII equations were derived for the scattering diarram which
are suitable for vibrators of an arbitrary lengsth with any irradistion
and observation directions,

The results obtained in this book show the fruitfulness of
physical diffractlion theory, and enable one to arrive at the solution
of other more complicated problems. Such problems may be divided
into two classes. Problems which may now already be solved on the
basis of the known results of diffracticn theory are related to the
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first class. As an example of such a problem, one may point to the
problem of diffraction of a plane wave by a frustum of a cone or by

an inflinitely long cylinder with a polygonal transverse cross sectlion.
Those problems whose solution requires obtaining (using the methods

cf mathematical diffraction theory) a whole series of new results

must be referred to the second class. In partlcular, in order to give
a complete solutlon to the diffraction problem of a finite cone, it

1s necessary to have more precise knowledge on the diffraction laws
of a semi-infinite cone.

Summing up, one may say that physical diffraction theory aids
one in analyzing and sorting out the diffraction phenomena for complex
bodies, poses problems for treatment by mathematical diffraction
theory, and enables one to effectively apply the rigorous results of
mathematical diffraction theory for the solution of new problems.

In conclusion, I express my deep thanks to L. A. Vaynshteyn for
his valuable advice and regular discussion of the questions to which
this book 1s devoted, and also for his attentive reading of the
manuscript and for a number of useful remarks. I also take this
opportunity to express sincere thanks to M. L. Levin for his interest
in this work and his helpful remarks.

.
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SYMBOL LIST

Typed Meaning
c evlindrical
4 disk
22




