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The book is a monograph written as a result of research by the

author. The diffraction of plane electromagnetic waves by ideally

conducting bodieo, the surface of which have discontinuities, is in-

vestigated in the book. The linear dimensions of the bodies are

assumed to be large in comparison with the wavelength. The method

developed in the book takes Into account the perturbation of the field

in the vicinity of the surface discontinuity and allows one to sub-
stant!ally refine the approximations of geometric and physical optics.

Expressions are found for the fringing field in the distant zone.
A numerical calculation is performed of the scattering characteristics,

and a comparison is made with the results of rigorous theory and with
experiments.

The book is intended for physicists and radio engineers who are
interested in diffraction phenomena, and also for students of advanced

courses and aspirants who are specializing in antennas and the

propagation of radio waves.
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FOREWORD

First of all, one should explain the term "physical theory of

dlffraction". In order to do this, let us discuss briefly the histo-

rical development of diffraction theory.

If one investigates, for example, the incidence of a plane elec-

tromagnetic wave on a body which conducts well, all the dimensions of

which are large in comparison with the wavelength, then the simplest

solution of this problem may be obtained by means of geometric optics.

It is known that in a number of cases one must add to geometric optics

the laws of physical optics which are connected with the names of

Huygens, Fresnel, Kirchhoff and Cotler. Physical optics uses, together

with the field equations, the assumption that in the vicinity of a

reflecting body geometric optics is valid.

At the start of the Twentieth Century, a new division of mathe-

matical physics appeared - the mathematical theory of diffraction.

Using it, rigorous solutions to the problem of diffraction by a wedge,

sphere, and infinite cylinder were obtained. Subsequently, other

rigorous solutions were added; however, the total number of solutions

was relatively small. For sufficiently short waves (in comparison

with the dimensions of the body or other characteristic distances)

these solutions, as a rule, are ineffective. Here the direct

numerical methods also are unsuitable.

Hence, an interest arose in approximation (asymptotic) methods

which would allow one to investigate the diffraction of sufficiently

short waves by various bodies, and would lead to more precise and

reliable quantitative results than does geometric or physical optics.

Obviously, these methods must in some way be censidered the most

important results extracted from the mathematical theory of diffraction.

FD-HC-23-259-71 iv



Tn the 'go-eiotric theory cf diffraction" proposed by Keller, the

-c ut rs obtained In thtl mathematical theory of diffraction of short

.avo•- were exactly the ones which were used and generalized. Here,

the concept of d!.ffractlon rayo advanced to the forefront. ThIs

concept was exprejQ i rather a,, a physical hypothesis and was net

sultable for representing the field in all of space: it was not

u.;able where the formation of the diffraction field takes place (at

thie caustic, at the boundary of light and shadow, etc.). Here it Is

impos.;Ible to talk about rays, and one must use a wave interpretntion.

What has been said above makes it clear why a large number of

works appeared in which the diffraction of short waves was Investi-

eated by other methods. Among those applied to reflecting bodies with

abrupt surface discontinuities or with sharp edges (strip, disk,

finite cylinder or cone, etc.) one Should first of all mention the

works of P. Ya. Ufimtsev. These works began to appear in print in

1957, and it is on the basis of them that this book was written.

P. Ya. Ufimtsev studied the scattering characteristics by such

bodies by taking into account, besides the currents being excited on

the surface of the body according to the laws of geometric optics

(the "uniform part of the current" according to his terminology), the

additional currents arising in the vicinity of the edges or borders

which have the character of edge waves and rapidly attenuate with in-

creasing distance from the edge or border (the "nonuniform part of the

ceirrent"). One ma, '_Ind the radiation field created by the additional

currents by comparing the edge or border with the edge of an infinite

wedge or the border of a half-plane. In certain cases, one is

obliged to consider the diffraction interaction of the various edges

Sthat is, the fact that the wave cveated by one edge and propagated

past another edge is diffracted by it (secondary diffraction).

Such an approach to the diffraction of short waves has great

physical visualizabllity and allows one to obtain rather simple

approximation expressions for the field scattered by various metal

bodies. This approach may be called the physical theory of diffraction.

FTD-HC-23-259-71 V



Thlz name is applied to many works on the diffraction of short wave.

In which the mathematical difficulties are bypassed by means of physl-

cal considerationo.

it is clear that the physical theory of diffraction is a step

forward in conparison with physical optics, which In general neglects

the additional (edge) currents. The results obtained in this book

show that with a given wavelength the physical theory of diffraction
gives a better precision than physical optics, and with a given pre-
cision the physical theory of diffraction allows one to advance Into

the longer wave region and, in particular, to obtain a number of

results which are of" interest for radar where the ratios of the dimen-
sions of the bodies to the wavelength do not reach such large

values as in optics.

In addition, the physical theory of diffraction encompasses a
number of interesting phenomena which are entirely foreign to physical
optics. Thus, in a number of cases the additional currents give, not

a small correction to the radiation field, but the rain contribution
to this field (see especially Chapters IV and V). If a plane wave
is diffracted by a thin straight wire (a passive vibrator), then the
additional current falls off very slowly as one goes further from the

end of the wire. Therefore, the solution Is obtained by summing the

entire array of diffraction waves (secondary, tertiary, etc.) which

successively arise as a consequence of the reflection of the currents

from the ends of the wires. It has a resonance character. Thus, the
problem of the scattering of the plane wave by a finite length wire
which is a diffraction problem of a slightly unusual type is solved

in Chapter VII. The resulting solution is applicable under the condi-
tion that the diameter of the wire is small in comparison with the
wavelength and length of the wire, and the ratio of the length of the

wire to the wavelength is arbitrary.

The final equations which are derived 1n this book and are used

for calculations are not asymptotic in the strict sense of the word.

FTD-HC-23-259)-71 vi



" f ."fore, It Is natural to pose the question: in what way will the

Bibeent asymptotic equation.; differ from them when at last one

0htains them in *.e mathematical theory of diffraction? One can say

b-fnr-hand f!t.! the main term of the asymptotic expansicn will not,

In the ,e-.teral case, agree with the solution obtained or the basiz of

phi-jl con..iderations: other (as a rule more complicated) slowly

virying functions which determine the decay of the fields and currents

;Z one goe, further from the edges and borders, and also the diffrac-

tlon Interaction of the edges and the shadowing of the edge waves will

fiAuro in the main tern. However, the refinement of the slowly vary-

Inr functions in the expression for the diffraction field is not able

to seriously influence the quantitative relationships. This is seen

from a comparison of the results obtained in this book with calcula-

tions based on rigorous theory and other approximation equations, and

also with the results of measurements.

The relationships obtained in this book also should help the

development of asymptotic methods in the mathematical theory of dif-

fraction, since they suggest the character of the approximaticns and

the structure of the desired solution.

L. A. Vaynshteyn
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I ,TR'O)DUCTI(AN

In recent years, there hao been a ncticeable increase of int,'re.t

In the diffraction of electromai-noetIc waves by metal bodits- of complex

"J;,apt. Such diffraction problen's with a rigorous methematical formu-

lation reduce to an interpretation of the wave equation or Maxwell

equations with consideration of the boundary conditions on the body's

surface. However, one cannot succeed !n finding solutions In the

case of aotual bodies of a complicated configuration. This may be

done only for bodies3 of the simplest Ceometric shape - such as an

Infinitely long cylinder, a sphere, a disk, etc. It turns out that

the resultingr solutions permit one to effectively calculate the dif-

fraction field only under the condition that the wavelength is lartger

than, or comparable to, the finite dimensions of the body. In the
"quasi-optical"case, when the wavelength is a great deal less than the

dimensions of the body, the rigorous solutions usually lose their

practical value, and it is necessary to add to them laborious and

complicated asymptotic studies. Here, the numerical methods for the

solution of boundary value problems also become ineffective. There-

fore, in the theory of diffraction the approximation methods which

allow one to study the diffraction of ,ufficiently short waves by

various bolies acquire great importance.

The field scattered by a given body may be calculated approxi-

mately by means of geometric optics laws (the reflection equations,

see,for example [1-3]), from the principles of Huygens-Fresnel an!

from the equation." of Kirchhoff and Cotler [3-6].

The most common method of calculation in tVe quasi-optlc caie
is the principle of Huygens-Fresnel in the formulation of Klrchhoff

and Cotler - the so-called physical optics approach. The essence
of' this method may be summarized as follows.

FTD-ifC-23-2')9-71 vili



ILet a plane electromagnetic wave fall on some ideally conducting

body which Is, found in free space. In the physical optics approach,

the ;urface cutrent density which is induced by this wave on the

lrrad'.ated part of the body's surface is (in the absolute system or

unilt,) equal to

P -- - In"H0 . (A)

where c is the speed of light in a vacuum, n Is the external normal

to the body's surface, H0 is the magnetic field of the incident wave.

On the darkened side of the body the surface current is assumed to be
0equal to zero (J Q 0). Equation (A) means that on each element of

the body's irradiated surface the same current is excited as on an

ideally conducting surface of infinite dimensions tangent to this

element. The scattered field created by the current (A) is then

found by nieanv- of Maxwell's equations.

It is obvious that in reality the current induced on the body's

surface will differ (as a consequence of the curve of the surface)
0from the current J0. The precise expresslon for the surface current

density has the form

(B)

where j is the surface density of the additional current which

results from the curve of the surface. By the curve of' the surface,

we mean any of its deviations from an infinite plane (a smooth curve,

a sharp bend, a bulge, a hole, etc.). If the bh Is convex and

o mooth and its dimensions and radii of curvature are larfre in comparl-

snn with the wavwlength, then the additional current is concentrated

mainly in the vicinity of the boundary between the illuminated ani

.•hadowed parts of the body's surface. But if the body has an edge,

bend, or point, then the additional current also arise:; near them.
0

The additional current density is comparable to the density 3 , as a
rule, only at distances of the order of a wavelength from the corre-

spodO lni7 cddge, bend, or point. Thus, if the body's dimenslens

"TD - HiC- 23-2 Y) -(7 1 ix
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significantly exceed the wavelength, the additional currents occupy

a comparatively small part of Its surface.

Since the current excited by the plane wave on an ideally con-

ductlng surface I.: distributed uniformly over it (the absolute magni-

tude of its surface density is constant) then the vector j0 may be

called the "uniform" part of the surface current. The additional

current j1 which is caused by the curve of the body's surface we will

henceforth call the "nonuniform" part of the current. In the physical

optics approach, only the uniform part of the current is considered.

Therefore, it is no wonder that in a number of cases it gives unsatis-

factory result.. For a more precise calculation, it is necessary to

also take into account the nonuniform part of the current.

In this book, the results of the author relating to the approxi-

mation solution of diffraction problems are discussed and systematized.

Essentially, these results were briefly discussed in a number of

papers [7-14]. Roughly at the same time, the works of other authors

devoted to similar problems appeared. We will discuss them in more

detail (in §25) after the reader becomes accustomed to the concepts

being used in diffraction problems of this type. For the present, let

us only note that in these works, as a rule, other methods are used.

In the book, problems of the diffraction of plane electromagnetic

waves by complex metal bodies, the surfaces of which have discontinul-

ties (edges), are investigated. The dimensions of the bodies are

assumed to be large in comparison with the wavelength, and their

surface is assumed to be ideally conducting.

Obviously, if the edges are sufficiently far from one another,

then the current flowing on a small element of the body's surface in

the vicinity of its discontinuity may be approximately considered to

be the same as on a corresponding infinite dihedral angle (a wedre).

In fact, in Chapter I it is shown (see also [5] §20) that the nonuni-

form part of the current on a wedge has the character of an cdge

PTD- HC- 23-259-71

-I



wave which rapidly decreases with the distance from the edge.

Therefore, one may consider that the nonuniform part of the current

is concentiated mainly in the vicinity of the discontinuity. By means
of this physically obvious assumption, the field scattered by a strip

(Chapter I), by a disk (Chapter II), by a finite length cylinder

(Chapter III) and by certain other bGdles of rotation (Chapter IV)
is calculated.

For a more precise calculation, however, it is necessary to keep

in mind that the actual current distribution in the vicinity of the
body's edges differ's from the current distribution near the edge of

the wedge. Actually, the edge wave corresponding to the nonuniform

part of the current, propagated along the body's surface, reaches the

adjacent edge and undergoes diffraction by it, exciting secondary edge
waves. The latter in turn produce new edge waves, etc. If all the
dimensions of the body are large in comparison with the wavelength,

then as a rule it is sufficient to consider only the secondary dif-

fraction. This phenomenon is siudied in Chapter V using the example
of a strip and disk.

In the case of a narrow cylindrical conductor of finite length,
the edge waves of the current decrease very slowly with the distance

from each end. Therefore, here it is impossible to limit oneself to
a consideration only of secondary diffraction, and it is necessary to
investigate the multiple diffraction of edge waves. Chapter VII is

devoted to this problem.

The uniform and nonuniform parts of the current are more than

auxiliary concepts which are useful in solving diffraction problems.
In Chapter VI it is shown that one is able experimentally to separate
from the total fringing field that part of it which Is created by

the nonuniform part of the current. There, it is also shown that the
depolarization phenomenon of the reflected signal is caused only by

the nonuniform part of the current.

FTD-11C-2 1-259-71 Xi



Let us note the following feature of the method discussed in the

book. A physical representation of the nonuniform part of the current

is widely used in the book, but nowhere are its explicit mathematical

expressions cited. This part of the current is generally not expressed

in terms of well-known functions. Obviously a direct integration of

the currents when calculating the fringing field is able to lead only

to very complicated and immense equations. Therefore, we will find

the fringing field created by the nonuniform part of the current on

the basis of indirect considerations without direct integration of

it (see especially Chapters I - IV).

The method by which the diffraction problems are solved in this

bock may be briefly summarized as follows. We will seek an approxi-

mate solution of the diffraction problem for a certain body by first

having studied diffraction by its separate geometric elements. For

example, for a finite cylinder such elements are: the lateral surface

as part of an infinite cylindrical surface, each base as part of a

plane, each section of the base rim as the edge of a wedge (the curva-

ture of the rim in the first approximation may be neglected). Having

studied the diffraction by the separate elements of the body, we will

obtain a representation of the nonuniform part of the current and of

the field which is radiated by it. Then secondary, tertiary, etc.

diffraction is stuuied - that is, the diffraction interaction of the

various elements of the body is taken into account.

This method appeals to physical considerations, not only when

formulating the problem but also in its solution process, and in this

way differs from the methods of the mathematical theory of diffraction.

Therefore, such a method may be referred to as the physical theory

of diffraction.

A whole series of other diffraction studies which appeared in

the last five to ten years also are able to relate to the physical

theory of diffraction. The first work which contained the idea of

the physical theory of diffraction is evidently the paper of

Schwarzschild [15] which was published at the beginning of this

century and was devoted to diffraction by a slit.

FTD-HC-23-259-71 xlI



One should note that approximate solutions of diffraction

problems would be impossible without the use of the results obtained

in the mathematical theory of diffraction. In particular, the

rigorous solution to the problem of diffraction by a wedge which is

attributed to Sommerfeld [16] is widely used in this book. In

Chapter I this solution is obtained by another method. The works of

Fok [17, 18] served as the starting point for numerous studies on

diffraction by smooth convex bodies. The rigorous solution of the

problem of diffraction at the open end of a wave guide [19] revealed

the mechanism for the formation of primary diffraction waves, and

their shadowing by the opposite end of the wave guide. The rigorous

theory as applied to a strip and disk allows us to examine the

precision of the approximation theory (see Chapter V).

FTD-HC-23-259-71 xiii



CHAPTER I

DIFFRACTION BY A WEDGE

As was already said in the Introduction, the field scattered by

a body may be investtigated in the form of the sum of the fields being

radiated by the uniform and nonuniform parts of the surface current.

The uniform part of the current is completely determined by the geo-

metry of the body and the magnetic field of the incident wave. The
nonuniform part generally is unknown. However, one may arproximately

assume that in the vicinity of the discontinuity of a convex surface
It will be the same as on a corresponding wedge. Therefore, it is
necessary for us to begin by studying the diffraction of a plane elec-

tromagnetic wave by a wedge. This chapter will be devoted to this
problem. First we will investigate the rigorous solution of this

problem (§ 1 and 2). Then we will find its solution in the physical
optics approach (§ 3). The difference of these solutions determines

the field created by the nonuniform part of the current (§ 4).

§ 1. The Rigorous Solution

The rigorous solution to the problem of diffraction of a plane

wave by a wedge was first obtained by Sommerfeld by the method of

branchinti wave functions [16]. Later, the diffraction of cylindrical

and .-pherical waves by a wedge also was studied. A rather extensive

bibliography on these problems may be found, for examplo, in the

//



paper of Oberhettinger [20]. Since the problem of diffraction by a

wedge lies at the base of our studies, we considered it advisable not

only to present the results of its rigorous solution, but also to give

them a new more graphic derivation. The idea for this derivation

follows directly from the work of Sommerfeld. Sommerfeld found the

"solution to the problem in the form of a contour integral, and then

he transformed it to a series. However, one may proceed in the oppo-

site direction: first find the solution in the form of a series and

then give its integral representation. Such a path seems to us more

graphic, and is discussed in this section. The necessity for a

detailed derivation Is caused by the fact that the results of Sommer-

feld [161 are not represented in a sufficiently clear form, which

"hinders their use.

Let us assume there is in free spaie (a vacuum) an ideally con-

ducting wedge and a cylindrical wave source Q parallel to its edge

(Figure 1). Let us introduce the cylindrical coordinate system r, 0,

z in such a way that the z axis coincides with the wedge edge, and

the angle 0 is measured from the irradiated surface. The external

wedge angle will be designated by the letter a, so that O<pa . The

coordinates of the source Q we will designate by r., €0"

Let us investigate two particular cases for the excitation of an

electromagnetic field. In the first case, it is excited by a "fila-

ment of electric current"

in the second case, it is excited by a "filament of magnetic current"

r= -:iwmr8 (r 6 , T -- 0). (1.02)

The quantities pz and mz here designate, respectively, the electric

and magnetic moments of the filament per unit length along the z axis,

w is the cyclic frequency (w-Ck= ) C (r-- 0 , ?--y):,) (r -rO);Ir(?7 -- Y.)

Is a two-dimensional delta function which satisfies the condition

FTD-IIC-23-259-71 2
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Figure 1. The excitation of a wedge-
shaped rerion by a linear source.

- snurce; P - the observation point;
L - the integration contour in Equation (1.10).

S 5;(r-ro. v-?O)rdrdr?==l

with integration over tfie neighborhood of the point r0 , 00"

Here and henceforth, we will use the absolute system of units

(the Gauss system), and we will assume the dependence on time is in

the form e

eIn the first case, the "electric" vector potential A satisfies
the equation (see, for example, [4])

AA~k'.~ ~(1.03)

and the boundary condition

A:=O with ?-=- and = (1.04)

I"'TD- HC- 2 3l ,35}



In the second cao;e, the "magnetic" vector potential Am satisfleo the
z

eq-aat ion

(1.05)
-4

and the boundary condition

•0 with 9==O and ?--s. (1.06)

It is natural to seek the solution of the nonhomogeneous

Equations (1.03) and (1.05) in the form

I V a.J4 (kr,)HI.(kr)sin.?o sin ',? with r~r,,

V b.J. (,,,) H"' (kr) cos ,. cos v., w t h r< r0 .

'-"b.", (k r)H "(k r) c€osv,. cosv,, with r >ro. (1.08)

The products

J (kr),in,,? J (kr) cous.p

and
'"(kr) sin v,? H,"'(k,) Cos.? (1.09)

are the partial solutions of Equations (1.03) and (1.05) without the

riglht-hand memb,'r which satisfy the boundary conditions (1.011) and

(1.06). The remaining factors entering, into Equations (1.07) and (1.-0S)

ensure the observance of the reciprocity principle and the continuity

of the field on the arc r - rO. The Bessel function J (0(r) enters
S

these equations when r < rO, because It remains finite when r -• 0,

and the Hlankel function Hl(l"(kr) is taken when r > rO In order that the

oolution satisfies the radiation condition.

"I'JU'- IIC-2 *]-259t- 7 1



The coefficients a. and b. may be determined by means of Green's

t hoor.m

" ~'- dl sdS,. dS rdrd, (1.10)
L

for the contour L in the plane z = conot which is shown in Figure 1.
Pere, the external normal to the, contour L is designated by the letter
n. Applying Equation (1.10) to the functions Ae and Am ard performinp

z z
the limiting transitiono r 1 r0 and r2 r 0 In It, we obtain

/[ '"-; ,.to I ' •, I~s

Rr (,÷oor _. rd-O to

dI (o .Jd? (1 Qrp

Since here the integration limits are arbitrary, it follows from the

e.~u~it of he nterals that the irntegrands are equal:

I-w - a (, - Q- (1.12)
,of I,,tnr

Now let us substitute Expressions (1.07) into Equality (1.11) and

multiply both members of the latter by sinv,, . Then interratinC the
resulting equality over 0 in the limits from 0 to a, we find

40s

In a similar way, let us determine the coefficients

64 t=o. :- kmn,. (1.14)

where

PI)- ifC-2 3-2' )-7 1



Consequently, tne electric current filament excites, in the space

outside the wedge, the field

E, ikA =

<a
tU

'i: k-P, Hi" (kr,) I,(kr) sin v~p sin v.

with r<ro,

i .5=- k2p, J,(kr,) B"I: (kr) sin vy,y sin v.op

Aw with r>ro,

E,=E.z ,O. H=--rotE, (1.16)

and the magnetic current filament excites, outside the wedge, the

field

H, - ikA,-

with r<fo,

-- k'm, ,J, (krj H, (kr) cos cspý co

with r>ro,.

.H,HO, Eq-- rot H.
9 (1.17)

Now using the asymptotic equation for the Hankel function when

kf,-..c* [21], we have

-,.,(k,.) 2 et', H("(kro)-'". . (1.e1 )

Then Expressions (1.16) and (1.17) in the region r < r 0 take the form

~0
E, --'- i k•pH") kr)X

X' e' 2 (kr) sin vpk sin v,?,
8=1

(equation continued on next page)

FTD-HC-.-23-259-71 6
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M, Pm, H ot ',, (k ro) X

X ae (kr)cos v cos v,y

or

.= iwk',p,HO"'(kr,) is (r. ? -9 ) -- (,. -+r o)1+
.i, , ?+ I (1.19)

where

i (r i.,e0
(,kr)• co•1.0

Let us note, furthermort!, that in free space the field of the

electric filament with a moment pz is determined by the relationship

Es,= I~k'p,•"I(k,•.- (1. 21)

and the field of the magnetic filament with the moment mz is determined

by the relationship

H, = iksm,f"fý'(kro). (1.22)

Therefore, the expressions in front of the square brackets in Equations

(1.19) may be regarded as the primary field of the filament - the
cylindrical wave arriving at the wedge edge. Now removing the fila-
ment of current to infinity (r 0 - o), let us proceed to the incident

plane waves

E (1.23)

arid

FTD-HC-23-259-71 7



, t. e- • ' l-' , iv ,= 0. (1.2 4 )

The field arisinig with the diffraction of theoe waves ty the wedge

will obviouoly have the component

E, =Ea, [,, (r. Tj -- • - u (r, p -?a•)l ( 1.25 )

and

H. Has [, (r,. -- 0) +,u(r, •+•. (1.26)

Let us find the integral representation for the function u (r,

•). For this purpose, let us use the equation (see [16], p. 866)

AiI Arco$$+..

J(kr)=-1 (127(1.27)

where the limits I - III mean that the integration contour goes from

region I to region III (Figure 2). The cross-hatched sections in

the plane of the complex variable 8 (8') shown in Figure 2 are regions

in which Itnco%ý>O (Jmcos'<O) . Therefore, in the sections of the con-

tour extendingr to infinity the integrand strives to zero, ensuring

the convergence of the integral. Subst-ituting Expression (1.27) into

Equation (1.20), we obtain

u (r, t)=

ekfcos [,t+ e",-e 0 P

After summing the infinite geometric progressions and replacint, the

variable 8 by $' = 8 - it, the function u (r, p) acquires the form

,,(r. 'I) =
III,

TlH -0e 1 7e

FTD- HC-23-259-71 8



Figure 2. The Innegration contours Figure 3. The Integration contour
In the complex plane 0. in Equation (1.28).

As a result, we obtain the well-known integral of Somr.er-feld

2 (1.28)

The integration contour C is shown in Figure 3 and consists of

two infinite branches. Since the integrand expression has poles at
the points P.==2as--(m_--O,_ = , =2,....) , then for the values of 0 corre-
sponding to the space outside the wedge (0<T<a') the function u (r, •

may be represented (with •.=2,0<(p*<, ) in the following way:

ur(r, -/)--•v(r, W with .<' with -,

with 2s--s<,,<22,(I.2)

where

",' O=-L ,-fkf cat /p,

-i--

FTD-IiC-23-259-719



K
N

or

2* Zi -(30)
CU •,cos +

The integration contours D and D are sbown, respectively, In Figures

3 and 4.

With an arbitrary incidence of a plane wave on a wedge, one of

two cases may occur: (1) the plane wave "illuminates" only one face of

the wedge (O<,,<x-%) , and (2) the plane wave "illuminates" both

faces of the wedge (,--r.<1<) . Let us write out in more detail the

functions u (r, ) corresponding to these cases. In tile case ?a<a--
.(Figure 5), we have

U (r, --. ) a

=U(r, + e o

u(r, T+ -))
V (r, •p - ?0) + tihr - withr-

U(r, - ).-- T T (I -- o
,(r ?-%)-=r.?Ot)I with "-a?•

and in the case -- <?,o<= (Figure 6) we have

"U"(r. ?•-), I
- u(r, ? --? )-=--j':': •(r, p T) +with 0<?<•.- ?o.

==U(r. 9 +•.))

V r(r, p -+ ,,)--=l |

,,(r, -10)-- h
av + e--' ) k-cot'('- N- w h

it(r, +- ?) -2z. <Y•." (1.32)
[! ~ ~~~=U(r'.'T-F@°)-{e-'"'''''

i' TD- iIC -213-2 5-71 10



The direction 0 0 i - *0 corresponds to the ray reflected in a specular
fashion from the first face (we will consider as the first face that
face from which the angles are calculated), and the direction 7
=23-- To corresponds to the ray reflected specularly from the second
face (Figure 5 and 6). The functions e-6" describe plane waves of

unit amplitude: e-'k''c*- describes the incident wave, e- '*'c'+-'
describes the wave reflected from the first face, and e-'kco-u--%) -

the wave reflected from the second face.

Figure 5. Diffraction of a plane
wave by a wedge. The plane
wave irradiates only one face of

Figure 4. The integration contour the wedge. *0 is the angle of
in Equation (1.30). incidence. The line 0 a w - 0

is the boundary of the reflected
plane wave, and the line
S- : + 0 Is the boundary of

the shadow.

/ Figure 6. Diffraction by a wedge.
/ The plane wave Irradiates both

d.g faces. The line 2a - - 0
is the boundary of the plane wave
reflected from the second face
(0 = ci).

FTD-HC-23-259-71 11
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§ 2. Asymptotic Expressions

The integral

u~r,~)= in• 840`09CdO-as (2.01)

in Equations (1.31) and (1.32) generally is not expressed in terms of
well-known functions. However, when kr >> 1 it may be calculated

approximately by the method of steepest descents [211. In integral
(2.01), changing for this purpose to a new integration variable

we obtain

sin 0~ 8 *k.hTa do

I .(CO a (2.02)

where

n- . (2.03)

It is not difficult to see that the point s = 0 is a saddle point:

as one goes further from it along the imaginary axis (Re s = 0) in
the plane of the complex variable s, the function e-'"* most rapidly
increases, and as one goes along the real axis (Im s = 0) it decreases
most rapidly. Therefore, when kr >> 1 the main contribution to the
integral (2.02) is given by the integrand in the section of the

contour in the vicinity of the saddle point (s = 0).

The method of steepest descents is carried out by expanding the

integrand (except for the factor e-"' ) into a Taylor series in powers

of s. This series is then integrated term by term. if the integrand

FTD-HC-23-259-71 12



expansion converges only on part of the integration contour, the re-

sultant series obtained after the integration will be semiconvergent

(asymptotic). Limiting ourselves to the first term in it, we obtain:

sin- &P +

V (r. !t -- -41 e- 4

Co s V;-o (2.0,4)

The remaining terms of the asymptotic series have a value on the order

of I and higher.

Expression (2.04) is valid with the condition (con-c -)r>

and describes that part of the diffraction field which has the charac-

ter of cylindrical waves diverging from the wedge edge. With the

incidence of the plane wave (1.23) on a wedge, the electric vector of

which is parallel to the wedge edge, the cylindrical wave is determined

in accordance with (1.25) and (2.04) by the equation

B, =- H, = B.,.[(, p- [ .)V- (,. yf?.)J; (.,÷)

(2.05)

where

sin -V- ( I1-I-- I so y.,. U •
----- c"o 9--/ (2.06)

When the wedge is excited by the plane wave (1.24), in which the mag-
netic vector is parallel to the wedge edge, the cylindrical wave has
the form

H,,g V'2nh (2.07)

FTD-HC-23-259-71 13



t

where

co - a (2.08)

In the vicinity of the shadow boundary ($ w 1 + #0) and near the
directions of the mirror-reflected rays ( ?•2a---?-)
Expressions (2.04) - (2.08) are not valid, since the poles

81= V/Iel4 sinf. = Vfe 4 sin (n S

of the integrand in (2.02) are close to s - 0 and, consequently, its

expansion in a Taylor series loses meaning. Physically, this result
means that in the indicated region the diffraction wave does not re-

duce to plane and cylindrical waves, but has a more complicated char-
acter. An asymptotic representation of the function v (r, 4) in this
region was obtained in 1938 by Pauli [22]; here we will present the
derivation of the first term of the asymptotic series obtained in [22).

Let us multiply and divide the integrand expression in Equation
(2.02) by the quantity

Cos+cos =i(s' -is!) (4= 2cos) (2.09)

and let us expand into a Taylor series in powers of s the function

Cos 4 + cos

(-co•-caoT

which no longer has a pole at the saddle point (s = 0) when 4 = 4 +
-+ w= . Limiting ourselves in this series to the first term, we

obtain
n I+cos, 4"~~ "r. e " - ds.

Cos a -toSo J0

(2.10)

FTD-HC-23-259-71 14



The integral here may be represented in the form

soI29 e Olse

Changing the order of integration here, we find

ds e 0jeI-'I:Oj

e'~dq(2.11)

and finally

2 Ia e -'h,cia4 *
0 1, C" 4=o e-- eoX

Cos 7 - Co

X 3 ewdq.

SH(2.12)

The next term of the asymptotic expansion for the function v (r, ')

has a value, whose order of magnitude depends on the observation

direction: in the vicinity of the border of the plane waves % -4- -,

its order of magnitude is - , but far from it the order of magnitude

is 1/kr in comparison with the term written in (2.12).

It is convenient to represent Expression (2.12) in the following

form:

U

con -- o -2

iCos-os±

X S e'dq.
='=• (2.13)

FTD-IIC-23-259-71 15



Here the absolute value of the lower limit of the Fresnel integral

always equals infinity, and its sign is determined by the sign of

cos */2. Therefore, when passing through the boundary of the plane

waves (* = 0 + *0 a w) the lower limit changes sign and the Fresnel

integral undergoes a finite discontinuity, ensuring at this boundary

the continuity of the function u (r, *) and consequently of the

diffraction field. Actually, by means of the well-known equation

2 (2.14)

7 it is not difficult to show that

(r,. ,+ 0) = - , *,, --0) elk,(2.15)

and consequently

(2.16)

In view of the asymptotic relationships

e' c'dq:=!e, ewdq---p (with p> 1)S-O (2.17)

Pauli's Equation (2.13) is transformed with V2ktIcOs2j*1 to the

Expression (2.04). As was already indicated above, it determines the

cylindrical waves diverging from the wedge edge.

By means of Equation (2.13), one may also calculate the field in

the vicinity of the direction * = 2a - 7 - ý0 -- that is, near the

boundary of the plane wave reflected from the face 0 = a; for this

purpose, it is sufficient to replace * by a - 0 and 0 by a - 0'

It is also interesting to note that in the case of a half-plane

(n = 2) Equation (2.13) gives the expression

FTD-HC-23-259-71 16



, -•'-•Vi I '

Q(r. ) = dh ,..e_. • e''dq,
x
de." (2.18)

which completely agrees with the rigorous solution. Actually, with

a - 2n, when the wedge is transformed to a half-plane, integral (1.30)

equals

(2.19)

and it may be reduced to a Fresnel integral. For this purpose, let

us divide the contour Di into two parts by the point C - 0. Summing
the integrals over these parts of the contour, we find that

i~r, ') 5( e, cos I _ ____

2 __
2eikrcoosC Cas

- cos # I

0 4. i

Now changing to a new integration variable s=ylie 'sin- 2- and taking

into account Equation (2.09), we obtain

- "-'4 (2.20)

The integral here was already calculated by us. Turning to Equation

(2.11), we arrive at Expression (2.18) which - together with rela-

tionships (1.25), (1.26) and (1.31) - give us the rigorous solution

to the problem of the diffraction of plane waves by an ideally

conducting half-plane.
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S 3. The Physical Optics Approach

In the physical optics approach, the fringing field is sought
as the electro-magnetic field created by the uniform part of the sur-

face current

2a (3.01)

Let us recall that here n designates the external normal to the body's
surface, and H0 designates the magnetic vector of the incident wave.
First let us investigate the case 0-?,.(a---. when the incident plane
wave irradiates only one face of the wedge (Figure 5).

From Equation (3.01) it follows that the density of the uniform

part of the current being excited on the irradiated face by plane
waves (1.23) and (1.24) has the following components, respectively

2 x°, j,=0 (3.02)

and

2., =z"=0. (3.03)

For the purpose of calculating the field radiated by this current, we
will use the following integral representation of the Hankel function
(see [16], p. 866 )

I-H'," (p)== -%- f 'P "°" -- •' (

-&+ t o ( -•, 8 -. D (3 .04 )

Assuming here p = kd and changing to a new integration variable
= d sh t, we obtain

FTD-HC-23-259-71 18



Hull" (M) --. •k• (3.o5)

It is easy to show by means of Equations (3.02), (3.03) and (3.05)

that the vector potential

A (x Y, 0) j°(• d; tit( ........... ,dCA +; (x i- "e (3.06)

has the components

A Y,--.Eo, sin .I,, 0 (3.07)

if the wedge is excited by plane wave (1.23), and

As=!-H,,.I, AO=A,=O, (3.08)

if the wedge is excited by plane wave (1.24). Here, I designates

the integral

I, =e-I1C°"/H/q"(k /y'-+(.--)2ca. (3.09)

Let us transform it by using the relationship

Mal) (k Vd-+z')~ ( -- zl d

(o= =V"-w', Jtu>O, d>O), (3.10)

It is not difficult to establish the correctness of this relation:Thip

by verifying that it changes into Expression (3.04) with the sub1:ti-

tution w = k sin t, v = k cos t and k ~d--z'=P. As a result

I, - (k cot,,--) ( 3.1 )
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where the integration contour passes above the pole w = k cos 0"

Let us note that integral (3.11) is a function of tyl, and let

us change to polar coordinates according to the equations

X= r Cos,?s
jy j = r s i n • w ', n ? - w ,( 3 1 2yl.=_rsinpwith ?>%. I

Furthermore, by carrying out the substitution

w=-kcos! (-=kSis-), (3.13)

we obtain

, t *ws ht hp <

1oink CO~j+OjPIixk• COS-•j•TS+ Costht (3.14)

The integration contour F is shown in Figures 7a and 7b. In Figure 7a

the cross-hatched areas indicate the sections in the plane of the com-
plex variable E in which |fcos(E--?)>o ; in Figure 7b, the cross-hatched
areas indicate the sections wherelJncos('A-+)>0 . Now let us deform the
contour F into the contour G1 (G2 ) for the values ?< r(?>r), and let

us change to a new integration variable

with?<%,
5-(2r--?)with>ri. ) (3.15)

As a result, we obtain the following expressions:

0 with ?>r'-?.,

i, -- , co, (• +2.)
with y, (3.16)

if 0 < w and

FTD-HC-23-259-71 20



Figure 7. The integration contour in
Equations (3.l14).

Or Cs CA 0 with fp<c+y.

is*~i CO fs + C osV + * -) 2 e cto (9 - o,

II sin III II

wi.th

if * iF > . The integration contour is shown in Figure 4.

By means of Equation (3.06) and the equality

E, =IkA, (3.18)

let us find the field which is radiated by the uniform part of the

current excited on the face € a 0 by the plane wave (1.23)

V+ (i,Y,)- e-if to$ °+'') wit tO< 0< T - ,

S o7(?, p) with 9 -- 7 <,?<•..
E"•- {;,(?, lo)with•'<?<r•" P,.

m• (? y,) -- e-"k' Cos (o;-,) w i t hI-, r < + ? . (<3.11)
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where

i/ h• r eosId

V (?. ?.) si k std
2t wl# .'-Cos G ±t T (3.20)

It is not difficult to see that with =--<p.<: , when both faces of

the wedge are illuminated, the field excited by the second face

0 a) will be described by the same equations if one replaces * by

a- , and 00 by a -0 in them.

Adding the field being radiated by the uniform part of the

current with the incident plane wave (1.23), we obtain the diffraction

field in the physical optics approach. It equals

V 6uk Cos e-.k ) 1 '' _ Cos (v+v)

with O~•,< --y.

u• ('p, 9,) + e-* CO(,,- ,.1(•* • + e-tk Cos,-,
with <? ,-,

with :+?.<?<x- (3.21)

if one face of the wedge (0O?.<s--x) is illuminated, and

+ t -O-c$(9 e- I cos (9 + 'e

with 01?<:--?*,

+ e-'''+ with +---+<?<--.

e with -- <y<"
E. V,,; ?. .) + U,+ (I,- 7,,,-.+
G. +e-•k'Cos(IF- 4;9 with . <2 - -- ,

V T (f, 7.) + U1+ (a -'?, a- ,)+

+j• e- -ikr to$ (I - -50) - - ikr Cos (2s - -I -•

with 2 - -?,<? <,. (3.22)
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If both faces of the wedi:u (=--,<y<:) are illuminated.

Now let us calculate the fleld ariing during diffract-r. n by a

wedge of a plane wave (1.24). The field scattered by the f[r.rt face
( 0) Is determined by the relationship

H,=-O--•
H3=H=-O. 

(3.23)

One may write the component H in the formz

He,= -- H,,- 1, (3.24 )

or

-" . aith T<9.

H z=•He.s, "1with ?>'L J (3.25)

The quantity 12 introduced here is the integral

e 0I V M I -- ,rx) Sdw
_ k cob (3.26)

along the infinite contour which passes above the pole w k cos 0"
This Integral, precisely the same as integral I1, is transformed to

an integral along the contour DO. As a result, we obtain

I ( .) with--<Y<±.

4(T . ',)-e I, ,( .... ' wlth .-+ 7. < V <2. (3.27)

where

- ,in(( Ci I)e;k, CMC

(3.22ý
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In the case when both faces of the wedge are illuminated, the fieldscattered by the second face also is determined by Equations .3.27)
and (3.28) in which one need only replace .0 by a - and 0 by

Then adding the field radiated by the nonuniform part of thecurrent with the incident wave (1.24), we find the diffraction field
in the physical optics approach. This equals

o; (',. V.) + e-f•" C''t (-'• e- '• o,

with Ok?<--?,.

eu (4p. %e) + e l0 (Cos.0with '<-<+?<%

with *< %+ -?It.
"u7(?. y;) with ,n+?.<•?a~;

(3.29)

if one face of the wedge is illuminated, and

+ V2(l. 90)+ e02_'t + _.)

with Oy•t-y*,

OF with --- T<O)-1,

with s--<,<•,

+oTo eV' + , -P
± e-fhr Col (9 - • with 2-

+r •-Ii" COS (IF -,?.).+ e--•k, co, (2o - T-•

w It h 2a -it- To- < P <d. (3.30)

if both of its faces are illuminated.

FTD-rIC-23-2 5 9-71 24



4 4

The integrals V , V; generally are not expressed In terms of

well-known functions. However, by using, the method oC steope-;t

descents, It Is not difficult to obtain their asymptotic expani:Slon

when kr >> 1. Far from the directions 0 = w + ± 0 and 0 - 2a - ir - 100

the first term of the asymptotic expansion gives us the cylindrical
wave diverging from the wedge ed•re. In the case of wedge excitation

by a plane wave (1.23), these cylindrical waves are determined by

the equation

-Ea__H!=E,.a.I.." ,

£, = H=, 0. (3.31)

and with the excitation of the wedge by a plane wave (1.24) they are

determined by the equation

If,---- =If. -- .,.8 lA
H,- -1,=H. 1 (3.32)

The functions f0 and g have the form

sin to

Cos f + cis ye

o Cos f + s. ' e (.333)

If one face of the wedre (O ?. -- ) , and

Sim .2 -- YO_)
Caos + Cosy, coS("- V)+,-,(,-.i .

sin? sin (a - f)
* Cos- C osy o S-- -1)+Cos (i--j ' (3. i)

if both of its faces (U-.<(rO<.) are illuminated. The Index "Y" fop

the functions fO and fr 0 means that the cylindrical waves (3.31) and

(3.32) are radiated by the uniform part of the surface current (j0)
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S 4. The Field Radiated by the Nonuniform

Part of the Current

In § 1 and 3 we represented the rigorous and approximate expres-
sions for the diffraction field by integrals along the same contour
in the complex variable plane. By subtracting the approximate expres-
sion from the rigorous expression, we find the field created by the
nonuniform part of the current. It is determined by integrals of the
type

e& p:* ~ eC dC~, (4.01)

which, with the replacement of the variable C by S-=V2e SW-j , are

transformed to the form

tea, q(6 ,'s)e-?aads (4.02)

and may be approximately calculated by the method of steepest

descents.

For this purpose, let us expand the function q(s) into a Taylor
series

q(d,?, .. s)=q-+q&.S+q.'s'+. (4.03)

Let us note that expansion (4.03) does not have meaning only in the
particular case

9=n±'-y* with %-=O; x, )
9=2z- x - 0, with=a - r. j (4.04)

when the observation direction (0) coincides with the direction of

propagation of the incident wave glancing along one of the wedge faces.
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Substituttnr serles (11.03) Into Equatlon (4.02) and then perform-

ing a term by term Integration, we find the asymptotic expansion for

the field radiated by the nonuniform part of the current. We limit

ourselves to the first term of the asymptotic expansion, omitting

terms of the order(kr)-f• and higher. As a result, the required field

from the nonuniform part of the current will equal

o+
E,=-t1 =E4' I
R,-=o11= (4.05)

with wedge excitation by plane wave (1.23), and

H, ---E, = .,gs 1 ',r

H,=E, =o (4.06)

with wedge excitation by plane wave (1.24).

By calculating, with the help of Equations (4.05) and (4.06),

the nonuniform part of the current, it is not difficult to see that

It Is concentrated mainly in the vicinity of the wedge edge. But the

field created in the region kr >> 1 by this part of the current has

the form of cylindrical waves, the angular functions of which are

determined by the relationships•l)

',l'- g'=g--g" ((4.07)

where in accordance with § 1 and 3 we have

i sin-, 1  -

g c3 s -•" -COS coS,-_ .- o.CO

(( ( .o8)

(1)
Footnote appears on page 42.
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and

sin 9 I['-•Cos ff + Cos 1.

8 -- Sint•
C (4.09)

if one face of the wedge is illuminated (that is, when 0<?.<- ),

and

sin ve + Sin (a -- n
Cos k +os C Cos a--)+Cos s--.)

go= del sin (a -- ,)

COS- o+ COS 0 c0s(G--1)+€S(M--?*) " (4.10)

if both faces of the wedge are illuminated (that is, when -- <0<. ).

Let us recall that the functions f and g describe the cylindrical
waves radiated by the total current - that is, the sum of the uniform
and nonuniform parts, and the functions f0 and g0 refer to the
cylindrical waves radiated only by the uniform part of the current
(a0).

01 0

Let us note certain properties of the functions f and g . The

function fl fl (a,' , 0) is continuous, whereas the function g = 1

(al, 1, %0) undergoes a finite discontinuity when 00 = a - w. The

reason for this discontinuity is that the uniform part of the current

differs from zero on the face along which plane wave (1.24) is propa-

gated (with 00 - a - ff). In the case of radar, when the direction to

the observation point coincides with the direction to the source
(€ - €1), both functions f1 and g1 are continuous. There is no dis-

continuity of the function g1 with 0 = 00 = a - it, because the current

element does not radiate in the longitudinal direction.

On the boundary of the plane waves (that is, when (=Vt±Io and

y=2a-z--•-) the functions f, f0 and g, g become infinite, whereas

the functions f and g remain finite. In accordance with Equations
(4.07) - (4.10), they take the following values
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ta 'ti 3• t g. a

Cos CO s

i w * - i - %0, and 00 < - w,

I..
-•sin-• " It

Sin (a -- Co-
-- os(*- V)--os(,-Q

I t•- si -l 1

Cos -COS

+ sin ), (4.12)

ift - ft -0 and a - f< < *0< W, and

I U

rl -W . 4**I s t

"9 C C2 (4 .1 3 )

if w - i + %0, and < a - w. The value w + i +0 with a - < <O

< w corresponds to the angle inside the wedge, and therefore is not

of interest. In the direction of the mirror-reflected ray 0 2a -

- 0 the functions fl and gl are determined (with a - n < 0 <

by the following equation:

IN

-' ,t _- F

I'== ~ -_ N;------::. CS+OY +
Cos -- Cos - - s-"

2Ctg(I -. +(14.14)

-sinl -

Ce, '~-.,+ Cski 4P.Sl +

2I4.cig (I - T.)~ ctg -.
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The functions fl and g have a finite value everywhere, except

for the particular values * and *0 enumerated in Equation (O.04). The

graphs of the functions fl and g (Figures 8 - 13) drawn in polar

coordinates give a visual representation of the effect of the nonuni-

form part of the current which is concentrated near the wedge edge.

In particular, they show that this effect may be usbstantial for the

fringing field not only in the shadow region (a+q¢o<4'";,), but also in

the region of light (0O<T+y.) . The continuous lines in the figures

correspond to the functions fl (fl < 0). The dashed and dash-dot lines

correspond to the functions gl - the dash lines refer to the case
gl < 0, and the dash-dot lines refer to the case g > 0.

gog

• ---- ,',

__Fp

Figure 8. The diagram of the
field from the nonuniform part
of the current excited by a
plane wave on a hilf-plane. The Figure 9. The same as Figure 8
function fl (or g ) corresponds for the case s a
to the case when the electric 0'
(or magnetic) vector of the
incident wave is parallel to the
wedge edge.

Let us turn our attention to the next important aspect. As is

seen from § 1 and 3, the nonuniform part of the current on the wedge

is described by a contour integral which is generally not expressed

in terms of well-known functions. But in order to calculate the field

scattered by some convex, ideally conducting surface with discontinui-

ties (edges), the indicated expression still must be integrated over

the given sur±ace. Obviously, such a path is able to lead only to

very cumbersome equations. Therefore, henceforth, when calculating
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-0

Figure 10. The functions f1and gi for
a wedge 0* . 300, *2700).

Figure 11. The same as Figure 10 when
0 500.
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\ U

Fiigre 13. The functions fi 1 and

Figure 12. The same as Figure 10

for the case -= 00

the field scattered by composite bodies, we will not integrate the

explicit expressions for the nonuniform part of the current, but we

will endeavour to express these integrals directly in terms of the

functions f1 and g1 which have been found.

§ 5. The Oblique Incidence of a Plane Wave on a Wedge

Above, the diffraction was studied of a plane wave incident on

a wedge perpendicular to its edge. Now let us investigate the case

when the plane wave

£ = E.eAlze09 a+ jl P +, SS 1.o. (5.01)

falls on the wedge at an oblique angle T (O<T<-) to the wedge edge

(Figure 14).

From the geometry of the problem, it follows that the diffraction
field must have that same dependence on the z coordinate as the field

of the incident wave, that is
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.= (x,)elf CosT (5.02)

Using Maxwell's equations

rotlH=-lkE, rotE-ikH, (5.03)

Figure 14. Diffraction by a one is able to obtain the follow-
wedge with oblique incidence of ing expressions for the radial and
a plane wave. y is the angle azimuthal components of the field:
between the normal to the incident
wave front and the z axis.

I I r of Cos Ff

H, --- = -(a, or, ")

WY (5.04)

The functions E and H in turn satisfy the wave equations

Aff.+ el E. = o,"0,,A + lk HH=o, (5.05)

where

+ and k,= ksinT. (5.06)

In § 4 we found the fields (4.05) and (4.06) which satisfy the

equat ions
AE, +k'E,= O, AH,l+k'Hs=O 

(5.07)

and which are created by the nonuniform part of the current excited
on the wedge by the plane wave
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E E~e- + (5.08)

Representing Expression (5.01) in the form

E = ,"sI - k& $ c" .+(5.09)

and comparing Equations (5.05) and (5.07), we easily find the field

created by the nonuniforum part of the current with the irradiation of

the wedge by plane wave (5.01). For this purpose, it is sufficient to
replace in Equations (4.05) and (4.06) k by kl, and EOz and Hoz by
Ese"'se and Hleý"' s . As a result, we obtain

1)
E. --- H.+ E.-,I (,?. TP.) • . e

=-H. E- ' ('P .) eICkt t

e eiltco(5.10)

The angle %0 introduced here is determined by the condition

e e c(c'.a+ Pco0 e ( c , + It,_,,,_J (5.11)

hence

tg y.
coo a (5.12)

The remaining components of the field created by the nonuniform

part of the current with the oblique incidence of a plane wave are
found from relationships (5.04), and when kr >> 1 they equal

E,=-ctg9E, H,=-ctgTH,
tII

W'--n-• 7 / - - • (5.13)

The equiphase surfaces for these waves have the form

r sin T +z co-T=const (5.14 )
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and are conical surfaces, the generatricez of which form the angle

w/2 + y with the positive direction of the z axis. Thus, with oblique

irradiation of the wedge by a plane wave, the field created by the

nonuniform part of the current is a set of conical waves diverging

from the wedge edge. The normals to the phase surfaces of these waves

form an angle y with the positive direction of the z axis and are

shown in Figure 15. These waves may be represented in a more graphic

for'm if one introduces Lhe components (see Figure 15):

E, =E, cosT-B- sI

H•=H,cos-- snT. (5.15)

Then the final expressions for the fringing field in the far zone will

have the form

,---H, ',;T H,.
Y--l , (5.16)

Now we are able to proceed to the application of the results

which have been obtained for the solution of specific diffraction

problems. The simplest of them is the problem of diffraction by an

infinitely long strip which has a rigorous solution [23] in the form

of Mathieu function series. However, in the quasi-optical region

when the width of the strip is large in comparison with the wavelength,

these series have a poor convergence and are not suitable for numeri-

cal calculations. Therefore, the requirement arises for approximation

equations which are useful in the quasi-optical region. The derivation

of such equations for a field scattered by a strin will be given in

7 the following section.

1 6. Diffraction by a Strip

Let us investigate diffraction by an infinitely thin, ideally

conducting strip which has a width of 2a and an un~imited length.

The orientation of the strip in space is shown in Figure 16.
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Figure 16. Diffraction of a
plane wave by an infinitely long

Figure 15. The cone of diffracted strip. The section of the axis
rays. y (-a < y < a) shows the trans-

verse cross section of the strip
with the plane z = 0; a is the
angle of incidence.

Let a plane, electromagnetic wave strike the strip perpendicular

to the edges. Let the direction of propagation of this wave form an

angle a(12K with the plane y = 0. The field of this wave is

represented in the form

E = Ee(_ cse + Yi"Z'coVl (6.01)

The uniform part of the current excited by the plane wave on the

strip has the components

=0,

2xEOCOSa e (6.02)

Substituting these values into the equation for the vector potential
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A J1 (1) dj elk 4A
_ (6.03)

and taking into account relationship- (3.05) and (1.18), we obtain

the following expressions in the region r N> ka 2 ;

A. -0,

A ,, - H as sin I a (s in a - s 2--)J "

A, --- T ECos a sin a - ,6107 •2, ( 6.04)i (a s: - i )

The components of the fringing field in the cylindrical coordinate

system equal

,----H,=ikA,, lH.=E1 -=ikA,, (6.05)

where

A,=A-cosy--Azsin?. (6.06)

Substituting Expressions (6.04) here, let us determine the field

radiated by the uniform part of the current

E,~~~~~~~I -- f- k E os=s.a (sin -j - si__n IF)]_
E=-H',=2E,,cos2 stiasf-sn)e yj 1

, = H, =2WasCos sin (kt(sins--sOny )j e
sina - iny i (6.07)

This field may be represented in the form of cylindrical waves d1xverg-

Ing from the strip edges
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r(•)-l~~t)-r(•).6 1"1-12) i()

in connection with which

COS 2 sin

C +. f --

c 4111 - sin

Co, -+ ,2

g (2)- -,

(6.12)

The functions f0 and g are described by the relationships (6.0)).

As a result, the fringing field (the sum of the fields radiated
by the uniform and nonuniform parts of the current) will equal

E,- H, = E,.[ (1) e'h (i +- i1 "+

+ 1 (2) e-, , (sin v.S.1n 5) 1 ")

H. = H.o.[g (I)

+ g (2 - '"1 (sin e--611l1 1 e

Consequently, the resultin, field is expressed only in to'rm: ok
the functions f and r, which determine the cylindrical wave Ini the

rigorous solution (see S 2). The field is the superposItion of two

such waves which diverge from the edges I (y = a) and 2 (y = -:0.

Substituting into Equations (6.13) the explicit Expr'e-ssrn (0.'.'
for the functions f and -, we obtain
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SE --- Hip-- Ea, -Co R0 Ia ($In:-s a ) .i•.

a +9

E, ,, 111co4 ,(s,,÷u÷a4

(614

I

2

These equations are valid when r >> ka2 and j?14-. Moreover, it is

assumed that ka >> 1, since only under this condition is one able to
consider the nonuniform part of the current in the vicinity of the
strip's edge to be approximately the same as on the corresponding
half-plane. In the case of normal incidence of a plane wave (a = 0),
Equations (6.14) change into expressions corresponding to the first

approximation of Schwarzschild [15].

From relationships (6.03) and (6.05), it follows that the elec-
tric field is an even function, and the magnetic field an odd function,
of the x coordinate measured perpendicular to the plane x = 0 (in
which the current flows)

E,(x)= E,(-x). H (x)=-H,(-x). (6.15)

Therefore, on the basis of Equations (6.14) and (6.15) one is

able to write the expressions for the fringing field In the region
x < 0 (where 2'IJ')

E, HV=:!:E"Cos(*& (Si40- Sin2,4 3

sin [ka (sin a - sin y)j ,

E=Htcoftasfn~.:sin 2 )

(6.16)
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+sin 'la(sfn j-sin~)
_ _ ln ý -n -- tln)._ ... . ] e -i _ 1 sp a (6.16)

Here one must select the upper sign in front of the braces when

* > 0, and one must select the lower sign when < < 0.

The resulting Equations (6.14) and (6.16), in contrast to

Equations (6.07), satisfy the reciprocity principle. It is not diffi-

cult to establish this by verifying that Equation (6.14) is not

changed with the simultaneous replacement of a by f and of * by a,

and Equation (6.16) is not changed with the replacement of a by i + *
and of * by a - w (if -- <?<--; ) and with the replacement of a by

i- * and of 0 by w - a (if .<w).

However, the indicated equations lead to a discontinuity of the

magnetic vector tangential component Hz on the plane x = 0. This is

conne'ted with the fact that, by considering the nonuniform part of

the current in the vicinity of the strip's edge to be the same as on

the corresponding half-plane, we actually assume the presence of

currents on the entire plane containing the strip. In order to refine

the resulting expressions, it is necessary to solve the problem of

secondary diffraction - that is, diffraction of the wave travelling

from one edge of the strip to its other edge. In other words, it is

necessary to take into account the diffraction interaction of the

strip's edges. As we see, it is also necessary to take into account

the secondary diffraction in the case a-:t when the H component

of the fringing field must equal zero.

In Chapter V, we will return to the problem of diffraction by a

strip, and together with the investigation of the secondary diffrac-

tion, we will present the results of the numerical calculation based

on Equations (6.07), (6.14) and (6.16).
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FOOTNOTE

Footnote (l) on page 27 The designations used here differ
slightly from those used in the
papers [7 - 11]. The functions f
and fl there were designated by
f and f, respectively.
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CHAPTER II

DIFFRACTION BY A DISK

The problem of diffraction by a disk has a rigorous solution
[24-263; however, it is not suitable for numerical calculations in
the quasi-optilcal region when the dimensions of the disk are large

in comparison with the wavelength. The physical optics approach
used in such cases sometimes gives erroneous results. In particular,
the fringing field calculated in this approach does not satisfy the

reciprocity principle.

In this Chapter a refinement of the physical optics approach is

carried out. First the diffraction of a plane electromagnetic wave

by a disk with normal incidence (1 7-9) is investigated, and then

0 10-12) diffraction by a disk with oblique incidence of a plane
electromagnetic wave is investigated.

Normal Irradiation

§ 1. The Physical Optics Approach

Let an ideally conductInp, infinitely thin disk of radius a
(Figure 17) be irradiated by plane wave
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\\. ,-H,=o. 1 e'/' ) (7.01)

"The uniform part of the current

excited on the disk by wave (7.01)

is determined by Equation (3.01)

and has the components

low1= 0 (7.02)

Figure 17. Diffraction by a Let us find the field created by
disk of a plane wave propagated this current.
along the z axis.

Since the diffraction fieldin the far zone (R >> ka 2 ) is of

interest to us, the vector potential
a

A(x, M. z)= } dpJ(p, ,l)---..di, (7.03)

may be simplified by Lsing the relationship

/~~~p •=" P-- I.pR cos 0 -. R - p cos O,(7.04)

where a is the angle between p and R, and

cosfl=sinhcos(--,). (7.05)

As a result, we obtain the simpler equation

.. a 2.A x.y.z) elk • It eikpCos 9d,?.

h(.ry.z)=T pdp (p, ,') e- (7.06)

Continuing by using the equations

H= rot A, rotH-=-ikE, (7.07)

it is easy to show that in the spherical coordinate system the

fringing field components with R - ka2 equal
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E#- H, =kAO.
fit= - N-/o MAO t 7.08 )

ES O

where
A,-- A. cos•- A. si-n,
A&=(A.Acos,_A. Asy, o (7.09)

Substituting here the values

All'= I-..-o- J, .(k4sin8)

A. -a A, = 0.

which result from Equations (7.02) and (7.06), let us find the field

radiated by the uniform part of the current in the form

E&= -f. ,an,. :, cos ,(ksi82-
,= =--.2 €.C (kasin# *'" 1 (7.11)E, = -- H* ia. -- ca,."- J, -kasi -"

The function J 1 (ka sin 0) is a first order Bessel function. By

using its asymptotic expression

J , (kasin)Cos, (k - (12)

which Is applicable when ka sin 0- » 1, one is able to rewrite Equa-
tions (7.11) in the following form:

•. tsi a MMO L n

R - - 1 (7.13)B . ... ./ a Cos,

Xt + eI,,e
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The resulting equations show that in the region R kal, kasinR81

the fringing field may be investigated as the sum of the spherical

waves from two "luminous" points on the rim of the disk, the polar

angles of which respectively equal 0 = * and • - r + *. It is not

difficult to see that these waves satisfy the Fermi principle.

Actually, of all the points on the disk's surface, the point p = a,

*= - is the closest to the observation point (RAO ), and the point

p = a, 0 - n + 0 is the furthest from it.

However, Equations (7.13) describe the radiation not only from

the two "luminous" points, but they determine the field radiated by

the entire "luminous" region which is adjacent to the line connecting

the points p = a, r - * and p - a, • = i + 4.

Let us show that the luminous region actually makes the main

contribution to the fringing field. For this purpose, let us cal-

culate the field radiated by the currents which flow inside the

sector encompassing the line 0 = * (Figure 18). Let us take the

angular dimensions of the sector in such a way that its arc, which

equals 2aO0, would occupy the first Fresnel zone. When this is done,

the angle *0 will satisfy the equation

a (I. a -- cus* sin0 4 (7.14)

In the case being investiga-

ted by us, when the condition ka

£-,sin 0>1 is fulfilled, we have

from Equation (7.14)

- • (7.15)

hence

Figure 18. Calculation of the
field radiated by the "luminous" (7.16)
region of the disk. 0.- --a sin
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The vector potential of the currenit- flowing in the .*ridlcated

sectcr is determ'ned by the equation

d4, * OP&. 0 Cos•X r d (7.17)

A, - A,--

Taking into account the condition ka sin V.,I, one may show that the

field created by the currents of this sector will equal

S. H, .9 Ho. CosI X

X "K-• +0(

-- •& • H (7.18)
X,•-W-'€'1' --. 1.. ( +0 X

The amplitude of the expressions which have been found Is approximate-
k lye- times larger than the amplitude of the first terms in Equation

(7.13). Moreover, expressions (7.18) and the corresponding terms
in Equation (7.13) differ slightly in their phases: the first have

the factor or , and the latter - the factor-* . . The result obtained

is similar to the well-known thesis in optics that the effect of a

wave is equal tý- the effect of half of the first Fresnel zone (see,

for example [27], p. 132).

In the vicinity of the directions 0-0 and 0-n , when the

azimuthal components lose their meaning, for the purpcse of studyinr

the fringing field it is more convenient to use the Cartesian

components

E.--(EcosB+E esinO)cos ?-Esiny, (7.19)

f. -(E cos4 + ER sin 0)sin + - E, cos p.(

Turning to Equations (7.11), we find that when 8=0and O=%

ka'• elI t

E8=0 E-i•f• 3 .•-.----. (7.20)
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Consequently, in the physical optics approach the field scattered

in the directions 0=Oand D=m preserves the polarizaticn of the

incident wave.

1 8. The Field From the Uniform

Part of the Current

Let us proceed to calculation of the field created by the non-

uniform part of the current with normal irradiation of the disk.

Since the latter is concentrated mainly in the vicinity of the disk's

edge (p = a), the vector potential corresponding to it will equal,

in accordance with Equation (7.06),

a (80

The inner integral is calculated with ka sin#).l based on the

stationary phase method (see, for example [21], p. 256), and Equation

(8.01) is transformed to the form

A (x. g, z). lksI

X U NI J e_1.,) e - 1" "°d -- i i JI ( . ý.) 'e •] OFsn&d 8 .02 )

which allows one to interpret the fringing field as the field from

a luminous line on the disk. This line is a diameter, the polar

angle * of the points on which equals

D,=Yandi#,s+?. (8.03)

Assuming the diameter of the disk is sufficiently large in com-

parison with the wavelength (ka > 1), one may approximately assume

that the nonuniform part of the current near the disk's edge will be

the same as on the corresponding half-plane (Figure 19). On the basis

of § 4, the field from the nonuniform part of the current flowinr

on the half-plane -- oCy,•a may be represented in the form
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E,1(1)=ikA,~ (l)-= •,,e./.. (b--3- s-in°"

,()--ikAv, (1) cosO- (8.04)

=Hex$'- (1) y C-OM•-140'.

and similarly the field from the current flowing on the half-plane

--a'-,*400may be represented in the form

E,, (2) (*A., (2) . E,, 1' (2) * •' (h a4') O '
- " " ,-÷H(8.o5)

N,, (2)--IkAv,(2)cos= I•'f. g(2) M (8.)e

Here

i (&40) e f,
-.

a()= -( ) (8.06)
A~j (2)x e

and the functions f1 and gl are determined for the right half-space

(0OC -..-) by the equations

Co,-f +,An Y

l(2)-f(2)+ 1 1 ., -(1)- ()T.. 1
Sos - (8.08)

(2) /() -,.- , g(2) = 2 .

CisT -sin
Si., J 8.8

From relationships (8.04) - (6.06), it follows that
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-. I -Las

-- - ,, . 1) d

S A (8.09)

7--- .,q (1 ) elk Ilia in d

and

Figure 19. Diffraction by a disk. - (eI
The half-plane L lies in the =_y e , _-ikn#

plane of the disk. The edge of (8.1o)H.gs(1)ethe half-plane is tangent to the e. a O (810
cirumernc of the disk at the

point y1 S a, xa = 0 (a is the

radius of the disk). -- Nkc.s*

In accordance with the assumption of equal currents on the disk and
on the half-plane, one may consider the following equalities to be
valid:

• . i{,, ,)e-'""'fld, f Ja(i)e-"b'"ndl, j

~J(p, Q elkeSi 0dp= J1 1,)W (8.1

Therefore, the field from the nonuniform part of the current flowing

on the disk will equal

ff.'o H& (2' (k. 0"'- 4E, - Ha = "• & Lr,(

e'~asn R.2 e_

la a- ikaA 6!

wher H; biew (2) (e

y'2Aa ~ 1g()AR

where in view of (7.01)

E=- H. cos 7, Ho,-- H. sin ,. (8.13)
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For the directionb-O, we have according to Equatton (8.01)
2.

.. )p. (8.14)
C

but in accordance with equalities (8.09) - (8.11)

J' .(p ) dp LeH., -Cos +
8 (8.15)

i',.1,. W)dp, H..sit?.I

Consequently,

A, = - Icosf d fI(p, ~.dp +

+sin '?d+41(p, +) dpi =0.

A, =7 -L -r.4 I 1cos ýdf p. +1) p+

.sin d1D, ,,,'(p +ldp]=o.

that is, in the direction of the main fringe (=-0) the field from the

nonuniform part of the current equals zero.
\

By using the Bessel functions J and J2 for the field from the
nonuniform part of the current, one may write the equations

9=-- H6= -2E

+ 1 11 )+' (2 )- i+1, J ( (k ( sin 8))

fga •(0.17)IaHr•..,
E& = H, = -2 {fg'(2)-g'(1) JJ(kasin8)+

+ lI e' (2) + g' (ID] J (ka sin 0)) P

which with ka sin | I change to Expressions (8.12), which were nlrea.'.%

found. In the directionO=0, these equations give a field which
equals, in accordance with (8.16), zero, and with intermediate vwlue.:
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Expressions (9.03) and (9.05) agree with the result obtained by

Braunbek [29] for the scalar fringing field in the far zone. It is

also interesting to compare these expressions with the precise numeri-

cal results obtained by Belkina [34] by the separation of variables

method in the spheroidal coordinate system. It turns out that even

with ka = 5 a satisfactory agreement is observed between our approxi-

mation method and the rigorous theory. In Figures 20 and 21, graphs

of the functions V"(8) and V(s)(8), are presented which allow one to

calculate the fringing field on the basis of the equations
H _i , ,. ()- Cos-?.

p --. .aE ,,,l • (9.07)

The continuous curve corresponds to the rigorous theory [34]. The

dash-dot curve corresponds to the field from the uniform part of the

current, and the dashed curve corresponds to the field calculated

according to Equation (9.03) and (9.05).

Oblique Irradiation

§ 10. The Physical Optics Approach

Let us investigate the general case when the plane wave

falls on the disk at an arbitrary angle to its ixis. Let us take
the spherical coordinate system in such a way that the normal to the

incident wave front, n, would lie in the half-plane ?=r- and forrm

an angle y (0<yT<- with the z axis (Figure 22). Adherinr to the

investigation procedure used in the previous sections, let us first

calculate the fringing field in the physical optics approach.

The uniform part of the current excited on the disk by wavw

(10.01) is determined by Equation (3.01) and has the components

.CC 0 C
'z---fC, e23-?e" "7', , .--54 H, eikv S'" T, j•=0, (IO.0,'
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Figure 20. The function I't )pl for a diskwith a normal incidence of the wave. Thevarious curves correspond to different
approximations.

The fleld radiated by it is found, as was done in 3 7, by interratrn.(with the condition R - ka 2 ). In the case of E-polarization of theincident wave (E..Lyoz), this field equals

E1 = 11 --/i Cos CosaO ,' -
-- -- 

'E,,.Cos 
T sin 9, -

(10.03)
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Figure 21. The function V(t"(A) for a diskwith normal Incidence of a plane wave.The various curves correspond to differentapproximations.

and in the case of H-polarization (HJ.joz)

B, II - il4~ cx,• (10, 1

The quantities A and u in Equations (10.03) and (10.41j) are detjt--mined in the following way:

- sin 0 cos p,
•* sin 4sin s-'inT (iy,

is--o 0.
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Assuming ?•-- and==x--T <0' • ,in the resulting expressions,

let us find the field scattered by the disk in the direction toward

its source. With E-polarization of the incident wave, it equals
MaE.. Cos a . ..

E6=':Hl-0. (10.06)

and with H-polarization

H ia n-c CA J,12 kasin6)**,

', r, . n (10.07)
ft= H6 =0.

Using the asymptotic expressions for the Bessel functions, one

is able to show that when R >> ka 2 andA,/2-Vp'pr*1 the fringing field

is radiated from a luminous region on the disk. In the case when

VITV-•0, the luminous region is increased and in the limit (when
A * - 0) the entire surface of the disk starts to "shine".

1 11. The Field Radiated by the

Nonuniform Part of the Current

Let us calculate the field in the nonuniform part of the current,

J'(p. O)-J(pO 0)eh*5'b' (11.01)

Its corresponding vector potential
•2*A _ a e•*kR '-4)d

by means of the stationary phase method is transformed with
ha~V/! 1•, to the form

0

P (11.03)

Here
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9,--- , 9, ,-Fa(11.04)

a are the stationary phase points

and the quantity 6 is determined
by the equalities

sin $= •- c---
(11.05)

Figure 22. The oblique inci- From Equation (11.03) it
dence of a plane wave on a disk. 2

n is the normal to the incident followsthat with R >> ka and

wave front. ka -- '+ I the main contribution

to the fringing field is given
by the luminous region adjacent to the line * = I 1 = *2" Thus,

the stationary phase points €I' ¢2 physically correspond to the

luminous line on the disk surface.

In order to calculate the vector potential (11.03), it is

necessary for us to first express the nonuniform part of the current

on the half-plane in terms of its field in the far zone. For this

purpose, let us introduce the auxiliary coordinate systems x1 , Yl

and x2 , Y2 (see Figure 23), and let us take the following designations:

al, al(a2, 82) are the angles between the normal to the incident

wave front and the coordinate axes xl, Yl (x 2 Y2);

01(ý( 1 -02) is the angle between the z axis and the projection

of the indicated normal on the plane x1 = 0;

41(01 -02) is the angle between the z axis and the direction

from the coordinate origin to the point p(yl, z) which lies in the

plane x1 = 0 and is the projection of the observation point P(x, y, z);

ri is the distance from the origin to the point p(y,' z).

The quantities introduced here are determined by the equations.:
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COSS,-=--sin Tcos,,, COP=3 .SilT sinU•.,

S 9f-216 % =;.CCO- %.• _ e C o)s it" .U . . .Y o

sin 9, " ' io n c, (.,-

,sIn' (11.06)
Cos,-- i C_"S%•i•

.,=R J/i -sin' 6 sin('O,-f)

Furthermore, let us write the expressions for the field from the

nonuniform part of the current excited by wave (10.01) on an ideally

conducting half-plane -oo<y,<a. In accordance with 5 5, they have

the form

f,, == e 1o , ,)et ('i -sa 9,)

omit(,?" 101. (11.07)

If .'~~ cs• (.~....÷) bai3?.im,

where

k, knI sin •, 1 (11.08)k . (s i n f, - s in g ',) = k Vf s _ _-

,An •+ CsCus;
r (Y.., 4o_ ")-"=__.,_

sin s-in An Y1-- an I

0 2I C"o, It (11.09)
8, (T,. To ) =-- -I .--- -i 1, 1l -sn,

On the other hand, this field may be expressed in terms of

the vector potential

A (d1) eht cot cam -,- e " +- (12.10)
S(.£) e•, ,. o,+..d-5
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By means of equation

H(°1(qD)-'•-LS YD+, eid(.

q ? Imq>O. D>O,

which follows from Equation (3.10), if one substitutes z = t, w =

d = -ip, k = -ID, in it we find that

A .. ~ ~(11.12)

Taking the fact Into account that

0 the nonuniform part of the current

>4is concentrated mainly in the

vicinity of the half-plane edge

and using the asymptotic repre-

sentation of the Hankel function,
we obtain

_ - rd"' , eJ (11.13)

Figure 23. Diffraction by a disk where b, = COS ,. sin 2 sin (,
with oblique incidence of a plane
wave. The half-plane L lies in sin sin ,sin cos )
the plane of the disk. Its edge
is tangent to the circumference 1  -- sint I cf)4,1 (11.14)
of the disk at the point x1 = 0,1snS

"Yl = a (a is the radius of the

disk). In the case when = 6 [see
Equations (11.04) and (11.05)]

the function tl takes the value

- +(1.5)

Starting from expression (11.13), it is not difficult to show

that the fringing field in the far zone is described by the followinr

equations:
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A, =--ksin t, cos a, sin A,,Aj. i+ sin'$ *A. , (11.16)
"HA = s-Lk sin a, cos 4,,A..

where

A m .= 0, , . . A , -= , (0,1 ( 1 1 -1 7 )

4,(÷,):=1 J" . (,j) e,-"~d,"••

A f)-5.(i i•~~ (11.18)

Then by equating expressions (11.07) and (11.16), we find the desired

connection between the nonuniform part of the current on the half-

plane -- o<y&<a and its field in the far zone

Hft a , (,I.?Ilh(#')= i- X sin ..,€o.•'h I

l"(gl •'J•'-•r" 1] (5' %)--(11.19)
- a,,, tgp.0,,H g' (,p..

One may show in a completely similar way that the nonuniform

part of the current excited by wave (10.01) on the half-plane

--co••,a creates, in the far zone, the fringing field

E ,,= - ik sin 2 cos 2, sin ?,A,, + iksin'ca,A,. ( .20)

H, ='-- i k sin 2, cos ,, AM,.

where

A -- ," ,1 A,, 0.,-i- .rI ,a ,,1,
I,

I
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--U

"0-,.4•J 5
-" hi t (11.22)

-- m

On the other hand, in accordance with § 5 this field equals

=0E,-S-Z*'CA,* RJ(•".%) * • 4)iasnij.'ig

.1 (11.23)

S., ....*ti & , ,g l ,,. C, (. ) ek " •

Here

k, (sin?, - sin •)-- -4)' (11.24)

and the functions f'(p,, fs ) and g'(?,,? ) are determined by the equations:

$ a 2 o 2Cs? II

sin -" -sin + e,:s

In + Co+Y, + (11.25)

sin s + se in

Equating the quantities (11.20) and (11.23), we find

) i c ' ?o (11.26)

Wi si'a

In this way we established the relationship between the nonuniform

part of the current on the half-plane and its field in the far zone.

Now let us return to a calculation of the field from the nonuniform

part of the current flowing on the disk.
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Since the disk is assumed to be large in comparison with the

wavelength, the nonuniform part of the current in the vicinity of its

edge may be approximately considered the same as on a corresponding

half-plane. Consequently, the integrals in Equation (11.03) will

approximately equal the corresponding integrals from the current on

the half-plane:

.(pe. e-" ' O"dp I
•J.(p. .)e-"' Psdp_ (1,,

(p I Pd , (11.27)

As a result, the vector components of (11.03) may be represented in

the following form:

Au,=-;" V 44

A,,=+'4[1,,('•,)-+:.,I ,,(4,,)J. J (11.28)A ,= 2n" el" ei

Then substituting these values into the equations

ikAE, =iA = i[A,,sin (j, -- •)- 4,c,(,--), c (11

E-ikA, =ik [A9.cos (', -- ) + A1.sin (,- ?)I cos #. (

we find the field from the nonuniform part of the current flowing

on the disk

1/ 2 -1 k __ -r R1 $Infl 3CSal

-Lcos(, -- I)
cos , tg ?,J X

X ' (,. ) e -' - - ig' (,p, 'P ) ei"h" W•-'1' -- (11.30)"• •~~~0,,s(, -- 1)
-- ,,C., (I'(•',. 63

•-i/' (p,. • ) e;".'vi-ir"i}..q
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66a Htosi- eihR '--" COS +
= H6 - VtlV~+ R a*.~ L %in all COS Is

+4 sin (03-,-- cog7)

i sinsin'"-s

The resulting expressions are valid when kaV.Pj>1. They

may be slightly simplified to

a-a.. , = - a,= ,e e i

2vd H* RX

1(2stka ln VX +LX,/f, - ÷ 'gI (?a. .
HO.@ Si. as

ig1 (va. ,2)eL-avr3+COS (f, -

., -- igUS(?., ) •e OfI sn,,

Xif@ - Hp c ',, --OS, 0 t Ole (? sin (-ihr--.4

0sin) I ((p. ?,) e + E.,-a- o -)

[13 (?,-jincsh t , Toosg? eitn xco 10

.oa VV ++ it '

- -'p,'. e I•'J e )e*"d

if we use the identities

sin ($ý- y) 'cos(L.-t y) cog 11 sins(,y
Sin 01COSI sin', cos PSa tg (,_= sin

COS (4. - )+Sf sin ~COS .a t9y 7 COS(,,-y) (11.33)
sinlas COSIs Sins% N a, COS It J

The operations carried out above may be briefly summarized in

the following way. The field from the nonuniform part of the current

on the disk

A = Le,*f¶d,?Ji (p, Y,) e'P dp

is found (without direct calculation of the current) in terms of the

known field of an auxiliary half-plane
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by a replacement of

(p?) e'dp by i~)"d

in those cases when 0 - VI. The functions # and 41 are determined

by the equations

' • ~~= sin y sln ÷--sin & cos (+-- ).

Solution (11.32) was determined exactly in this way with kavAT'.,l,
when, for auxiliary half-plane whose edge touches the rim of the

disk at the points 6 - 5, j * i + 6, the phase ti was equal to 0.

A solution to the problem using this method also is possible

in the case

=T, 9=7 (11.35)

when *l - 0 * 0. The direction 8=', ?=7 corresponds to the princi-
pal maximum of the scattering diagram, and therefore is of special

interest. Substituting the relationships

- Ho", sOnvl-I I
"" ) i (11.36)

7Ih4 ir . 7,Mo.,3, (E 0.,+ ca1, t, '? 5 COs

which follow in this case from (11.19) into the equations

elR . I,A,= _=a -e-- .•'"'° • + I,.inI')d4,
// (11.37)

/C
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detail the frlplr,1 i field In tile ineident p lane 0.( c. r tr

thle exPrc.;. I orw, ( ~1. 32) take the form

~'2ntap&

U4 *4LOA

V' 2nkahl ( p.Ol

with ?-y.i<T

.4
E* H - g I'(2) ei2 j() 0 P

u a i w i t h 
D Y

ae M
E& H k Ig ( ) c'"' -ig' I(1) e si 1

ith ? =z *>T
U2

harpne-výY' 1, trheH (12.02;f. 2)ad 2

1 0 ho lel of ho11,11'l with -,Y<--, *T.iacmlreII

.. 1 ntI . 0) .1d 11the :ro ki~t(,r;kn d tv ;,, xvro,. ,-ýU

Ii~~~asi f-las -( -!~~ , +CosI th fuc+T;

%in in - sin I -sin t



Oin - COS+

1'(2)--(2)+-F coT_.l 1(2)=-- Sml-Sf "

si "l+COSr (12.03)
91 (2) = g (2)-I c. 'no* ge(2)= -- m T - 2** "

if Y7 and 4-y and

sin + I -COS
CS ( )= -- 2,, '+ , 2

sta (2)n sin1Y +sin

si Lo+ssL-1

2 2

It wasmentioned in abv + tst swn I + sin h di
S.... o+•. o. -(12.04)

1' (2)[ (2)- Cold fromy e nonunifo r o te c

is~~~~~~~ neiigbl smlincoprsn wit t+ fin frmte nfr

Cos. fin --n.CoS p
9'(2) 9(2)-+ siny + Si. .g(2)--- sn+ $In

I f =-21 and b< .

It was mentioned above that when ka >> 1 in the direction

O=Y (0'3<Y<,5Y).' Y= -o-the field from the nonuniform part of the current

is negligibly small in comparison with the field from the unifýorm

part. Therefore, for the field from, the nonuniform part of the

current one may write, with the help of Bessel functions, the

following interpolation formulas: with ?=4

iEE, H (1) . j-(2)]J(C)-

~* 2
E, == -- 1/'t0 = -• -( (1) +--/(2)] ].€ -- eik

IRH9 iaf( [/' (I)- g/ (2)] i, (C} )-

ik fgo[e (1) + g , (2)]!., :}•R

and with h -T

E, H -!-aE: {[/' (1) - f' (2)] J. -) + 1 ( 2.C, )

+ iI' ()+ f (2)1.:~ 2 V.eA12R

7 1 / b+i 2).;(f -



IH

O= H =* 2 ([g1'(1)-' t2)IJ.()+

+ 'to, (I1+ 1(211 J. (11)}) • (12.06)

whe re

C =- A (sin 0 - sin T).
= ka (sin I +siT). (12.07)

These expressions are valid in the region 04404-t2 when Q I and J11,* I

they change to Equations (12.01) and (12.02), and in the direction

8-.T-1=- they give a field equal to zero.

Using specific expressions for the functions fl and gI, it is

not difficult to establish that the total field scattered by the

disk in view of Equations (10.03) and (10.04) may be represented in

the following form:

with ?=-;

S-- Hii={! (I)f()-- (2)!- (12.08)

2- Il (1)-+-(2)) J, ()--,
Ir of W-(12.08)

0- g[ (2+ ( )! 101-- ,

and with

+ if (1) -+r i(2) J, (t))! R

WI (12.00)E# HI = - g. tz(1) -- g (2)l .1, +

+ iIg (1) + g(2)]J. (i)-) --

It is convenient to write these expressions as follows
F, , -- HS

- eI J

F>-H..C-2 3-21- )-71
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where the functions Z and I are determined in the region O<8- by

the equations:

E(8, ,) j "S'-'-• cor--,-2--)(. = "i-•--f-- I with p=--i

I M o-It

and in the region +l< 1

6, - ,__- !rzi with -p=• 8• . ',C_* os•; si 7 9LJ •nH - .
Ab 2• =2 ,I) -- ' (12.12)

. i Here assuming y - 0, we obtain the previous relationships (9.03) and

" ~(9.05).

/.'•In the directions #----T and 8------ (with whr th

Z--T),1)ere t2
22

- -- scattering diagram has a principal maximum, it follows from Equations

(12.11) and (12.12) that

Y) = I (Tr) =-ka C0 T (12.13)

and

!r --T) - (- = -ka•cOsT. (12.14)

In the direction toward the source (8-r.--T. p=--41) the functions

",•(,) and S(O) take the values

s a J m ,J,(•J, (e). (12.15)

Here considering f , we obtain

(12.16)
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which corresponds to the physical optics approach [Equation (7.20)].

The functions E and Z allow one to calculate

as = tag'IEl. (12.17)

which are the effective scattering surfaces with the E- and H-polar-
izations of the incident wave. Let us recall that, by definition,
the effective scattering surface is a quantity equal to

a == 4,ER.il. (12.18)

where

S-- Re EHJ (12.19)

which is the energy flux density averaged over one oscillation cycle
(the Poynting vector) in the scattered wave, and So is a similar
quantity for the incident wave.

In this way, we obtained the expressions for the fringing field
which approximately take into account the nonuniform part of the
current. In the incident plane ?----72 , they have a form which is
rather simple and convenient for calculations. It is also interesting
that in this case they satisfy the reciprocity principle as distinct
from expressions (10.03) and (10.04) which correspond to the uniforn
part of the current. It is not difficult to prove this by verifying
that Equations (12.11) are not changed with the simultaneous replace-

ment of y by 0 and of 4 by y, and Equations (12.12) are net chanred
with the replacement of 0 by y - y and of y by %-0 [in the case

2

However, Equations (12.11) and (12.12) lead to a discontinuity
of the magnetic field tangential component H on the plane z = 0 In
which the disk lies. As in the case of diffraction by a strip, tho
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reason for this is that we did not consider the interaction of theedges. It is also necessary to take into account this Interactionin the case of glancing incidence of the plane wave (T1--).whenthe fringing field components E0 and H must be equal to zero.

Let us point out once again in conclusion to this section thatexpressions (12.11) and (12.12) near directions 0-=T, 6= --T (withhave an interpolation character, but in return they allowone to represent the fringing field in the incident plane x = 0 ina convenient (uniform) form which frequently is of greatest importance
(compare § 24).

/

/

/

/!

~4 FTD-HC-.23-.2
5 9 _7 1  72

A . .. " -



Vr

"CHAPTER III
/

DIFFRACTION BY A FINITE LENGTH CYLINDER

The distinctive feature of this problem is that, in addition

to the nonuniform part of the current on the cylinder's surface

which is caused by the discontinuity, there also exists a nonuniform

part of the current arising as a consequence of the smooth curve of

the surface. This part of the current has the character of waves

travelling over the cylindrical surface along geodesic lines [36]

that is, along spirals on the cylinder. These waves, which as they

move strike the edge of the cylinder, undergo diffraction and

excite secondary surface currents. In turn, the nonuniform part of

the current resulting from the discontinuity undergoes diffraction

while being propagated over the cylindrical surface. It is clear

that specific consideration of all these effects is a very complicated

problem.

However, if all the linear dimenslons of the cylinder art,

sufficiently large in comparison with the wavelength, these effects

/ may be neglected when calculating the fringing field in many caseu

which are of practical interest. In particular, they may be nej-lectd

when calculating the field scattered in the direction toward tfif!
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source [5, 37]. In this case it is sufficient to consider only the

nonuniform part of the current which is caused by the discontinuity

of the surface, and we will do this in this Chapter. The equations

obtained in this way are generalized to the case when the observation

direction does not coincide with the direction of the source.

§ 13. The Physical Optics Approach

Let us investigate the diffraction of plane electromagnetic wave

E = Eo e'k"' "'09°T' (13.01)

on a finite, ideally conducting cylinder of radius a and length 1. Let

us position the spherieal. coordinate system in such a way that its

origin is at the center of the cylinder, and the normal n to the

incident wave front lies in the half-plane ?=*- and forms an anrle

T (0< with the z axis (Figure 24).

An incident wave having an

arbitrary linear polarizaton always

- may be represented as the sum of

"two waves with mutually perpen-

iIt dicular polarizations. Therefore,
for a complete solution of the

problem, it is sufficient to in-

Pigure 24. Diffraction of a plane vestigate two particular iases of
wave by a finite cylinder. n is incident wave polarization:
the normal to the incident wave
front.

/

W() E-polarization, when the incident wave electric vector is

perpendicular to the plane (Eolyoz)and

(2) H-polarization, when Holyoz

The uniform part of the current excited on the cylindrocal 3ur-

face by wave (13.01) has, with the E-polarizaticn, the cecrpone -t:

. , ~FT P-HC-2 •-259-71 7
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t= =- -• .E.8 .,i ysin ÷ e"M.

in. (13.02)

j. -- ...Cos Cos, T ,

and with the H-polarization it has the components

(13.03)
~=~H. sin e'**J

where

0 aS- f asinpsinj+CcT. (13.04)

Let us calculate the fie*d created by these currents in the region

The vector potential of the fringing field is determined by

the equations

A hC, o)dC with -(=0 (13.05)

and

A== - d I J '('- 'P)-;-dC with >O, (13.06>)

' "where

r , + (Y + -(Z - . (13-07 )

Since the field in the far zone (R~.ka9,R.kI') is of intere-;t to u.2,

these expressions may be simplified by using the relationshAn

r::tR4-a sin ,) sin , C- cos 0. (1•3.0,q)
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As a result, we obtain a simpler equation

A ---= --- S.,' , o , JO(C, q)e-'. cos 4. (13.09)

Since the current components are described by the functions
, then the problem of finding the field reduces essentially

to a calculation of integrals of the type

a -3-!• ekz (c" cc #1' "dC-• f e'P'* $114d

1- (COS T-C. 6)

ak(Cos -CoIs) (13.10)
S

(Co h I v #I
- e 2 ~ j)e'P b' dý.

-S

The integral

0S i 1(.)e'P•" " dj, p- =ka (sin "( + sin) (13(1 . 1)

-,-g

when p > 1 is easily calculated by the stationary nhase method. The
stationary phase point is determined from the condition A..-sin =O

and equals

" "(13.12)

Then assuming ?=--+8. we find

-e'P •()e"n 4dý;-- f(m )e-" e'w d3S

-u •-2 (13.13)

='C2 P S d=VT f ?.) e 4

As a result, we obtain the following expressions for the

vector potential:
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adwith E-polarization

SA .= E., tin' 1 '-- 1, A , A, 0 (13.14)

S~and with H-polarization

As H"" , A.=A,=O (13.15)

where
-h " IC~ll-o

• i j-(0s 1-0 * * (CM1-O*

ik (cOI*T - Cos 9) . X

2 4•e'"(' '• i÷ (13.16)

The fringing field in the region ?=- is determined by the

relationships

"-l, = - H,= ikA,, (

= -H, =-ikA, sin8.f (13.17)

Therefore, with the E-polarization it equals

, =-Ho E. nI(13.18)
ES 4=H1190

and with H-polarization
ika ,

29=,= o. 2x 13.1)

The resulting equations show that the field scattered by the cylin-

drical surface is created mainly by a luminous band adjacent to the

cylinder's generatrix with '-=-.*---- • The radiation from thL';

band may be represented [see Equation (13.16)] in the form of <;phori-

cal waves diverging from its ends (points 2 and 3 in Figure 211).

Now let us write Expressions (13.18) and (13.19) in a form whcih

ia most convenient for calculating the effective scatterinr area
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ia p ib -O, 2 -E. e1 = T - (8- Y

AR 1(13.20)
"", - H. = "-,-"

Here

-- = i(13.21)

and

G-=2-/ 2 Xak'a(slnY+Sio 8)

s$in (Cos0 - s 0) ika (sin I +sin #)÷1 (13.22)
! • ~X COSiT -- Cos#t e

The index "0" on and means that the field was calculated in
Th ne onK ad.

the physical optics approach (based on the uniform part of the

current), and the index "c" shows that this fringing field is created
1 • by a cylindrical surface. The effective scattering area, in accord-

ance with (12.17), is determined for a cylindrical surface by the

relationships

-%as -a- sin- 80I.. (13.23)

In the direction of the mirror-reflected ray (0 =y), we have

' 4 '? .kt s n -5 ' i (13. ?4
I S -. %. - kal* sin 8 s

In the direction toward the source (=,-y) , the functions V

and equal
CV

*-1k in 6+i!.
/sfinb sin(ki c~s hI) e 4' . 5

= -- ---- r-.a Cos -" (f13.25)

These expressions are valid if ka sin 0>1 . It is not difficult

. to see, by means of equations (13.02) - (13.05), that the fr2ntinr
field equals zero if y - 0 and 0=n . Thus in the case of radar (th!ýt
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"is, in the direction toward the source) we find an expression for

the fringing field in the region ka sin j_.1 and in the direction
O-.T. Naturally the desire arises to write interpolation equatlons -

that is, equations which would provide a continuous transition from

the region ka sin*0m1 to the direction O.X . Now let us note th-it

the field scattered by a cylinder is comprised of the fields scattered

by the lateral (cylindrical) surface and the base (end) of the

cylinder. In the physical optics approach, the field scattered by

the end of the cylinder is equivalent to the field scattered by a

disk. But the field scattered by a disk is described by Bessel

functions. Therefore, it is also advisable to express the field

scattered by the cylindrical surface in terms of Bessel functions.

As s result, the desired interpolation equations for the field

scattered by the cylindrical surface may be represented in the form

2 & _i (eIhi os o# e-i t e*. #) [.1 (C) -- i (C)1.
S( s((13.26)

C = 2ka sin 8.

From this it follows that-O = L,=6 0 in the direction 8=--, and withq -i

the conditions ka sin &ýo.1 we obtain Equations (13.25).

"The field being scattered by the cylinder's end (by the disk),

in accordance with equalities (10.06) and (10.07), is described in

the physical optics approach by the equations

0 ,(-), (13.27)

p Consequently, the field scattered by the entire surface of the

cylinder will be determined in the plane S-- by the equaticns:

E. - Ho+ -- --,-.r E.,. -.- #)

.Hor*+(•, I(13.28)S..... E+= H,--- i-

where
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sinb ihJ co b

Cos1 (13.29)

": - . .1J (')• e' °' * ( 2•a sin 0).

These equations allow one to determine in the physical optics

approach the effective scattering area of a finite cylinder.

5 14. The Field Created by the Nonuniform
Part of the Current

Let us find the field from the nonuniform part of the current

caused by the surface's discontinuity. Figuratively speaking, the

field scattered by the cylinder is created by the "luminous" regions

on its end and lateral surface. Mathematically this field is
described by the sum of spherical waves from the "luminous" points 1,

2 and 3 (see Figure 24). Obviously the field from the nonuniform

part of the current also will have the form of spherical waves diverg-

Ing from these same points.

In the case when the length and diameter of the cylinder are
sufficiently large in comparison with the wavelength, one may

approximately consider that the nonuniform part of the current near

the discontinuity is the same as that on a corresponding wedge. The
field radiated by this part of the current in principle may be found

in the same way as in the case of the disk. However, such a method
is rather complicated. We will find the desired field by a simpler

and more graphic method, starting from a physical analysis of the

solution obtained for the disk.

For this purpose, let us investigate the structure of waves
(12.01) and (12.02) which are radiated by the disk. These equations

include the factor

ia *the e 7 I

Vka (s Iay +siu-.) R V -0-.R (14.01)
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Here Is thet unf'oldini: coefficient of the wave. It shows how

the field is formed with increasing distance from the disk: the

diffracted wave which is cylindrical near the disk unfold: Into a

spherical wave a.- the distance from it increases. The coefficient

(-diny-sinO)-, is proportional to the width of the luminous rerion on

the disk or, in other words, to the width of the first Fresnel zone.

Thus, in Equaticns (12.01) and (12.12) the functions fI and I depend

only on the body's geometry - more precisely, on the character of

the discontinuity.

Therefore, it is entirely natural to assume that the similar

waves which are being scattered by a cylinder have the same structure

and differ only in the functions f1 and gl which correspond in this

case to a rectangular wedge. Consequently, in the direction. toward

the source, the field from a nonuniform part of the current flowing

on the cylinder may l- represcnted whcn ka sin ,o-I in the following
way:

ua,e, -- hf,s = *I--AR I)
-ii-, .,.-1 30(2= = ) (3) e'? ' ' -

-1 +CON(l14.02)

--. (g, (2) e"fl N*. gS (3) e-"ol #j e-1 4 l*

In accordance with g 4, the functions fl and gi are determined by

the equations

S~'

,o, -o - 251- 6 (14.03)

g' (2) ,n a. C• os -7 - Cos -

(Foquation continued on next caV'ý-.)
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g' (3)) cooIN

-. I I.. sIms (14.03)
CO2 - - 2 A

where

3
n= (1..04. )

In Chapter IV, we will show [see Equation (17.25)] that In the

direction #=%-T--x one may neglect the field from the nonuniform

part of the current flowing on the cylinder in comparison with the

field from the uniform part, Lf koa)1. Therefore, for the field

from the nonuniform part of the current, one may write with the help

of Bessel functions the following interpolation equations:

isH. H.. e R0" 1.0;

Here
S(8)-= [47'.J (C) + •'J_ (01 e"'~ cos -

-f ' (3) 1J, (C) -iJ (C)l e-Ik1 Cs

' (8)-= j,'.11 (C) + iN '4 (C)1eikko0'* (i l. 4 )

-g' (3) 1J. (0)- iU (C)) e-Jh'°o 4

and the functions M , N and M , N resnectively equal

"Q =-il (1)1-(2), MN'1 =g'(1)-:ig'(2), (14.07)

or
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• M -' I • .•-•""
M'J A COS- C• .

co- - li ncos-
Cos Cos - o )

NI RS

Is
S-'-I _____-_--(14.08)

aI, 2 ""I I
en,-- -ca Io-

The resulting Equations (14.05) change when ka sin#>l into Equations

(14.02), and in the direction O=% they give a value equal to zero

for the field.

5 15. The Total Fringing Field

Summing Expressions (13.28) and (14.05), it is not difficult to
see that the total field scattered by a cylinder will equal

f ,R, i• ef, • ( )

£,=-H= H*---LO(H) (15.01)

where
•)'(0) I.-'., (C) + iN-J. (C)] e' -

- 1(3) [J. (C) - i.I,(C)J e-"'*kC0,•/(o) =[M J, -) + iNf. (C:)] e'*'•°'-
)(0) = MJ, ()+ iN (C)| - (15.02)

C = 2ka sin 0

and the functions M, N and M, N are expressed only in terms of the
functions f and g which correspond to the asymptotic solution for a

rectangular wedge
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N (15.03)
o r

A Wn

T -__._____ -_-__ ,__ (15.04)
2 1

~co-ICOSj--COS- Co a03

The functions f(3) and g(3) in turn are determined by the equation

g() - (15.05)

Thus only the functions f and g are included in the final expressions

for the scattering characteristic of a plane wave by a cylinder.

In the direction :=u , the functions 1(f) and !;($I take, as in
the case of a disk, the values

Z(-- (w .kae-Ih. (15.06)

and with ,==-;-they respectively equal

. + - tg r + ÷i () ft iJ01|
M_ g- -

n

4 ( 15 -0 7 )

where s2ka. The terms in this equation which contain the factor

kZ refer to the fielei from the uniform part of the current, and the

remaining terms refer to the field from the nonuniform part of the

current.
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In accordance with (12.17), the et'flectlve scatterlng area of

the cylinder to determined wvith the E-polarization of the Incident

wave by the function

2t. = %aill (15.08)

and with the H-polarization of the incident wavv by the function

,(a' (15.09)

Let us note that Expressions (15.02) for the scattering field
may be obtained directly on the basis of an analogy with the
Equations (12.06), omitting the calculation of the fields from the
uniform and nonuniform parts of the current. In the same way, one

may obtain the expressions

!(a,. +) 1M 1 )J. (t)) e (to0+to4

- I !##to + C" A

j (3) (15.10)(j e'

z (a. *.) = IMil (1) + LNJ, (M e2-- /(3)[4 J- .(i)-Je()J

S- e'~ (3) 1 J, c) - iU, (2)] e ,

which are ;uitable for calculating the fringing field in the region

9-- 2 2<8 <: (,-•--T). The quantities here equal

t = ka (sin -s0nb.) (15.11)

0

Mh~Xm

( ' n ___

- ---' Cos -W o --cog

-1T-
coo W -Cos ft A t- n

,85
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1(3) = a7
(3) a(S.3cc -I--o -!-Cox

Expressions (15.10) .atlsfy tiiF reciprocity princ'ple - that

Io, they do not chrange thielr values if one Interchan;rea 8 and 0..

When #=#., they change into the previous Expressions (15.02).

Equations (15.02) and (15.10) describe the radiation from the

currents flowing only on part of the cylinder's surface: on ;he one

end (when z = .) and on half of the lateral surface (-r < < 0).

Moreover, these expressions do not take into account the nonuniform

part of the current caused by the curvature of the cylindrical sur-

face. Therefore, they must be refined with values of f and A.

which are close to .2 and i. However, in the case 4 =0. - that is, in
2

the direction towards the source - these corrections may be nerlected

if the parameters ka and k1 are sufficiently large. urumerical cal-

culations performed by us on the basis of Equationo (15.02) show

that this evidently may be done already when ka - and kZ = 10 r.

The graphs of the functions and H-.-=~i•4) constructed for

this case in Figures 25 and 26 agree with the experimental curve

(the dashed line): the position of the maxima and minima basically

agree, and the number of diffraction fringes is the same. For the

purpose of illustrating the effect of the ends, we constructed a iraph
of the effective scattering area for those same values of ka and ki

taking into account only the uniform part of the current on the

cylindrical surface (Figure 27). A comparison of Fi7-ures 25, 2( and

27 shows that the effect of the ends begins to appear wihen 4 = 1120.

Footnote (1) appears on page 89.
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*T - Figure 25. Dlavrarn cfi 'ji L-ttI4 the effective .ocatter-
4-1 ing surface for a finite

cylinder. The canet of
J 4 E-polarization.~L

4- i

-cheoretica2.-'- Figure 26. Diagramn of'
x erlmntiý,the effective scatter-

ing surface for a finite
cylinder. The care of
H-polarization
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*4-El

I I A J- I

Figure 27. The effective scatterinvr area
of the lateral surface of a cylinder in
the physical optics approach [see (13.26)].
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1. on paý?e 86. The experimental curves sho;:n In Figures 25 and 26
and also tho:;e 'n Flg-ures 31, 32, 65 and 71 were
obtained by Ye. 11. ',Iayzels and L. S. Chugunova.
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CHAPTER 1V

D-FF.RACTY-' OF A PLANE WAVE F IET~~N

~YMMET~Y;kX'S CIZ ?INTE i1 :E Ph'AT

"hr ti; ChaPter' Wt will refine tihc ph::slc al crticzs arrri'cac::

for certain other;-c-die3of rctatlcr., wh.e ý='~'ae c~rcular

isczntinuitieF. We w4.11 limit cur-;elve-: tc the case wuna .:ane

electrcmagnet-I. wavýe fallo, on the Lodle:: alcnt7 thelir .".rnmrv-r axis.

Ac befcre w wl asoume th~at th M.ea ian.e th-e

bdiles are larg-e in ccrrrparlIson with t'he wavel:n,-. ~ cnoe

curren~ts In t~he vicinity of a circular di.ca-ntlnult:: -I an:. ~oinvex
surface of rotaticn may be approximatlely considered to Le t-t-e sa:Tt?

as that on a ccrrespondin:7 conlca7C bc-dv. C"cnce ,Ientl ,

sufficient to studv the field from. th-e no-r.unlfc-rm pnwt- If the cu-- I.

whlca) Is caused by the circular disccntinuity of t',o .-,,--face, u

Euon- a body~ as an example.

§16. Thie Field Created by the!o-nun--*,f-r:,:

Part of the Current

Let a plane elect'romaagnet.ic wave fall on n conical [cvIn, 'Iio

rcIive direction of the z axis (F.;7u~re 2c. rc thle rlto~



E - (grad div A + kA). (I H~mA ' I(16.01)

H =rot A

we find the following expression.; fcr the frlnginn field in the wave
zone :

E, =H,----ikA,. (16.02)= 0
E,-H.-- (kA, I 1.2

and

8 -If,, = ikA,. t

Ey H.=ikA, jwith (16.03)

The vector potential is determined by the equation

"+ J~e' ("I(i .in4d'd

Here r is the dlst ance from the discontinuity to the observation

point, jI(,) is the surface current density flowing on the irradiated

side of' the body, and J2(a) is the current density on the shadowed

side. The upper sign in the exponents refers to the case 4:z, and

the lower sign refers to the case 8=0. Since the nonuniform part of

the current is concentrated mainly In the vicinity of the discontin-

uity, the vector potential ccrrespcnding to it may be represented in

the form

A =- , : (.(j1) e*'ea t" +

+ i" "(C) ev" 'r-c ) dý. (16.05)

Obviously the nonuniform part of the current near the discontin-

uity of a conical surface may be considered to be approximately the

same as on a corresponding wedge (Figure 29). In the local cyllndri-

cal coordinate system rl, zl' Z, the field from the nonuniform part
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Ft ure 29. I)th dI thedra I alt It
;ot'r:'poiidin to t he d4•1conlt in-

F ut It-re 28. 1! 'tVCractton ofr a ulty o a co l sn faco.

pl-ane wave by :a conl!cal body.
The plane w:ave In; proparated of the curr'ent t lowinq on suvcyh
alontr the z axio.

a wedfe In4 dett-ttnined In the

far none (kv1 I) by the rolllowinr equations:

, !! I'€) t ,• • il..I ~i J(:16.06;)

Wit" I-( e

" V i (.16.07)
S"€

Hore the upper s ,its In the exponents ve f'er: to the case I = . + -1

and the lower -tn- to the ease Q1 = w. On the other hand, In

§ 4I it was s;hvwn that th i field equ:als;

"wher'e H,'.,). t,, ') a,- tihe va i une of t he I nc I dent wavt, ampI ! tuh' :W t

t e"1-!'t' edre , and 11 and are niula'tv .



/

I

Let us introduce the designation

J = j()C f.O&d ~ j'(~ * csdp (16.09)

Equating Expressions (16.06) and (16.08), we find

c_ (1, ,.(4) ,_ __ (16.10)
, ih2.4= ' J,.- -

The components Jzl and Jol are mutually perpendicular, and when

0=O and --- they are parallel to the plane x0y (Figure 30). The
different orientation of the unit vector etl when 8=O and #=x Is

connected with the fact that the angle 0I is measured from the irrad-
iated face of the wedge. In the original x, y, z coordinate system
the vector J has the components

J3=j'sin.-J-',cOs9' I with 8=0 (16.11)
J , .cos4-4sin+

and

J. J'.osin + J ,Cos i+ with (16.12)
J1=- J.Cos p+ +4hsin~ * wIth*

Substituting Expressions (16.10) here, we obtain

.= �~ fIre'E(÷) sin 4- + Ho, ()os. .
with 0=0 (16.13)

j.I[l'Eo,, (4cos ÷ +g'm(4)sin j (

and

Now identifying the current near the conical surface discontinuity

with the current on the wedge, we find the components of vector

potential (16.05)
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A, n

,*(t) e-g'1. (p) C% 4'?.With =0 dl6.15)

(44 eu •j I

+ %'" I (- Iin-, Qin ' --

Figure 30. The relative and
orientation of the
unit vectors eland

ez, in the cases 1-0Ao . .,.n
and I a. Wx ~ iJIIIo, +

+RH; ! d, with • (16.16)

A • iN CosL:

s ~ ,, •.in .•;i,'d.,

Furthermore, let the plane wave be polarized In such a way that
Eigrx0. Then

4(4.=E.~.in'. ~(4)==-.~cs#.(16.17)

Considering these relationships and substituting Expressions (16.15)

and (16.16) into Equations (16.02) and (16.03), we find the fdeld

from the nonuniform part of the current which Is caused by the

circular discontinuity of the conical surface

-;-f=flIIE, "si9F, H=: 0•

and

S with (16.1)

Equation (16.18) Is applicable for the values .. " a and

Equation (16. 19) for the values i<.< and t. I ind the (,'f ed
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disk( ," the flelft 1, 1, re rl.N1ni, form part of the current

equal3 zero on the z ax!,,, ,.rc,, -1- -1/2 when-_ , and

f "-1/2 Wý• ' . ., }, , ) .

UjInp, the rve. . !i the followinir sections,we

will calculate * I- ,- reai (In the direction *•=* )

for spec!f!c I ..,e:. -it they a•e Irradiated by

the plane w'iv'o

F. If-t. ~*(16.20)

and their linear Itr.e:!•'n.: , - In comparison with the wave-

length.

5 17. A Pone

Let a cone (Figure 28) be irradiated by plane electromagnetic

wave (16.20). The uniform part of the current which is excited on

the cone's surface has the components
S • ~~~-.= B• .. %in. ,•

0, ' (17.01)

and creates in the direction N=x (with R.tka'. R>kP) the field

S=-Ho = E.. tgb. -R+

+E0" (i tg"-2 " tgt.)!f--eall. (17.02)

F,-H,= 0.2 =

Here the first term describes the spherical wave divervinf from the

vertex of the cone, and the remaining terms describe the spherical

wave from its base.

The field caused by the discontinuity of the surface at tne

cone base Is a spherical wave, and Is determIned in accordance with
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(16.19) by the expression

=Ho,92 e- o, 1' (17.03)

f -=H, =0,1

where

+ (17.04)

An asymptotic calculation of the rigorous diffraction series

for a semi-infinite cone [38-40] shows that In the direction0=I

one may neglect the effect of the nonuniform part of the current

caused by the conical point. Therefore, summing (17.02) and (17.03),

we obtain the following expression for the fringing field:

E.a= -H, = ± -. ce (I -!

2

+-h " 1 . , (17.05 )
+ e"A

Let us point out the following important feature of the resulting,

equation. In the problems which were investigated in the previous

chapters, the edge waves of the fringing field were expressed only

in terms of the functions f and g. But now in the equation for the

spherical wave from the cone's base, in addition to the term which

depends on f and g [the last term in the bracket of Equation (17.05)],

there is an additional term [term -/1 2tgii"•' in Equation (17.05)]

which does not depend on these functions and is determined by the

uniform part of the current. Therefore, it is impossible to rerre.sent

the resulting spherical wave from the cone's base only in terms of

the functions f and g which characterize the total edge wave diag7ram

from the corresponding wedge edge. This important fact was not

considered in [41, 44], as a consequence of which theIr authors (1,1(1

FTD-HC-23-259-71 06



not succeed in obtaining correct results for a cone with an arbitrary

aperture angle w(0 < w < v/2).

The effective scattering area in accordance with (12.18) is

determined by the equation

2=-alfzj. (17.06)

where the function Z is connected with the fringing field by the

relationship

....- ~-H=-- •-E,-(-Z (17.07)

and equals

2
- sin

Z= -tg'wsin kIei+ - " "i e (17.08)

The analogous function in the physical optics approach may be written

in accordance with (17.02) in the form

-- • W-og.sin•l e~lk-- ge'SCS0. ( 17.09 )

With the deforming of the top part of the cone into a disk
Equations (17.08) and (17.09) are transformed, respec-

tively, to the form
!=ia-±,tj t 17.10)

Furthermore, It follows from (17.08) and (17.09) that for larfge

values of the parameter ka(ka tg 2 w) the functions E and Z0 may

be represented in the form

2 (17.'1)
ft ,

cos -Cos-,
I9 97
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Z= tgw e2AI'. (17.12)

Thus even in the case of short waves ( ka > tg 2 W, but R >> k12)

our Expression (17.08) does not change Into the physical optics

equation, but substantially differs from It because

2

a 2a (17.13)

and

@ --- ,•" g'-.(17-•14 )

With this

S 2 a I

=, '(17.15)

that is, for sufficiently short waves (or for sufficiently large

dimensions of the cone) the function a is proportional to a0. The

coefficient of proportionality here does not depend on the cone

dimensions, but is determined only by its shape.

This result is graphically illustrated by the curves giving

the effective scattering area of a cone (w - 10025', k = w, a = 900)

as a function of its length (Figure 31). Whereas our equation (the

continuous line) is in satisfactory agreement with the results of

measurements (the small crosses)(I) the physical optics approach

(the dashed line) gives values which are smaller than the experimental

values by 13-15 dB. For sharply pointed cones, the nonuniform part of
the current has an especially large values. In Figure 32, a curve is

constructed for the effective surface of a cone (ka = 2.75 7, Q = 90g)

Footnote (1) appears on page 113.
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"with itj deformation Into a_ dlhk

(w - 900). The discrepancy. be-

tween our curve and the physical

"optics approach here reaches

almost 30 dB when • = 20.

S.-Expression (17.08) obtained

ý4j by us also allows one, in con-

trast to the physical optics

approach (17.09), to evaluate
the role of the shape of the

shadowed part of the body and
shows that the reflected oignal

Figure 31. The effective scatter- will be larger, the closer this
ing area of a finite cone as a shape is to a funnel-shaped form
function of its length. The
function o (the continuous line) ( n -")" Thus, for example,
was calculated on the basis of in the case w = 1O0, k1 - 10
equation (17.06) which con-
siders the nonuniform part of (k = T) the signal reflected by
the current in the vicinity of the cone may exceed by 15 dF the
the circular discontinuity.
The function a0 (the dashed value corresponding to physical
line) correspcnds to the physi- optics (see Figure 33) if 0 -
cal optics approach. 1700.

Let us note that our Expression (17.13) is equivalent to the

expression presented in the above-mentioned papers [41, 441. Hcvqever,
the latter expression is applicable only for sharply pointed cone-,
whereas we have, in addition to (17.13), Equatlon (17.08) which to
suitable for cones with any aperture angle .

The calculation method discussed may be generalized in the c:n-e

of asymmetric irradiation of the cone. However, with asymmetric

irradiation, generally speaking, it Is necessary to take into acc,'unt

the nonuniform part of the current caused by the point of the cone.

In concluding this oectlon, let us calculate the effective

scattering area for a body which is formed by rotation arourin t1w

FTD-HC-23-25C)-71 9p
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asafnto fte vetxage

1'-- : . ,- - -

0 . 1 ts 17 i

I ~ ~ -I -- -lt

* /

0' r t of

Figure 32. The effective scattering area of a finite cone
as a funcftion of the vertex angle.

z axis of the plane figure shown
I I." •in Figure 3)1 Integ.rating the
#' _ i uniform part of the current, it is -

S• not difficult to show that the
i : ' ,_ ifield scattered in the direction
i+ 1 •--=• by the lateral surface of the

truncated cone (Figure 35) is

determined by the equation
S• iE, = -- t, : Eo.L (- " "' e\

2" t IN e, -+

Figure 33. The effective scatter- ebR
ing area of a finite cone as a ++. :g j ,-tg•,, e-' "
function of the shape of the
shaded part. (17.16)
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L,--J--... tllh IL

Figure 34. The generatrix of Figure 35. The generatrix of
the surface of rotation. of a truncated conical surface.

Summing this expressing with (17.02), where the quantities I and a

must be replaced by 1 1 and a,, we find the field from the uniform

part of the current flowing on the entire illuminated side of the

body

'E - -__i_,z wsin ki, e"4 - tg e% +

e•", e , g e ,*4 I R( 1 7 1 7 )

The field radiated by the nonuniform part of the current is

determined In accordance with 9 16 by the equation
2 x

-r -- +tg -- tg-)e

where

n -- -(17.19)

Now summing (17.17) and (17.18), we obtain a refined expres-lon

for the field scattered in the direction --=-

2 -g ,,ke" + (17.'0)

(Equation continued on npxt p.-e.)
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2 w
2 sin

. , nu n. , + 1 e),i (1 7 .2 0 )
,CO$ C -- o" R )

Consequently, the effective zcattering area wll eaual

"r t-' sin.. kte J- n-- k-

I b 2*
ha,- tgl sin/dte'' j-COS - Cos ; sB

2 a " (17.21)
+ % lg'ui, sir (eik.e +2i*t.÷2• 3-•1. +,

COS; -COS +

In the physical optics approach, the analogous quantity equals

"8tga - s a klsn *", tgewe"',s+

+ g' w, sin kil~eih+ (- e2ihI") tgu,-,] e'*-h Is (17.22)
When the top part of the cone is deformed into a disk(.'.T' I.,-,0 ,Equations (17.21) and (17.22) take the fbrm

S42a -- ika, -- Tctg + I-, tg , sin kie'"-+11, na ka,

2 sin."•". M, ., (17.23)

-ika, 
(I?,2/4)sin kI~e4 +

In these expressions assuming wI 0, we find the effective
scattering area for a finite cylinler

FTD-RTC-23-2
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Sa2 -ka, - its Ctg * + a (72
Cos-- (17.25)

.% a; ka,). (17.26)

in connection with which

3n,= , n,. (17.27)

Equation (17.25) is more precise than Equation (!'..6) which

was derived in 5 15, where the value of the field in the direction

0-.t was taken in the physical optics approach.

§ 18. A Paraboloid of Rotation

Let us calculate the effective scattering area of a paraboloid

of rotation r 2 - 2pz (Figure 36) which is irradiated by plane wave

(16.20). The uniform part of the current excited on the parabcloid's

surface has the components

1, . E, s-n.;i

C=, (18.01)

Integrating this current, it is not difficult to show that in the

direction ,0.-w It radiates the field

E,. H. ---0.- (,,. --, )2ha, (18.02)
E1 1=H 5 -O.

Here a is the radius of the base of the paraboloid; 1=-*2-=*ctgao is

its length; a is the angle between the z axis and the tangent to the
2

generatrix of the paraboloid (r = 2pz ). At the point z = 1, the

angle a takes the value a=-.tg-=A-)
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The- fleid t~.tet*nn .r:rp

C'I the paratc c-1,-.1 u 'LPn ce ~.dtte'rmtflfo
' jqaioý(n .o) h f el fr (-m tIh e

or~rico~~.ru tC-f tile Current v'~h>
CII-eed bY the Sr'o-,n cuv Of t!'e r'ara-

Vie.Pssurface (eu,,yj zero in thie caseFLue36, 
:;frc 1o ' yritz~~ric r-d lat ion [)451J. 'i'er'e fore,oi a plane wav yasurmnparac~j~of ~tatcn. .~)ar-i (17.03) WCfind thePara~l~c-Iof rtatcn. exPression for t`h-e resuitirij frinfini--

field.-

An A

0 (18.03)

Conseauently, t~he effective sc-itterinrý area o the pa!:robool'dill be determined by the relation.,,&ip

f2 x

CS- - Cos-

which, when thie p~aoodi- defor~ed Int- a .lt 0,-K 00Cons!) is transfrm-erd tc the form:

7.as tgi I~ k Is, 5

which plhysical optics ives for the effective L3c'tztterIns area, ..,,see that they differ significantly from ono an o r'. F'irst ofthe oscillating character of the function aT draws our 'attenticn.
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the ref lcted j 1s iaI V,-ua 1:: ze r, f: :t .oiuie u.be'r cf .r-f-zlave:
I l = A n. n ,' 2, 3 ... i fitted f'rt , th• e Ie rti, of ' t e ":2r •, -c d, aind

it tak,:. a maxr.im: va:,. 1f a half-lnte,-ral number of hal f-.':'vz

(: = " , .~ i_ . -. 1, 2,.3...) 1. ccrntainced in this leni-th.

A calculation rerf-r.'%r.d t,,; u;i on t!.e baszl of .'r.uatirn (1j .0o4)

fzr .arabcleld: wIýh, th•e Paa-.eter. • = 900, tg, = 0.1 (k = r) shows

(.iu:re 37) t.iat, althcu~h the c..c'llatinw• character of the effective

scattering area is preserved, the am'plitude of the oscillations is

only 2 dB, and the maximum values of the function a exceed the corres-

ponding value.- in the physical optics approach by almost 13 dB. A

still stronger d(verger. e between the results of our theory and

physical optics is detected when the paraboloid is deformed into a

disk (Figure 38, ka = 3n , k n, Q - 900, w * 900).

--- i,•:# mu- &r

A• J!I 11!..

Figure 37. The effective scatterinr area of a finite
paraboloid as a function of its length with a constant
value of the angle w (tLgw 0.1). The diameter of the
base varies.
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I Ji l 1 1- -

i~ .I

, II !! "If, F - , .

Fiir - -' - Th -fetv -,,ateli ra-

fin1t 1 ,,arab lo l aý-, a u c i n f t, l r-

i "t a, , 1,, f ' I tl!,

As~ ~ in th aeofacn, the-ap ft he-hdocý ar 7
n a.- e I lI

.i I2 37

F imre 3&Q 'Phe eff'ect iwe scatterini- area •f a
finite parahoioci a.;, a function of .' to leno•th•
with a cons>tant, rdiu 15 f t•., La:t.o

As in the case of a cone , the sh•}are oC" t~le shiadewcd aprt t spas•

out to have a suhs:taritlal influonce on the re ti]eeted s o'na]l Fr

example, for a paraholoid with tihe p•ranot ers h~a = .J, k -- ]9 1 ,

t ,-• 0. 1 ( k = n ). th~e reflected si onnl !•'.ra vs by 12 ~ih wi fh :ii

I.• -o '.;- rs ( 12 3- ' -1 ( r ,lis ,j 3 )
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In concluding this section,

let us dwell for a moment on

the question of calculating, the

effective scattering area for

bodies of rotation of a complex
PC.&.&A.Co shape, whose elements are the

lateral surfaces of truncated

paraboloids. The field from the
nonuniform part of the current

arising in the vicinity of

circular discontinuities may be

determined without difficulty

from Equation (17.03). The field

Figure 39. The effective scatter- from the uniform part of the

ing area of a finite paraboloid current is found by quadratures.
as a function of the shape of Thus, the field being created in
the shaded part.

the direction &== by the uniform

part of the current which flows on the lateral surface of the truncated

paraboloid r 2 = 2pz(p - a 1 tgw1 = a 2 tgw2 ; see Figure 40) is determined

by the equation

E,=- - M, Es. 0,1g9 " J:t •C") e:N-ý-. (18.07)

Here

i , = "-(4 , Oil w 2 -- 1 C tig W O) ( 1 8 . 0 8 )

is the height of the truncated paraboloid (the distance between its

bases). Let us note that Equation (18.07) is a simple alrebrnte

corollary of Expression (18.02): it is the difference of the f0clds

scattered, respectively, by the paraboloid of height 1, +,--4 and

by the paraboloid of height 
2.
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1 19. A Spherical Surface

Incident wave (16.20) excites a

surface current on the surface of an

.ideally conducting sphere (a radiu:, of

0 and a center on the z axis at the

point z = p). The uniform part of

Figure 40. The generatrix of this current has the components

the lateral surface of a
truncated paraboloid of i-; E.Cos Oe
rotation. f=0. (19.01)

E.=:,- ,, sin 0 cos ýeh.

The currents flowing on a spherical ring cut from the sphere's

surface by the planes z = 1 and z 1 1 + 12 (Figure 41) create, in

the direction 0-=r , the field

E.=--H,ýýE..[--( tg..-• e",--

+(,! tg i) e2`.1,(,0 + 10 e: OR (19.02)

E, =H = 0,

where

!,-=-P(I --sin,),) • (19.03)

I,=p (sin o, -sin w,); f
Co s , € C Ss , ( 1 9 .0 4 )

Here aI is the radius of the first cross section; a. is the rad!us

of the second cross section; w (w.) is the angle between the z nx's
1 1

and the tangent to the meridian at the point z = tI(z2 = + + .

Furthermore, assuming in Equation (19.02) ,, =. (v,=,const), we

obtain in the physical optics approach an expression for the fic]d

scattered by the spherical segment (Firure 42)
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Figure 42. A spherical segment
with a conically shaped base.

Figure 41. A ring cut from the
surface of its sphere by the
planes z - 1 and z - 1 + I f,-yz-1z -- + +

1 1 2*4

_e". (19.05)

Here we used the new designations
a =;a, (J•U I

---- el,= -- sin.). (19.o6)

Equations (19.02) and (19.05) are simplified if ka 1 >, 1 and

ka 2 > 1. Thus, the field from the spherical ring will equal

E'=-fV=ES' go,-!!t%,e*")e±ý, (19.07)

and the field from the spherical segment will equal

"(secc-tgwe -")-. (19.08)

If here one assumes w s 0, then equation

aE.. ,e"* ( 19.0 (q))

gives us the field scattered by a hemisphere. The value of the

effective scattering area corresponding to it will equal, in

accordance with (17.06),

r7-H-2-29-. (19.10)
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Now let us find the field scattered by the spherical segment

considering the discontinuity of the surface; one may neglect the

perturbation of the current. as a consequence of the smooth curve of

the surface if ka >> 1 [74]. The nonuniform part of the current

which is caused by' the discontinuity creates in the direction O3W

the field (17.03). Summing the latter with the field (19.08), we

find the desired field

Consequently, the effective scattering area of a spherical segment
will equal

22 i I -*

- 2.

Cosa -0-Cos (19.12)

In the physical optics approach, a similar quantity is determined

by field (19.08) and equals

-os- (19.13)

With the deforming of the spherical surface into a disk
- -• f-•.onst) , Equations (19.12) and (19.13) are transformed,

respectively, to the form

a- z'ika++ I rt n n (19.14)
0s = (ka)$.

It follows from Equations (19.12) and (19.13) that the effectIve

scattering area of a spherical segment is an oscillating function of

its length. The oscillation period equals -. Numerical calculation:s

performed on the basis of these equations showed (Figure 43) that,

with small angles of the discontinuity (Q = 150), one may still

neglect the field from the nonuniform part of the current. In Figure

44, graphs are constructed for the effective -catterint area of a
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Figure 43. The effective scatter- Figure 44. A comparisonof the

ing area of a spherical segment effective scattering area of
as a function of its length with a spherical segment (continuous
a constant radius of the base. line) and a finite cone (dashed
The function a (the continuous line) which have the same bases.
line) is calculated on the basis
of Equation (19.12) which con-
siders the nonuniform part of
the current near the discontin- spherical segment and a finite

uity Th fun tio aO thecone (the dashed curve) "which
dashed line) is calculated from
Equation (19.13), and corres- have the same diameter and base
ponds to the physical optics saeapproach,.hae

I £

The results obtained in this Chapter show that the reflected

signal depends substantially on the shape of the shaded part of the
body, and increases with an increase of the concavity. However,nio

since the nonuniform part of the current is concentrated mainly near

the discontinuity, that part of the shaded surfaca which is several

wavelengths away from the discontinuity evidently will not have a

noticeable effect on the reflected sihnal apd may be an arbitraey

shape.

FTD-IIC-23-259-71 Iill



It is interesting that our expressions, which agree satisfactor-

ily with experiments, even with large (in comparison with the wave-

lengths) dimensions of the bodies, do not change into the physical

optics equations, but differ from them substantially. At the same

time, physical optics, contrary to the widely held opinion concerning

its reliability in such cases, leads to a significant discrepancy with

experiments.

The method used in tAs Chapter allows one to calculate the

effective scattering area associated with the symmetric irradiation

of any convex body of rotation, the surface of which has circular

discontinuities. It may also be generalized to the case of asymmetric

irradiation. However, when doing this It is necessary to take into

account the nonuniform part of the current caused by the point and

the smooth curve of the surface.

FTD-HC-23-259-71 112



- "- - -" 7

FOOTNOTES

1. on page 98. See footnote on page 86.

FTD-HC-23-259-71 113



CHAPTER V

SECONDARY DIFFRACTION

In the previous chapters, an approximate solution of diffraction

problems was carried out which was based on the representation of the
fringing field in the form of the sum of the fields from the uniform

and nonuniform parts of the surface current. The first field was
found by quadratures, and the second field by approximation; it was

assumed that the nonuniform part of the current near the discontinuity
(edge) of a surface is the same as on a corresponding wedge.

However, the fields found by such a method are actually the
fields from the currents flowing, not only on the flat and curved

parts of the body's surface, but also to some extent on the geometric
extension of these sections. The error in the expressions for the
fringing field which is thus introduced is most significant with a

glancing incident wave, when the edge zone occupied by the nonuniform
part of the current is noticeably broadened, and also with a glancing

radiation, when the direction to the observation point forms a small
angle with the given section of the surface. In these cases, the
results obtained earlier are in need of substantial corrections. We
already talked about this briefly in § 6 and § 12.
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For the purpose of refining the solutions which were found
previously, it Is necessary to assume that in actuality the currents

flow only on the body's surface, and that a wave travelling from one

edge to the other will undergo a perturbation at the latter. The pro-

cess of forming the fringing field when this occurs may be investigated

in the following way. The edge wave propagated from one of the edges

is diffracted by the other edges; the waves arising with this in turn

are diffracted by adjacent edges, etc. In this chapter, we will

investigate the case when the dimensions of the surface faces are so

large in comparison with the wavelength that it is sufficient to limit

oneself to considering the diffraction of only the primary edge waves.

This phenomenon we shall call secondary diffraction.

In this chapter, secondary diffraction by an infinitely long

strip (1 20 - § 23) and by a circular disk (§ 24) is studied. The

solution of these problems may be obtained by means of the principle

of duality from the solution of the diffraction problems for an

infinite slit and a circular hole in a flat, ideally conducting screen.

In the latter case, the physical treatment of diffraction of edge

waves is significantly simpler; it is exactly for this reason, therefore,

that almost all diffraction studies of edge waves are related to holes

in a plane screen. However, we will not take such a path, but we

shall investigate a strip and a disk directly. This approach has the

advantage that it is easily generalized to the case of three-

dimensional bodies.

§ 20. Secondary Diffraction by a Strip.

Formulation of the Problem.

Let an infinitely thin, ideally conducting strip of width 2a and

unlimited length be orientated in space as shown in Figure 45. A

plane electromagnetic wave incident normal to the strip's edges is

directed at an angle a to the plane xoz and has the following form:

E(A COS+., HS=H.eI •h...0 (20.01)
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In § 6 approximation expres-

sions were found for the fringing

a€ field in the far zone which did

not consider the interaction of

the edges. In the case of E-

£ polarization of the incident wave
(E.I! Oz) , these expressions may be

represented in the form
E, =- ff, = E., 1 (1 )eihC° "f'l'" U•+

•+ 1 (2) e-'* I's• -~ 9)" ) 0 .
Figure 45. The transverse cross

section of a strip with the =-0,
plane xoy, x = 0, y = a and
x = 0, y a -a are the coordi- (20.02)
nates of the strip's edge; n is
the normal to the incident plane
wave front. and in the case of H-polarization

(H, II Oz)

M, • .• = Ha g il W" Oi" -1 04 1) +

+ g +( 2 )e~bI~eli

H,02•3 ,O- 0." 1(20.03)
Let us recall that the functions f and g included here are determined

in the region pIp- (when Jai<-) by the following relationships:

) C_•ll .? 1(2)= -- s -i (20.04)

g(l)=-f(2), g(2)=-10|)- (20.05)

The first terms in Equations (20.02) and (20.03) describe cylin-

drical waves diverging from edge 1 (y = a), and the second terms

describe the cylindrical waves diverging from edge 2 (y -a). The

FTD-HC-23-259-71 116



nonuniform part of the current on each side of the strip also has the

form of waves which diverge from edges 1 and 2, and are an "analytical

extension" of the corresponding terms in Equations (20.02) and (20.03).

The current wave encountering the opposite edge is reflected from it.

Or else one may say that each of the cylindrical waves propagated from

edge 1 or 2 undergoes diffraction by the opposite edge (secondary

diffraction).

If the strip's width is sufficiently large in comparison with

the wavelength, then one may apprximately assume that the oncoming

current wave near the strip's edk will be the same as on a corre-

sponding half-plane excited by a linear source, the moment of which

is selected in a definite way. It is also obvious that the current

waves reflected from the edge will also coincide. Consequently, the

problem of secondary diffraction by a strip may be reduced to the

problem of the diffraction of a cylindrical wave by a half-plane.

" The field created at the point P by a current filament parallel

to the half-plane's edge and passing through the point Q (Figure 46)

may be found by means of the reciprocity principle. In the case of
E-polarization, it is determined by the relationship

," ,(20.06)

and in the case of H-polarization

H, = s if., (Q).(2 . )

Here pz (m z) is the electric (magnetic) moment of the current fila-

ment passing through the Q; poz (m oz) is the moment of the auxiliary

current filament passing through the point P with the coordinates

(0", R), and Hz (Q) or Ez (Q) is the field created by the auxiliary

filament at the point Q.

Now let us remove the auxiliary current filament to such a

distance that the cylindrical wave arriving from it may be considered
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I.

to be a plane wave on the Section

from the edge of the half-plane

- to the point Q. In this case, in

accordance with § 1 and § 2 the

I. * field created by it at the point
Ia Q will equal

•~E " # ,(Q) E,. (0)fu (d. V - 1,"1) - u(d,...), +

I * 2H, (Q) = He, (0) [it (d. V - V") + u (d. '+')1.

(20.08)

Figure 46. Diffraction of a
cylindrical wave by a half-plane. The functions u introduced here
Q is the source, Q* is the are determined (for the values
mirror image of the source,
and P is the observation point. OV'.<) by the equations

2

+ e-* w" (''•,ith 0< • • NF ?

"(0 with w4-"<,"y2z,

m (d. + V',) = e-" ... (,, +v,, e__ X e'qdq4-
,* +Vo00 COS 2*+ --- •

S.-ikdc s(co +9o ( . )--Iwi tnh< V¥< %--
" 0 with • <#2x.

(20.09)

and the quantities Ez (0) and Hz (0) are the values of the primary

field created by the auxiliary filament at points corresponding to

the half-plane's edge. In accordance with Equations (1.21) and (1.22),

this field may be represented when kR >> 1 in the form

Ea. ,0 !kpT

2a 4R

7 (e " (20.10)
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Consequently, an electric current filament located above an

ideally conducting half-plane excites, at the point F, the field

E., = iklp ,, l ,rt to -- V") ... u (d. yr + kr)iI/" (20.11)"

and a magnetic current filament excites, at the point P, the field

S# (110- !-)
2 4 "

H,= ik'n lit (d. •it (d. V'V •R (20.12)

It is easy to see that the exponent ebi'dx-'deo( ,",i in these expressions

corresponds to the primary cyllndrical wave arriving at the observa-

tion point P, and the exponent eihI-d'÷ corresponds to the reflec-

ted cylindrical wave.

The moments mz and pz must be selected in such a way that in

the direction V" = w (Figure 46) the filamcnt would create a field

equal to the field of the primary edge wave above an infinite, ideally

conducting plane. We will conclude these calculations in the follow-

ing sections, but for now let us make still one other crmment on tne

formulation of the problem.

In the previous chapters it was shown that the ::!attering object

may be approximated by a series cf sources - "Iru;.Incuz" lines and

points. Therefore, the problem of secondary diffraction may be formu-

lated as a -roblem of searching for functions which describe the

continuous change of the field of each sucli s:urce during tl.e passage

through the boundary of the llzht and shadow ýorrcsponding to the

source.

§ 21. Seccnd-ary Diffraction by a Strip (H-Pclarization)

A current filament with the moment m, which Is positioned above

an ideally conducting plane (hI 0, Figure 46) creates in space the

field
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O a.

~~~~~ "H##R(1)••• eL""" (21.07)

p describes the wave radiated by

the source mlz. The sum of these

Figure 47. The problem of waves equals

secondary diffraction by a
strip .n th- " ' (s -! -.L)

m+and m are the sources H,(I)= " "''- " I
the fields of which are used V(h-
when approximating the primary 4
edge wave being propagated from T it )

edge 1 (y - a); "H,.g(IJ- -- e"''," '

nm2+ and m2- are the sources,

the fields from which are used
when approximating the primary
wave from edge 2 (y - -a). (21.08)

The first term in this expression is the desired secondary wave from

edge 2, and the second term ii the field radiated by the filament

which is loacted above the ideally conducting plane x ='0 and has the

moment

fi 4-e Ho' I " lik~ai' A o04,- i. - .•(21 0)

- I

where

g (. 10) I
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Summing the secondary wave which has been found with the unper-

turbed primary wave from edge 1; we obtain

H. (1 -2)

2VrMM ieLS

Hs -;( x c'*'dq e

+ "(21.11)

This expression reduces to zero if one assumes 0 = - w/2; consequently,
the secondary diffraction eliminates the field discontinuities which
occurred in the previous approximation when 0 = - w/2. However, in
the direction 0 = w/2 the field (21.11) is different from zero. Since
H is an odd function of the x coordinate, the relationship
4. _ means that the fringing field components Hz and Eo will

undergo a discontinuity with a transition through the direction

S= �n/2. The reason for such a Jump, as before, is that in our calcu-

lations the plane x = 0 is a plane of currents. By finding the

secondary wave from edge 2, we actually considered that the diffrac-

tion takes place not on the edge of a finite width strip, but on the

edge of an ideally conducting half-plane --ay<oo .

Again the resulting discontinuity has an order of magnitude of

yr= I vi It is clear that one may completely eliminate the field

discontinuities only with consideration of multiple diffraction.

However, the calculation of fields arising with multiple diffraction

requires specific consideration of the following terms in order of

smallness in the expansion of the primary edge in inverse power, of
yF* (see, for example, [46]). All this greatly complicates the cal-

culations. Therefore, we, using the condition ka >> 1, will limit

ourselves to an investigation of secondary diffraction, and in order

to eliminate the discontinuities in the plane x = 0, we will proceed

in the following way.
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Let us consider the quantity g(l) in the Expression (21.11) to

be a function of the angle * [see Equation (20.05)], that is, let uz

replace g(l) by the function g(l). In this case the equation

H,(1 -2)=

w-e, •(|X e'dq 1-+("e-i'|•

-+ ,,(1) •-(21.12)

will give qualitatively correct results not only when y--, but

also with all other values of 0. Actually, the Fresnel integral is

_.4clqse to zero if yVkcos(-.+)>! and in Equation (21.12) only the

second term remains, as must be the case. Therefore, Equation (21.12)

may be investigated as an interpolation equation, and it may be

applied with any values of . It is easy to establish that

now the fringing field does not undergo a discontinuity with the

passage through plane x - 0, since Expression (21.12) becomes zero
3

when 4p_-t_- .

It is interesting to note that Equation (21.12) automatically

follows from Equation (21.08) if in the latter equation one replaces

g(1) by g(l). Essentially, this substitution is equivalent to the

assumption that the moments of the filaments, the fields of which are

used for approximating the primary edge waves, depend on the radiation

direction (that is, on the azimuth 0 of the observation point)

M + H (1 e''"
in i 4 g t "'* ) " (21.13)

Such a determination of the moments of the auxiliary linear sources

is used, for example, in the work of Millar [47].

Precisely in the same way that Equations (21.06) and (21.07)
were obtained, we find (when x > 0)
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H+ (2)- I g 12) j e • "" "/S, j r- (21.14)

av rm cot 4 ik 44(osnq

- ((2÷H÷ ) (21.15)

"+ H . eg (2 ) + e -e ($i n ( i i " -Si 
( .

These expressions give the field created by the filaments which are

located above the ideally conducting half-plane -- oOiYta and have

the moments

:--nl+- ~---I~g~)eihuI-". (21.16)

In accordance with Equation (21.04), here

(21.17)

Furthermore, summing (21.14) and (21.15), we obtain

Air

H8 (2) H,, - g (2) ef~dq eIh. sin.--sinl

4.)
+ H,19(2 -V-.-- e-'""-""-e is(21.18)

Here the first term is the desired secondary wave from edge 1, and

the second term is the field radiated by the filament which is located

above the ideally conducting plane x = 0 and has the moment niz
Summing the secondary wave which has been found with the unperturbed

primary wave from edge 2, we have

FTD-HC-23-259-71 123



Ho(2-

+ H,,g (2) .(21.19)

It is not difficult to see that the resulting expression becomes zero

if one assumes ?=-; in it. Consequently, the secondary diffraction

eliminates the field discontinuity which we had earlier (1 6) when
I=mj, but at the same time it leads to a field discontinuity when

T=- Again the resulting field discontinuity may be eliminated

by the above indicated method, replacing the quantity 9(2) by g(2)

- that is, by assuming the moments m2 z and m + depend on the obser-

vation angle *. Actually as a result of such a substitution, we

obtain from (21.19) the expression

"Hs (÷2) ,, - )=H,4 ewe"41M-11
S2 g. e e" '-"

/(2-11=H.,'-1g(2) 3 elfdq -- + .--

+ H (2' (21.20)

which vanishes when .=-2- . This expression may be investigated as

an interpolation equation which describes the field created in the

region ,ij<-2- by the primary wave of edge 2 with consideration of

its diffraction at edge 1.

Now summing (21.12) and (21.20), we obtain the following expres-

sion for the total field scattered by the strip:

H', = H.ZfG(1, pe)e (I) e"*''-""" -j

+0(;?. V2- (21.21)

Here
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e-4X eAwdq(. ,x ,(21.22)

is the shading function of the primary wave travelling from edge 1,

and

G(2, ?)=-Le f; X ed

(21.23)

Is the shading function of the primary wave travelling from edge 2.

These functions show that the primary wave from edge 1 undergoes the

greatest perturbation when '-- , and the wave from edge 2 under-
goes the greatest perturbation when

An important property of Equation (21.21) is that it becomes
zero when ?=--= - that is, the field discontinuity which we had

earlier at the plane x - 0 is completely eliminated.

In concluding this section, let us return to Expressions (21.11)

and (21.19) which lead to discontinuities of the fringing field in the
plane of the strip (x = 0). One may show that the sum of these

expressions

A""
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agrees, when I'kacos(-!-.+)>1 ,with the asymptotic solution obtained

in the book [501 by means of integral equations. The solution found

in [50] has the greatest precision when *ýýO,' -'-0 , and it is completely

useless if a=-- or

9 22. Secondary Diffraction by a Strip (E-Polarization)

It is known that a current filament with an electric moment z

which is found at a distance h from an infinite, ideally conducting

plane (see Figure 46) creates in space the field

E, = it4"(kR) - H" (kR,)). (22.01)

With small values of h (and R1 ,2 >> kh 2 ), this expression is trans-

formed to the form

si*ý el *R, + (22.02)

The primary edge wave is determined by the relationship

E, =ES() M I M "(22.03)

where E oz(q) is the value of the incident plane wave field at the

point q (R0 =, 0). Consequently, the primary edge wave in the direction

* 0 may be investigated as the wave from a current filament located

above an ideally conducting plane if one assumes the filament moment

to be equal to

p,"h'A S•uI$ 4.'* ()(22.04)

The field, created at the point P by the current filament with

a moment pz which is parallel to the half-plane's edge and passes

through the point Q, is determined by Expression (20.11). Expanding

1
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* the right-hand member of this expression into a series In terms of the

small quantitj h(h - 0) and limiting ourselves to the first term which

Is different from zero, we obtain

E s ikp ;-In(.I

e

-R~d.(22.05)

By means of relatior.ships (22.04) and (22.05), one may show that

current filaments with moments p-z and pz which are located on the

Ideally conducting half-plane --a<eoo and correspond to edge I (see

Figure 47) create In the region 1914- the field

r z (i-1: )
E11~7  *OS~ *i4Sq+.

+ -sin (2:kd+ tol 6-014U~ jI*Pd"" +

+E4/I)coSO * • . (22.06)

The current filp.ments with the moments Pz and +P which are located

above the iCeally conducting half-plane -- egy<a and correspond to

edge 2 create In the same region the field

j.*ib- rcos' ? e*dq'1.

+ I si (-i + 0 Hi-,( 2) .,. .-... ,

+2 f4 2 -r? ) _4 ( +,4) 1

" "EJ(2) € -. (22.07)

PTD-HC-23-259-71 127

+/



The first terms It. Express'ions (22.06) and (22.07) &re the desired

secondary waves, and the last ..erms In the expressions are the fields

from the current filaments located abcve the Ideally conductln- plane

x a 0 and having the moments

-P qi'l' g"" (22.08)

where

-IM):I t"2"-u/• 4..1 (22.09)

Suuming the secondary waves which have been round with the

unperturbed primary waves, we obtain the total field scattered by the

atrip

£,m n= I.op 5
a~R- 4)

A 0 8----.(22.10)

Now assuming, as in the case of the ',-polarization, that the

moments plf and p• depend on the angle #, by replacing

7(1) by M" and T(2) by M .(22.12)

we obtain

-F(�, (��( 22.12)

rrD-HC-23-259-71 128

II



"where

S 12

F(2, .-"Y v-e edq +
*i12iha(I --sin yp) -;

+7

(22.13)
are the shading functions. They show that the Primary wave from edge1 undergoes the greatest perturbation near •--- , and the wave fromedge 2 undergoes the greatest perturbation in the vicinity of f'-.

5 23. The Scattering Characteristics of a
SPlane Wave by a Stri.p-

Expressions (21.21) and (22.12) which were obtained above forthe field scattered by a strip approximately take into account theinteraction of the edges and are valid when " However, theyare not applicable with a glancing incidence of a plane wave on astrip (when a -:±- ) .

In order to find equations which are applicable in this case,let us proceed in the following way. Let us write the expressionsfor the field radiated by the strip in the direction a with the inci-dence of a plane wave in the direction 0 (Figure 45)

E,= i-- = E,,[ F(2, r)j (a ) eia(In"'-P..f+ i

+ F (1, a)l(2)e -' "'' ,si ,c ,

H ,H.---(2- Ht) g (1)

-4-0(1. ,ilg (2) e-•'(" -,, 4;~st, ehI+,) T

(23.01)FTD-HC-23-259-71 
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Here 1 , but * cannot approximate +w/2 Now let us note that
the expressions for the fringing field must satisfy the reciprocity
principle - that is, they must not change with the simultaneous re-
placement of a by * and * by a. Comparing Equations (21.21), (20.12)
and (23.01), it is not difficult to obtain the expressions

S-'H E.,F (1, 7) P (2, a) j(1) e'"(6'" a- gi" +

+F(2, 9)0(, 2)/(2)e, V ,

(23.02)

which satisfy the reciprocity principle, have no discontinuities any-
where, and are suitable for making calculations with any values of a

an -. I i I< ). From the second equation of (23.02), it
follows that Hz - E. a 0 when - that is, the fringing field
does not experience discontinuities in the plane x = 0. Moreover,
Hz - E - 0 with any values of * if e=-t.-; - that is, a plane wave
polarized perpendicularly to the strip does not undergo diffraction
with a glancing incidence.

The resulting Equations (23.02) may be investigated as interpo-
latlon equations. Actually, with Iak<-! when Ykacs(-.±:.)>1 the
functions F0l. 2), F(2, 2)' GO(, 2) and G (2, a) are close to one, and
Equations (23.02) change into the previous Expressions (21.21) and
(22.12). But if a--- and VCcos( C 2) 1, then the functions
F(1, ?). F(2, p) , G (1, 0) and G (2, 0) are close to one, and EquatLone
(23.02) change into Equations (23.01). Let us recall that the futi7-
tions F and G are determined by relationships (21.22), (21.23) and
(22.13).

In the direction of the principal maximum of the scattering
diagram (0 - a), Equations (23.02) take the following form:
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7Fl . ) .F.1.z) .. . ..P---F . . , . .... co (23.03)

Hence when s=±-t- we have

H5 = 0,

E,0

iv ! i d (2 3.0o4)
*. . ., I :e_.:. ...

It is interesting to observe that Expressions (23.02) to some

extent take into account, in addition to secondary diffraction, also

tertiary diffraction. Actually, for the values I121- and 1<!

we have
0 (1, p) G(2, z)Weka(3'n8-&'4P,); e i. •'s°r'"'-21MP)-

IIduoJ+ son 6-osln 1) 4 0iha(2-sill 4--sin 9.

4o , 2- 4 2o, -+

The physical meaning of the four terms in the right-hand me-:'.[er of

this equation is illustrated in Figure 48 (Figure 48a corresponds to

the first term; Figure 48b corresponds to the second term, etc.).

Taking into account condition (6.15), one may write the equations

for the fringing field in the left half-space ( } r but l"<--

in the same form as (23.02). Thus, the functions 0(1, a), G(2, ) and
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Figure 48. The schematic diagram of the
waves corresponding to the various terms
in Equation (22.05).

7(1, a), F(2, a) will, as before, be described by the relationships

(:21.22), (21.23) and (22.13). The remaining functions in Equations

(22.02) will be determined when 4- by the following equations:

(1, p) jr e-)*d
-a i *in-- 2i -iI

(2, - e e'4dq J (23.061

-4 -r •,..÷

- 24. - On

F (2, ?) K 5 e'dq ;z
S- I.

"FD-c-3- (23.07)
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Calculations of the scattering characteristics were carried out

based on the equations derived above. These scattering characteris-

tics are the functions h(M, 0) and e(a, f) determining the fringing

field by means of the relationships

, ~~~E, = E,,/ae(, V - ,

Ff H1 ah.,)pf7e (23.13)

The calculations were performed for the values ka=V•s and a=VIO /

In Figures 49 - 62, the following designations were used: 1) the

functions h and e correspond to the rigorous theory; 2) the functions

h0 and e 0 correspond to the field from the uniform part of the current

(the physical optics approach); 3) the functions h1 and e1 correspond

to the field from the uniform and nonuniform parts of the current,

but without consideration of the interaction of the edges; 4) the

functions h2 and e 2 correspond to the fringing field with considera-

tion of secondary diffraction calculated on the basis of equations

(23.13), (23.02) and (23.10). Thus, in accordance with § 6,
*Ci .'a.(sjus•-- iuy •'1

•'e "- ¢1 sio. kalsinz s i -- y•)J --ea -, W2. .. ..l|re(i.. - I ?

h'.' ' - -(23.14)

and

g2 1 si•Inhal si " a-sin 7) .cos Ika (sin s - sin ,()3

giv Cosu +- (23.15)

where r.t<-,. I'--

The results obtained show that our approximation equations arree

satisfactorily with the rigorous theory already when ka.d-Y 18

although in the given case approximately one and one-half wavelentgths

are fitted into the width of the strip. In the direction toward the

source (? .... . 2Ca ) , and also with glancing irradiation of the
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Figure 51. The same as Figure 49 when
* - -iT + a.

strip (a -1/2), when the functions e0 and h0 , and el and hl lead to

qualitatively incorrect results, the functions e2 and h 2 give, as in
the remaining cases, fully satisfactory results. Actually, the curve

1h2 1 coincides almost everywhere with the curve lhl (Figure 49-54)
within the limits of graphical precision. But the calculated values
of the function le 2j differ from the corresponding values of the

function lei only by hundredths of a percent (Figure 55 - 62). The
better agreement with the rigorous theory associated with the E-

polarization is explained by the weaker interaction of the edges in
this case. A certain discrepancy of the curves jh2j and lhi in the

vicinity of the principal scattering maximum is explained by the
interpolation character of our equations.

As a consequence of the interpolation character of Equations
(23.02), the integral scattering diameter obtained from Expressions
(23.03) when a = 0 does not coincide with the integral diameter found

by Clemmow [46] in the form of the first terms of an asymptotic ex-

pansion in inverse powers of k-a. However, our equations,as dl.tinct

from the similar equations obtained by other authors, allow one to

calculate the scattering characteristics with any Incident anrles of

the plane wave.
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F 54. h e as

Let us note that the functions e(cx, *) and h(ci, *) for Figures
49 -52 were calculated on the basis of rigorous series which were

obtained by the separation of variables in the elliptic coordinate

system (compare [23)(1)

1 24. Secondary Diffraction by a Disk

Let us refine the approximate solution of the diffraction pro-

blem for a disk which was round in Chapter II.

Let an infinitely thin, ideally conducting disk or radius a be

found In free space. Let us orientate the spherical coordinate system

in such a way that the normal n to the incident wave front would lie

in the half-plane s - w/2, and form an angle Ylliptic with the z

axis (Figure 63). Let us prescribe the incident plane wave field In

Ee.a.if ni el Ihuini a ll) H- cHo e"d "in d (24 .01)

n uFootnote appears on page 162.
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Figure 62. The same as Figure 59 when * -v-i + a.

In accordance with 11 12, the fringing field in the plane

tw/2 is described (when R > ka ) by the equations

H = ;ý11 28 - f:~ ) , .Q

+ ; 1 ) 1(l. J. Q)J.

H"=E - 26 e )-• go J(C

+ig(2, 8)+ g(1, &)] (2

These expressions are valid when nand The quantities

included In them are determined by the relationships:

-. _) --- s -i _ sin

Cos -2 + ' 2
1(2.1) -,,a ,a

g 1(2, 8)-.-8), u (2,B -),

(24.03)

- ka (sin 0 - sin ). (24.04)
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I with . - 2

I-T with?=- 2
2 (24.05)

Let us note that here

with -

7 2I (2)withcp--2~

I(2,?)= /(2) with ?-j

11() withl--

( 0(1 ) with?----

r 3 'e(2,Zl g (2) with -----

g(2) with X=-- j
lg(1)with?=-y

(24.06)

and the functions f(l), f(2), g(l) and g(2) are determined by the
Equations (12.03) and (12.04).

When C >> 1, Expressions (24.02) take the form

•H=- .=* (2, ;)e 4

He E,4 og (2 , 2_g
t- ( !, - A,-g( e)-' ( - 1- ) I -a R•, (2 o7)

They show that the fringing field in this region may be investigated
as the sum of spherical waves from two luminous points on the rim of
the disk with the polar angle * = -it/2. The diffraction by a disk of
each of these waves may be studied as was done in the case of a strip,
but we shall proceed differently.
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Figure 63. The cross section of Figure 64. Excitation of a half-
a disk with the plane yoz; n plane by an elementary dipole
is the normal to the incident which is located at the point Q.
wave front.

Let us compare the shading of spherical and cylindrical waves
by a half-plane. Let an ideally conducting half-plane be found in
free space, and let there be an elementary dipole at the point Q
(Figure 64). Let us find the field in the plane perpendicular to
the half-plane's edge and passing through the point Q.

In accordance with the reciprocity principle, it is determined
for the electric dipole by the relationship

pea (241.08)

and for the magnetic dipole by the relationship

H. H. (Q). (24.09)

//
Here p (mz) is the electric (magnetic) dipole moment found at the
point Q; poz and moz are the moments of the auxiliary dipoles which
are placed at the point P; Ez(Q) and Hz(Q) are the fields created by
the auxiliary dipoles at the point Q.
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Now let us remove the auxiliary dipoles to such a distance that

the spherical wave arriving from them may be considered to be a plane

wave on the section from the half-plane's edge to the point Q. In

this case, in accordance with Equation (20.08), the field created by

the wave at the point Q will equal

E, (Q) = E.. (0)ofi (d, ' -- ) - u (d. 71 + 7")]. (.10)
(24.0

The expressions

E..(o) - k'p., H-, H..(0)= k0." (24.n1)R (2.1

determine the fields created by the auxiliary dipoles in free space

(with the absence of the half-plane) at the point 0.

Consequently, the fields excited at the point P by the electric

and magnetic dipoles which are found at the point Q above the half-
plane equal respectively

E, = k'p, fu(d. -") -- u(d, K7"-f--•., I
eihR

With the absence of the half-plane, these dipoles create at the point

P the field

ES hRE, =k'p, -•-et* ,(,-,)

H,= k'm, 6 'Ad cs- (24.13)

Comparing Expressions (24.12) and (24.13) we find the shading

functions

, i= [' (d , ' ?-- u (d" ?' + ?")I eihd co (' '24 .14
a, u (d, +• u'-•" - (d, ?' +,p")] e'*"'d e "'".2s
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In the case when the current filament passes through the point

Q parallel to the half-plane's edge, the field at the point P is
determined - in accordance with (20.11) and (20.12) - by the 4

equations

R. - iA',n. [a (d. 71 -) fu (d. 91 + ?")I j/E.: ei 4] (2.5

With the absence of a half-plane, these sources create at the point

P the field

H, = iklm, i4; (R ) e'ilm"~ ~" (24.16)"" -- " "' • "" " (24.16)

Comparing Equations (24.15) and (24.16), we obtain the same Expressions
(24.14) for the shading functions. Consequently, a spherical wave in
the direction perpendicular to an ideally conducting half-plane is
shaded by it the same as a cylindrical wave.

Let us note, however, that Expressions (24.14) art not equivalent
to Expressions (21.22), (21.23) and (22.13), since the first represent
the shading function by a half-plane of a wave from a single source,

and the latter represent the shading function of an edge wave which
we approximate by waves from two sources located on both sides of the

corresponding half-plane. Since the shading functions of spherical
and cylindrical waves are the same, the edge wave shading functions
of a strip and a disk also will coincide.

Therefore, the approximation expressions for a field scattered
by a disk which take account of secondary diffraction may be repre-

sented in the region p=_=--. 0 (with C >> 1) in the following

form:
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Starting from Expressicns (24.18) and (24.19), it is not diffi-

cult to write interpolation equations for the fringing field which

are suitable for any values of y and 8 in the interval (0; w72),

but when * = ±/2;

.Ih4 1, -- u - F- (2, 8) F (1, •)l(2, 8) -
-- (1. 4) F (2,,/ (10, 7,)]J, (C) + IF (2, 0) F (1, ) (2, 8- +

(24.20)

E,-- H, (10-{[ (2. 0) Go(1, a) g(,a

S: + G (1t, 0) 0 (2, Z) S (1t, &)1 J, (24.21)

Let us note that when y - 0 these expressions will be valid for

any values of the azimuth f , since then any point of space may be
considered to be located in the incident plane. -

In the direction of the scattering diagram's principal maximum
-- that is, when &-I. ?--- - the fringing field (24.20) and (24.21)

takes the form

14 ka' e*IRH.- .,= Eý .F(2, T) F(1, y)- cos ,,

f- =HO? - .o G-(2.y) 0'(. ) - cos Y" (24.22)

However, these expressions have an interpolation character,and with

small values of the angle y it is impossible to consider them to be
more precise than the simple equations of § 9 and § 12. In particular,
with y - 0, when the fringing field must not depend on the incident

wave polarization, they give values which are different for the E-

polarization and H-polarization by small quantities of the order of
%-I . Therefore, in this case (when y = 0) it makes sense to use

Expressions (24.20) and (24.21) only far from the z axis, switching

to Equations (24.02) near the z axis.
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Equations (24.20) and (24.21) have the following important pro-

perties, They do not have discontinuities, they include the case of

glancing incidence of a plane wave, and they satisfy the reciprocity

principle. From them it follows that E,--If O when O=- that

is, the fringing field does not experience a discontinuity on the
U

plane z = 0. Moreover, Eo-=H,=0 with any values of 8. if Y.=--!-.

- that is, a plane wave polarized perpendicular to the disk's plane

does not experience diffraction with glancing irradiation of the

disk.

As in the case of diffraction by a strip, the new approximation

expressions consider to some extent tertiary diffraction [see

Equations (23.05) and Figure 48].

Using Condition (9.04), it is not difficult to write equations

for the fringing field in the left half-space (2'0"'; 2=--)

+ F(1. r) F (2. Z)f1(1, 8)]J. (C))+ 2.3+F( = H, =-O G(2.,- 0) G (1, 9)+ (2, 8)-

•" -- G(, - i) G (2, 8)(•g(1, 9)] J, (C) +

+ i [G (2 . G-O ( 1, &) g (2, 8)-t-

+ G(1,-- 0) G(2,8)g (1, )1] (-R (24.23)

where the functions f and g are determined by the equations

-- airf(,8 . - j -sin# )e(, )J,()

8+6 8-8cos +2, - -sn -2

-s in( , s) a _(24.24)

In the direction towards the sourced byth) the

fringing field equals
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E#N -j If (1. 8) (2, 8) -

- 9' (2, 8) g (I, 8)1 J, (C) +-- i ) (1, g (2, 8)-+

-- G' (2, C) l (, a)! ., (•) -- 2

where

2 sinylI -$in-(

2stia-• (24.26)

As was already noted, it makes sense to use Equations (24.25)

only far from the z axis, changing to Expression (12.15) of the pre-

vious approximation in the vicinity of the z axis. A calculation of

functions Z(--T) and Z(--T) (Figures 65 and 66) which determine
the effective scattering surface [see Expressions (12.17)] was per-

formed on the basis of these equations when ka = 5. A comparison was
carried out of this calculation with the results of measurements.
The two experimental diagrams (the dashed lines)(2) depicted in
Figure 65 characterize the experimental precision. As distinct from
the previous approximations, which lead in this case to qualitatively
incorrect results [see Equations (10.06), (10.07) and (12.15)1, we

observe a satisfactory agreement of theory with experiment.

For verifying the results obtained, a calculation was also
carried out of the functions v)() 0 ) and V02) ( ) [see Equations

(9.07)] when ka = 5 (Figure 67 and 68) with normal irradiation of a
disk by a plane wave. Curve 1 corresponds to the field calculated

from the rigorous theory [34]; curve 2 corresponds to the field from

(2)Footnote appears on page 162.
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Figure 65. The diagram of a disk's effective

scattering surface when the plane wave's

magnetic vector is perpendicular to the inci-

dent plane.
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Figure 66. The calculated diagram of a
disk's effective scattering surface when
the plane wave's electric vector is per-
pendicular to the incident plane.

the uniform part of the current (the physical optics approach). Curve

3 corresponds to the field from the uniform and nonuniform parts of

the current, but without the interaction of the edges. Curve 4 corre-

sponds to the field with consideration of secondary diffraction. As

is seen from these graphs, consideration of the edge interaction re-

fines the previous approximation and ensures better agreement with

the rigorous theory results.

The problem of secondary diffraction by a cylinder may be solved

by a similar method. However, considering that the corrections which
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Figure 67. The function "( for a
disk with normal incidence of a plane
wave (curve 4). Curves 1, 2 and 3 from
Figure 20 are drawn for comparison.

depend on the secondary diffraction here are small (on the order of
1 dB) when ka = 7r, kl = lO, and the equations are substantially more
complicated, we shall not cite them here.

In the problems investigated above, the edge waves have the
character of cylindrical or spherical waves -- that is, they decrease
rather rapidly with the distance from the edge. Therefore, in the

case when the linear dimensions of the faces are approximately two
wavelengths, it is sufficient to limit ourselves to a consideration
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there are a number of works in which similar results were obtained.

A majority of these works also are not characterized by mathematical

rigor, and they are based on certain physical assumptions. Therefore,

one may relate them to the physical theory of diffraction. Only in

a few works (related to the simpler diffraction problems) did they

succeed in obtaining specific results at a higher level of mathematical

rigor - more precisely, while developing asymptotic methods of mathe-

matical diffraction theory.

We will briefly list the most important results obtained in a

number of papers and books, grouping the material in the following

sequence:

1. Diffraction by plane, infinitely thin plates (an infinite

strip, a circular disk) and diffraction by auxiliary apertures in a

flat screen (an infinite slit, a circular hole).

2. Diffraction by three-dimensional bodies with edges (a finite

cylinder, a finite cone, etc.).

3. Other diffraction problems.

When investigating the first group of diffraction problems, it

is necessary to keep in mind the principle of duality [4] which enables

one to easily change from a strip to a slit, from a disk to a circular

hole, etc. In the literature as a rule, they preferred to investigate

apertures in an infinite flat screen, whereas in our book, diffraction

by a strip and a disk was studied. This approach facilitates the

transition to three-dimensional bodies (see the remarks at the

beginning of this chapter).

Based on the time of appearance (if we do not consider the works

of Schwarzschild [15] which we talked about in the Introduction), one

should first of all mention the works of Braunbek [28 - 301 which

were devoted to the diffraction of a scalar wave by a circular hole

in a flat screen. Assuming that the plane wave is incident normal to
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the screen, the author obtained an approximation solution in the form

of a surface integral. The boundary values of the integrand were

taken from the rigorous solution to the problem of diffraction by a
half-plane which was found by Sommerfeld. The field was calculated

in the far zone on the axis of the hole and far from it, and also on

the axis near the screen. Using this approach, Braunbek recently

solved the problem of scalar wave diffraction by an aperture in a

concially shaped screen [31).

In the papers of Frahn [32, 331, this method was used for the

diffraction of electromagnetic waves. Diffraction of a plane wave

incident normal to an ideally conducting screen with a circular hole

was investigated. The field was calculated in the hole and on the

axis, and also the field in the far zone and the transmission coeffi-

cient (the ratio of the energy passing through the hole to the energy

falling on it) were calculated.

In these works of Braunbek and Frahn, secondary diffraction was

not considered. The expressions obtained by them for the fringing

field intensity in the far zone agree with similar expressions

following from our equations (5 9).

Karp and Russek [51) studied diffraction by a slit in the case

when the incident wave's electric vector is parallel to the slit edge.

They investigated each semi-infinite p,rt of the screen as a half-

plane excited by the incident wave field and a "virtual" source

localized on the edge of the opposite half-plane. The moments of

these sources were determined from a system of two algebraic equations

which were obtained by using the asymptotic expressions resulting

from the rigorous solution for the half-plane. Secondary diffraction
was considered, and partially the general interaction. Special

attention was allotted to calculating the transmission coefficient,

but equations for the scattering characteristics which would be

suitable with all directions of incident wave propagation were absent.
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Clemmow [46] and Millar [47 - 49] in their works calculated the

transmission coefficients with normal irradiation of a slit and a

hole, and also the field in the hole. The solution was sought by

means of curvilinear integrals of the fictitious linear currents on

the aperture edges. The interaction of the edges was considered.

The case of inclined irradiation was not investigated, since it turned

out to be too complicated for investigation by this method.

The "geometric theory of diffraction" of Keller [42 - 44] which

deals with diffraction rays is of special interest. The phase and

amplitutude corresponding to each diffraction ray are determined at

each ray point on the basis of geometric considerations and the law

of the conservation of energy. The initial diffraction ray amplitude

is assumed to be proportional to the incident ray amplitude at the

point of its diffraction. The unknown proportionality constant be-

tween the amplitudes and the initial phase difference s determined

from a comparison with the results of well-known solutions of diffrac-

tion problems. In this way, the fields scattered with the normal

incidence of a plane wave ona slit and hole in a flat screen are

found. These fields are obtained with consideration of multiple dif-

fractions, but they are not precise wave equation solutions, since

their calculation was started from approximation relations. Moreover,

geometric diffraction theory is not applicable near caustics, and also

in the vicinity of the scattering diagram principal maximum.

In a recently published paper of Buchal and Keller [52], a new

method for the solution of diffraction problems for holes in a flat

screen was proposed. The caustics and shadow boundaries here are in-

vestigated as thin boundary layers, inside of which a rapid field

change takes place. This method supplements geometric diffraction

theory, and in particular enables one to find the field at caustics

and on the shadow boundary.

Recently, the method of integral equations has been applied to

the solution of diffraction problems of holes in a flat screen. In

particular, Greenberg [53, 54] reduced the solution of this problem
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to an integral equation for a "shadow" current which is, In our termi-

nology, half the nonuniform part of the current. The resulting

integral equations may be solved (with any ratio between the dimensions

of the hole and the wavel4ngth) by the method of successive approxi-

mations. Moreover, they allow one to obtain asymptotic expressions

which are suitable for short waves. In Reference [55) Greenberg found

an asymptotic expression for the current on a strip with ka >> 1 (2a

is the strip's width). Greenberg and Pimenov [56] obtained a similar

solution in the case of normal incidence of a plane wave on a circular

hole. Using the same method, an asymptotic expression was found for

the current on a flat ring [57), the width and inner diameter of which

are a great deal larger than the wavelength.

The above listed works [53 - 57) already relate to the mathemati-

cal theory of diffraction: in them the first terms of the asymptotic

expansions for the current were obtained with the desire evidently to

also be able to calculate the following terms. Unfortunately, the

asymptotic expressions which have been found up to now refer only to

currents, and one is obliged to calculate the scattering characteris-

tics by means of numerical quadratures [56]. As a consequence of the

rapid oscillation of the integrands, such a method leads to rather

unwieldy calculations and does not enable one to formulate a clear

representation of the fringing field formation, and also does not

allow one to study this field properly.

Millar [58] investigated the problems of electromagnetic wave

diffraction by slits in a flat screen. The system of integral equa-

tions obtained by him for the current is solved by the method of

successive approximations. The field in the hole is calculated from

the currents which are found, and then on the basis of the field in

the hole the field in the far zone and the transmission coefficient

are calculated. All the indicated quantities are represented in the

form of an asymptotic expansion in reciprocal powers of the parameter

Vk¶a. A solution also is obtained in the case of glancing incidence
of a plane wave.
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Let us note that the asymptotic expressions obtained by the

"method of integral equations are distinguished by their considerable

complexity, and frequently require tabulation of the new special

functions appearing in the expressions.

In the recently issued volume of Handbuch der Physik [50], which
is devoted to diffraction theory, the complex characteristic of plane

wave scattering by a strip was studied directly, omitting the calcu-

lation of the currents. For this characteristic, a singular integral

equation was formulated, the solution of which was sought in the form

of an asymptotic series in reciprocal powers of vk'a. The first term

of the series corresponds to Equations (6.14) and (6.16). The follow-
ing term takes into account the interaction of the edges, and becomes

infinite with the glancing incidence of a plane wave and also for

observation points lying in the strip's plane. Therefore, the simple

expressions obtained in [50] do not allow one to construct the com-

plete scattering characteristic. In [50J diffraction by a disk, a

sphere, and an infinite circular cylinder was investigated, and also

a review of the general methods of diffraction theory and a biblio-
graphy encompassing a large number of works (mainly German and

American) were given.

The book of King and Yu [59) presented (as a rule without deriva-
tion) a series of asymptotic expressions relating to a slit and a
circular hole and also to other diffraction objects. Here, however,

equations from which one would be able to construct the scattering

characteristics of a strip and a disk with any incidence of a plane
wave also are missing.

Works on diffraction by three-dimensional bodies having edges

are comparatively scarce. In the paper of Siegel et al. [41], the

effective scattering surface for a finite cone with the incidence of
'a plane wave on it along the symmetry axis is calculated from clemen-
tary arguments. The expressions obtained here do not fully character-
kze the fringing field, and are suitable only for sharp cones to which
we already referred in § 17. In the papers of Keller [44], the
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diffraction ray concept is used for calculating the scattering of
scalar and electromagnetic plane waves by a finite circular cone with

a flat base and also by a cone having a spherical rounding off instead

of a flat base. The resulting expressions.,are not applicable in the
vicinity of certain irradiation and observation directions. In 5 17
we showed that the field scattered by a cone and by certain bodies of

rotation is not expressed only in terms of the functions f and g,
which refer to diffraction rays diverging from a wedge edge. This

result evidently attests to the impossibility, of complete calculation
of the scattering characteristic with the diffraction ray concept.

Diffraction problems arising in antenna theory are usually dis-
tinguished by their great complexity, since the corresponding metal

bodies (mirror, horn, etc.) have a comf~icated shape. Since the dimen-

sions of these bodies and the dimensions of the radiating apertures
are considerably larger than the wavelength, the application of
physical diffraction theory to antenna problems is very promising.
only the first steps have been taken in this direction. Thus, Kinber

[60, 61J performed a calculation of the decoupling and laterdl radia-

tion of mirror antennas. The feature specific to mirror hntennas is
that diffraction rays arising at the mirror's edge undergo multiple

reflection on its concave surface. This multiple reflection was
studied by Kinber in more detail as applied to the concave surface of

a cylinder and sphere [62, 63J.

Diffraction problems relating to an antenna dipole - a thin

cylindrical conductor - are investigated in Chapter VII, and
references to the literature are also given there.

In conclusion, let us say a few words about diffraction of short
waves by smooth bodies. The basic principles relating to such pro-

blems were set forth in the fundamental works of Fok and Leontovich.
These principles were established by the following methods of
mathematical diffraction theory:
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FOOTNOTES

Footnote (1) on page 138. These calculations were performed
under the guidance of P. S. Mikazan.

Footnote (2) on page 150. See the footnote on page 86.
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CHAPTER VI

CERTAIN PHENOMENA CONNECTED WITH THE NONUNIFORM

PART OF THE SURFACE CURRENT

In the previous chapters, a theoretical investigation was

conducted of the field radiated by the nonuniform part of the current.

In this chapter we will discuss a method for measuring this field

(§ 26) and we will Investigate the phenomenon of the reflected

signal's depolarization (§ 27).

An experimental method for measuring the field from the nonuni-

form part of the current was first proposed for bodies of rotation in

the paper of Ye. N. Mayzel's and the author [12]. Later It w:as :-.',xfn

that this method has a universal character, and is suitable for

measuring the field from the nonuniform part of the current ex(ýIcd by

a plane wave on any metal body [131.

§ 26. Measurement of the Field Radiated by the

Nonuniform Part of the Current

Let an ideally conducting body of arbitrary s1!ape be fon, in

free space. A surface element of this body is shown in Pi .'e (,.



The coordinate system was selected in such a way that its origin would

lie near the body, and the source Q would be located in the plane
x a 0. If the distance between the body and the source is a great

deal larger than the body's dimensions, then the incident wave in the

vicinity of the body may be investigated as a plane wav-. Let us

represent it in the form

fi----£,,e " ? 41=,0. (26.01)

Here y is the angle between the normal N to the wave front and the

z axis.

Now let us place in front of the source, parallel to the radiated
wave front, a polarizer P which transformed linear polarized radiation

into a circularly polarized wave. Let the wave passing through the
polarizer with an electric vector En lag in phase by 900 behind the
wave with an electric vector ET (Figure 70). In this case, the polar-

izer achieves a clockwise rotation(l). As a result, the incident
wave field at the coordinate origin will equal

, -4÷
E ,- E.,. H.=--•E•.. (26.CI')

The field scattered by the body may be represented in the wave

zone in the following way:

I 4L

-j i." 0 (I R1 P- (26.03)

where a is a certain length characterizing the body's size and 7-0.,,)

and Z(B?]) are unknown angular functions. In the general case, the

To T'note appears on page 724*



field (26.03) is an elliptically

4l polarized wave. In the direction

toward the source =X--.

9/ this wave passes through the

polarizer and creates behind it
P -the field

MaE, *hR£
2

Figure 69. The problem of elec- 2 R
tromagentic wave diffraction by (26.04)
an arbitrary metal body.

dS - is a surface element of the where
body.

N - the normal to the incident
wave front,

Q - the source, , I()'
P - the polarizer converting 2 (26.05)

linearly polarized radia-
tion to a wave with
circular polarization. If the source radiates a

wave of another polarization

(H0 L yoz), then the wave reflected

I • by the body and passing through

ON the polarizer is described at the

point Q by similar relationships

Figure 70. &
S 2 Zj-_ "

(26.06)

Now let us investigate in the physical optics approach the

diffraction of a plane linearly polarized wave by the same body.

According to definition (3.01), the uniform part of the current exci-

ted on the body's surface by a plane wave with E-polarization of the

incident wave (E O yoz) equals
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• =- E,=, -( t, sin T-f-n, co'y) ekb,

j. l (26.07)

and with H-polarization (H O yOz)

-L USX -- n. e4.

ro (26.08)

Here Eox and Hox are the electric and magnetic field amplitudes of

the incident wave with E-polarization and H-polarization, respectively;
•-'.>zcos, is the incident wave phase at the point (x', y', z')

on the body's surface; n., ny, n., are the components of the normal
to the surface at the same point.

Furthermore, calculating the vector potential in the far zone
on the basis of this current and substituting its values into the
equations

E =--•ikAI,. }

E =H, kq ( 26.•09 )

we find the fringing field. With E-polarization, it equals

F-l-- i 2.--. R c, sin? -cos .
+ (n,• On M. "" ":osTsin ?I •d,(26 1

(26.10)

-- ( lb " 7'- ,R , co s 7 C eo s e•n os , (26•]1, )

and with H-rolarization

:""•-(-• -25,)-7V !'



i k Y . Cos, _ _ e l lt ,s e . ^ S

B= f= 'k Hisf ny sin 6 + ns sin .9cos 8) e'dS. (26.11)

Here R, 0 , * are the spherical coordinates of the observation point,
--t-kecosO , and integration is carried out over the illuminated

elements of the body's surface. In the case of radar when the obser-
vation and irradiation directions coincide (2=,. •=----) ,

Equations (26.10) and (26.11) yield

HO-I* 7- 'a..4$n,,sin +

+ nz cos e~dS, (26.12)
B=/-, = 0 j

and

E0 =H= -- H., n-, sin T +

+ n, cos•y) e* dS. (26.13)
E,=H ,=o.

"Furthermore, assuming the incident wave amplitudes ar. specified by

Equation (26.02), let us write Expressions (26.12) and (26.13) in the
following way:

2T2

H.14aE.. eI4 elk*

2 1- 2 R (2 6 .1 4 )
- '

where

-- - - (nsin +n,cOs T)edS. (26 .15)

"INow let us represent the angular functions of fringing field
(26.03) in the form
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1, + (26.16)

where the functions E0, _Z0 and El, E refer to the field radiated by

the uniform and nonuniform part of the current, respectively. Substi-

tuting these expressions into Equations (26.04) and (26.06) and taking
into account relationship (26.15), let us find the fringing field

passing through the polarizer P toward the source Q. In the case of

E-polarization, it equals

SE. ~~~- -H ER---!--q. + i,)-- ,

E - -(21.)t-, (26.17)

and in the case of H-polarization

H O. -- , - 2 1 - - . (26.18)

The physical meaning of the result obtained is as follows. The

field scattered by the body at the point Q is the sum of two waves
polarized in mutually perpendicular directions. The reflected wave
which is polarized the same as the primary radiation of the source is

determined by the function , , and is created only by the

nonuniform part of the current . The reflected wave with the perpendi-
cular polarization is described by the function Z.-2•'--Z'-•' and
is the field radiated by both parts of the current. Let us note that

in the general case the functions E1 and 11 do not coincide, and

therefore they are not balanced out in the expressions for E_. In

other words, the field radiated by the uniform part of the current in
this case may not be separated from the fringing field.

Thus, the investigated method allows one to separate from the
total field scattered by any metal body of finite dimensions *hat part

of the field which is caused by a distortion of the surface (the
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curvature, a sharp bend, a point, a bulge, a hole, etc.). One should

note that, in the case of electromagnetic wave scattering by a system

of separate bodies, the separable part of the field is due not only

to the surface's distortion, but also to the diffraction interaction

of the bodies.

It is necessary, however, to keep in mind that it is possible to

realize the indicated fringing field distribution not in an arbitrary

observation direction, but only in a direction for which the condition

10 a -_0 is fulfilled - for example, in the direction towards the

source.

Consideration of the nonuniform part of the current also enables
one to explain the reflected wave depolarization which we will inves-

tigate in the following section.

Figure 71 presents the results of measurements(2) and calculations
of the effective scattering surface

, =ras I i Is= Lra I + o s
4 (26.19)

which is dependent upon the nonuniform part of the current excited by

a plane electromagnetic wave on a disk. The disk's diameter equals
2a--- (A is the wavelength). The calculations were performed with
consideration of the secondary diffraction on the basis of the approxi-

mation equations for the functions E and F which were derived in § 24.

Since it is difficult to prepare a thin disk with a sufficiently flat

surface, the measurements were performed with an obtuse cone close to

the shape of a disk and having a height approximately equal to one

tenth of the d.aieter.

As is seen from Figure 71, the theoretical and experiinental curves

are fairly close together. A certain divergence between them,

especially in the region of y values close to 900, may evidently be

explained both by the model's conical shape and also by the

(2)Footnote appears on page 174.
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Figure 71. Diagram of the radiation from
the nonuniform part of the current flowing
on a disk.

approximation character of the computational equations. The value
y 9-0 corresponds to the direction along the disk's surface, and

the value y a 00 - to the direction normal to the disk.

§ 27. Reflected Wave Depolarization

Let us again return to the problem of scatterinr of an electro-

magnetic wave by an arbitrary metal body. The relative position of

the source Q, of a surface element of the irradiated body, and of the

coordinate system is shown in Figure 69. Lot us recall that the
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source Q is in the plane y0z, and

radiates a linearly polarized wave.
Furthermore, we shall assume that

"the polarizer P which is shown in

Figure 69 is now absent.

Let us designate by a the

angle between the plane y0z and

Figure 72. the incident wave electric vector

E0 (Figure 72). The field of

this wave will be represented in

the form

E= HOT = E.,e'k(y 91nli+z e "

Hs= _ E`,o= TOO (27.01)

where

E,----Esi2. H, 8 =-- E cos 2, tg. (27.02)

The field scattered by the body is determined in the wave zone

by the equations

+ H..'" (Q,. 81 M]---,

ip a (.

(27.03)

Here a is a certain length characterizing the body's dimensions:, R,

0 , 0 are the spherical coordinates of the observation point,

E,.i(yTA) and ,.,(t. ,. ) are unknown angular functions.

It is obvious that the fringing field polarization - th:it In,

the orientation of its electric vector in space - depends in a ccrm-

plex way on the observation and irradiation dlr'ections. In the
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direction toward the source, it may not coincide with the polarization

of the wave radiated by the source. Such a phenomenon is called

reflected wave depolarization.

It is easy to establish the reason for depolarization, if one

investigates t?-c fringing field as the sum of the fields radiated by
the uniform and nonuniform parts of the current. According to § 26,

the uniform part of the current radiates the following field in the

direction towards the source (0=2-T. ?=--+)

IcH.... '£,id -- *, -- 'o - -

H,- ., 2 M(27.04)

The functions -0 and Z0 satisfy the condition r0 -f_, and are de-

scribed by Equation (26.15). From Equation (27.04), let us immediately

obtain the equality

--tg 0, (27.05)

which means that in the physical optics approach the reflected wave

does not experience depolarization. Consequently, the reflected wave

depolarization is caused only by the nonuniform part of the current

or, in other words, by the surface distortion.

Let us derive an equation for the magnitude of angle 6. This is

the angle by which the electric field vector of the reflected wave is

turned in respect to the electric vector of the wave radiated by the

source. For this purpose, let us represent the functions T (2) and

rl(2) in the form

Z, (a ) ,, -,, I (27.06)

-0°
where the terms Z1 (2 ) and rl(2) correspond to the field radlatod by1-2 11)T n
the uniform part of the current, and the terms (2)
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correspond to the field raaiated by the nonuniform part of the current.

Comparing Expressions (27.04) and (27.03), we find that
- • i/ -R

v" yo to 0 /o

V, (E 'C.. (27.08)

Theangef to the field byated in the equationrto the

Asmparn Eresultedsired(7.4 angl d which ) chrcerizes thea eoarzto

source (w=-ll . will equal

E. .- CON•1 /, '•l

8= -- H.. (27.08)

This field's electric vector forms an angle o with the yoz planea

The angle 0 is determined by the equation

t•f• = l•- z+• ti tg - (27.09)

As a result, the desired angle 6 which characterizes the depolarization
magnitude will equal

a=•--@.(27•10)

Thus, the field from the nonuniform part of the current, separabLle

"in a pure form" by means of a polarizer (5 26), leads to depolarization

of the scattered radiation.

Specific results from the depolarization calculation of waveo

reflected from certain bodies may be found, for example, in the works

of Chytil [75 - 77] and Beckmann [78]. In particular, in Refere-ce [77]

it was shown that the depolarization effect on the effective scatter-

ing surface of convex bodies in practice may be neglected only w'th

the condition ka 4> .4
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FOOTNOTES

Footnote (1) on page 164. A system c'f metal r".ates parallel
to the e¶ vector may serve as the
simplest example of such a
polarizer.Footnote (2) on page 169. See the footnote on page 86.
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CHAPTER VII

DIFFRACTION BY A THIN CYLINDRICAL CONDUCTOR

In almost all the works devoted to the diffraction of plane

electromagnetic waves by a thin cylindrical conductor, the current in-

duced in the conductor was studied, and then, by integrating this

current, the fringing field in the far zone was calculated. However,

in view of the complexity of this problem, they succeeded in obtain-

ing relatively simple equations only in the particular case when the

observation direction and the direction toward the source coincided,

and was perpendicular to the conductor axis. In the general case

when these directions did not coincide and were arbitrary, the expres-

sions for the fringing field became very complicated and unsuitable

for making calculations. Since they were obtained by integrating

approximation expressions for the current, it turns out that they have

still one other shortcoming - they do not satisfy the principle of

duality.

In this chapter, explicit expressions are obtained for the

fringing field which are suitable for making calculations with any

direction of irradiation and observation. We shall consider' both the

primary edge waves excited by the incident plane wave and also the

secondary, tertiary, etc. edge waves. The total fringing fleld i1

found by summing all the diffraction waves.
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§ 28. Current Wave- in an Ideally Conducting Vibrator

The electrodvnamic problem of determining the current in thin

cylindrical conductors (vibrator) usually is reduced to an integro-

differential equation. The latter is derived by means of boundary

conditions on the conductor surface, and is substantially simplified

in the case of thin conductors when the inequalities

"-< and ka.(1. (28.01)

are fulfilled, where a is the radius and L is the length of the

conductor and k =-V .

Its solution may be found, for example, by the method of succes-

sive approximations [79, 80] or by the perturbation method [85].

Recently, Vaynshteyn [81, 82] proposed a new solution for this equation.
Since we will subsequently base our work on the results of References
[81, 82], let us discuss them in more detail.

Let us assume that the vibrator's symmetry axis coincides with
the z axis, and its ends have the coordinates z = zI and z = z2
(L - z2 . zl). In the case of excitation of the dipole by a concen-
trated external field

e', =OP;) (28.02)

the current J(z) in the conductor may obviously be written in the form
of the sum of the waves travelling along the conductor with a velocity
c from the excitation point z = 0 and tho ends z = z1 and z = z 2 . In
Reference [81] it was shown that the complex amplitudes of these waves
are slowly varying functions of the z coordinate. These functions
may be approximately expressed in terms of the function ý(z), so that
we obtain the following expression for the current J(z):

Jlz) J,---.4 ' (I z 1) el* I" + A ., .(z - z,)e'k(&-,,, +

+ A, ý (z. -- z) e'"s-1. ( 28.-03)
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Here the quantity

cc 1=.781... (28.04)

determines the initial value of the current wave propagated from the

excitation point(. The function *(z) is the solution of the inte-

gral equation, and in addition to the variable z it also depends on

the parameters k and a. We will not list here all the propertieýý of

the function *(z), but let us note only that it satisfies the

conditions

,( o) - • - .1 (0 0 ) _ , ( 2 8 .0 5 )

and its absolute value monotonically decreases with an increase of z.

This decrease, which is rather slcw and does not have an exponential

character, is due to radiation.

The constants A1 and A2 determine the initial values of the

current waves originating at the points z = z and z = z2 , respectively,

and travelling in the direction towards the opposite end of the

conductor. These constants wre found from the conditions at the

conductor ends

J ,)--.J(z,)--O (28.06)

and equal

A,- ,
I .i ik (\28.07)A,r= -4- i,-+(z,)-- 4,(--z,) • L) e- J'ehht (2".7

where

VOLe (28.08)

(l)Footnote appears on page 216.
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Considering that the quantity I/D is equal to the infinite geo-

metric progression,

S+4 .. (L)e2dL + l()el" +. (28.09)

Expression (28.03) may be written in the expanded form

J(z) = . {( (Iz l)eia -1 (-- :,) e *. (z--Z,) eW,-"--

- (L) e ML+ (z, - z) e'IS-8+ e' tL) IthL • (Z -

--4 (.)e' .i (t - -" )

"The physical meaning of Expression (28.03) is seen from this. The

first term in Equation (28.10) is the primary current wave which coin-

cides with the wave excited by a concentrated emf in an infinitely
long conductor. The second term (in all brackets) corresponds to the

current resulting from the reflection of the primary current wave

from the conductor end z = Zl, and as a result of subsequent reflec-
tions from the conductor ends which arise from this wave
.......J.f--z,)e"'(z- z,)c- . The third term (in all brackets) corre-

sponds to the current resulting from the reflection of the primary
wave from the end z = z2 and as a result of the subsequent reflections

fro7 the conductor ends arising from this wave

It also follows from Equation (28.03) that external field (28.02)
eXcites in the semi-infinite conductor (z,•Z-.) the current

I ~ ~~~J Or)-- J. I• f (I)• r , 1) _ (. >-z",)'e (z - Z')e'-" ( 28.11 )

and in the semi-infinite conductor (-- , the current

J(z) '= I, (4. (It I) leh , I- • )e' d(z, -- z) e *0"-"l. (28.12)

Comparing these expressions with the proper terms in (28.10), we see
that the reflection of all the current waves at the end of a finite
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length vibrator occurs in the same way as at the end of' a zenA•-i.... '-

conductor.

in the case of a passive vibrator (2,<z~y:). excited by the plane

wave

the current also is represented in the form of the sum of waves (see

[82])

.J(z) =S le'" --1' -(z -- Z,) •e!'' :-w ,_

- 'z. tz, - z) e'• ""-" -+- A, ? (z - z,) e,-+

+ A ,(z. --.z)eI "•I, (2S. 14)

where the first term corresponds to the current excited by a plane

wave in an infinitely long conductor. Its complex amplitude S equals

(2S.15)

The second and third terms are primary edge waves arising a- a con-ze-

quence of the cut-off of the current Se They are expressed in

terms of the functions 1P + (z) and ,• - (z) which depend, in adliticn

to the variable z and the parameters k and a, on the angle 7 T.ese

functions satisfy the relationships

S(0) = ,. , ( 0,=O

',.(Z)! o (Z) W-.

The initial values of the primary edge waves are such that 7u.e'r -'

with the wave Sewz gives a current equal to zero at the conductor

ends.

The last two terms in Equation (28.14) corresponi to sec•:vdr'v,

tertiary, etc., edge waves, and have the same form as tlhey ao
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tran.zmItting vibrator [compare Equation (z8.03)]. The unknown coeffi-

etencs WI and W2 ar-. found from Conditions (28.06) and equal

1D J "'•i; j (+L)--

-- % •L ; Le(' • - :.

• -D-e IY-(L)--

- O'. (L)•, (L)e• 3 'je•hu. • 1(28.17)

Using equality (28.09), Expression (28.14) may be written in the more

graphic form
/ /(4)= S {e'•" -- • (z -- :,) eiJ1.+Ih(E.-asJ 0

+ .. )ea'•+4L [.p (z. - z) e .10-"-
-' (L•e" Lý (z -- z,) e'*"- '

+ f ' L ) e :" ,pt (z, - z) e :' -', - ..)

- (z. -- z) e•":÷+k (2,.-, 4+

+ 'i (L) ei•",'Ih [, ( -,) e(z - z. )
--•(L)e'' lit (Z, --Z) e IM"-O+I

+•8•(L)esL -(z (28.18)

Here besides the wave Seiwz and the primary edge waves, which we

talked about in connection with Equation (28.14), the secondary, ter-

tiary, etc. waves diverging from the ends z = z and z = z2 are
explicitly written out; they correspond to the first, second, etc.
terms in the graphs.

Passing to the limit in Equation (28.14) when z2 * ®, we find

the current in the semi-infinite conductor (zl, w)

J (z) -- S.lei'' -- 4'_ (z -- Z,) ei ''('t' (3 2 .19 )

and, similarly, we find the current in the semi-infinite conductor
(-', z2 )

(Z) --s. e " . - e '
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It is not difficult to see that irl thie ca'o,, of a Ia:'i., v br:•t'r

the reflection of current waves at it.s' ends occurs -ri the sa.me way a:;

at the end of a L;emi-irifnltc conductor.

Thas, the complex amplitudes of current waves in a thin, finite

length conductor are proportional to the functionr ,(z) and ip(z)

which monotonically decrease wtth an increase of z as a consequence

of radiation. Let us note several properties of current waves in a

vibrator. Each advancing wave in sum with the reflected wave excited

by it gives a zero current at the conductor's end. In the case
A' (n=:1,2.3--.) and D % 0, a current resonance beý-ins In

the vibrator.

The precision of Expressions (28.03) and (2S.111) obtained by the

method of slowly varying functions is different in various sections
of the conductor. It is comparatively low near the conductor's er.do

(and in the vicinity of the point z = 0 of a transmittint7 vibrator)

where the current waves arise, and where their complex amplitude varie--
rather rapidly. As the distance from these vibrator elements increas.',

the precision of these equations increases without limit.

It should be stated that with a more rigorous atproach 7`, 201
the amplitudes of all the reflected waves will be determinedl by dif-

ferent functions; however, the difference between them rapidly decreases
with an increase of the reflection number. The functions ,(2) and

*_(z) only approximately describe these current waves, but on the other
hand they allow one to effectively sum them and to obtain closed

equations.

Using the variational method for the functions (-(z) and ,

we obtained the approximate, but on the other hand, simple .::-i

(see [831)

-k

N(Z) = - #
In E(2qx'l ( .l.i.i

(Equation continued oin next n:,

FTD-HC-e23-259-71 I 1

- / N



I - (28.21)

where

In(--)=i, I-i---i. (28.22)

£ - q -=(ka), q .=q r-s- (28.23)

and

E(Y)=Ciy+isiyJ5 1-1dt. (82
ci (28.24)

The integral cosine Ci y and the integral sine si y are determined by

the relationships

Q •-,--dt, r'it (28.25)

and are thoroughly tabulated functions.

The equations written above for the current in a finite conductor

are distinguishable by their visualizablity, and they enable one

to liken the conductor to a section of a transmission line In which,

however, the attenuation of the current waves takes place, not accord-

ing to an exponential law, but according to a more complicated law

which is determined by Equations (28.21). In addition, the diffraction

character of the problem is reflected in the equations. The conductor's

specific features as a diffraction object are included in the very

slow attenuation of the current waves. As a consequence of this, it

is impossible to limit oneself to considering only s-econdary and

terLiary diffractions, and It is neceissary to sum all the reflected

waves. As a result of such a summation, a "resonance denominator"

D appears which takes into account the reoonance properties of a

thin, finite length conductor.
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§ 29. Radiation of a Transmitting- Vibrator

The radiation characteristic of a transmitting vibrator may be

calculated from a known equation by integrating the currents in it.

However, such an approach is not advisable because, as was Indicated

above, the precision of Equations (28.03) is different in different

parts ,f the conductor, and is low near its ends (z = z1 and z = z 2 )

and the point z = 0. The principle of duality gives more precise

results. This principle leads to the following expression for the

radiation field in the far zone [821:

---- = H,.•-.()
2 sinOin In

L, C H 0. (29.01)

The function

+ B,j. (t) ei ' -, -B,4- (L) e- (I +C' (29.02) (29.0 2)

is connected with the current (28.14) excited in a vibrator by plane

wave (28.13) by the relationship

J (0) -= S/ (0), ' 29.03)

The coefficients B1 and B 2 do not depend on the angle *

Expression (29.02) enables one to trace the formation of the

radiation. The first term (one) is the radiation field of an infinitely

long conductor excited by a concentrated emf. Propagating7 in the

direction 0 = 0, this field reaches the conductor's end z = :ý;, arnd

-being diffracted by it - generates a primary edge wave (theo second

term). In a similar way, the primary edge wave diverging from the

conductor's end z = z is excited (the third term). The last two terris

in Equation (29.02) determine the waves arising as a result of .•ubte-

quent diffraction (secondary, tertiary, etc.). The amplitudes B1 and

B of these waves may be found from the conditions
2
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-,0, (29.04)

which means that the radiation of a finite conductor In the direction

of its geometric extension must be equal to zero. These conditions,

together with a consileration of the relationships (28.05) and (28.16),

lead to the system of equations.

B. + B'? (L)e-i' zj " e'- z, "'."

B,'? (L) e•' " 8, . (a,) e"•,,,. (29.05)

from which we find without difficulty

B, -"= "[ I ("-z ,ý "" "Ž(L)' ,e!' Ie"b'k;-"

D, (29.06)

Keeping in mind (28.09), let us represent the functions f(D) in a

more graphic form

f(O) = I -- ..~ (z.) •'~' °'C t-* '•(z,) eiL +÷Z) X
x ('i. (L) e-j*h° Ct -- .• •Lj e"" ,i. (L) e-'s;'=I * 4.

, , 2RL_.iA e ik,,,, ., Ia
-+ e e') -L)..... -

- '.? (-z,) e- '1' ' *•1 '+ (- z.) e"*hL-'j X

X [(. (L) e-'*'wC# " -- •, (L) :".'- (L) e"'•"' Co 6+
+r "•1(L) e~ktji4  (L) e-rhl*o( .-.-. .. , (29.07)

where the secondary, tertiary, etc. waves correspond.ng to the first,

second, and following terms in the brackets are explicitly written

out.

Thus, the field radiated by a transmitting vibrator arises as a

result of multiple diffraction of edge waves at the vibrator's ends.

Let us note in connection with this that the edge wave is diffracted

by the opposite end of the vibrator in the same way as at the end. of
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a corresponding se~m.i-infinite conductor. It !L; riot difficult tu

establish this by investigating the radiation of a semi-Infinite

conductor excited by a concentrated emf.

§ 30. Primary and Secondary Diffraction by a

Passive Vibrator

Let a plane electromagnetic wave fall at an angle Oo on a thin

cylindrical conductor of length L = z2 - z and radius a (Figure 73).
For purposes of generality, we will consider that the incident wave's

electric field E forms an angle a with the plane of the figure.
0

Then, its tangential component on the conductor surface will-equal

Es = E,.-e'2.z (30.01)

where

E°, =Esin.. E•=-E, cs a, w. = k--cos o (30.02)

The current induced in the vibrator by this field was investigated

by us in § 28. As was already indicated above, Expression (28.14)

which was obtained f6r it has a relatively low precision near the con-

ductor ends. Therefore, it is inadvisable to seek the fringing field

by integration of the current. Let us also note that the fringing

field found by such a method does not satisfy the principle of duality.

We shall seek "he scattering characteristic of a passive vibrator

by starting from the follow.-ng scattering picture which naturally

follows from the previous results. An incident plane wave, beinr- dif-

fracted at the conductor ends, excites primary edge waves which are

radiated into the surrounding space. Being propagated along the cmn-

ductor, each of these waves experiences diffraction at the opposite

end of the conductor and excites secondary edge waves. The latter,

in turn, generate tertiary edge waves, etc. The total fringing field

is comprised of the sum of all the edge waves being formed 1url nT

sequential (multiple) diffraction at the conductor's ends.
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In § 28 and 29, w, nrti..j t.•it curre:nt waves are reflected from

t:,e end.- of a fInlte ltn'it~h cciduct r thE. -.ame as from the end .f a

.;,!m!-Infinrle c-onductcr, an] that the diffraction of these wav:z at

eauch end takt.s place in the .ame way az at the end of a semi-infinite

ccnductor. Therefore, the pr-,!ary edI-e waves may be found from the

rr'-;Llem of scatterln. of a plane wave hy the semi-infinite conductor

(zi, -) and the conluctor (-®, :'9) The sum of such waves gives trie

pr'mary diffraction field

"(30.03)

where

Cos -1, i•O••c •.,g , Cos•i. " ( 30.04 )

The function (D(w, w,'o may be
calculated by means of the rigor-

_, _ & ous solution to the problem of a

semi-infinite vibrator (see [32]
§ 3 and [83] § 4), and in this

case, it satisfies the relation-
Figure 73. The incidence of a shin

plane wave on a thin cylindrical
conductor; he is the incident
angle.

j Z (30.05)

However, hencefcrth it will not be necessary to have the r•gorous

expression for the function ¢. Let us note that Equations (30.03)

and (30.04) are similar to Expressions (6.13) for a strip. These

latter expressions do not take into account secondary diffraction.
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The secondary edg-e wave proparated from the enrvl Z A z2 ; ex-

cited (iU1'I rig di jiracti.on at thio, ond of thec p1ý.mar-y cU rrcrnt wyi v

-- S '_(z z,)•e , ( 30.06)

0
where by ý,(z) we mean the functions obtained from the function.; ,, (z)

by replacing, l by 8.. For the purpose of calculating7 the deslred

"secondary waves, it is necessary for us, first of all, to find that

external field which, when applied to an infinite conductor

, would excite the current (30.06) on it.; section (zz•c•)

For this purpose, let us study the current induced in an infinite

conductor by the external field

A-Ol ive. I- (Z- S (z - , Wltn 2< Z,

I W Iwt.+? ' 1 ].Z. (30.07)

Let us assume that w0 has a small negative imag;inary part (IT m0 < 0).

We may reg, ard the quantity E.':;'dW as a concentrated emf which, in

accordance with equation (28.03), creates in an infinite conductor

4_a f ? (30. 08)

Therefore, In accordance with the principle of sup-rpooitoin, I ht,

total current created in the region <z~or by tite oxte'rniI f (hitd

(30.07) will equal

- 0 ' 'L.0

__.. .. •6 z- + . •++'.. d,

The resulting; integral may be expressed in terms of the funrtio+•i1"

z - ) and p_ 0(z -") , and the correspohding7 relatitthlthip2-, do, 'v,

in § 2 of [82]. As- a result, we find
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CEo, 5 .l'.l'.e l-

J(z)---- _ , ju 0(z - Z,) --

&h 'Ba' Ihi

21k SIN 6,I I t1*0cam-Y (30.10)

Thus, it turns out that external field (30.07) excites, in

addition to the wave *p_, also the wave 0. In order to excite a "pure"
i0 wave, it is necessary obviously to apply an additional external

field

E:=8,(z-z.). (30.11)

such that

Rik SintŽt2 fka4

+ -8, f (Z-- Z.) 0. (a'. -0
4 Isi-

in-- (30.12)

Hence,

2ik sin, (30.13)

In order that the sum of external fields (30.07) and (30.11) would

create the current (30.06), it Is still necessary to fulfill the

equality

2iksi' , IYks in' 21

.7ka cos, ,,i .- ,, I n,,,i - ( 30.14 )
CI2

which determines the quantity
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21Yka co--

0, wt(30.15)

Consequently, for the excitation in an infinite conductor (with

z > zI) of current waves (30.06), it is necessary to apply the external
field

I
'a

I. •t h ,in'-1

I with z<z,

-Z Owith Z><z. (30.16)
In a completely similar way, one may show that the external

field

~L'

I 0with :•.zr:~
J, <(30.17)

excites the following current in an infinite single-wire lne (with
z <z 2 )

-SI.. '/'' :"' (30.18)

Now let us study the diffraction of current waves (30.06) by the
semi-infinite conductor (-a, z2 ). For this purpose, let us use the

Lorentz lemma [4i]

Here j-==-i~o,:r -R'• is the current of the auxiliary dipole with the

moment p1 which is located at point 1 with the coordinates (R, 8); H
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is its field on the conductor surface, where the external currents
2 are specified; E2 is the field created by these currents at point 1

(Figure 74).

A The external current J is2

determined by the well-known

equation

4.=- (30.20)

Figure 74.

in terms of the electric field E

on the conductor's surface. In

view of the boundary condition

(30.21)

we have

j- e E

(30.22)

Furthermore, defining the dipole moment p1 in terms of its field

in free space (at the point x m y = z - 0)

A -P. - sin# (30.23)

and changing from the magnetic intensity Hl, to the total-current

J = ý_ H1,4, (30. 24)

induced by the dipole in the conductor, we obtain from the Lorentz

lemma the following relationship:

&S =- H21-7 1(Zj dz.•:, w,'-= ,-- .• !• (• (30.25)

If the dipole p1 is moved to a distance R >> z2 - zo, then the

field radiated by it may be investigated on the section z2 - z0 of
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the semi-infinite conductor (-% z2) as a plane wave. Then the

current induced in this section of the conductor will be determined

by the equation

"Jtz) -S j Ie" -e'+"'+• (z, - z) ("1 (30.26)

where

.S'-- c,. - .= -- /kcos#.
21 (30.27)

2k' sin' A In 'ka-sa

We will select the quantity z0 in such a way that, at a distance

z2 - z0 from the conductor end, the reflected current wave would be
practically equal to zero (++(z,.-z#):O) . Substituting the function
(30.26) into the right-hand member of Equality (30.25) and taking for
the quantity Ee the external field (30.16), we obtain

z

21F

2 I-k -a s ,jj-

XT.!. f E," f e"e' - j+ (z,-z) ,I1"+N (Z,-8) dz -

2s= b i -- SA { Ie' ie - j... (L) e''t+'Lz + J

(30.l28)

An important feature of this relationship is that the integration
is performed here not along the entire conductor (-o, z2), but only
along part of it (-c, z1 ), where the function ý-(zs--z) describes the
current with good precision. The integrals here are calculated th,.
same as in Equation (30.09). As a result, the field radiated by the
semi-infinite conductor (--, z 2 ) will equal

I eih•RE2o # H2; - 2i, --#-- X
S2",,1o• In kAa son O

.- (Equation continued on next pnwe.)
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I . /

c'~~~~ie 1e4 ~~y, I l e -"1i (,:Us I _CO-i lý~ +t

sO I
lilt "2 In

, 1 U.*+r. i sin ---

i,(COSC-S(') 4 (L)-In---..-.- - +!A)11 . (30.29)

iwz
The terms in the braces having the phase factor e correspond to

the desired secondary wave dlverging from the conductor's end z = z 2 .

Using Equations (30.13) and (30.15), this wave may be represented in

the form

2i R (30.30)
2 sin In Tký Siij

wl-&re

~r(z,) =--- 4i xsI

k sin 0',(cos.8 + cos ,.)In jjjjlj-•

sn !t si, Inj 2 ~Ihcos•--,
*8 e . oil __

2 '14.4 -ya ()30.31)

Tn a slmilar way, let, us find the o;econdary diffraction wave

heing- proparated from thk, end z = z In order to do this, it i--

necessary to investi)7ate the diffraction of primary wave (30.18) at

the end z = of the semi-infinilte conductor (z,-'z-^,). In this case,

the prInciple of' duality lead.- to the foelowin,- relationship

h'..l .-- i•"., -JF' J (z) dz.T &~ e)d(30.32)

which, after subKtitutlng the function (30.17) and the current

2k' sin' ala In( , 3 )

/



/N

In it gives us lhe field radiated by the .emi-inflnite conductor

(zl, 0). The wave radiated by the conductor's end is the desired

secondary edge wave and may be represented in the form

P.'2'(z. - W 2 ,(z,)

IF 2i• (30.34)
2slAIn nh7sinS

where

4ijEe~8h i rz .- U
(Cos#z)= - +1 Co&tXt

in .(cost+ co•,•) In 1ka sin 0,

X sin* sin* In .- (L)-
Sha sh2

-- * Cos - In +01 ' (L)2 .2T O 2 1Co (30.35)

Otherwise, this expression may be written directly by replacing, in

Equations (30.30) and (30.31), z 2 by zl, & by x-0 and 8, by E--.

S 31. Multiple Diffraction of Edge Waves

The secondary waves (30.30) and (30.34) which were found are the

waves diverging from the ends of the semi-infinite conductors (--, z 2 )

and (zl, -). If one excites an infinite single-wire line by the

external field

E ' (z - (31.01)

where

k sn , Asin (31.02)

then a spherical wave arises which with 0-a coincides with wave

(30.30). With the excitation of an infinite line by the concentr'ated

emf
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E' s=$2a (z-- Z,). (31.03)

where

(' 140 (31.04)

a wave arises which coincides with wave (30.34) when 0-a0 . It is
not difficult to see that these external fields actually excite in an

infinite single-wire line current waves which are equivalent to the
secondary current waves in a passive vibrator [that is, equivalent to

those,.waves which are expressed by the first terms in the brackets of
Equation (28.18)]. Therefore, the tertiary waves may be investigated

as edge waves radiated by the semi-infinite conductors (zl, -) and

(-OD, z 2 ) with their excitation by the external fields (31.01) and

(31.03), respectively. From Equations (30.25) and (30.32), we find

without difficulty the total field radiated with the indicated

excitation by the conductor (zj, )

E , = . = ? e lk *
21 -R- 1 e - (31.05)
3 .i hI # T

and the total field radiated by the conductor (-i, z2 )

jk4a1 SID (31.06)

As a result, we obtain for the tertiary waves diverging from the

ends z and z the following expressions:

2310 110 () sn --~ R (31.07)2sl-InI n "ka +si el aP

E13 (Z.) =/./,• (Z') Y,,, e,•
s,,0 A •-• 'R (31.08)

where
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.7.1 .

' (z,) -_ 2). ,"(L)e " (31.09)

In the directions toward the opposite end of the conductor, thue

waves are equivalent to the radiation of an infinite slnýle-wire line

excited by the external fields

z(') (31.10)

S(S)(31.11)

Consequently, the quaternary waves again may be investigated as
edge waves radiated by the semi-infinite conductors (--, z,) and

(zl, -) with their excitation by the external fields (31.10) and

(31.11). Using the reciprccity principle, we easily obtain

€?() z,) •i'me-mZ o

-.• l-,)= ''(z,) = ()( 1 - *i

2sin &In -fia-j R jS
z2i R(1.)

2s In •l On .

where

(i" (z,) = - d,"'. (L) ef"". .S_ z,-c3'.,D4.(L)eL, fL, (31.1 3)

In a completely similar way, the nth order edge waves

2H zin a 1  2 s-•-

Ec•,) (z.) . ){_ • C. (2 2) H' (Zi R

2sin 0 t In J ( sl. 1 )

are found. Here
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6'~'(a]- -c~'".4 (Ledh, 1(31-15)

and

Thus, the field arising with multiple diffractions (starting with

the second) may be represented in the following form:

SR La(50)-(z) e-'ae+

=; (31.17)

where

(z. + (L) (at,)~ tL =L 3-8

'. ("'(,,: ;',)-m

n,2

U --- •'" (L) e-"L

•i ,==• D (31.19)

and the functions £')(z,.3) and 61 are determined by Equations (30.31),
(30.35), (31.02) and (31.04). We will not write out here the rather

unwieldy final expression for this field, but we will proceed with

a calculation of the total field scattered by a vibrator.

1 32. Total Fringing Field

Before beginning the derivntion of the expression for the
scattering characteristic, let us make the following observation. The
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functions p which enter Into Equation (30.04) satisfy relationships

(30.05), and may be found by factoring. However, our Investigation

of the successive waves arising with diffraction at the conductor's

ends was approximate. Therefore, it makes no sense to use the precise

Expression (30.04) for the primary field. We shall use the approxi-

mation expressions for the function *

401-- k cus 0, -- k cos )o- In ,
7ka sin -,- sin -Y

0(kcos-fl, kcosOw)=:In.-....... ... I
"-,ka cos -2 -Cos -2 (32.01)

which were obtained by the variational method and have a precision

which is sufficient for our purpose (see [833). More precisely speak-

Ing, we will use approximation Equations (32.01) in conjunction with

the rigorous Expression (30.05), and we will set

I I
In #-•

S• I~~ka Cos Y;2 Cos-•
"•("~~ ~ cu jo In - i-Fj~" 2i In-. V•.._

I"ka sin -si I
ik- In " ka sin X1 (32.02)

Then the primary field will equal

- _ .E .'iR

-2i 2i X)2 ('os 4 + in. ,);n In-k s

X ctg -- ctg "• In a -ie e Cý&-O

"7kae Cos - ev•s -•

ka2 sin2siu--J (32.03)

Now summing Expressions (31.17) and (32.03), we find the total field

scattered by a passive vibrator in the form
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E = H , = - - E -• . ( , ) ( 3 2 .0 4 )

where

F(8, Oo) = 21 iX
(cos 8 + c)s %.) sin • ia O , In In

X csoss Cos In , ,0cce 0.)
c•ka Cos -y- Cos -7-

s-in''--sin" -. (Cos +C9% 8,,1 +

I sn -a sin -
COS. _L COS _ýt 1a ,It-.~,
2OTO 2 T '

• r-"[ . ,a.. 5 . _

+ -in' s ' •] '-l-.- 1 , i,.,
_2a cos T l

2 20 Coacott In i ] i (Z.- C.os#+Z, Ca.os
-- 2OS -J- Cost 0.

(Co I+CSO'okaco

(cos *.+ cos !,) I ika ";*L 0 ,O A cosOO

- 1, e-'t" cos eoI 4 De- 5I•,co. s

c€• s I ,S.) In. 8' -• :* .~ •r&L- 0. o,__

20
- �+e-W.i2 Cos (32.05)

In which all the functions 0± and iP_ have the argument L. The result-
ing expression, despite its complexity, has a clear physical meaning.

Actually, the first term in the braces corresponds to the primary edge
wave radiated by the conductor's end z = zl; the second term corre-
sponds to the primary wave radiated by the conductor's end z = z2.
The terms included in the first pair of brackets refer to the secon-
dary wave departing from the end z = zl, and the terms in the second
set of brackets refer to the secondary wave departing from the end
z = z2 . The remaining terms describe the sum of all subsequent waveo

arising with multiple diffraction Pnd have a resonance character.
The resonance begins with L = z2 - z % n*X/2(n = 1, 2, 3...) when D % 0.

2C1 "-
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Another important feature of the scatterinr characteristic is

that it satisfie,. the reciprocity principle - that is, it does not

change its value with a mutual interchange of 0 and 1o. One may

also show that the vibrator does not radiate in the directions along

its axis, and it does not scatter electromagnetic waves with glancing

irradiation, that is,

F(O, )=F(%. o)-= F t, ')- F(' 7)-==0. (32.06)

Furthermore, using representation (28.25) for the functions V

and ý,, we obtain the following expression for scattering character-

istic (32.05) in the direction of the mirror-reflected ray (O=x-Oo"

F (r.--, 0,) k. 2i +
21n pt $t

(I.?t' (2k!~.sin' 4-) +("!' (2kL COS' 4-)

+ ( V +1+ it , 11 i \, In a sin,, t -2i- .-

'
2 Ikta sin -0,

+.(_ -•Osin' $. j ) .oe"L *t

I

e (32.07)

With glancing irradiation of a vibrator, when 0,= or it

follows from this that F(,, 0)= F(-. , ), O

Now assuming that in Equation (32.07), we obtain tie

relationship X kL kL

U(IE kkj)
(.-L - - -.-,-t +

-n n a) L"" '-*a1 L1
!In L--s

Equation continued on next par7e
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I i--' * " t.,L J,

(32.08)

which characterizes the reflected field magnitude with normal

irradiation.

Let us also write the expressions for the function F(#, 8.) which

corresponds to the radar case when the observation and irradiation

Jirections coincide (0 8o)

F(4, 0)=C( In e- 208, Cos 0_
"1'I e 4o+ n -, e

=sni c-oi- -In-<i

"2 -1 a s n "2"

"(2 !.i' In ' L)

" ykz sin -2.-

-Cos, n -2-1n -, ý,+ (L) e-•',',' I•i
2 ka cos

-2 c2og 1.F# I p(L) (L) (L) e-" c06 #''k+0 cns i yk . (L) e- +,-

+ ----Inj 1kj" [,,_os I-- ,e -
I )" (32.09)

We may show that when O=f Equation (32.09) leads to Expression

(32.08).

The scattering characteristic (32.05) which was found above w3a
obtained by summing all the waves formed with multiple diffraction.
Such a method is very graphic, but somewhat lengthy. One may arrive

at the same result more quickly if it is assumed That the edge wave

diffraction process at the passive vibrator's ends takes place, start-

Ing with tertiary action, the same as at the end of a transmitting
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C, - 'kt n - i

MIT II II l

- '. e-"'r ' 1.

J,,e .(32.14)

S 33. A Vibrator Which iL "hort In Comparison With

the Wavelength (a Passive Dipole)

The theory of plane wave scattering by a thin cylindrical

vibrator which is discussed In this chapter is based on a number of

physical considerations. One good aspect of this theory is the fact

that its precision increases with the length of the vibrator, since

the current waves whose diffraction we are investigating are expressed

more clearly, the longer the vibrator. However, one may also show

that for short vibrators, the length of which is small in comparison

with the wavelength, the equations derived by us have good precision.

It Is clear tlht a vibrator which is short in comparison with

the wavelength acts as a dipole, creating, a f'-Inging field

E# , If- I, k:- --•', k - sin 8. (33.01 )

where the dipole moment p, may be calculated by solving the electro-

static problem. This dipole momont doponds on the (dimensions and

ohapt' of the vibrator'. In accordance with [92], the dipole moment of

a cylinder in a uniform electrostatIc fiOld E,, equals

p,--= D(1) - .. (] . 2

where P)(1) :o a dmLne•lns on lss ftunetion I 1./:a wh1ch I. s.hown In

F17llure 75 by the ,-otit. mtiuo.zs Cu'Vo . With 1 >> i, one n:ny :alk-1l, toh"

function D(1) by rnnoau of tho n.;ymptot Ie t'xpanllonen

D(1)-T • 0 2 In '11 -

1"TP-h -. ' -',i''- !0



If In this expansion one limits oneself to the first term, then

D(I) =

The results of numerical calculations based on Equations (33.04) are

shown in Figure 75 by the dashed curve: we see that the latter

equation gives a good precision already with Z , 9.

Pat

A I• I I

'~ ~ A LA•

I- • " .

A I

Figure 75. Graph of the function D(Z) which deter-
mines the cylinder's dipole moment.

Thus, the dipole moment of a vibrator which Is short In comlpari-

son with the wavelength equals

4- . -2 . . . - -n "L .

and its scattering characteristic must have the fo•rm
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-24 XL _ 7 K (33.06)

&ai -Yi

In this section we find the first two terms of the expansion of

the vibrator's scattering characteristic F in reciprocal powers of

the large parameter L/a (with A - -), and we compare them with

Expression (33.06). We shall limit ourselves to the case &

when the function F is described by the simpler Equation (32.08).

With small values of the argument z, the functions *(z) and

Vz)=1+I1..:__'-I.. [see Equations (28.21)] may be represented in the

form

) g-z-.( em) (33.07)

The functions g and • included here are determined by the equations:

li,g(Z)-g(0)In + eS-4 d*, g (0) =In- (33.08)

and

g- d,, g(0)=In . (33.09)

Let us note that Expressions (33.07) completely agree with the

corresponding terms of the aysmptotic expansion for the functions *

and q,, which may be obtained from the initial integral equations which

determine these functions (see, for example, [811, § 4).

Limiting ourselves in the expansion for the functions *(z) and

i(z) to terms of the order of (kz) 3 , we have
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and

2 In -j.

In addition.% terms off the order (in ik-) -2are omitted In Expressions(33.10) and (33.11). Now if, we substitute these expressions intoEquation (32.08), then one should omit terms of the order (n j~-~i
it. Theefoethe function F'jf -- may be represented in the form

I % C2LI *L

- (2I0 ' 7*4tik

+i~4+..eh ~2(L)InIe. L

+ # M e(33.12)

Furthermore, taking Into account Equations (33.10) and (33.11),
we find

i~~ 21 7kL ikL4-+
2 744 4(33.13)

In + -L ++ eihl=

yk - W (33.14)

-2 a 4,~
I +iks~(~Ls j L- In *- (33-15)



and finally

I +4(L)e,•, •' (L) ehL -

#L,. yeL + 1kL in" 12L" L *'L* (1+10 2) +

+ InT 2)L "_l -- - n2\
5 IeL14 ý 2 (33.1

I+ i , - 24 (33.16)

Using these relationships, it is not difficult to show that

IL
I-- 4 • " + - 2+0 +(33"17)

The equation which has been found may be rewritten in the form

-,,,. -h ) L'.
2 Vi

-- It completely agrees with Equation (33.06) which follows from [92].

This result confirms the correctness of scattering characteristic

(32.05) calculated by us, and shows that it is applicable for vibrators

of any length.

5 34. The Results of Numerical Calculations

The function F(Oo Oo) enables one to calculate the integral scatter-
ing thickness S and the effective scattering area a of a passive

vibrator. The integral scattering thickness is determined by the

relationship

s = ". (34.01)

where

P=-" Eo (34.02)
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is the energy flux density in the incident wave averaged over an

oscillation period, and

P ReInEH*IdS= 2-EsinO.Reý J(,1)eh"a"Odz (34.03)

is the value of the energy scattered by the vibrator into the surround-

ing space averaged over a period. Since one may represent the fring-

ing field in the far zone in the direction O=•-n- by the equations

Sifl..~j.JJ~~e~a~sdz(34.04)

and

E- H---B -. F(.- , 0.1, (34.05)

then, having determined from this the integral

* cE
e, J( )e tIz F( -0,., .8 (34.06)

we obtain

Calculations of the quantity S/L 2 (with , performed by us

for vibrators with the parameter Z=j1 taking the values X = -0.05
and X = -0.1, are found to be in agreement with the results of

Leontovich and Levin [85]. With X = -0.1, our curve (the dotted line

in Figure 76) is only slightly displaced in the direction of longer

wavelengths and gives slightly higher resonance peaks.

The effective scattering area a according to the definition

equals

(0, 0.)= P,.4-.R (34.08)p

where p is the known quantity (34.02) and
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Ii Figure 76. The integral scattering thick-

tness of a vibrator as a function of' itsSlength (with normal incidence ot' a plane
wave). Curves 1 were calculated by Leontovich

S~and Levin [85]. Curves 2 were calculated

on the basis of ' Equation (314.07)•

PrzCCE-- 5 (3J 209)

represents the average value of' the energy flux density scattered by

the vibrator in the direction I) . Consequently

/
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If the receiving antenna operates with the same polarization as

the transpitting antenna, then the corresponding value of the effec-

tile area will equal

7. ,# c ',. Ii -(-( 'F(8,0')1' (34.11)

In the cabe Of radar whep, the transmitting and receiving antennas are

conbined aid the polarization is arbitrary, the vibrator's scattering

"prdperties are characterized by the average value

- - - (34.12)

In Figures 77 and 78, the results of calculations performed on

the.basis-of .Equations (34.12) and (32.08) for the case of normal

irradiation 42.) are represented by the dotted lines. Figure 77

illustrates the dependence of the function 6 on the quantity kL with

a given value of 0,=21a!L-= 15, - that is, when the ratio of the

vibrator's length to *its diameter equals L/2a = 452. In Figure 78

the graph of the function 6 is constructed as a function of the fre-

quency f = c/X'10-6 (in megahertz) for the prescribed parameters

L a 5 cm and Op = 15. Here the curves plotted by Lindroth [79] are
drawn with a continuous line, and the curve in Figure 77 calculated

by Van Vleck et al. [863 is traced by the dash-dot-curve.

1-

The curves of Lindroth and Van Vleck were calculated by inte-

grating the current which is found as a result of the approximate

solution of the integral equation. However, this procedure was per-

formed in [79] and [86] in a different way. Lindroth obtained an

expression for the fringing field in the form of an expansion in

reciprocal powers of the parameter 0 . The expression includes terms

of the order of 9 -3. In [86] a different kind of approximation was

used which led, as can be seen from Figure 77, to rather rough results

especially in the resonance region. Our curve (the dotted area)

agrees almost everywhere within the limits of graphical precisicn with

the curve of Lindroth. A noticeable divergence is observed only in

the magnitude of the first resonance peak.
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Figure 78. The effective scatter-
41 ing area of a vibrator as a

function of the frequency
f - c/A.*lO 6 (in megahertz) with
normal incidence of a plane wave.
The designations are the same
as those in Figure 77.

In Figure 79 and 80 radar

diagrams are constructed for vi-

brators of a length L a 0.5A and

Figure 77. The effective scatter- L = 2A with the specified value
ing area of a vibrator as a L/a a 900. Curves 1 were calcu-
function of its length with
normalý incidence of a plane wave. lated by Tal using the variational
Curve 1 was calculated by method [87]. Curves 3 were ob-
Lindroth [79]; curve 2 wastandbthmeodfidud
calculated by Van Vleck [86] by tmdb h ehdo nue
means of the method of integral ernf [86]; curves 14 were obtained
equations; curve 3 was calcu- bthaovinctemtodf
lated on the basis of Equation b h bv-niae ehdo
(34.12). Van Vleck. The results of calcu-

lations based on our Equations

(3L4.12), (32.08) and CIý2.09)-ae

shown by curves 2.
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Figure 79. A comparison of the diagrams
for the effective scattering area of a
half-wave vibrator calculated by various
methods.

Curve 1 was calculated by Tai [87] by the
variational method;

Curve 2 was calculated on the basis of
Equation (34.12);

Curve 3 was calculated by the method of

induced emf (in the work of Van Vleck
[86]);

Curve 4 was calculated by Van Vleck [86]
by the method of integral equations.

In the cited references, the fringing field was calculated by

the direct integration of the current. In order to determine the

current, various approximation methods wereused. In the variational

method [87] a functional was constructed for this purpose which was

stationary in respect to small current variations. Then the current

was sought in the form of some function containing undetermined con-

stants. These constants were found from the condition of the func-

tional's stationarity. This method enables one to rather easily
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Figure 80. Diagrams for the effective
scattering area of a vibrator calculated
by various methods. The designations
are the same as those in Figure 79:

L = 2A

obtain the first approximation; however, its results, especially for
long conductors, may depend in a substantial way on the form of the

trial function. In the induced emf method [86], the current is
sought in the form of a combination of trigonometric functions with

unknown coefficients. These coefficients are determined by using the
law of conservation of energy. This is the simplest method, but it

has a number of serious defects. Thus, as a consequence of incorrectly

accounting for the current component having the incident field phase,
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it leads to inaccurate results in the case of odd resonances (cspe-
cially for long conductors), and it does not give the displacement of
the resonance peaks from the values X = 2L/n (n = 1, 3, 5 .... ) in the
direction of longer wavelengths.

The results obtained by us are also approximate. However, our
Equation (32.05) satisfies the reciprocity principle, and is applicable
for any length vibrator. For very short vibrators L << X, it changes
into the asymptotic expression for the scattering characteristic of
a dipole (see § 33). For vibrators with a length of several wavelengths

(L • nX, n - 1, 2, 3, 4), Equation (32.05) gives satisfactory results.
Calculations performed on its basis for radar reflection with normal
irradiation agree with the results of Lindroth. Good agreement is
also observed with the results of Leontovich and Levin for the inte-
gral scattering characteristic. With an increase of the vibrator's
length, the precision of this equation increases, and in this wiy it
is favorably distinguished from the equations proposed for the
scattering characteristics by other authors.

Moreover, the divergence between the various approximation
methods indicates the necessity of performing rather detailed calcu-
lations based on precise methods, for the purpose of evaluating the
actual error of the approximation methods. Such calculations may be
performed, for example, by means of the method discussed in
References [88, 89] or [91].
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FOOTNOTE

Footnote '1) on page 117. Let us note that one may refine
Equation (28.04) by multiplying its
righthand member by the factor 0
(usually 00 ý 1) calculated in
Reference [84].
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the current becomes noticeable also in those directions where, accord-

Ing to physical optics, the fringing field must be equal to zero or

have a small value.

The problem of diffraction of a plane wave with Its incidence on

a cone along its axis (0 17) serves as a clear example of how impor-
tant the above-indicated factors are. Although in this case the non-

uniform part of the current, concentrated near the cone's vertex, has
practically no influence on the scattering, nevertheless, the physical

optical approach gives values for the radar thickness which are tens

of decibels smaller than the experimental values, even with large

dimensions of the cone. The deciding factor here is the nonuniform

part of the current flowing in the vicinity of the sharp circular base

rim of the conical surface; the nonuniform part of the current has an

especially large vnlue for sharply pointed cones.

Another interesting example of a similar nature is the scattering

of a plane wave by a finite paraboloid of rotation (§ 18) where the

physical optics approach leads to qualitatively incorrect results.

The effective scattering area calculated in this approach turns out

to be a periodic function of the paraboloid length, and with certain

lengths it becomes zero which most certainly does not correspond to

reality.

The investigation of the diffraction 3f edge waves shows

(Chapter V) that for flat plates one may limit one~self to considera-

tion of secondary diffraction, if their linear dimensions are one-

and-a-half to two times larger than the waveleng-th.

Let us note that we attempted to obtain equations for the
scattering characteristics which would possess physical visualizi-

bility and which would be convenient for mak ngr caLculations. Tn

keeping with this, we were obliged to introduce various kind.- of

interpolation equations and simplified equatiolns. which satisfy tht,

formulated requirements, but in return are not In the general case

the dominant terms of the rigorous asy.mptot~lc expansion in powers nrf

the small parameter A/a.
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Our purpose was not to calculate the current on the body's sur-

face, the field in the near zone, or the integral scatterlnf thick.:ness.

These questions are investigated in a number of other works based on

the physical theory of diffraction which were already enumerated in

§ 25. In them, in particular, the first terms of asymptotic expan-

sions in powers of A/a were obtained for the integral thickness which

characterizes the total power scattered by a body. However, in these

works, as a rule, equations are missing for the scattering c.haracter-

istics ohich are valid with any direction of irradiation and observa-

tion. Therefore, the results of this book and the indicated works

mutually supplement one another.

At present, only a limited number of diffraction problems have

yielded to theoretical studies, as a result of which experimental

studies of diffraction by various bodies have taken on great importance.

In Chapter VI an experimental method was discussed which enabled ono

to isolate in a "pure form", and to measure, the field from the non-

uniform part of the current excited by a plane wave on a metal body

of any shape. In the same chapter, it was shown that the well-known

phenomenon of depolarization of the wave reflected from a body which

is found in free space is produced by the nonuniform part of the

current, or, in other words, by the surface distortion.

The investigation carried out in Chapter VII for the problem of'

diffraction by a thin, finite length cylindrical conductor reprezent:ý;

a natural development and completion of the method of considerini, the

multiple diffraction of edge waves which wa.- applied in Chapter V.

In Chapter VII equations were derived for the scattering diaproin which

are suitable for vibrators of an arbitrary lengtth with any irrailit.iton

and observation directions.

D

The results obtained in this book show the fruitfulness of

physical diffraction theory, and enable one to arrive at the solution

of other more complicated problems. Such problems may be divid,,

into two classes. Problems which may now already be solved •n the

basis of the known results of diffraction theory are related to the
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first class. As an example of such a problem, one may point to the

problem of diffraction of a plane wave by a frustum of a cone or by

an inflnitely long cylinder with a polygonal transverse cross section.
Those problems whose solution requires obtaining (using the methods

of mathematical diffraction theory) a whole series of new results
must be referred to the second class. In particular, in order to give

a complete solution to the diffraction problem of a finite cone, it
is necessary to have more precise knowledge on the diffraction laws

of a semi-infinite cone.

Summing up, one may say that physical diffraction theory aids

one in analyzing and sorting out the diffraction phenomena for complex

bodies, poses problems for treatment by mathematical diffraction

theory, and enables one to effectively apply the rigorous results of

mathematical diffraction theory for the solution of new problems.

In conclusion, I express my deep thanks to L. A. Vaynshteyn for

his valuable advice and regular discussion of the questions to which

this book is devoted, and also for his attentive reading of the

manuscript and for a number of useful remarks. I also take this
opportunity to express sincere thanks to M. L. Levin for his interest
in this work and his helpful remarks.
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SYMBOL LIST

Russian Typed Meanng

SC cylindrical

d disk
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