1 Introduction

1.1 THE ORIGINS OF SINUSOIDAL WAVES
IN RADIO TRANSMISSION

Sinusoidal waves have become so universal in radio communications
that few people are aware it was not always so. Heinrich Hertz (1893)
used a spark discharge to produce the electromagnetic waves for his
experiments. These waves would be called colored noise today. Spark
gaps and arc discharges between carbon electrodes were the dominant
wave generators for about 20 years after Hertz’s experiments, and radio
signals consisted of short or long bursts of colored noise. The develop-
ment of rotating high-frequency generators and the electronic tube even-
tually made the generation of sinusoidal currents and waves possible.

A strong incentive to use sinusoidal waves was provided by the need to
operate several transmitters at the same time but to receive them selec-
tively. Maxwell! (1891) had already studied what we now call the resonance
of a circuit with coil and capacitor. Many people worked on the theoreti-
cal investigation and the practical implementation of this phenomenon,
but the credit for the introduction of resonating filters using coils and
capacitors for the selective reception of radio signals is usually given to
Marconi on the strength of his patents® (Marconi, 1901, 1904). Ap-
parently, no one ever raised the question seriously whether sinusoidal
waves were the only ones for which the phenomenon of resonance ex-
isted. Hence, transmitters and receivers were developed on the basis of
sinusoidal waves. Regulation followed-common practice and brought the
assignment of frequency bands for various radio services. However, a
quotation from a textbook published in 1920 shows that nonsinusoidal
waves were still used at that time, and that this was fully understood?

! Paragraph 779, '*Combination of the electrostatic capacity of a condenser with the elec-
tromagnetic capacity of self-induction of a coil.”

2 Patent 763 772 introduces the term tuning and describes how a transmitter and a receiver
can be tuned by proper choice of inductance and capacitance. Patent 676 332, applied for
seven months later, uses the term resonance in the description of what we would now call an
LC parallel circuit. The patenting of resonance for selective radio transmission created one
of the worst controversies in the controversy-rich history of early radio.

3 Figure 22 on page 22 shows a nonsinusoidal carrier for telegraphy, which was typical for
the spark transmitters of early radio transmission.
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(Edelman, 1920, p. 187): **The more advanced methods of wireless com-
munication utilize continuous [sinusoidal] waves, produced either by an
arc, quenched spark, or direct high-frequency generator. Inasmuch as
these methods are quite likely to be developed into the ultimate perfect
wireless system, some consideration of the theory together with experi-
mental operation is worthy of attention.™

Let us turn to the mathematical basis for the phenomenon of resonance.
The homogeneous differential equation

(d?*v/dt*) + wiv = 0 (1)

has the general solution
v(t) = V, sin wot + V5 COS wyp! (2)
Let a force function® w?v;(f) replace the zero on the right-hand side of Eq.

(1):

(d*v/dr?) + wiv = wiuv(r) 3)
The general solution of this inhomogeneous equation consists of the gen-
eral solution of the homogeneous equation, given by Eq. (2), plus a partic-
ular solution of the inhomogeneous equation. The systematic way to find
such a particular solution is by means of the method of variation of the
constant or the Laplace transform. However, in simple cases one usually

tries to shorten these methods by guessing a particular solution.
Let v¢(¢) be a sinusoidal function:

ve(t) = V sin wt (4)
We guess that a particular solution of Eq. (3) has the form
vp(1) = V, sin wt (5)

Insertion of v,(7) for v, and of the force function of Eq. (4) for v¢(¢) in Eq.
(3), yields the value of Vy:

_ o _ w§ Vsi 6

Vo = m V, Up(t) = m Sin w! (6)

Evidently, our guessed particular solution holds for all values of w except
for ® = w,, which is called the resonance case. We have to guess a new

solution for this case:

Up(t) = VO(.OOt COS (l)ot + Vlwot Sin (Dot (7)

! We assume that r has the dimension of time, w, that of inverse time, and v that of voltage.
By using w3 v,(¢) rather than v,(t) we assure that v,(¢) also has the dimension of voltage.



1.1 ORIGINS OF SINUSOIDAL WAVES IN RADIO TRANSMISSION . 3

cdv 1
v Iﬁdt L[vdt

o

FiG. 1.1-1. Parallel resonant circuit for sinusoidal functions.
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Insertion of v,(¢) for v, and V sin w,? for v(?), in Eq. (3) yields V, and V:
Vo= -4V, Vi=20 (8)
Hence, a particular solution for the resonance case equals
vp(1) = —3Vwyt COS wot 9)

Let us now connect this purely mathematical concept of resonance with
the resonance of a simple electrical circuit. Figure 1.1-1 shows a parallel
resonant circuit with inductance L, capacitance C, and resistance R. The
current i(¢) flowing into the circuit and the voltage v(r) across the circuit
are connected by the following differential equation:

1 dv

| )
Ev+zfvdt+C—(H—l(1) (10)

Differentiation and reordering of the terms yields

d?v 1 dv 1 1d

42 TRCdr TICY T Car (D

The two equations (3) and (11) become equal if R is sufficiently large, and
if the relations

| di _, di
wiC dt  dt

are satisfied. The mathematical concept of resonance of a differential
equation is thus connected with the concept of resonance of an electronic
circuit.

The differential equations considered so far were linear and had con-
stant coefficients. Such differential equations will only resonate with si-
nusoidal force functions.! Furthermore, a lumped circuit with linear, time-
invariant components is always described by a linear differential equation
with constant coefficients, and will thus resonate with sinusoidal func-
tions only. However, the mathematical concept of resonance is more gen-

W ve(t) =

- Ie

' More precisely, they will resonate only with the functions exp(— st), exp(—s¢) sin wt,
and exp(— sf) cos wt, where s is a nonnegative real number.
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eral. In particular, it applies to linear differential equations with variable
coefficients. They describe lumped electronic circuits with linear, time-
variable components. Examples of such linear, time-variable components
are switches, microphones, and modulators.! In the early days of radio
communications there were no good time-variable components, and the
phenomenon of resonance could thus be exploited for sinusoidal func-
tions only. This situation was decisively changed by the advent of semi-
conductor technology. The switch is now one of the most desirable elec-
tronic components, and it is a linear, yet time-variable component. Let us
then investigate some lumped circuits with linear, time-variable compo-
nents that resonate with nonsinusoidal functions.

1.2 LuMPED, TIME-VARIABLE RESONANT CIRCUITS

In order to derive resonant circuits for nonsinusoidal functions we rede-
sign first the parallel resonant circuit of Fig. 1.1-1 for implementation by
operational amplifiers. To this end we integrate Eq. (1.1-11) twice,

R
vit) T va
R, .
© R R
R b i
A ) ,
5 (3 b e et

R-C-<RC. R-C-R.C,=LC

FiG. 1.2-1. Implementation of the parallel resonant circuit of Fig. 1.1-1 by means of oper-
ational amplifiers, resistors, and capacitors.

! Many textbooks call amplitude or frequency modulators nonlinear devices, and go on to
discuss their use for the transmission of voice and music. There are two causes for this
common error. First, no distinction is made between linear, time-variable, and nonlinear.
Second, it is overlooked that a circuit with nonlinear components may have a linear relation-
ship between input and output. For instance, a ring modulator with four square-law rectifiers
transforms two input voltages u and v into the output voltage (v + v)* — (u — v)* = 4uv.
The nonlinear terms «? and v? are canceled, and only the bilinear term v remains.
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1
v+jR—Cvdt+ f dt’ dt = szdt (1)
and rearrange the terms as follows:
U:_R—C v dt — chf dt’ dt+‘Jldt 2)

Consider now the circuit of Fig. 1.2-1. The voltage v(¢) = v is fed in the
upper left corner to the integrator' composed of the operational amplifier
A,, the resistor R;, and the capacitor C,. The integrated voltage
—(1/R,Cy)fv dr is produced. A second integration by A,, R,, and C,
yields the voltage +(1/R,C,R,C,)[[v dt' dt. Furthermore, the current
i(t) in the lower right-hand corner is integrated by the amplifier A, and the
capacitor C to yield the voltage —(1/C)fi dt. These three voltages are
summed with proper signs to yield

1 1
_RIC,det*RICIchzfjvd[ dt + fzdt

If one chooses

Rl Cl = RC, Rl C1R2C2 = LC (3)

one obtains just the right-hand side of Eq. (2). Since the right-hand side
equals the voltage v = v(r) on the left-hand side, we may close the feed-
back loop in Fig. 1.2-1. Hence, the circuit of Fig. 1.2-1 is a practical im-
plementation® of Eq. (2).

The circuits of Figs. 1.1-1 and 1.2-1 will resonate with **periodic’’ sinus-
oidal functions, or functions that have sufficiently many periods. As the
first generalization of such resonating circuits we will discuss one that res-
onates with sinusoidal or cosinusoidal pulses that have i = 1, 2,
periods and are zero outside the interval —T/2 = t = + T/2. The first few
of these pulses are shown in Fig. 1.2-2, together with a rectangular pulse.
These are the functions used for the Fourier series in a finite interval.
They are defined by the equations

(d?v/dr*) + w?v = 0, -T/2=t=+1T1/2
v =0, t< —=T/2, t>1T/2

(4)

! It is assumed that the reader is familiar with the use of operational amplifiers for integra-
tion, summation, and differentiation. An excellent text for this field is the book by Graeme et
al. (1971).

? The resistors R, shown by dashed lines prevent the operational amplifiers from satu-
rating due to drift. We do not discuss here the many technical refinements used in practical
circuits with operational amplifiers, since we are interested in principles.
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Fi1G. 1.2-2. The first eight functions of the Fourier series consisting of a constant, the sine
functions \/2 sin 2#it/T, and the cosine functions \/2 cos 2mit/T.

We integrate the differential equation twice and add a force function v¢(¢)
on the right-hand side:

v+ w? fj vdt' dt = ve(1) (5)

The terms are rearranged to make v the only term on the left-hand side:

v = —w? fj vdt dt + v(t) (6)

Figure 1.2-3 shows the voltage v(z) applied to the integrator consisting of
amplifier A,, resistor R;, and capacitor C,;. The output voltage
—(1/R, Cy)fv(t) dt is integrated a second time to yield + (1/R,; C; R, C,) [ [v
dt' dr. This voltage is fed through a multiplier M that multiplies with + 1
during the time interval —T/2 =t = +T/2 and with 0 otherwise. The
summation of this voltage with a force function v(r) according to Fig.
1.2-2 yields

—w? ff vdt dt + ve(t)

in the interval — 7/2 = t = + T/2 and zero otherwise. Closing of the feed-
back loop thus produces a circuit that implements Eq. (4).

In Fig. 1.2-1 we used the two resistors R, to prevent saturation of the in-
tegrators due to drift. In Fig. 1.2-3 we use instead reset switches S; that
are always closed except during the interval —T/2 =t = +T/2. These
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FiG. 1.2-3. Resonant circuit for the functions of Fig. 1.2-2. The choice of the time con-

LV =1 fo

stant R, C, R, C, determines the number £ = 1, 2, ... of the cycles of the sine or cosine pulse
to which the circuit is tuned. A resonating cosine pulse with i = k produces a large voltage
ve, and v, = 0; a resonating sine pulse with i = k produces a large voltage v, and v. = 0.

The reset switches S, are closed at t = =7/2.

switches make the output voltages of both integrators zero outside this in-
terval, which duplicates the effect of the multiplier M. Hence, the multi-
plier may be left out.

The voltages produced at the output terminals of the two integrators in
response to a single cycle (i = 1) of a sinusoidal or cosinusoidal force
function ve(¢) is shown in Fig. 1.2-4. One may readily see that this circuit
discriminates between sine and cosine pulses with the same period 27/ w.
The sinusoidal pulse (a) and the cosinusoidal pulse (d) were produced by
digital circuits, which explains their steps.

Figure 1.2-5 shows oscillograms of the output voltage v, of the first inte-
grator if the circuit is tuned to k = 128 by the choice of the product
R,C,R,C, = (T/2km)?, whereas the force function vy = V cos 2mit/ T with
i = 128, 129, and 130 is applied; this means that the circuit is tuned for the
detection of a cosine (output v.) or a sine pulse (output v;) of 128 cycles,
and that cosine pulses with 128, 129, or 130 cycles are fed to its input.

We obtained Eq. (5) by integration of Eq. (4) and addition of the force
function v;(f). Another method is to make the following substitutions:

d®v/dt* = u, dv/dt = f u dt, v = fj u dt' dt (7)
One obtains from Eq. (4)
u+ffudt'dt=0 (8)

A force function

Uf(t) = d2l)f/dt2 (9)
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FiG. 1.2-4. Typical voltages of the circuit of Fig. 1.2-3: (a) force function v((z) = V sin
27t/ T: (b) and (¢) resulting voltages v. and v, ; (d) force function v(¢) = V cos 2mt/T; (e) and
(f) resulting voltages v. and v,. Horizontal scale: 15 msec/div. (Courtesy P. Schmid, R.
Durisch, and D. Novak of Allen-Bradley Co., Milwaukee, Wisconsin.)

may be added on the right. The resulting equation is equal to Eq. (6), since
the letters v are merely replaced by the letters u. The force function u;(¢)
in Eq. (9) differs only in sign from the force function vg(z) if v(7) is a sinus-
oidal or cosinusoidal function.

The equality between integration and the substitutions according to Eq.
(7) does not hold for differential equations with variable coefficients, to
which we turn now. Figure 1.2-6 shows Legendre pulses. These pulses
equal the Legendre polynomials P;(#) in the interval —1 = # = +1 and
they are zero outside:

Po(6) =1,  Py0) =06, Py6) =136 — 1)
P3(0) = $(56° — 360),  Py8) = 4(356* — 306* + 3) (10)
—-l=0=+1, 6=1T
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FiG. 1.2-5. Typical voltages of the circuit of Fig. 1.2-3. Circuit is tuned to resonate with
sine and cosine pulses with & = 128 cycles. Output voltages v, shown are caused by force
functions ve(r) = V cos 2mit/T with i = 128 (a), i = 129 (b), and i = 130 (c). Duration of the
traces is T = 78 ms. (Courtesy P. Schmid, R. Durisch, and D. Novak of Allen-Bradley Co.,
Milwaukee, Wisconsin.)

The Legendre polynomials are defined! by the following differential equa-
tion:

2
d”—20@+j(j+1)v=o, —1=6=+1 (11

=~ 2

! The mathematician says that the Legendre polynomials are the eigenfunctions of this dif-
ferential equation, just as sinusoidal functions are the eigenfunctions of Eq. (4).
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F1G. 1.2-6. Pulses of the form of the Legendre polynomials P;(6) in the interval — 1 = ¢ <
| and zero outside.

We want equations that show the real time ¢ rather than the normalized
time @ = t/T, and we thus substitute 7/7T for 8 in Eq. (11):
o d*v dv

(T* — t —61‘—2—2[2;+j(j+1)1)=0 (12)

We use the substitutions of Eq. (7) and add a force function wu;(?):
J(J + 1) H dt' dt = u(t) (13)

Next we rearrange the terms so that only « stands on the left-hand side of
the equation, and so that the time constant 1/T appears conspicuously
with every integration:

Flft2%fudt_J(J+l) tzpffudt dt+uf(t) (14)

A circuit implementing this equation is shown in Fig. 1.2-7. The voltage
u(t) is integrated twice to yield fu dt and [[u dt’ dt. These voltages are
multiplied by the multipliers M; and M, with (T/(T? — ¢*) and T*/(T* —
t?). Further multiplications by 2 and by j(j + 1) are accomplished by the
amplifiers A;, A,, and the resistors associated with them.! The resulting

u=2

! These two multiplication circuits can be combined with the amplifier As.
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FiG. 1.2-7. Resonant circuit for the Legendre pulses of Fig. 1.2-6. The choice of the resis-
tance j(j + 1)R in the feedback loop of the amplifier A, determines for which function Py#)
resonance occurs. The time constants R, C, and R, C, determine the time interval T of § =
t/T.

voltages and the force function () are summed by the amplifier Ay, with
attention to the proper positive or negative sign. The output voltage of A,
equals the right-hand side of Eq. (14), and this voltage may thus be fed
back to yield the input voltage u(r) for the amplifier A,.

The multipliers M; and M, have to produce the output voltages u, from
the input voltages «; as functions of time. The ratios «, /u; as functions of ¢
are shown in Fig. 1.2-8. In the days of the analog computer it was usual to
implement such multipliers either by special, motor-driven potentiom-
eters or by resistor networks and many switches. The modern way is to
produce discrete values of the functions ¢7/(T? — ?) and T?/(T?* — %) by
means of a microprocessor, and feed the digital numbers to a digital -
analog multiplier (Harmuth, 1979a, pp. 111-116).

Let us observe that circuits like the one in Fig. 1.2-7 were once rou-
tinely assembled for the simulation of differential equations by analog
computers, but the advance of digital computers has made this almost a
forgotten art (Korn and Korn, 1964; Johnson, 1963).

If the circuit of Fig. 1.2-7 is to resonate with Legendre pulses, we must
feed the force function v¢(t) = VP;(t/T) into the circuit. However, our cir-
cuit implements the integral equation (14) for w«(¢) rather than the differen-
tial equation (12) for v(¢). The force function u;(r) required to make it reso-
nate is the second derivative of uv¢(r) according to Eq. (9). The circuit of
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FiG. 1.2-8. Time variation of the ratio «, /u; of the two multipliers M, and M; in Fig. 1.2-7.

Fig. 1.2-7 shows at the bottom the voltage v¢(¢) fed through two differen-
tiating stages (Ag, A7) to yield u(7). Such differentiations are undesirable.
There are ways to avoid them, but we want to show here only how reso-
nating circuits for nonsinusoidal functions can be devised, without advo-
cating their construction and use.'

As the last example let us design a resonant circuit for Bessel functions.
Figure 1.2-9 shows the first five functions J,(6). The functions J,(0) are de-
fined by the following differential equation:

2

02%53+0%g+(02—n2)v=0, 0=6<o, n=0,1,2,.. (15
We replace 6 by t/T, make the substitution of Eq. (7), add a force function
us(t), and rearrange the terms in analogy to Eq. (14):

T1 T\ 1 )
u=—77judt—(l—nzt—2>7,2—jfudt dt + ug(t) (16)

Figure 1.2-10 shows the circuit implementing the equation. The voltage
u(t) is integrated to yield fu dt and [fu dt' dt. The integrated voltages are
multiplied with T/t and 1 — n?T?/¢* in the multipliers M, and M,. The
multiplied voltages and the force function u(#) are summed by amplifier
A,, and the sum is fed back to amplifier A,. The ratios u, /u; of the multi-
pliers M; and M, are shown in Fig. 1.2-11. Note that the multiplier M, has

1 One way is to find an integral equation rather than a differential equation that defines
Legendre polynomials. Another is to use the circuit not for Legendre pulses, but for pulses
obtained from the Legendre pulses by differentiating twice, e.g., P;'(6) = 3, Py'(6) = 150,
P}'(8) = (4206* — 60)/8. More technical remedies are discussed by Graeme et al. (1971).
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n=4 -

- 10 15

FI1G. 1.2-9. Pulses of the form of the Bessel functions J,(8) in the interval 0 = 6 < > and

zero for § < 0.

to be changed for every value of n = 0, 1, 2, ..., while in Fig. 1.2-7 only a
resistor needed changing for every value j = 0, 1, 2, ... . This causes no dif-
ficulty if the function 1 — n2T?/¢? is produced by a microprocessor, but it
was a problem in bygone days when potentiometers and resistor networks

had to be used.

_u(t)
R,
= 1 :
5 R1CszCzj[Udl dt
e
5 U e I U] o _pig?
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Ry Ci=R,C5=T. n=01.2 ...
FiG. 1.2-10. Resonant circuit for the Bessel functions of Fig. 1.2-9. The choice of the ratio
u,/u; = 1 — n*T?/1* of the multiplier M, determines for which function J,(0) resonance
occurs. The time constants R, C, and R,C, determine the time interval T of § = t/T.
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FiG. 1.2-11. Time variation of the ratio u,/u; of the two multipliers M, and M, in Fig.
1.2-10.

These examples should suffice to show that lumped resonant circuits
are not restricted to sinusoidal functions. The examples also show that it
is not easy, even today, to find resonant circuits that are as practical as
the ones for sinusoidal functions. The circuits to be discussed later on will
always be based on switches, sampled functions, and digital technology.

1.3 DISTRIBUTED, TIME-INVARIANT RESONANT CIRCUITS

A lumped circuit with linear, time-invariant components can only reso-
nate with sinusoidal functions, while resonance with any other functions
requires time-variable or nonlinear components. The reason is that
lumped circuits are described by ordinary differential equations.

The same does not hold for distributed circuits and structures that are
described by partial differential equations. To elaborate this statement we
will study transmission lines, and derive the basic resonating circuit with
time-invariant components for nonsinusoidal functions from them.

A transmission line is described by the following pair of partial dif-
ferential equations:

v ai .
6x+L6t+Rl_O (1)
ai v _
ax+C5+GU—O (2)

The constants L, C, R, and G are the inductance, capacitance, resistance,
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and conductance per unit length of the line, while v = v(x, ) and i =
i(x, t) are the voltage and current at the location x at the time ¢.

In order to separate the variables v and / one may introduce a new func-
tion:

v = ow/dx (3)
Equation (2) then yields
d (. ow _
3X<I+C81+Gw>_0 (4)
from which follows
i+ Cow/ot + Gw = K (5)

where K is independent of x. Without loss of generality one may choose
K = 0, since v = dw/dx remains unchanged if one adds to w a term that is
independent of x. Hence, one obtains the following relation between i and
w:
i=—Cow/ot — Gw (6)
Substitution of Egs. (3) and (6) into Eq. (1) yields the telegrapher’s equa-
tion:
*w w ow
i LC Fyoa (LG + RCO) Yl RGw =0 (7)
To obtain its general solution one introduces a new function u(x, t),
wix, 1) = e “u(x, t) (8)

where a is a constant. Substitution of Eq. (8) into Eq. (7) yields

o*u 2 du | u u _
Py LC(au 2a az+at2) (LG+RC)< au+at> RGu =90
9)
If one chooses
a = (LG + RC)/2LC (10)
one eliminates the terms du/dt in Eq. (9) and obtains a simpler equation:
d*u Fu 1 B
2 LC o7 + 5 (LG — RQOwu =20 (11)

The term (LG — RC)u vanishes if the condition
LG — RC=0 (12)
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is satisfied. This is the case of the distortion-free transmission line. The
product RC is generally much larger than LG for practical transmission
lines. Thus in order to satisfy Eq. (12) one must either increase the induc-
tance L, e.g., by means of materials with large magnetic permeability, or
the conductance G, by using low-quality insulation. The increase of the
inductance was common before the introduction of coaxial cables,
whereas the increase of the conductance was never practical.! However,
the length of the transmission lines we are interested in here is of the order
of meters rather than kilometers, and we can well afford to increase the
conductance G by means of poor insulation so that the condition for
distortion-free transmission is satisfied. Equation (11) is in this case re-
duced to the wave equation:

Su 5 9 2 |

ot~ “ o ST IC (13)
Its general solution was found by d Alembert in the eighteenth century:
ulx, 1) = gx — ct) + golx + ct) (14)

Substitution into Eq. (8) yields
wix, 1) = e “[gi(x — ct) + go(x + ¢1)] (15)

Using Eqgs. (3) and (6), and writing f and ¢ for the derivatives g1 and g,
with respect to their arguments x — ¢z or x + ct, yields the voltage v(x, ¢)
and the current i(x, ¢):

vlx, 1) = e[ flx = ct) + glx + c1)] (16)
ix, 1) = (1/2)e [ fix — ct) — glx + ¢1)] (17)
Z=(L/O", ¢ =(LCY", 4= (LG + RC)/2LC, LG — RC =0

' Communication links must always be “practically’” distortion-free, or one could not
transmit information. Radio links in vacuum are inherently distortion-free, whereas cable
links are made so by means of compensating circuits, called equalizers, that are inserted at
certain intervals. Power transmission lines, on the other hand, do not need to transmit infor-
mation, and the distortion problem is solved by using sinusoidal currents and voltages rather
than equalizers. One cannot use this expedient for communication links since information is
always transmitted by nonsinusoidal currents, voltages, or field strengths. The distinction
between power transmission and information transmission was not made for almost a cen-
tury of development of electrical communications. Even today, the education of the elec-
trical engineer is based on a double-think: He is presented a theory based on sinusoidal func-
tions, and then told that sinusoidal functions transmit information at the rate zero; at this
point he must switch to think in terms of nondenumerably many sinusoidal functions, and he
is left to figure out which parts of the learned theory apply to this abstraction. A paper by
Hartley (1928) marks the approximate time when the difference between power transmission
and information transmission became more clearly recognized.
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The function fix — c¢t) propagates with time in the direction of larger val-
ues of x, whereas the function g(x + c¢t) propagates in the opposite direc-
tion. Let us consider the function f{x — ct) alone. If it started propagating
at x = 0 at the time r = 0 it will have reached the point x = ¢t at the time
t = x/c, and we may replace ar by ax/c:

v(x, 1) = e ™ flx — ct) (18)
itx, t) = (1/Z)e " ““f(x — ct) (19)

Consider the circuit of Fig. 1.3-1. It consists of a hybrid coupler HYCl,
an amplifier AMP. a second hybrid coupler HYC2, and a transmission line
DEL of length L and delay 7. This transmission line is shown as a coaxial
cable, but Egs. (1) and (2) apply to many other types of transmission lines
as well.

Let the amplification be set so that the feedback loop in Fig. 1.3-1 has
essentially unit gain. Then let a periodic signal with period 7,

firy =ft — mT), m=0,1,2, .. (20)

be fed to the input terminal of the hybrid coupler HYCI. It travels through
the feedback loop and arrives after a delay time T at the feedback terminal
of HYC1 as the signal f(r). At this time the signal f(r — T) = f(¢) is fed
again to the input terminal, and the sum of the new signal with the feed-
back signal produces the signal f(r) + f{t — T) = 2f(t) with twice the am-
plitude. After n periods of the signal one has the signal nf(¢) with n times
the amplitude. This is as good a resonance effect as the one shown in Fig.
1.2-5a, where the amplitude of the oscillations also increases propor-

P DEL

L
__L_. - e - _—_——C

F1G. 1.3-1. Basic resonant circuit for general periodic functions with period 7. HYC, hy-
brid coupler; AMP, amplifier; DEL, distortion-free delay line of length L and delay T.
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tionate with the number of received periods of the sinusoidal signal. The
difference is, of course, that any periodic function f(r) will resonate with
the distributed circuit of Fig. 1.3-1, whereas only sinusoidal functions will
resonate with the lumped circuit of Figs. 1.2-1 and 1.2-3. Note that the cir-
cuit of Fig. 1.3-1 is linear and time-invariant. This circuit is as basic for
nonsinusoidal waves as the LC circuit is for sinusoidal waves.

We have taken here great care to find the general solution for the
distortion-free transmission line described by Egs. (1), (2), and (12). Now
we show that a completely different result is obtained by being not quite
so careful. A typical method to solve a partial differential equation is to
separate the variables by Bernoulli's product method. We apply this
method to the telegrapher’s equation (7):

wix, 1) = @(x)P(r) (21)

Substitution of ¢(x)y(t) into Eq. (7) yields two ordinary differential equa-
tions:

2

+ (0 — RG)p =0

2
(22)
LC%wL (LG+RC)%IR+[.L¢I=0
Their general solutions are:

e(x) = A, cos(u — RG)'2x + A, sin(u — RG)2x (23)
(1) = Bie” + Bye® (24)
y= —a+ (a® — uc?)'?, 8= —a— (a® — uc*)'? (25)

a = (LG + RG)/2LC, c = (LC) 2

where w is the eigenvalue to be determined by boundary conditions.

The function w(x, ) now consists of sinusoidal and cosinusoidal terms
multipled with an exponential function, e.g., " cos(u — RG)2x. The dif-
ferentiation required to obtain the voltage v and the current i from w(x, f)
according to Egs. (3) and (6) will produce additional terms of the same
form. Hence, it appears that sinusoidal and exponential functions are dis-
tinguished by the telegrapher’s equation. This is quite wrong. Bernoulli’s
product of Eq. (21) only yields particular solutions of the telegrapher’s
equation, not the general solution, and it is the method of solution rather
than the equation that distinguishes the sinusoidal and exponential func-
tions.

This is a very important point since the theory of electricity in general
and the theory of electromagnetic radiation in particular—to the extent
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used in this book—are derived from Maxwell’s equations. Most of the
known solutions of Maxwell's equations use Bernoulli's product, and
they must all be avoided if one wants to use nonsinusoidal signals or
signals with a large relative bandwidth.

1.4 RELATIVE BANDWIDTH

The relative bandwidth is usually defined as a quotient bandwidth/(car-
rier frequency). This definition is only applicable if there is a carrier. We
will use the following more general definition for the relative bandwidth n,

n = (fu = fi)/(u + S1) (1)

where fy is the highest and f; the lowest frequency of interest. Typical
radio signals used for communications or radar have relative bandwidths
in the order of 7 = 0.01 or less, an amplifier specified from f;, = 0.1 GHz
to fiy = 2 GHz yields n = (2 — 0.1)/(2 + 0.1) = 0.9, and an attenuator
specified from dc to 2 GHz yields m = 1, which is the largest value per-
mitted by the definition. The distortion-free lines discussed in the preced-
ing section have n = 1. Many commercially available components, such
as hybrid couplers or frequency-independent antennas, have relative
bandwidths either close to 1 or at least much larger than the typical rela-
tive bandwidths of signals. Generally speaking, only circuits and struc-
tures designed to resonate with (almost) sinusoidal signals have a small
relative bandwidth, since the phenomenon of resonance disappears with
increasing relative bandwidth.

For an explanation of this statement refer to Fig. 1.4-1, which shows on
top a parallel resonant circuit. The impedance Z presented by it to a sinus-
oidal current is given by the formula

Z = [1/R + j(wC = l/oL)]™ (2)
which i1s usually written in a normalized form:
Z/Zy = [1 + O — 1/Y]™! (3)
Z, = R, we = (LC) 12, Q= w/w,, Q = woRC

The higher and lower half-power frequencies Q, and (; follow from the
condition Q) — 1/Q) = 1:

Qu = 1/20 + (1 + 1/40%)'2, O, = —1/20 + (1 + 1/40%)'2 (4)

The difference and the sum of Q and ), define the half-power bandwidth
and the sum frequency:

QH - QL = l/Q, QH + Q[‘ = 2(1 + 1/4Q2)1/2 (5)
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FiG. 1.4-1. The magnitude of the relative impedance Z/Z, of a parallel resonant circuit for
various values of the relative bandwidth n as function of the normalized frequency () =
w/wg.

The relative half-power bandwidth 7 is connected with the quality factor
Q through Eq. (5):
QH—QL_wH_wL_fﬁ_ﬁ, 1

T7 00+ O wn+on futfi 2000 + 1/402)7 (6)

The magnitude of the normalized impedance and the half-power band-
width can now be written in terms of »:

zZ| N
Zd = [ o= g) ] U
Qy — Yy, = 2n(1 — 712 (8)

The normalized impedance |Z/Zy| and the bandwidths Q; — ), are
shown in Fig. 1.4-1 for various values of the relative bandwidth 5. One
may readily see that n must be of the order of 0.01 or less to obtain an ap-
preciable resonance effect. Similar results hold for other circuits or struc-
tures resonating with sinusoidal functions, in particular for the resonant
dipole. This behavior is the main reason why our usual technology for
radio transmission requires small relative bandwidths.!

The resonant circuits for sinusoidal pulses, Legendre pulses, and Bessel
functions in Figs. 1.2-3, 1.2-7, and 1.2-10 do not have a small relative (fre-

' Radars have been built with a relative bandwidth 7 as high as 0.05, using the conven-
tional technology based on sinusoidal functions. It is clear from Fig. 1.4-1 that the selectivity
and noise rejection of such equipment cannot be good. We have here a classical example of
how the lack of an adequate theory leads to enormous investments that eventually have to
be written off.



1.4 RELATIVE BANDWIDTH 21

quency) bandwidth since the Fourier transform of the signals for, e.g., i =
1in Fig. 1.2-2,j = 1 in Fig. 1.2-6, and n = 0 in Fig. 1.2-9 contains impor-
tant frequency components close to zero. However, this is so only be-
cause the usual Fourier transform and the usual concept of bandwidth are
based on the periodic sinusoidal functions. One can generalize the Fourier
transform and the concept of bandwidth by basing them on other systems
of functions (Harmuth, 1969, 1972). The concept of relative bandwidth
then becomes generalized too, and all resonant filters for a specific system
of functions have a small relative bandwidth in terms of that system. This
is not so for the resonant filter of Fig. 1.3-1, which resonates with the large
class of periodic functions with period 7.

The use of signals with a small relative bandwidth is obviously a restric-
tion imposed on us by the current technology, but it was not felt as a
restriction until very recently. Consider, e.g., a radio signal in the AM
band from 535 to 1605 kHz. It has necessarily a small relative bandwidth,
since our ears respond only to frequencies below about 16 kHz. A
problem would have arisen if we had tried to transmit music with a radio
carrier having a frequency of, e.g., 20 kHz, but there was not much de-
mand for such a service.

The signals we want to transmit have usually a relative bandwidth close
to 1. For instance, audible signals use the band from about 20 Hz to about
16 kHz. Their relative bandwidth is thus n = (16,000 — 20)/(16,000 +
20) = 0.9975. Even a low-quality telephone channel transmitting only the
band 300 Hz = f = 3000 Hz has a relative bandwidth n = 2700/3300 =
0.82. Television signals start at dc and thus have a relative bandwidth
equal to 1; the same holds true for rectangular pulses used for telegraphy,
teletype or data transmission.

The transformation of the large relative bandwidth of these signals into
a small relative bandwidth is typically done by means of amplitude modu-
lation of a sinusoidal carrier. Consider the rectangular pulse on top of Fig.
1.2-2 with the duration 7. Most of its energy is in the band from f, = 0 to
fu = 1/T = Af. Double sideband amplitude modulation of a sinusoidal
carrier with frequency f. shifts this energy to the band from f;, = f. — Af
to fu = f. + Af. The relative bandwidth

e+ AN - (o= AN _AF L
TS A AN f AT

can in principle be made as small as one wants by choosing f. sufficiently
large compared with 1/T. Let f. equal 1/T,2/T, 3/T, ... . The resulting
sinusoidal carriers modulated by the rectangular pulse are the sinusoidal
pulses with i = 1, 2, 3, ... in Fig. 1.2-2. As i increases, the sinusoidal
pulses look more and more like periodic sinusoidal functions. Hence, a

9)
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small relative bandwidth means that a signal looks very similar to a peri-
odic sinusoidal function.

The process of turning the generally large relative bandwidth of signals
into a small relative bandwidth by means of a large carrier frequency f.
will fail, if conditions imposed by nature prevent us from choosing f. as
large as we want. We will investigate when this happens in the following
section.!

The use of large relative bandwidths runs counter to current regulations
based on CCIR recommendations. Tables 1.4-1 and 1.4-2 show the rela-
tive bandwidths of broadcasting and radio-location channels in the United
States. Some of the broadcasting channels, and particularly the combina-
tion of adjacent channels, have fairly large relative bandwidths, but only
two radio-location channels have a relative bandwidth slightly larger than
0.1. This seems to imply insurmountable regulatory obstacles. However,
this is not so. CCIR Question 1A /29 asks specifically for a study of *‘what
are technical criteria for sharing bandwidth expansion with conventional
modulation systems and what are appropriate techniques and design
factors conducive to improving the efficiency of spectrum utilization in

TABLE 1.4-1
RELATIVE BANDWIDTHS OF BROADCASTING BANDS ACCORDING 1O THE
UNITED STATES FREQUENCY ALLOCATIONS®

Service Occupied band (MHz) Relative bandwidth
AM radio 0.535-1.605 0.5
TV channels 2-4 54-72 0.14 0.24
TV channels 5-6 76-88 0.07 ’ 0.17 0.33
FM radio 88-108 0.10 '
TV channels 7-13 174-216 0.11
TV channels 14-20 470-512 0.04 0.26
TV channels 21-69 512-806 0.22 )

“ The relative bandwidth is shown for the individual bands as well as for certain combina-
tions, e.g., 0.17 for TV channels 5-6 plus FM radio.

' One school of thought represented, e.g., by W. H. Kummer of Hughes Aircraft Co.,
holds that only the absolute bandwidth but not the relative bandwidth is significant, since the
transmittable information is proportionate to the absolute bandwidth. This is correct within
the realm of pure theory, where the properties of the transmission medium for the electro-
magnetic waves can be defined by the investigator to produce the desired result. The relative
bandwidth is only significant for practical applications, where the features of the transmis-
sion medium are imposed on us by nature. The following Section 1.5 shows this for radars
operating in the atmosphere. Similar restrictions hold for ice, fresh water, sand, clay, and
other media encountered by the waves of the into-the-ground radar that will be discussed in
Section 1.6. The restrictions imposed by saltwater will be discussed in Section 1.6 and in
more detail in Chapter 7.



020°0 S10°0 ) $£0°0 020°0 L£0°0 090°0 yipimpueq

aAnedy

0§T-0¥C 0L1—891 9L—1L 0S—8¢ 9t—v'tt L'LT=LS] (ZHD) pued
<00 o 090°0 91°0 00 12070 Yipimpueq

aaneRy

vi—vtl §§°0I-¢'8 §T6'S—6T°S L'e—LT §2-¢C P 1-61C1 (ZHO) pueq
¥10°0 $£0°0 020°0 yipimpueq

ANIB[Y

8C6—206 0sy—0ch §TT91¢ (ZHW) pued

NOILVDOTTY AJININOIY] STIVLIS dILIN[} FHL OL HNIGY0IIY STINNVH) NOILVIOT-01Avy 40 SHIAIMANVH FAILVITY
Pl A'1dVL



24 I INTRODUCTION

shared frequency bands™* (CCIR, 1975). A number of reports have been
written in response to this question (e.g., U.S.A., 1977a—-c), and the CCIR
recommendations will eventually be changed to permit frequency sharing
services, which will allow the general use of large relative bandwidths. At
the present time, the use of large relative bandwidths is quite legitimate if
the radiation is sufficiently localized. This condition is met by the com-
mercially available into-the-ground radars. Furthermore, the spreading of
power over frequency bands with a width up to 10 GHz reduces the
power per unit bandwidth—or the power density—to such low levels
that the radiation cannot be detected by conventional monitoring equip-
ment using a small relative bandwidth. There is, of course, no objection to
radiation that is not detectable by conventional equipment.

1.5 ATTENUATION OF WAVES, NOISE, AND DISTORTIONS

Figure 1.5-1 shows the round-trip attenuation of sinusoidal waves due
to rain or fog as function of the frequency for the frequency range from |
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FiG. 1.5-1. Round-trip attenuation of a radar signal in decibels per kilometer distance to
the target for the frequency range from 1 to 100 GHz. Curves of this type seem to have been
obtained first by J. W. Ryde and D. Ryde (Ridenour, 1947, p. 61). They may be found in
various presentations in many publications. The curves for fog were taken from p. 472 of the
book by Barton (1964). The curves for rain were plotted from data computed by Setzer
(1970); they differ slightly at low frequencies from corresponding curves published by
Barton (1964, p. 472).
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to 100 GHz. This illustration is specifically intended for radar. Round trip
means that the waves travel the distance 2D if the target has the distance
D from a radar.! The plot is not extended below 1 GHz since the attenua-
tion becomes negligible there.

Figure 1.5-2 shows the noise temperature in the range from 100 MHz to
100 GHz for a radar with the elevation angles 0°, 1°, ..., 90°, where 0°
means that the radar looks toward the horizon, and 90° means that it looks
vertically up.

Figure 1.5-3 shows the round-trip attenuation of sinusoidal waves due
to molecular absorption at sea level as a function of the frequency for the
frequency range 0 = f = 130 GHz. There is essentially no attenuation
below about 10 GHz. Regions with low attenuation occur around 35 and
94 GHz. Peaks occur at 22.2, 60, and 118 GHz due to resonances of the
H,O and O, molecules.?

Let us use these three illustrations to determine when a signal should
not be shifted to a higher frequency band in order to achieve a small rela-
tive bandwidth. Consider a radar using pulses with a duration of T =
1 ws, which yield a range resolution of about 150 m. The pulses occupy
the approximate band 0 = f= 1 MHz. In order to turn the absolute band-
width Af = 1 MHz in the baseband into a relative bandwidthn = 0.01 we
need a carrier frequency

fe = 1/nT = Af/m = 100 MHz

! This illustration provides a good example of how the concept of small relative bandwidth
enters our thinking. The attenuation of a pure sinusoidal wave between two points with dis-
tance D or 2D is a well-defined concept. There are no distortions, whereas the change of
attenuation with frequency implies distortions for all other signals. The usual conclusion is
that one should use signals with small relative bandwidth in order to keep the distortions
low. It is rarely recognized that the price for no distortions is no range resolution, and the
price for low distortions is poor range resolution.

2 Data on molecular absorption may be found in many references (Altshuter er al. 1968;
Falcone and Abreu, 1979; Moore 1979; U.S.A. 1977a.¢). Some of these references also con-
tain plots for rain and fog. The plots in Fig. 1.5-1 for fog correspond with data by Chen (1975)
for coustal fog. the attenuation for inlund fog is about half as large. Data for frequencies
higher than used here are given by Zhevakin and Naumov (1967) and by Deirmendjian
(1975). One should observe that the plots of Figs. 1.5-1-1.5-3 contain many simplifying as-
sumptions that are needed to permit us to draw a few simple plots for “‘typical’” conditions.
For instance, the attenuation for rain in Fig. 1.5-1 depends not only on the rate of rainfall,
but on the size of the drops, which may vary for the same rate of rainfall. The plots of Fig.
1.5-2 also depend on the reception angle of the antenna, the concentration of water vapor in
the air, etc. The plot of Fig. 1.5-3 depends again on the concentration of water vapor in the
air, on the air pressure, etc. The reader interested in such finer details is referred to the cited
literature. The huge differences between attenuation and distortion in the bands 0.5 GHz =
f=10.5 GHz and 89 GHz = f = 99 GHz discussed here obviate the need to discuss these
finer details.
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FiG. 1.5-2. Noise temperature as function of the frequency for the elevation angles 0°, 1°,
..., 90° of a radar. These plots are due to L.. V. Blake of the Naval Research Laboratory.
They may be found in a number of reports, papers, and books, e.g., in Raudar Handbook
(Blake, 1970).

according to Eq. (1.4-9). At 100 MHz, the noise temperature is still very
high according to Fig. 1.5-2. One would much rather operate at a higher
frequency, preferably in the range from 1 to 10 GHz. Hence, the require-
ment for a small relative bandwidth is overshadowed by the desire to
operate at a higher frequency, where the noise temperature is lower. Fur-
thermore, the radar dish assumes a more manageable size when one ad-
vances from 100 MHz to a higher frequency.

Let us next consider a radar that operates with pulses having a duration
between 1 and 0.1 ns, which implies a range resolution between 15 and
1.5 cm. The baseband bandwidth Af of the pulses is between 1 and
10 GHz. A relative bandwidth Af/f. = 0.01 calls for a carrier frequency
between 100 and 1000 GHz. Figure 1.5-2 shows that the noise tempera-
ture at such high frequencies is well above the value in the band from 1 to
10 GHz. The real objection, however, does not come from the noise tem-
perature but from the attenuation due to moisture and molecular absorp-
tion.
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FiG. 1.5-3. Round-trip attenuation of sinusoidal waves due to molecular absorption at sea
level. This plot is based primarily on data published by Zhevakin and Naumov (1967) and
Blake (1970): The water vapor content of the air is assumed to be 7.5 g/m?.

Let us turn to Fig. 1.5-1 and consider a radar' using an absolute band-
width of 10 GHz at the location 89 GHz < f < 99 GHz. The relative
bandwidth n = 10/(89 + 99) = 0.05 is so large that there is only a very
moderate resonance effect according to Fig. 1.4-1, and the noise rejection

' This reference system was originally advocated by D. K. Barton of Raytheon Co., a
leading proponent of conventional techniques, as an example of what could be achieved by
staying with small relative bandwidths. It now provides the best arguments for the use of
large relative bandwidths. The pulse duration of 0.1 ns and the distance of 10 km are used
because of the practical importance of these values for the low-elevation angle radar and the
ICBM radar. More details on applications of radar operating at 35 or 94 GHz may be found
in a publication by Wiltse (1979), and the many references given there.
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by the filter is thus rather poor. The attenuation in fog of 30 m visibility
for the signal is about 250 dB for a distance of 10 km to the target (Fig.
1.5-1 shows about 25 dB/km at f = 100 GHz). If, on the other hand, the
signal with an absolute bandwidth of 10 GHz is at the location 0.5 GHz <
f < 10.5 GHz, one obtains a relative bandwidth n = 10/(0.5 + 10.5) =
0.9. The attenuation at the upper band edge for a distance of 10 km is now
3 dB according to Fig. 1.5-1, and negligible at the lower band edge. The
net gain due to the increase of the relative bandwidth is thus about!
247 dB.

Let us turn to Fig. 1.5-3. There is essentially no attenuation for the
signal in the band 0.5 GHz = f = 10.5 GHz, but the attenuation for the
signal in the band 89 GHz = f = 99 GHz equals more than 0.8 dB/km, or
8 dB for a distance of 10 km. Combined with the 247 dB due to fog we ob-
tain an advantage for the large-relative-bandwidth radar over the conven-
tional radar pushed to its limits of about 255 dB in the presence of heavy
fog, and about 8 dB if the weather is fair.

It is worth contemplating the gain of 255 dB, since it means a factor of
3 x 10%. The reader will probably not be able to come up with another
example of a theoretical insight providing anywhere near such an
improvement—be it in power or anything else—over an existing equip-
ment or method.? To call this improvement astronomical would be an un-
derstatement, since we would have to give the distance to the farthest
known celestial objects in meters or the known age of the universe in mi-
croseconds to obtain a number of the order of 10%.

We return again to the question of noise. According to Fig. 1.5-2 the
lowest noise temperature is in the region from about 1 to about 10 GHz,
while the noise temperature in the band 89 GHz < f < 99 GHz is signifi-
cantly higher. However, the question is sometimes raised whether signals
with large relative bandwidth are equally affected by noise as signals with
small relative bandwidth. This question was answered by Kotel'nikov
(1947) some 30 years ago. For additive thermal noise the time variation of
the signal is quite unimportant, only the energy of the signal affects the
error probability,? and the time variation is generally the only difference
between any radio signals having the same polarization and power.

' Similar considerations apply, if the attenuation is due to chaff rather than water droplets.
A pulse with a duration of 0.1 us should penetrate chaff about like a pulse with a duration of
0.1 ns penetrates rain and fog, if no carrier is used.

* A frequency of 100 GHz implies a wavelength of 3 mm. The millimeter-wave radar is
sometimes advocated for all-weather use (e.g., Whalen 1979). Millimeter waves are substan-
tially less attenuated by fog than infrared or visible waves, but they are slightly more atten-
uated by rain and substantially more by molecular resonances.

* A derivation of this result using the same terms as this book was previously published
(Harmuth 1972, pp. 292-299).
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Another question often raised is that of signal distortions. In vacuum,
the propagation of an electromagnetic wave is described by the wave
equation, which implies distortion-free transmission. In the atmosphere,
for transmission above the shortwave region, distortions may be caused
by rain, fog, and molecular resonances. It was just discussed that a signal
in the band 0.5 GHz < f < 10.5 GHz suffers an attenuation of 3 dB at the
upper band edge in heavy fog, whereas there is essentially no attenuation
at the lower band edge. This implies a distortion that may be corrected, if
one feels a need to do so, by an equalizer having 3 dB more attenuation at
0.5 GHz than at 10.5 GHz.

The signal in the band 89 GHz = f = 99 GHz has an attenuation of
about 20 dB/km at the lower band edge and of about 25 dB/km at the
upper band edge according to Fig. 1.5-1. The difference equals 5 dB/km,
or 50 dB for a distance of 10 km. Hence, the attenuation distortion in-
creases from 3 to 50 dB if we replace the signal with large relative band-
width with the one having a small relative bandwidth. This is just the op-
posite of what most communication engineers would expect.

The question of distortions due to molecular resonances can be
answered with the help of Fig. 1.5-3. There is essentially no absorption
and thus no distortion in the band 0.5 GHz = f = 10.5 GHz. In the band
89 GHz = f = 99 GHz the round-trip attenuation varies by about 0.2
dB/km, or 2 dB for a distance of 10 km. Hence, molecular resonances
cause insignificant distortions in either case. The situation would be com-
pletely different for a radar operating in the band 40 GHz = f = 50 GHz,
where the attenuation varies by about 7 dB/km.

From all this it is clear that the region from about 0.5 GHz to somewhat
above 10 GHz is ideal for an all-weather radar, and that signals with a
bandwidth of about 10 GHz can be used even under the worst weather
conditions. In fair weather, a large-relative-bandwidth radar can use a
bandwidth close to 45 GHz, and have an attenuation below that of a
narrow-band radar operating at 94 GHz according to Fig. 1.5-3.!

! The introduction of nonsinusoidal waves to radar aroused many objections from engi-
neers and scientists involved in the manufacture and development of conventional radars.
The scientific reasons for these objections have two sources: (a) It is not understood that
Maxwell's equations do not distinguish sinusoidal waves, although solutions obtained with
Bernoulli's product method do so, as discussed at the end of Section 1.3. (b) It is not recog-
nized that most of the existing radar and radio equipment works best or even only with sinus-
oidal waves because it was designed to do so. In order to provide a public forum for a dis-
cussion of objections to nonsinusoidal waves, a panel discussion on "‘Radio Signals with
Large Relative Bandwidth’™™ was organized on 7 October 1980 at the IEEE International
Symposium on Electromagnetic Compatibility in Baltimore, Maryland. Calls for opponents
were published in Microwave J. 23 (No. 1, Jan. 1980, p. 10) and /EEE Trans. Electromagn.
Compat. EMC-22 (No. 1, Feb. 1980, p. 86). Many personal invitations were sent to known
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1.6 WHEN 1O USE NONSINUSOIDAL WAVES

The frequency band from about | to about 10 GHz with a bandwidth of
essentially 10 GHz has just been identified to be ideally suited for signals
with large relative bandwidth, or nonsinusoidal signals for short. The typ-
ical application for this band is the line-of-sight, high-resolution, all-
weather radar.

The conventional line-of-sight, all-weather radar cannot use signals
with a bandwidth wider than about 100 MHz in the baseband if the highest
frequency after modulation is restricted to about 10 GHz. The possible
bandwidth of the radar with large relative bandwidth is about 100 times as
large, which implies an increase in information acquisition by a factor of
about 100. This gain consists inherently in better time resolution—the
width of the used pulses can be decreased from 10 to 0.1 ns—but time res-
olution can be translated into range resolution, Doppler resolution, angu-
lar resolution, target signature, etc.

Radar is the major field for the use of very large absolute bandwidths. A
lesser field is spread spectrum communications. Nonsinusoidal waves
permit us to spread signals over a bandwidth of 10 GHz, stay below the
resonance of the H,O molecule, and avoid the attenuation by rain and fog.

To find other useful ranges in the frequency spectrum we must find in-
stances where an increase of the frequency of a carrier is essentially im-
possible. The shortwave band is an example. Using a typical relative
bandwidth of n = 0.01 and a carrier frequency f. = 15 MHz in the middle
of the shortwave band, we obtain from Eq. (1.4-9) the baseband band-
width Af = mf. = 150 kHz. Since the shortwave band inherently permits
the transmission of about 3 MHz wide signals before the frequency
dependence of propagation becomes a problem, we use less than 10% of
the bandwidth allowed by nature if we insist on a small relative band-
width. Using techniques for large relative bandwidths, we may increase
the absolute bandwidth of signals by about one order of magnitude com-
pared with the typical case n = 0.01. The major use for this potential gain
is for over-the-horizon radar, where the limited resolution has been a

opponents in industry and government, but none were accepted. The discussion panel,
chaired by the author, consisted thus only of proponents: C. Bertram of Bertram Technol-
ogy Inc., Merrimac, New Hampshire; J. C. Cook of Teledyne-Geotech, Dallas, Texas; A.
Dean of U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New
Hampshire; Fan Changxin of Northwest Telecommunication Engineering Institute, Xi'an,
China; H. Lueg of Technische Hochschule Aachen, West Germany; J. V. Rosetta of Geo-
physical Survey Systems Inc., Hudson, New Hampshire. Two more proponents had
planned to participate but could not come: J. R. Rossiter of Memorial University of New-
foundland, Canada; M. Zecha of Deutsche Akademie der Wissenschaften, Zentralinstitut
fur Kybernetik, Berlin, East Germany. A radar produced by Geophysical Survey Systems,
Inc. was demonstrated at this symposium by J. V. Rosetta.
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problem for many years. Note that the potential gain in absolute band-
width for the over-the-horizon radar is only one order of magnitude,
whereas it was two orders of magnitude for the line-of-sight radar.

The attenuation of an electromagnetic wave in seawater is given by the
formula

alf) = 0.0345\/f [dB/m] (1)

where f'is measured in hertz. For a penetration depth of 300 m, which is
typically required for radio communication with deeply submerged sub-
marines, one cannot use frequencies higher than some tens of hertz; e.g.,
for f = 100 Hz one obtains from Eq. (1) already an attenuation of 90 dB
for a depth of 300 m. With the highest possible frequency so severely lim-
ited, the restriction of the relative bandwidth to values of about = 0.01
would result in absolute bandwidths for a signal on the order of fractions
of a hertz, and a corresponding small transmission rate of information.
Hence, radio communications to and from deeply submerged submarines,
and radar that penetrates seawater, are among the most intriguing applica-
tions of nonsinusoidal signals.

A very similar application is the into-the-ground radar. Inhomogene-
ities in the ground make the attenuation of electromagnetic waves in-
crease with frequency very rapidly, just like raindrops and fog droplets
make the attenuation in air increase very rapidly with frequency ac-
cording to Fig. 1.5-1. In order to provide an acceptable resolution, such
into-the-ground radars must use pulses with a duration of about 1 ns. The
penetration depth currently achieved is a few meters in dry ground and at
least 30 m in ice (Rossiter and Butt, 1979); the use of a carrier and a small
relative bandwidth would result in no useful penetration. Some 60 such
into-the-ground radars have been built so far, and they have been used in
ten countries.! Their typical use is the probing of the ground in the course

' The following commercial organizations have developed into-the-ground radars:
ENSCO Inc., Springfield, Virginia (J. Fowler, L. Davis); Geophysical Survey Systems Inc.,
Hudson, New Hampshire (J. Mann, J. V. Rosetta, D. F. Stanfill ¢t al.); Morey Research
Co., Nashua, New Hampshire (R. Morey): MPB Technologies Inc., Ste. Anne de Bellevue
PQ, Canada (J. M. Keelty, S. Y. K. Tam); Teledyne-Geotech, Dallas, Texas (J. C. Cook);
Terrestrial Systems Inc., Lexington, Massachusetts (J. Chapman). Academic developers
and/or users are: Ohio State University Electronics Laboratory (C. W. Davis III, D. L.
Moffatt, L. Peters et «l.): Centre for Cold Ocean Resources Engineering, Memorial Univer-
sity of Newfoundland, Canada (J. R. Rossiter, K. A. Butt er al.); Department of Geophysics
and Astronomy, University of British Columbia, Canada (G. K. C. Clarke, B. B. Narod): In-
stitut fir Technische Elektronik, Technische Hochschule Aachen, West Germany (H.
Lueg). Government agencies that have made major contributions are: U.S. Army Cold
Regions Research and Engineering Laboratory, Hanover, New Hampshire (J. Brown, A.
Dean, A. Kovacs er al.); Geological Survey of Canada, Ottawa (A. P. Annan, J. L. Davis,
W. J. Scott); Office of Naval Research, Washington, D.C. (H. Bolezalek).
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FiG. 1.6-1. Principle of the operation of an into-the-ground radar. (a) Probing of an exten-
sive layer with discontinuity of €, i, o; (b) detection of a pipe with small diameter: R, radar;
P, pipe.

of excavations, since they will not only detect metallic pipes but also
pipes made of concrete, clay or plastic. Other uses have been the detec-
tion of cavities in the ground, measuring the thickness of sea ice to assure
a safe route for trucks or a landing site for aircrafts on the Arctic Ocean,
etc.

The carrier-free into-the-ground radar was first proposed by J. C. Cook!
(1960); a considerable number of papers on into-the-ground radar with
and without carrier have been published since then.? For an explanation
of the operation of this type of radar, refer to Fig. 1.6-1a. The radar is
mounted on a cart that is pulled along the surface of the ground. A pulse
of about 1 ns duration is radiated into the ground at intervals of the order
of microseconds to milliseconds. A layer at the depth D, with a disconti-
nuity of the dielectric constant €, the magnetic permeability w, or the con-
ductivity o will reflect the signal. The reflected signal will come from a

! By an incredible coincidence, this paper was published in the same year and in the same
journal as the author’s first papers on nonsinusoidal signals (Harmuth, 1960a,b).

2 Annan and Davis (1976); Bertram et «l. (1972); Campbell and Orange (1974); J. C. Cook
(1970, 1973); Davis et ul. (1976): Duckworth (1970); Harrison (1970); Kovacs and Abele
(1974); Kovacs and Gow (1975, 1977); Kovacs and Morey (1978, 1979a,b,c); Moffat and
Puskar (1976); Morey (1974); Morey and Kovacs (1977); Porcello ¢t al. (1974); Rossiter and
Butt (1979): Rossiter er al. (1979). More publications may be found referenced in the papers
listed here. No papers on carrier-free radar or radio signals with large relative bandwidth
were published by the more typical journals for radar and radio transmission, in particular,
IEEE Trans. Aerospace and Electronic Systems, IEEE Trans. Communications, IEEE
Trans. Antennas and Propagation, and Microwave Journal.
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F1G. 1.6-2. Idealized recording of an into-the-ground radar with infinitely short pulses
showing the ground profile along the line of advance of the radar. Layers with discontinuity
of €, u, o are shown at the depths D; and 2D, : pipes are shown at depths D, and D, /6.

minimum distance D, and a maximum distance D, /cos B, if the beam
angle of the radar equals 28. Hence, the discontinuous surface is shown in
the idealized recording of Fig. 1.6-2 as a band of width D, /cos 8 — D, at
the depth D, : a second discontinuous surface at the depth 2D, produces a
band that is twice as wide.

Consider next the detection of a pipe that runs vertically to the paper
plane in Fig. 1.6-1 at a depth D, . If the radar has the horizontal distance A
from the pipe, the distance to the pipe will be d = (D} + h?)"2. This signa-
ture is shown for a pipe 1 at a depth D, , and for a pipe 2 at a depth D, /6 in
Fig. 1.6-2. Due to the beam angle 28 this signature will only be recorded
for a maximum horizontal distance Ay, = D, tan B8 or hpax = (D, /6) tan
B in both directions of the pipe. These sections of the pipe signatures are
emphasized by solid lines in Fig. 1.6-2.

An actual recording of an into-the-ground radar is shown in Fig. 1.6-3.
On top—i.e., at the surface of the ground—is the usual large signal
caused by crosstalk from the transmitter to the receiver. It limits the min-
imum depth that can be probed, which explains why into-the-ground
radars are often placed a considerable distance above ground. There are
four bands indicating discontinuous surfaces, the deepest one at a depth
of about 2.5 m being identified as the water table. The parabola-like signa-
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FI1G. 1.6-3. Actual recording of an into-the-ground radar. The different signatures of ex-
tensive layers and the sewer pipe with its protective cover are conspicuous. (Courtesy J.
Chapman of Terrestrial Instruments Inc., Lexington, Massachusetts.)

tures of the sewer pipe and a protective cover over it clearly have the
shape shown in Fig. 1.6-2 for pipes. The disturbance above and to the
right of the sewer pipe cover signature is caused by construction debris
used to back-fill the ditch of the sewer pipe.

Figure 1.6-4 shows a radar profile of a peat deposit. The ground surface
and the profile of the clay bottom are clearly visible. The echos just below
the surface are caused by buried roots and tree trunks. Two buried trees
can be recognized:; one of them could be verified visually.

Figure 1.6-5 shows an into-the-ground radar mounted on a cart, as dis-
cussed in connection with Fig. 1.6-1, with some processing equipment.
For instant displays of ground profiles, as in Figs. 1.6-3 and 1.6-4, one
uses graphic recorders. Sometimes the data is stored on magnetic tape
and computer processed at a later time.

A radar mounted on a sled and pulled by a tractor that contains the pro-
cessing and display equipment is shown in Fig. 1.6-6. This radar was used
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FiG. 1.6-4. Radar profile of a peat deposit. The boundary between the peat and the clay
bottom is clearly visible. (Courtesy J. V. Rosetta and D. F. Stanfill of Geophysical Survey
Systems Inc.. Hudson, New Hampshire.)

F1G. 1.6-5. Into-the-ground radar cart according to Fig. 1.6-1 and some processing equip-
ment. (Courtesy J. V. Rosetta and D. F. Stanfill of Geophysical Survey Systems Inc.,
Hudson, New Hampshire.)
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FiG. 1.6-6. Into-the-ground radar mounted on a sled used for surveying a safe truck route on the ice of the Arctic Ocean.

(Courtesy J. V. Rosetta and D. F. Stanfill of Geophysical Survey Systems Inc., Hudson, New Hampshire.)
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to probe the thickness of sea ice for the survey of a truck route on the
Arctic Ocean.

Ice surveying is a major application of carrier-free radar. It is used
either to find thick, safe ice or thin ice that is readily penetrated by ships.
Figure 1.6-7 shows an ice profile obtained by an airborne radar in the
Beaufort Sea (Rossiter and Butt, 1979). One may distinguish the different
thicknesses of first-year ice, multiyear ice, and the ice island® T-3. The ice
surface appears very uneven, but one must keep in mind that all distances
were measured from the aircraft. The uneven surface of the ice indicates
that the altitude of the aircraft was not constant along the surveyed line.

Figure 1.6-8 shows the radar with which the ice profile of Fig. 1.6-7 was
obtained. This was the first successful use of a carrier-free radar mounted
on a fixed-wing aircraft.? Helicopter-mounted carrier-free radars have

i

F1G. 1.6-8. Airplane with carrier-free radar used to obtain the ice profile of Fig. 1.6-7.
(Courtesy J. R. Rossiter and K. A. Butt, Centre for Cold Ocean Resources Engineering,
Memorial University of Newfoundland, St. John's.)

! For a description of the ice islands in the Arctic Ocean see Blyth (1953) or Thomas
(1965).

2 The previously mentioned J. C. Cook used an airborne carrier-free radar as early as
1966, but the beamwidth of the antenna was too large to obtain useful results (personal com-
munication; see also Cook, 1970).
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4, M

FiG. 1.6-9. Carrier-free radar mounted on a helicopter of the U.S. Coast Guard for ice
survey. (Courtesy A. M. Dean, U.S. Army Cold Regions Research and Engineering Labora-
tory, Hanover, New Hampshire.)

been used since 1976; as far as the author is aware, the first users were A.
Dean and A. Kovacs, both of U.S. Army Cold Regions Research and
Engineering Laboratory, Hanover, New Hampshire, together with R.
Morey of Morey Research Co., Nashua, New Hampshire.!

Figure 1.6-9 shows a typical installation of a carrier-free radar on a heli-
copter of the U.S. Coast Guard used for ice survey of shipping channels.
Figure 1.6-10 gives a recording of the St. Marys River below Sault Ste.
Marie—between Lake Superior and Lake Huron—obtained with this
radar. The sheet ice on the left is clearly distinguishable from the brash

! Scientists of the U.S. Navy, Naval Research Laboratory, published a paper in 1979 that
tried to prove that there were no useful applications for ‘‘carrier-free waveforms’’ (J. R.
Davis et al., 1979). This was three years after the U.S. Coast Guard in cooperation with the
U.S. Army had started airborne ice surveys by carrier-free radar, nine years after Geophy-
sical Survey Systems, Inc. had started the commercial production of such radars, and about
15 years after J. C. Cook had built the first experimental into-the-ground radar. Upward of
30 papers reporting experimental results had been published by 1979. We have here a
well-recorded example of the time required for a basic new concept to become known and
accepted in science.
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FiG. 1.6-10. Typical recording of the helicopter-borne radar of Fig. 1.6-9, showing a cross
section of a shipping channel near Sault Ste. Marie. The ice rubble is about 300 m wide, the
brash and frazil ice accumulation some 3-4 m deep. (Courtesy A. M. Dean, U.S. Army
Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire.)

and frazil ice accumulation caused by the ship traffic. In the lower left-
hand corner one may recognize the channel edge at a depth of about 4 m
(the ability of carrier-free radar to penetrate several meters of water, and
give a useful resolution, has led to its use for profiling river bottoms from
the air to find places that are sufficiently shallow for fording).!

The brash and frazil ice accumulation in Fig. 1.6-10 extends to a depth
of about 4-5 m. This appears to contradict the depth of 4 m given pre-
viously for the channel edge. However, the channel edge in Fig. 1.6-10 1s
covered by almost 4 m of water—plus the sheet ice—and the electromag-
netic wave has a significantly slower propagation velocity in the water
than in the ice accumulation to its right. Hence, one must either know or

! In the Soviet Union, measurements of the thickness and salinity of sea ice as well as the
salinity of seawater by means of airborne radar are carried out by scientists of the Institute
of Radio Engineering and Electronics of the Academy of Sciences (Institut Radiotekniki i
Elektroniki Ak. Nauk), Karl Marx Prospect 18, 103907 Moscow.
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F1G. 1.6-11. Carrier-free dual radar used for probing massive ice in permafrost ground
along the Alaska pipeline. (Courtesy A. Kovacs, U.S. Army Cold Regions Research and
Engineering Laboratory, Hanover, New Hampshire, and R. Morey, Morey Research Co.,
Nashua, New Hampshire.)

measure the propagation velocity in addition to the propagation time of
the radar pulse to make full use of ground-probing radars.

The problem of measuring simultaneously propagation time and veloc-
ity was neatly solved by means of the dual radar (Kovacs and Morey,
1979b). Figure 1.6-11 shows such a dual radar used for profiling regions of
massive ice in the permafrost ground along the Alaska pipeline. The usual
transmitting/receiving antenna is augmented by a second antenna that
receives only. A recording of the ground profile is shown in Fig. 1.6-12.
The numbers 218 ... 240 on top of the illustration identify the vertical sup-
port structures of the pipeline; two of these support structures are visible
in Fig. 1.6-11. Two holes had to be drilled for each structure. The top and
bottom of the massive ice penetrated by the holes on the west side of the
pipeline are marked by circles in Fig. 1.6-12, whereas the stars mark top
and bottom of the ice for the drill holes on the east side. The radar profile
and the drill-hole data correlate quite well, major discrepancies being due
to the change of thickness of the ice over short distances; e.g., at the ver-
tical support structure 224 the drill hole on the west side (circles) shows
the ice about 6 m thick, whereas the drill hole on the east side—which
was only 3 m away —showed no ice at all.
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Fi16. 1.6-13. Helicopter-mounted carrier-free dual radar used for surveys at Prudhoe Bay,
Alaska. The man on the top of the helicopter is deicing the rotor. (Courtesy A. Kovacs, U.S.
Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire.)

Figure 1.6-13 shows a carrier-free dual radar with two receiving an-
tennas mounted on a helicopter. This radar was used for surveys at
Prudhoe Bay, Alaska.

A carrier-free dual radar probing the Ross Ice Shelf near McMurdo
Sound in Antarctica is shown in Fig. 1.6-14. The great distance between
the two antennas indicates that probing of substantially greater depths
than in Figs. 1.6-11 and 1.6-13 is attempted.

A carrier-free radar designed for ground-probing from tunnels of coal
mines is shown in Fig. 1.6-15. This radar produces rather long pulses of
25 ns duration with a peak power of 2 MW. The long pulses and the high
power permit a probing distance of about 60 m in sandstone and about
9 m in shale, which is frequently encountered in coal mines. This radar
was built by J. C. Cook, whose paper of 1960 we mentioned as the begin-
ning of the carrier-free into-the-ground radar (J. C. Cook, 1975).

The use of carrier-free radar as airport ground control sensors and simi-
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FiG. 1.6-14. Profiling of the Ross Ice Shelf at McMurdo Sound, Antarctica, with a
carrier-free dual radar. (Courtesy A. Kovacs, U.S. Army Cold Regions Research and Engi-
neering Laboratory, Hanover, New Hampshire.)

lar applications were described by Bennett, Nicholson, and Ross (Ross,
1974; Nicholson and Ross, 1975; Bennett and Ross, 1978).

In Chapters 2-4, we will briefly discuss basic concepts of implementa-
tion of radio transmission with large relative bandwidth. However, most
of this book is devoted to principles and applications; they come first.
Technology will be developed once sufficiently good principles and appli-
cations become widely known.

Experience has shown that many engineers have difficulties with the
technology of radio signals with large relative bandwidth, since most of
our technological advancement is done in small steps, and any radical
change is thus not part of their experience. This is typical for a mature in-
dustry. There were few small but many radical changes when radio trans-
mission got started around 1900. To obtain some idea of what one should
expect, let us look at technology from a broader point of view.

The relative bandwidth 7 defined by Eq. (1.4-1) can have any value in
the range 1 = n = 0. Our current technology is based on a theory for the
limit n» — 0. Both theory and technology that apply to the whole range
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1 =m = 0 will have to be more general and more sophisticated than a
theory and technology that apply to the limit » — 0 only. Taking Radar
Handbook (Skolnik, 1970) as a representative summary for the limit 5 —
0 gives some idea of what one should reasonably expect for the general
case | = n = 0. It took 40 years of radar development, including several
technology-advancing wars, before Radar Handbook could be compiled,
and this indicates that a great deal of patience will be required before a
comparable summary can be assembled for the general case.!

' As an example of an area of application that cannot be discussed in this book despite its
potential, consider the problem of making an aircraft invisible to radar. At high frequencies,
such as 35 or 94 GHz, one may use absorbing materials since the wavelength is in the range
from 10 to 3 mm. At a frequency of 500 MHz, the wavelength is 60 cm, and the reduction of
the backscattered wave by means of absorbing materials is hard to implement. This effect
favors the use of low frequencies. On the other hand, the suppression of a backscattered
wave by the radiation of an amplitude-reversed, but otherwise equal, wave is easy for a pure
sinusoidal wave, but becomes increasingly difficult for signals with larger bandwidth. Fur-
thermore, the larger the bandwidth of a signal the more information it can carry, which
translates into a large radar signature. Both effects favor the use of large bandwidths. The
radar most suited to overcome the problem of the invisible aircraft must thus use a large
bandwidth and operate at low frequencies, which means its relative bandwidth should be
close to 1.
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