

Any reference to Raytheon or RTN in this manual should be interpreted as Raymarine. The names Raytheon and RTN are owned by the Raytheon Company. Raytheon Marine Company 46 River Road Hudson, NH 03051 USA

Tel 603 881-5200 Fax 603 881-4756 Telex. 681-7529 TWX 681-7530

Printed in USA (May 1992)

j

1

Manual

100

影

Raytheon

Models R10X and R11X Raster Scan Radar Systems

Document No.: 7ZPRD0277A

PURPOSE

THIS MANUAL CONTAINS IMPORTANT INFORMATION ON THE INSTALLATION, OPERATION AND MAINTENANCE OF YOUR EQUIPMENT

RAYTHEON MARINE COMPANY products are supported by a network of Authorized Service Representatives. For product information, you may contact the following regional centers:

** AUTHORIZED FACTORY SERVICE and REPLACEMENT PARTS DISTRIBUTION CENTER

United States	Raytheon Marine Company **			
	46 River Road			
	Hudson, NH 03051			
	Phone: 603-881-5200			
EuropeRa	aytheon Marine Sales & Service Co.			
E	izabeth Way, The Pinnacles,			
Ha	arlow, Essex, 💦 👌			
CI	M19 5AZ England			
Ph	none: (44) 279 444 244			

_ i __

71

Raytheon

Limited Warranty Certificate

Dealer Distributor / Light Marine Products

Raytheon Marine Company warrants all parts of each new light marine product to be of good materials and workmanship, and will repair or exchange any parts proven to be defective under normal use at no charge for a period of 24 months from the date of sale to end user or 30 months from the date of shipment by Raytheon, whichever expires first, except as provided below. High seas products, (Pathfinder/ST, 12" and 16" Bright Display Radars, Raycas ARPA, Raypath ARPA, Fathometer, Satcom, Doppler Speed Logs, Auto Pilots and Gyro Systems) are covered by a separate warranty policy.

Defects will be corrected by an authorized Raytheon Marine Company dealer. There will be no charge for labor during normal working hours for a period of 12 months from date of sale to end user or 18 months from date of shipment by Raytheon, except as provided below, and during this period Raytheon Marine Company will, for certain products, assume travel costs (auto mileage and tolls only) of its authorized dealers up to a total of 100 round trip miles and two hours travel unless otherwise agreed by Raytheon Marine Company in writing. For service outside normal working hours, the overtime premium portion is not covered by this warranty.

Warranty Limitations

There is no travel allowance for certain products with a suggested retail price below \$2500.00. These products must be forwarded to an authorized dealer or service center of Raytheon Marine Company, at owner's expense and will be returned via surface carrier at no cost to the owner. Travel costs other than auto mileage, tolls and two hours travel time are specifically excluded on all products. The excluded travel cost includes but is not limited to: taxi, launch fees, sircraft rental, subsistence, custome, shipping and communication charges.

Raytheon Marine Company warranty policy does not apply to equipment which has been subjected to accident, shipping damage, abuse, incorrect service, alterations, corrosion, or service by nonauthorized service personnel, or misuse, or on which the serial number plate has been removed, altered or mutilated.

Except where Raytheon Marine Company or its authorized dealer has performed the installation, it assumes no responsibility for damage incurred during installation.

This variantly does not cover routine system checkout or alignment/calibration, unless required by replacement or part(s) in the area being aligned.

A suitable proof of purchase, showing date, place and serial number must be made available to the authorized Raythmon Marine Company dealer at the time or request for Marranty service.

Magnetrons, cathode ray tubes (CRT), hailer horns and transducers are varranted for 12 months from date of sale. These items must be returned to a Raytheon Marine Company factory service center.

Chart paper, lamps, fuses, batteries, stylii, stylus/drive belts, rader mixer crystals/diodes, snapin impeller carriers, impellers, impeller bearings and impeller shafts are consumable items, and are specifically excluded from this warranty.

All costs associated with transducer replacement, other than the cost of the transducer itself, are specifically excluded from this warranty.

TO THE RATENT CONSISTENT WITH STATE AND FEDERAL LAW:

(1) THIS WARRANTY IS STRICTLY LIMITED TO THE TERMS INDICATED HERBIN, AND NO OTHER WARRANTIES OR REMEDIES THEREUNDER SHALL BE BINDING ON RATTHEON MARINE COMPANY INCLUDING WITHOUT LIMITATION ANY WARRANTIES OR MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

(2) Raytheon Marine Company shall not be liable for any incidental, consequential or special (including punitive or multiple) damages.

All Raytheon Marine Company products sold or provided hereunder are merely aids to navigation. It is the responsibility of the user to exercise discretion and proper navigational skill independent of any Raytheon equipment.

Document Number 983564 Rev F (3/90)

HIGH VOLTAGE WARNING

Do not open any of the units when the radar is ON; high voltages within the Scanner and Display Unit could be fatal to anyone coming in direct contact with them. Disconnect ship's power from the Display Unit before attempting any maintenance; otherwise, ship's power will be present at terminals inside the Scanner and Display Unit.

RADIATION HAZARD

Care should be taken to avoid possible harmful effects (particularly to the eyes) of radiation from radar transmissions.

To avoid harmful radiation, the Display OPERATE switch should be turned to the ST-BY or OFF position when working on the Scanner.

"IMPORTANT NOTICE"

THIS DEVICE IS ONLY AN AID TO BOATING SAFETY AND NAVIGA-TION. ITS PERFORMANCE CAN BE AFFECTED BY MANY FACTORS INCLUDING EQUIPMENT FAILURE OR DEFECT, ENVIRONMENTAL CONDITIONS, AND IMPROPER HANDLING OR USE. IT IS THE US-ER'S RESPONSIBILITY TO EXERCISE COMMON PRUDENCE AND NAVIGATIONAL JUDGEMENT. THIS DEVICE SHOULD NOT BE RE-LIED ON AS A SUBSTITUTE FOR SUCH PRUDENCE AND JUDGE-MENT.

-- ii ---

× !

1.1

CONTENTS

SECTION 1		GENERAL DESCRIPTION 1-1
	1.1	INTRODUCTION 1-1
	1.2	SYSTEM DESCRIPTION 1-2
	1.3	SPECIFICATIONS 1-6
SECTION 2		INSTALLATION
	2.1	UNPACKING AND INSPECTION 2-1
	2.2	INSTALLATION OF RADOME SCANNER 2-3
	2.3	INSTALLATION OF OPEN ARRAY SCANNER
	2.4	INSTALLATION OF DISPLAY UNIT 2-14
	2.5	INITIAL OPERATION AND CHECKOUT 2-24
SECTION 3.		OPERATION 3-1
	3.1	OPERATING CONTROLS 3-1
	3.2	USING THE CONTROLS 3-15
	3.3	NAVIGATION WITH THE RADAR 3-18
	3.4	FALSE ECHOES 3-20
SECTION 4.		MAINTENANCE 4-1
	4.1	USER PREVENTIVE MAINTENANCE 4-1
	4.2	RADOME SCANNER 4-2
	4.3	OPEN ARRAY SCANNER 4-3
	4.4	DISPLAY UNIT 4.4
SECTION 5.		ADJUSTMENT AND FAULT FINDING 5-1
	5.1	ADJUSTMENT 5-1
	5.2	TROUBLE-SHOOTING
	5.3	REPLACEMENT OF OPEN ARRAY SCANNER 5-16
SECTION 6.		TECHNICAL DESCRIPTION 6-1
	6.1	SCANNER UNIT 6-1
	6.2	DISPLAY UNIT 6.9
SECTION 7.		PARTS LIST

— iii —

21

RADAR GLOSSARY

The following is a list of abbreviations and acronyms which may be used in the text of the manual.

. . . -

e

A/D	_	Analog to Digital Conversion
ALM IN	-	Alarm In, also known as the approach alarm.
		For targets approaching a set area or own ship.
ALM OUT	~	Alarm Out, also known as the exit alarm.
		For targets exiting or leaving a set area.
CPU	-	Central Processing Unit
CRT		Cathode Ray Tube
D/A	-	Digital to Analog Conversion
DEL	-	Delete
DISP	-	Display
EBL	-	Electronic Bearing Line
EXP	-	Expansion
FET	-	Field Effect Transistor
FTC	-	Fast Time Constant, also known as Anti-Clutter Rain
IR	-	Interference Rejection
КМ	-	Kilometer
LL	_	Latitude/Longitude
МН	-	Modulator High Voltage
MN	-	Modulator High Voltage Return
NM	·	Nautical Mile
РСВ	-	Printed Circuit Board
PPI	-	Plan Position Indicator
P-S	-	Parallel to Serial Conversion
PW	-	Pulse Width (Length)
PWS	-	Pulse Width (Length) Selection
RR	-	Range Rings (Fixed)
SHM	-	Ship's Heading Marker
ST-BY	-	Standby
STC	-	Sensitivity Time Constant, also known as Anti-Clutter Sea
ТВ	_	Terminal Board
TD	-	Time Difference
TI	-	Trigger
VD	-	Video
VRM	-	Variable Range Marker
WPT	-	Waypoint
X-MIT	-	Transmit

— iv —

10

SECTION 1

GENERAL DESCRIPTION

1.1 INTRODUCTION

Congratulations on selecting the Raytheon X Series Raster Scan Radar for your radar navigation needs.

Whether you purchased this radar because of its compactness or power economy, ease of installation, or long term reliability, one thing is certain; the moment you turn on your R10X or R11X Display you will know you are seeing a revolutionary new concept in radar technology at work.

Radar signals are "stored" on a 7-inch diagonal TV-type picture with chart like clarity and detail. A single glance at your Display will give you a complete and accurate 360° radar picture of other vessels, buoys and landfall surrounding your vessel.

The 1/8 NM range scale together with the Offset mode makes navigating tight channels, rivers, or waterways at night a pleasure instead of a problem.

The Zoom mode gives you a fast 2 times enlargement of the radar presentation in the zone you have designated. A new "Timed TX" mode lets the radar automatically turn its transmitter "on" and "off" for scans of the area around your vessel and saves battery power. Set the target alarm zone to alert you of any radar contacts that have entered your zone, including any that might have escaped your notice.

Dual Electronic Bearing Line's (EBL) and Variable Range Markers (VRM) allow rapid high accuracy target bearing and range measurements. When connected to a Loran-C Navigator with proper output data format for full function operation, the radar can display your destination waypoint on the screen at its bearing and range from your vessel. The Waypoint feature provides steering reference information to the destination, and can be used to help locate specific buoys or waypoint landmarks.

With all of these electronic features and the thoughtful compact and efficient design of this radar, it soon becomes apparent that human engineering and operational simplicity have been foremost considerations in the R10X/R11X product design.

1 - 1

× !

We trust that you will enjoy many years of excellent performance, reliability, and smooth sailing with your new X series radar system.

1.2 SYSTEM DESCRIPTION

The X Series Model configurations are:

R10X A two-piece system consisting of a compact 7" monochrome raster scan display unit and a 1.5 kW Xband transceiver housed in an 18" radome housing.

2.5 FT [http://http:// 1.5 kW R21X R21X R11X A two-piece system consisting of the same compact 7" monochrome raster scan display unit as above, with the same 1.5 kW X-band transceiver housed in a pedestal unit and driving a 2.5' open array.

1.2.1 Display Units

The 16 nm R10X and 24 nm R11X display units use a 7" green monochrome monitor enclosed in a compact, rugged, and weather-resistant cabinet.

Ships power

The front panel contains all of the operating controls for the radar system organized in a combination of rotary controls for precise setting of the Gain, Tuning, Sea-clutter, and Rain-clutter adjustments for clear and detailed radar presentations. Two groups of silicone rubber covered keys assure fast and accurate selections of ancillary operating functions. These keys are logically arranged for the operators convenience and well backlit for nighttime use with bold alphanumerics on-screen.

The display unit is designed to be tabletop mounted and can be mounted on a bulkhead or overhead. An optional console mounting kit is available to provide a professional look to custom installations into consoles or panels.

All system set-up adjustments are made at the display front panel, negating any requirement to enter the display units during a standard installation.

system conime compact raster scan above, with kW X-band oused in a The compact design of the display units is made possible by the use of custom LSI components (Large Scale Integrated circuit). This type of "chip" contains, in one package, the equivalent of up to 20 integrated circuits. Thus compact size, power efficiency, and full features at an economical price are all standard with the X series radar systems.

1.2.2 Cable Requirements

The two basic cables in the X series radar systems are the Interunit cable cable assembly and the Power cable assembly. Other cables for interface to optional external equipment are discussed in the installation section of this manual. A brief description of the interunit cable follows:

Interunit Cable

The Antenna and display units are interconnected with a single multiconductor cable using 14 wires. The cable is wrapped with braided shield material for noise protection. A ground terminal is available at the display rear panel for connection to the ship's RF ground system.

1.2.3 Scanner Unit R10X

The antenna and transceiver are combined within the 18 inch radome, which is made of AES plastic and has a single-flange mounting.

R10X SCCANER UNIT

1 - 3

1 - 2

43

The radome cover is secured to the scanner pan base by four clamping bolts and is provided with a heavy-duty rubber gasket to seal the unit from the weather.

Inside, the radome features a printed-circuit card array. This technically innovative antenna provides a narrow 6° beamwidth for excellent short range resolution and high gain in a very compact antenna package.

The internal X-band transmitter operates at a 1.5 kW peak power, with a low noise micro-integrated circuit frontend at the receiver.

The construction of the antenna unit is modulized. So repairs, should they be required, can be made quickly and cost-effectively.

1.2.4 Scanner Unit R11X

The Scanner Unit for the R11X system houses the 1.5 kW transmitter, a linear receiver with a low-noise micro frontend, the array drive motor and control circuitry.

The X-band transmitter, which is common in all of these systems, operates with two different pulse lengths and two different PRF's. The magnetron type is a RMC-1, rated at 1.5 kW, driven by the solid state modulator unit.

The open array contains a 2.5 foot PCB array producing 3.3° horizontal and 25° vertical beamwidths for high resolution, super sensitive target pick up and display. The array is turned by a speed-regulated motor at 24 RPM.

The receiver section consists of a passive diode limiter, low noise MIC frontend (NJT 1946), coupled to a 60 MHz dual bandwidth IF amplifier. The bandwidth of the receiver switches between 10 and 3 MHz at designated pulsewidth changeovers keyed to the range scale in use to provide optimum sensitivity.

A power supply PCB assembly provides the operating supply voltages for the transmitter/receiver and for the motor control circuitry.

1 - 4

1.2.5 Basic System Components

A. R10X

The R10	X Radar System consists of the fo	llowing items:
	Item	Raytheon Product Code
1 ea.	Display Unit (16 nm)	50003
l ea.	Scanner Unit	50004
1 ea.	Cable Assembly (15 Meters)	M89951
1 ea.	Sunshield	MTV003534

B. R11X

С.

The R11	X Radar System consists of the lo	llowing items:
	Item	Raytheon Product Code
1 ea.	Display Unit (24 nm)	50006
1 ea.	Scanner Unit	50007
1 ea.	Cable Assembly (15 Meters)	M89984
1 ea.	Sunshield	MTV003534
Options		:

Other Optional ItemsM88390Universal Mast Mount (R10X)M88390Magnifier LensM89962Console Mounting KitM78843

1 – 5

1.3 SPECIFICATIONS

1.3.1	Gene	ral					
	1)	Maximum range:	16 nautical miles (R10X).				
			24 nautical miles (R11X).				
	2)	Minimum range:	Better than 35 m on 0.25 n.m.				
	3)	Range Scales:	Range Range ring Number of interval rings			Number of rings	
			0.125	nm	0.0625	nm	2
			0.25	nm	0.125	nm	2
			0.5	nm	0.25	nm	2
			0.75	nm	0.25	nm	3
			1.5	nm	0.25	nm	6
			3	nm	0.5	nm	6
			6	nm	1	nm	6
			12	nm	2	nm	6
		(R10X)	16	nm	4	nm	4
		(R11X)	24	nm	4	nm	6
	4)	Range discrimination:	Better	than	30 m.		
	5)	Range ring accuracy:	Better	than	±1.5% c	of maxi	imum range of
			the scale in use, or 22 m, whichever is				
			the greater.				
	6)	Bearing accuracy:	Better	than	±1 degr	ee.	
	7)	Cathode-ray tube:	7 in. tu	ıbe.	0		
	.,		Effecti	ve dia	meter 1	04 mm	1
	8)	Environmental conditions:					
	0,	Scanner Units:	Tempe	rature	e −15°C	to +5	0°C
			(under	nomii	nal input	voltag	ge)
			Humidi	ity	Up to	95%	at 35°C
		Display Units:	Tempe	rature		C to +	- 50°C
			Humidi	ity	Up to	95%	at 35°C
	9)	Input power requirements:	11~42	V dc			
	10)	Power Consumption:	45 W (R10X)): 50 W (R11X)
		-					
1.3.2	Scann	ier Unit RIOX					
	1)	Dimensions:	Diamet	ter of	radome	450	mm

		Height	227 mm
2)	Weight	Approx.	5.5 kg (12.1 lbs)
3)	Polarization:	Horizontal	
4)	Beam width:	Horizontal	6° nominal
		Vertical	25° nominal

5)	Sidalahan	Rottor than 91 dD			
5)	Sidelobes.	better than - 21 GD			
6)	Rotation:	Approx. 24 RPM			
7)	Drive motor input voltage:	+12 VDC			
8)	Transmitter frequency:	9445±30 MHz			
9)	Peak power output:	1.5 kW			
10)	Transmitter tube:	Magnetron (RMC-1)			
11)	Pulse length/Pulse	0.08 µs/2250 Hz (0.12	25, 0.25, 0.5,		
	repetition frequency:	0.75, 1.5 nm)			
		0.5 µs/750 Hz (3, 6, 1	2, 16 nm)		
12)	Modulator:	Solidstate modulator driving magnetron			
13)	Duplexer:	T-junction with diode limiter			
14)	Mixer:	MIC Low-Noise			
15)	IF amplifier:	Center frequency	60 MHz		
		Bandwidth	10/3 MHz		
16)	Overall noise figure:	Less than 6 dB			
Scan	ner Unit R11X				
1)	Dimensions:	323 (H)×swing circle	780 mm		
2)	Weight	Approx. 10 kg			
3)	Polarization:	Horizontal			

1.3.3

1

2)	Weight	Approx.	10 kg			
3)	Polarization:	Horizontal				
4)	Beam width:	Horizontal	3.3° nominal			
		Vertical	25° nominal			
5)	Side lobe level:	-23 dB or less				
6)	Rotation:	Approx. 24 rpm				
7)	Wind velocity:	35 m/s (70 knots),	relative			
8)	Transmitter frequency:	9445±30 MHz				
9)	Peak power:	1.5 kW				
10)	Transmitter tube:	Magnetron (RMC-1)) Y.,			
11)	Pulse length/RPF:	0.08 µs/2250 Hz (0	125, 0.25, 0.5,			
		0.75, 1.5 nm)				
		0.7 µs/750 Hz (3, 6	, 12, 24 nm)			
12)	Modulator:	Solid state modulate	or			
13)	Duplexer:	T-junction with diod	e limiter			
14)	Mixer	MIC Low-Noise				
15)	IF Amplifier:	Center frequency	60 MHz			
		Bandwidth	10 MHz/3 MHz			
16)	Overall noise figure:	Less than 6 dB				

1 - 7

43

1.3.4 Disp	lay Unit				21) Timeo	d TX	Rotation Period Select 10, 20 or 30
1)	Dimensions:	Width	268 mm				Scans
		Depth	335 mm				Repetition Period Select 3, 5, 10 or
		Height	228.5 mm				15 Minutes
2)	Mounting:	lable, overhead or			22) Featu	res	Two (2) VRM's, Two (2) EBL's, In-
3)	Weight:	Approx. 5 kg (Appro)X. 11 IDS) Succes) 7" Monitor	1111 111 111 111 111 111 111 111 111 1			terference Rejection, Target Expan-
4)	Cathode-ray tube:	E28/IB39-SDHT (C	reen) / Womtor				sion, Target Alarms, LAT/LONG or TD
5)	Video Rengo conloc:	0 125 0 25 0 5 0	75 1 5 3 6 12 16				Readouts Waypoint Mode, Off Center,
6)	Kange scales.	0.125, 0.25, 0.5, 0.	73, 1.3, 3, 0, 12, 10 ')				Zoom, Timed Transmit, Ship's Heading
			75 1 5 3 6 12 24				Line with Momentary Off Key
		nautical miles (R11)	()	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	23) Contr	ols	Standby Key, ST-BY/OFF
7)	Range rings:	0.0625. 0.125. 0.25	0.25. 0.25. 0.5. 1.				Transmit Key, X-MIT/OFF
.,	Kunge Kinger	2. 4 nautical miles	, ,, , .				Range OF Key, \sum
8)	Display Resolution:	610×496 lines					Variable Pange Marker (VPM) Select or
9) 9)	Bearing synchronizing						ON/OFF Key VPM
0,	system:	Motor Encoder					VRM Increase Key
10)	Tuning:	Manual		474 - T			VRM Decrease Key
11)	Bearing scale:	360° scale graduated	l at intervals of 5°				Electric Bearing Line (EBL) Select or
12)	Ship's heading marker:	Electrical					ON/OFF Key. EBL
13)	VRM:	Digital readout on C	RT in the range of				Direction arrows on EBL keys, CCW
		0.00 to 24.0 nm, 3 d	ligit Digital-On-				and CW.
		Screen-Display					Off Center Key, OFF CENT
14)	In/Out connections:	Туре					Zoom Key, ZOOM
	A. Inter-unit	16-pin Connector					Numerical Bearing Display Select Key,
	B. Power DC input	3-pin Connector	1				MODE
	C. Loran C	BINC Connector, iso	lated				LL/TD Select Key, LL/TD
	D. Magnetic sensor	DIVE Connector					Waypoint Key, WPT
	E. External alarm	2-nin Connector (mi	ni-nhone)				Alarm Key, ALM
15)	Interface:	NMEA0182/IRC					Target Expansion Key, EXP
10)	filter lace.	NMEA0183: Must in	nclude GLL, GTD,				Interference Rejection Rey, IR
		VTG. BWC or RMA	and RMB				Ship's Heading Marker OFF Key, SHM
		sentences					Timed Transmit Key, TIME
16)	EBL:	Digital readout on C	RT in the bearing of				CPT Brilliance/Panel Illumination Key
		0° to 360°, 3 digit Di	gital-On-Screen-				DIM/BRIL
		Display					Tuning Control. TUNE
17)	EBL Resolution:	1°					Anti-Rain Clutter Control, RAIN CL
18)	Alarm:	Audible alarm and zo	one mark on PPI				Anti-Sea Clutter Control, SEA CL
19)	Off Center	Up to 66% radius (e:	cept max. range				Gain Control, GAIN
		scale)					
20)	Zoom	0.25 nm to max. ran	ge	aline -			
		1 - 8					1 9
				·····			

۳.2

24) Inputs:

	Loran-C	NMEA 0182, JRC Format, or NMEA 0183. (NMEA 0183 must include "GLL", "GTD", "VTG", "BWC", or "RMA" and "RMB" sentences for full
	Magnetic sensor	function.) NMEA 0183 "HDM" or "HSC". Sen- tences
25)	Outputs	External Alarm- Contact Closure Limits: 24 VDC maximum 100 ma maximum

1.3.5 Cable Information

- -

The standard interunit cable is 15 m (49 feet) as supplied with the radar. If additional cable is required to complete the installation specific lengths of pre-made cable assemblies are available.

Use	Type of Cable	Standard Length	Maximum Length
Scanner-Display	H-2695110045	15 m	20 m

Cable assemblies are available from Raytheon as follows:

	Length	Product Code
Standard	15 m	M89951 (R10X)
	15 m	M89984 (R11X)
Option	20 m	M89961 (R10X)
	20 m	M89985 (R11X)

SECTION 2

INSTALLATION

Although your X series radar is designed to the highest levels of quality and performance, it can only attain those standards with a proper installation.

This section provides the user with practical guidelines to assist in the planning and installation of the R10X or R11X aboard your vessel.

2.1 UNPACKING AND INSPECTION

Do use care when unpacking the unit from the shipping carton to prevent damage to the contents. It is also good practice to save the carton and the interior packing material until the unit has been satisfactorily installed on the vessel. The original packing material should be used in the unlikely event that it is necessary to return the unit to the factory.

2.1.1 Equipment Supplied

Table 2.1 indicates a listing of items that are included with your new radar system.

No.	Description	Туре	Q'ty	🗙 Remark		
1	Interunit Cable	M89951	49 feet	R10X		
1	Interunit Cable	M89984	49 feet	R11X		
2	Power Cable Ass'y	CFQ-2646	1			
3	Sunshield	MTV003534	1			
4	Instruction Manual	7ZPRD0277	1	······		
5	Bridge Card	7ZPRD0285	1			
6	Standard Spares	(see table)	1			

TABLE	2.1	Equipment	Supplied
-------	-----	-----------	----------

If you are missing any items, please notify your dealer immediately.

Name of Parts	Туре	Quantity	Description		Part Number
Fuse Fuse Fuse Lamp	Glass tube 6.3A Glass tube 5A Glass tube 3.15A AS90140	2 2 4 3	F401 F402 F401. F402 PL1~3	Display unit Display unit Display unit Display unit	5ZFAD00336 5ZFAD00045 5ZFAD00382 5WAAB00258

TABLE OF SPARE PARTS

2.1.2 Planning

The layout for installing the R10X/R11X Radars should be planned to give the best operation and service aboard your particular vessel. In general, the Scanner Unit should be mounted as high as possible above the waterline. The Display Unit should be installed in a convenient viewing position from the helm.

A 15 meter length of Vinyl-covered, shielded, 14 conductor cable is furnished already wired with connectors for interconnecting the two main units (Scanner and Display).

This length of cable should be sufficient to complete the cable run required on most small vessels. The maximum length of cable from the Scanner Unit to the Display Unit should not exceed 20 meters. (see page 1-10 for 20 m cable assemblies)

A General System diagram is shown below.

2.2 INSTALLATION OF RADOME SCANNER

2.2.1 Selecting the Location

Selecting an adequate location for the Scanner Unit requires careful consideration. On many small vessels, the unit can be installed on a mast platform, on an arch or bridge structure, or on a mast. Since radar basically operates at line-of-sight, the unit should be mounted as high as possible on the ship to ensure best performance at the maximum range.

The scanning beam should not be obstructed by surrounding large objects. Try to locate the unit where large structures such as superstructures, searchlights, horns, or masts are not in the same horizontal plane, otherwise, blind areas and false targets can appear on the radar screen. Installation near the top of exhaust stacks must be avoided as damage could result due to excessive heat and the corrosive effects of stack

gases.

OPTIONAL MAST MOUNT:

POLYESTER GLOSS WHITE FINISH DIE CAST ALUMINUM CONSTRUCTION STAINLESS HARDWARE WEIGHT: 4.5 lbs. FITS MASTS FROM 2'4" DIA AND UP

FIG. 2-2 UNIVERSAL MAST MOUNT

For sailboat installations, Raytheon offers a universal mast mount kit

(Product Code M88390). This optional mount fits masts with diameters from 2 $\frac{1}{4}$ " and larger. When using the mast mount kit appropriately robust hardware should be used for the type and style of mast aboard the vessel.

If there is any doubt concerning the proper type of hardware, consult with your boat dealer or representative for recommendations.

Depending on the type of sailboat, a radar antenna Guard Ring should be installed if the sails tend to contact the antenna platform. Without a proper guard ring serious damage could result to the mounting platform and the radar antenna.

2.2.2 Mourning the Scanner Unit

Using the outline drawing of the Scanner base as a guide prepare the mounting surface with the four mounting holes as required. Install the Scanner and secure it to the mounting surface. The correct mounting hardware is stainless steel hexhead bolts $\frac{5}{16''}$, $1\frac{1}{4''}$ long with 18 UNC thread. A flat and lock washers should be used. The Scanner should be parallel to the ship's waterline and oriented so the cable inlet is pointed AFT.

When mounting the Scanner to a platform attached to a fly bridge, or superstructure, avoid placing the Scanner Unit at eye level. Although the radar transmits a 1.5 kW peak power the average power radiated is less than 0.5 watts. Therefore, the hazard from RF radiation levels is virtually nonexistent beyond 2 feet from the Scanner Unit.

However, due to the sensitivity of the human eye, it is recommended and prudent to install the Scanner in a plane above or below the pass engers line-of-sight.

CAUTION:

When mounting the scanner unit, please observe a minimum thickness of the metal mounting base. If the thickness of the mounting base is too thin, the modulator PCB may damaged (Fig. 2-3). The mounting base should be at least 0.25 inches thick metal.

FIG. 2-4 OUTLINE DRAWING OF SCANNER UNIT

 \mathbf{v}_{i}^{t}

2.2.3 Connecting the Cable

A cable entrance is provided at the rear of the scanner unit. If the unit is mounted on a hollow mast, the cable may be run up inside the mast and then be fed through the radar's cable entrance.

Connect the cable leeds onto terminal board TB101 and connector 1101 as shown in Fig 2.5.

Refer to the following steps to connect the cable to the scanner unit. If there is any doubt concerning the connection of the wiring to the radar, a qualified electronics technician should be contracted to ensure proper wiring. Serious damage to sensitive circuitry could result from an inproper installation.

_____ Small wire

FIG. 2-5 TYPICAL WIRING AT R10X SCANNER

2.2.4 Interunit calle connectors

The connectors shown below are available from the Raytheon Parts Department and may be useful when installation requirements call for cable extensions or special cable arrangements.

RADAR CABLE CONNECTORS

CABLE CONNECTOR

RECEPTACLE IN LINE JACK

TYPE: STANDARD

RAYTHEON P/N: G259062-1 JRC P/N: 5JCAA00265 TYPE: MATING INLINE CHASSIS MOUNT G259063-1 5JCAA00421

5ICAA00222 SCANNER UNIT

G259064-1

TYPE:

FIG. 2-7 TYPICAL INSTALLATION FOR SAILBOAT SHOWING INLINE CONNECTION AT MAST BASE

2 - 8

2.3 INSTALLATION OF OPEN ARRAY SCANNER UNIT

2.3.1 Selecting the Location

Selecting an adequate location for the Scanner Unit requires careful consideration. On many small vessels, the unit can be installed onto a mast platform on an arch or bridge structure or onto a mast. Since radar basically operates at line-of-sight, the unit should be mounted as high as possible on the ship to ensure best performance at the maximum range.

The scanning beam should not be obstructed by surrounding large objects. Try to locate the unit where large structures such as superstructures, searchlights, horns, or masts are not in the same horizontal plane. Otherwise, blind areas and false targets can appear on the radar screen. Installation near the top of exhaust stacks must be avoided as damage could result due to excessive heat and the corrosive effects of stack gases.

2.3.2 Mounting the Open Array Scanner Unit

Using the appropriate mounting dimension of Fig. 2-7 as a guide prepare a mounting platform surface on which to mount the radar pedestal unit. Assure that the platform has sufficient strength to support the scanners' weight under the most adverse conditions the vessel is likely to encounter. Also ensure that the platform is parallel with the vessel's water line to maintain the proper plane of radiation for the radar antenna.

Install the scanner unit onto the mounting platform with the cable entry and safety switch facing "AFT". Secure the scanner with the Proper Stainless Steel hardware to the platform.

If mounting directly to a deck top does not give sufficient height or clearance, a radar mast or pedestal may be used to elevate the unit. Refer to Fig. 2-8.

2 - 9

÷ 2

INSTALLATION OF DISPLAY UNIT 2.4

2.4.1 Selecting the Location

Ideally, the Display Unit should be located in the wheelhouse so the radar screen can be viewed when looking forward from the wheel. The Display Unit can be mounted on top of the chart table hung from the overhead, or installed against a bulkhead. If the display is mounted in an exposed over such as a flying bridge it must be protected from direct salt spray.

To minimize interference the location chosen should be at least 1 meter (3 feet) away from the ship's compass and the Loran C receiver.

2.4.2 Mounting the Display Unit

Using the dimensions from the outline drawing for the Display Unit shown below as a guide, install the Display Unit to the desired mounting surface. Note that the yoke of the Display Unit can be attached above or below the unit.

Dimensions are shown in inches (millimeters)

OUTLINE DIMENSIONS 2 - 14

CONSOLE MOUNTING THE DISPLAY UNIT

Mounting instruction For the R10X/R11X console mount kit M78843.

PARTS LIST 1. TRIMRING MTB186263 1pc

- 2 SCREW BRTG01387 2pcs
 - 3. TAPPING SCREW 4 mm 8pcs

- 1. Locate a clear flat area at least 12" (H)×12" (W)×15" (deep). Make sure the area behind the cutout is clear of wires or other obstructions before proceeding.
- 2. Use flat TRIMRING to trace cutout hole. Drill a pilot hole inside the cutout area. Using a proper saw, cut along the inside of the cutout line.
- 3. Still using flat TRIMRING mark 8 holes for the frame mounting screws. Using a 3/16" bit, drill clearance holes at the 8 locations around the cutout area.

- 4. Remove the yoke knobs and mounting bracket from the radar.
- 5. Slide the TRIMRING over the radar as shown in the diagram. Use 6 mm screws (provided) to attach frame at yoke screw mounting holes.
- 6. Attach power, antenna cables, option cables and ground to the radar and insert the radar into the cutout. Secure the console frame using the eight #3 screws provided onto the panel.

 $\sim t$

2.4.3 DC Power Connection

A 2 m (6 ft.) power cable assembly is furnished for connecting the DC power to the radar. Longer cable runs may require larger wire sizes to minimize any voltage drop in the cable.

If the distance between the ship's main DC power source and the radar equipment is greater than 10 feet it may be necessary to move the source of the ship's power closer to the radar. In order to properly determine the supply cable wiring size to use, a graph is supplied in TABLE 2-1 for recommending an appropriate cable diameter. Begin by estimating the length of cable you will require between the ship's main power source and the radar. Select the wire size indicated by the distance and input voltage.

TABLE 2-1 POWER CABLE SIZE VERSUS LENGTH

Table 2-1 is a recommended guide for selecting power cable wire sizes based on the length of the cable to the ships' power connection point.

The Connection should be made at a power distribution panel, isolation switch, or to the battery. Check that all connections are clean and bright. The white wire must be connected to (+) positive battery terminal and the black wire to (-) negative battery terminal. The shielded wire should be connected to the ships RF ground.

Should the power connections be accidently reversed, protective fuse F1 (6.3A), located on the rear panel, will blow. Make sure that the input power leads are connected for correct polarity with a VOM. Replace the fuse.

Note: If ships input power is 24 or 32 V de, F1 should be changed to a 3 amp fuse.

GROUNDING THE RADAR SYSTEM

It is important for proper operation that an effective RF ground be connected to the radar system. You may elect to ground the radar by connection of the power cable assembly shield to the RF ground system

2 - 16

on your vessel or by connecting a 10 or 12 gauge wire to the ground on the rear of the display to be connected to the nearest ground point of the ship's RF ground system.

2.4.4 Connection to Loran C Receivers

The R10X/R11X display can show your latitude and longitude position (L/L) or time differences (TD's) when connected to a Loran C with the proper data output format.

The display is programmed to accept data from the loran in the N.M.E.A. 0182, N.M.E.A. 0183 formats, or JRC Formats.

The N.M.E.A. 0182 format will <u>only provide a Lat/Long display</u> for the radar. The N.M.E.A. 0183 data standard will, in most cases, provide Lat/Long, TD, Course and Speed data for the radar display.

To display the selected waypoint, the N.M.E.A. format must contain the "BWC" sentence. All of these data are contained in sentences "RMA" and "RMB".

Consult your Loran C manual for directions in obtaining the appropriate data output from the loran for your radar.

The loran connection to the Display Unit is made with a common BNC connector. RG 58 A/U Coax cable (50Ω) of any length may be used to complete the interconnection to the Loran C. Two wire, shielded cable may be used in place of the RG 58 Coax if necessary.

FIG. 2-12 SAMPLE NAVIGATOR CONNECTIONS

2.4.4.1 The BNC Connector Assembly Procedures

The following procedure will be helpful to illustrate how the BNC connector should be installed:

- 1. Strip and remove the coax outer vinyl cover for about 3/8" (9.6 mm)
- Slide the BNC connector fastener (1) onto the coax. Add the washer
 (3).
- 3. Insert the rubber gasket ④ and clamp ⑦ (as shown).
- 4. Peel back the shield of coax and pull back over the clamp. Trim the excess shield material so that the shield is only covering the clamp.
- With a knife or other suitable tool, remove 1/8" (3 mm) of dielectric material (a). Neatly dress and tin with solder the center conductor of the cable. (Avoid using excessive solder.) Now solder the terminal (a) onto the tinned conductor. Again, avoid using any excessive solder.

6. Install the connector shell into the cable and thread the fastener tightly into the connector shell.
Note: The shield of the coax should be tightly bonded between the clamp and shell body.
7. The connection should be checked with a multimeter for possible short circuits and continuity, as a final test.

FIG. 2-13 DIAGRAM OF BNC CONNECTOR ASSEMBLY

2.4.5 Installation of the Magnetic Flux Sensor

The sensor should be placed in a location on the vessel where magnetic interference is least and where it will remain undisturbed. The optimum compass location is as close as possible to the vessel's center of pitch and roll. On steel vessels, the sensor may need to be mounted above the deck enclosure on a mast and should be between one meter and three meters from the main structure to avoid magnetic disturbances.

- 1. Locate a suitable installation area, free from magnetic interference.
- Fix the sensor to a <u>vertical</u> bulkhead using brass or stainless steel screws.
- 3. Adjust case of the sensor so the pointer on the top leading edge is in fore and aft direction. Tighten main bracket bolt to lock sensor in place. To re-align through 90 or 180 degrees, remove sensor lid (4 screws), release printed circuit board (PCB) by removal of four pillars and gently rotate PCB assembly until it is fore and aft. Replace pillars and lid with arrow facing forward.
- 4. The transit screw is located at the base of the sensor. This locks the gimbal during shipment for protection. Ensure transit screw (white nylon screw at center of base) is withdrawn five full turns to allow full mechanical movement of coil assembly. If unit is exposed to the weather remove screw, shorten by 10 mm (3/8"), replace and tighten.

÷ !

- Note: Only fluxgate sensors which have NMEA0183 output will work with R10X/R11X radars. See your dealer if there is any question of sensor compatibility.
- 5. Install a terminal strip or junction box (not supplied by Raytheon) in any convenient place to allow system connection.
- 6. Even though the sensor is internally fused, it is advisable to connect the system through a fused supply. It may be wired either from an existing switch panel or separately. Always connect via the junction box. As the current drain is low, the compass can be left on with very little battery drain. Wiring details are provided in Fig. 2-14.

Minimum Mounting Distances	
Radios, RDF, Depth Recorders, etc.	1 meter
Power cables carrying more than 0.5 amp	1 meter
Radar magnetrons	3 meters

Ship's Engines

1 meter

FIG. 2-14 GENERAL MAGNETIC FLUX SENSOR WIRING

2 - 21

+ t

× . .

The instructions for calibrating the magnetic sensor unit will be included with the magnetic sensor option.

MOUNT WITH ARROW POINTING FORWARD

TRANSIT SCREW REMOVE BEFORE INSTALLATION

ALLOY HOUSING

PLASTIC HOUSING

2 - 22

ALTERNATE MAGNETIC SENSOR OUTLINE DIAGRAM

2.4.6 External Alarm

The radar can operate an external alarm device through the connector on the rear panel designated for this purpose. Devices connected to this output are limited to an operating voltage less than 24 VDC and a maximum current of less than 100 mA.

The external alarm drive circuit is shown for reference.

A miniature phono plug is required for inter-connecting to the external alarm connector.

2.5 INITIAL OPERATION AND CHECKOUT

2.5.1 Inspection After the Installation

After completing the installation and prior to energizing the equipment, it's a good idea to recheck that all the steps of the installation have been completed in accordance with the instructions.

In particular, inspect to insure that the cables were not accidently crimped or damaged and that the ships input voltage is connected correctly: that the mounting bolts of the scanner unit are tight; the cable gland is tightly sealed at the Scanner Unit, that the antenna connections are correct, and the cable shield is connected properly to RF ground.

2.5.2 Operational Checkout

Activate the power circuits to the radar and switch the radar into standby (STBY). After approximately 90 seconds "READY" will be displayed on the CRT. During warm up the time will count down to zero.

If you are unfamiliar with the operating controls of this radar, please take a few moments to familiarize yourself by reviewing the instructions in Chapter 3 Operation.

Press the X-MIT switch to "ON" and observe the presence of radar targets on the screen. Check the operation of the range selection keys for each range scale. Observe that the sweep is the correct length and has the proper number of range rings. Observe that the range markers are focused properly.

Operate the **BRIL/DIM** key. Check for multiple picture intensity level operation.

After approximately 10 minutes of operation, check the TUNE control for maximum target returns occuring at the center of the TUNE level range.

If readjustment of the Display Unit is required follow the instructions for alignment in section 5 (pages 1 to 5) adjustment and faultfinding.

2.5.3 Post Installation Set up Adjustments

Following the operational check, two alignments A) and B) are normally required for proper operation.

They are: A) Relative Bearing Alignment

B) Display timing (0 nm adjustment)

Other adjustments are:

- C) Tuning preset
- D) STC (Sea-Clutter preset)
- E) Buzzer Volume Adjustment

Access to these adjustments can be made by pressing in lightly on the Logo overlay panel on the display front panel and sliding the panel downward. Remove the rubber protector seal to expose the adjustment controls by grasping the end tab and gently pull the seal from the cutout. The set-up adjustments will appear as shown on the diagram below.

POST INSTALLATION SET UP ADJUSTMENTS

A) Relative Bearing Alignment BR.C, BR.F This alignment should be carried out when the installation is complete to ensure that targets on your display appear at their proper bearing with respect to the ship's heading.

Proceed as follows:

- 1 Identify a suitable target (e.g., ship or buoy, etc.) preferably be-
- tween 1.5 and 3 nm in range on the screen.

- (2) Use an accurate visual means to establish the relative bearing of the target (ie., pelorus or lining up bow on target heading).
- (i) Put the first EBL marker on the target.
- (4) Set BR.F (RV2) at its mid position.
- (3) Press the EXP key until the buzzer sounds and the display on the screen reads BEARING ADJUST.
- (6) By turning the coarse bearing adjustment BR.C (RV1), the first EBL marker is rotated. Adjust RV1 until the EBL is on the bearing to the target ± 10 degrees, and the beeper sounds continuously.
- (7) Set the fine adjust BR.F (RV2) for the correct bearing to within ± 1 degree.
- (8) Press the EXP key continuously until the words BEARING AD-JUST disappear from the screen to restore the normal display mode.
- B) Display Timing (0 nm Adjustment) ZERO

This is a radar timing adjustment. It is necessary to ensure targets are at their proper range on the display unit. Incorrect timing is mostly noticed on the 1/8 nm.

- (1) Set the range at 0.125 nm.
- (2) Locate a straight dock, seawall or bridge approximately 0.03-0.1 nm away on the display. Observe whether the radar target is straight on the display. If not, adjustment is indicated.
- (i) Adjust ZERO (RV3) so that the object appears to be straight on the display.

FIG. 2-16 0 NM ADJUSTMENT

2 - 26

The remaining adjustments affect operating conditions that are normally set at the factory and typically will not require any further adjustments. However, these settings should be checked at installation so that optimum operation will be realized.

C) Tuning Preset TN.C

Normal tuning of the radar should be indicated on the Radar Display by seeing maximum target returns with the "TUNE" control at its mid scale position.

After about 10 minutes of operation:

- (1) Set radar to 6 nm range scale.
- (2) Set GAIN for normal operation level.
- ③ Set SEA CLUTTER, RAIN CLUTTER, IR to "OFF".
- ④ Set TUNE control of the front panel, so that tune control indicator is centered in its range. Adjust RV5 (Coarse Tune) very carefully for maximum target on the CRT Display.

D) STC Preset STC

- (1) Set Range to 12 nm.
- (2) Set the Gain Control fully clockwise.
- (3) Turn the Sea-Clutter control fully clockwise and adjust STC (RV6) so that no background noise appears in the range of 0 to 4 nm. In some conditions the STC action range may be extended even further to compensate for severe sea states.
- E) Buzzer Volume Adjustment

At the time of shipment, the Buzzer Volume has been adjusted to the maximum position. When it is necessary to lower the volume, adjust BUZ (RV4).

F) AVR Voltage Adjustment

AVR Output Voltage adjustment RV1 is on the PC501 the power supply PCB.

Adjust RV1 so that the voltage between TP1 (positive) and Ground (negative) will be +5.0 V.

G) Interlace Synchronization Adjustment

This adjustment synchronizes the scanning line positions so that they are adjacent to each other. The ideal interlace adjustment occurs when there are no visible lines appearing in the video pattern.

2 - 27

чţ

Adjust RV7 on the ADJUSTMENT PCB for proper blending while looking at the video pattern.

Poor Interlace Sync.

- H) Comparator level adjustment
 - (1) Set the Gain and STC controls on the front panel full counterclockwise.
 - (2) Set the range scale to maximum. (16/24)
 - ③ Set EXP to ON and IR to OFF.
 - (a) Adjust RV2 on the Receive Buffer PCB (CQA-116) so that the noise on the screen just disappears.
 - (5) Press EXP switch to OFF.
 - (6) Press IR switch to ON.
 - (7) Turn the Gain control on the front panel fully clockwise.
 - (a) Adjust RV1 on the Receive Buffer PCB (CQA-116) so that the receiver white noise becomes slightly visible.

SECTION 3

OPERATION

3.1 OPERATING CONTROLS

Generally the operation of the R10X/R11X is easy and straight forward. However, the navigator who is most familiar with the panel layout and understands the functions of the various controls will be able to obtain the best performance from his equipment.

3.1.1 Layout of the Controls

The layout of controls is shown in Figure 3-1.

3.1.2 Functions of the Controls

() POWER ST-BY/OFF, X-MIT/OFF KEYS

In the "OFF" state no power is applied to the radar system. Upon pressing the <u>ST-BY/OFF</u> key, power is applied to the scanner and display units. A countdown timer on the radar display shows the time remaining in the warm up period. During the warm-up period the antenna does not rotate.

After the warm up period (approximately 90 seconds), three beeps will sound and "ST-BY" will be displayed on the screen along with the bearing circle and graphics. The radar is now "ready" and available for operation.

Press the X-MIT/OFF key (with the word ST-BY displayed), puts the radar into the "transmit" mode. The antenna will begin rotation, and targets will be displayed on the screen.

By pressing the <u>ST-BY/OFF</u> key again, the radar will return to the "stand-by" condition with the transmitter off and "ST-BY" again appears on the screen.

By pressing the $\overline{\text{ST-BY/OFF}}$ and the $\overline{\text{X-MIT/OFF}}$ keys simultaneously, the radar will be turned off and all alpha-numeric information on-screen will extinguish.

(2) RANGE SCALE UP AND DOWN KEYS

By pressing the UP **(** or DOWN **(** key, the desired range scale can be selected.

 \mathbf{t}_{i}^{t}

FIG. 3-1 LAYOUT OF DISPLAY AND CONTROLS

When the radar is turned on, the range displayed will be on the same range scale that was previously in use when the radar was turned off. During range changes the UP \checkmark and DOWN $\boxed{\checkmark}$ keys change not only the range scale, but simultaneously change the number and interval of the fixed range rings, the pulse repetition frequency, the transmitter pulse length, and the bandwidth of the IF amplifier. Table 3-1 shows this relationship.

TABLE 3-1 RELATION OF RANGE, RINGS AND PULSE LENGTH

Range (nm)	Range Ring Interval (nm)	Number of Rings	Pulse Repetition Frequency (Hz)	Transmitting Pulse Length (µs)		Bandwidth of IF Amplifier (MHz)
				RIOX	RIIX	
0.125	0.0625	2	2250	0.08	U.08	10
0.25	0.125	2	2250	0.08	0.08	10
0.5	0.25	2	2250	0.08	0.08	10 .
0.75	0.25	3	2250	0.08	0.08	10
1.5	0.25	6	2250	0.08	0.08	10
3	0.5	6	750	0.5	0.7	3
6	1	6	750	0.5	0.7	3
12	2	6	750	0.5	0.7	3
16 (R10X)	4	4	750	0.5		3
24 (R11X)	4	6	750	-	0.7	3

③ TUNE CONTROL

The tune control is a variable control used to tune the receiver in the antenna unit for maximum targets on the display. If there are no targets available, this control can be used to tune for maximum sea clutter. The on-screen indicator will show the tuning peak condition by displaying a maximum of bars. The tuning adjustment of the radar should be normally performed on the longer range scales from 3 to 24 nm but should always be re-checked for peak indication on the range scale you are using.

④ GAIN CONTROL

The variable gain control adjusts the gain of the receiver by increasing or decreasing the strength of the incoming video and noise. The gain control level is usually set for the best target presentation on the range scale selected with a slight noise speckle in the background. The gain control level may be reduced slightly on the short ranges for improved clarity, and increased as necessary on the long ranges for more sensitivity. You should use caution when setting the gain level. If the gain is reduced too much, small or weak targets may be mis-

sed, and if the gain is set too high, the CRT may be saturated with noise, making target observation difficult.

(§) SEA CLUTTER CONTROL

The variable sea clutter control, also known as (STC), is used on the short ranges to suppress the effects of sea clutter close to own ship by reducing the nearby gain. The sea clutter should be set to the point where nearby clutter is reduced to small noise dots and small target echoes can still be distinguished. If the STC level is set too high, some small, weak targets may be missed.

The Gain and STC should be checked for optimum settings whenever new range scales are selected to assure the best performance in all conditions.

(6) RAIN CLUTTER CONTROL

The variable rain clutter control, also known as (FTC), is used to reduce large undesirable echoes from clutter such as rain or snow which may obscure smaller echoes in their vicinity. The rain clutter control is normally adjusted to reduce such echoes so that only the leading edges of the larger echoes are displayed, while the smaller echoes are only slightly effected. If the rain clutter is advanced too far. some small, weak targets may be suppressed by the controls effect.

(7) VARIABLE RANGE MARKER (VRM) CONTROLS

The display unit has 2 VRM's which are used individually to obtain accurate range measurements to targets or land masses. When the \boxed{VRM} key is pressed for a short time, VRM1 will be displayed as a dashed ring on-screen and VRM1 will be displayed in the upper right corner of the display. VRM1 is displayed as a "Dashed" ring. By pressing the Increase \boxed{V} or "Decrease" \boxed{V} key, the VRM range is changed and the VRM distance will be displayed on the CRT, following the VRM1 characters, in nautical miles. If you wish to move the VRM ring more quickly, press the \boxed{VRM} key while pressing the "increase" \boxed{V} or "decrease" \boxed{V} key for faster speed of movement of the VRMs on the screen.

If the VRM key is depressed again for a short time, the VRM ring will be turned off. The selection of which VRM will be controlled is made by holding the VRM key depressed until the buzzer sounds. The second VRM will become activated. VRM2 is displayed as a "dotted" ring. The VRM being controlled is displayed with a highlighted block character "1" or "2" after "VRM" in the upper right corner of the display.

(a) ELECTRONIC BEARING LINE (EBL) CONTROLS

This display unit has 2 EBL's which are used to take accurate bearing measurements to targets or points of land. If the <u>EBL</u> key is pressed for a short time, EBL1 will be displayed as a "Dashed" line. The EBL1 bearing can be displayed in Relative, True, or Magnetic degrees depending on the mode selected with the mode key. By pressing the clockwise or counterclockwise key, the EBL can be rotated in the corresponding direction, and the bearing of the EBL will be displayed in the window on the screen at the top left side under the EBL characters. If you wish to move the EBL more quickly, press the <u>EBL</u> key while still pressing the direction key. The EBL will speed into "overdrive" mode.

The digits of the bearing display will be followed by a "T" when the bearing is "True", an "M" when the bearing is "Magnetic", and, when the bearing is "Relative", will have no letter displayed.

In order to obtain "True" or "Magnetic" bearings, the radar must be connected to a Navaid (Loran C or GPS), or a Magnetic Flux Sensor. If the \boxed{EBL} key is again depressed for a short time, the EBL1 will be turned "off". The selection of which EBL will be controlled is made by holding the \boxed{EBL} key depressed until the buzzer sounds. The second EBL will be activated and displayed. EBL2 is displayed as a "dotted" line. The EBL being controlled is displayed after the characters "EBL" in the upper left corner of the display by a highlighted character 1 or 2.

OFF CENTER KEY

25

The Off Center Mode lets you position the radar picture center at another point on the display so you can have a greater view in the direction of interest.

When the <u>OFF CENT</u> key is pressed, the position of own ship can be set anywhere on the screen up to 66% of the radius. The Off Center Origin is set using the VRM1 and the EBL1. To use the Off Center feature set the EBL1 and VRM1 intersection to the desired location for the Off Center sweep origin. Press the Off Center key to turn "on" the Off Center mode. The origin of the radar sweep will now shift to the intersection point of the EBL1 and VRM1. To turn off Off Center and recenter the sweep, press the <u>OFF CENT</u> key again. The Off Center Mode does not operate on the 16 nm (R10X) or 24 nm (R11X) range and cannot be used together with the Zoom mode.

60 ZOOM KEY ZOOM

The Zoom mode can be used to magnify any designated area of the display by "two times". When the ZOOM key is pressed, "X2" will be displayed on the lower right of the screen. The area between own ship and the designated location can be magnified by a factor of 2 times by using the designated location as the starting point without changing the range in use. The zoom location can be set by using the VRM1 and the EBL1 intersection point. Once you have set the EBL1 and VRM1 intersection, press the [ZOOM] key to turn "ON" Zoom mode. To assist you in maintaining proper range determination, the fixed range rings are also turned "on" automatically.

Zoom mode can provide a quick means of getting a closer look at a channel entrance, for example, but for navigation purposes it is recommended that you choose the next lower range scale and use the Off Center feature for the same effect. By alternately pressing the \boxed{ZOOM} key, the function can be turned "on" and "off". Zoom does not operate on the 1/8 nm range and cannot be used together with "OFF CENTER".

3 - 6

1) MODE KEY MODE

:

When connected to a navigator such as a Loran-C or GPS, the X series radars have three display modes available. They are "Relative", "True" and "Magnetic". The "Relative" mode allows the operator to determine bearing to objects displayed on the radar screen relative to his own heading. These bearings are taken by utilizing the EBL's (Electronic Bearing Lines). All of the bearing data acquired in the relative mode is referenced to the "SHM" (Ship's Heading Marker).

When planning to plot information from the radar display to a chart, it will be helpful to have the bearing information readouts be in True or Magnetic. This data may be obtained directly from the radar by selecting the "True" or "Magnetic" mode. Press the <u>MODE</u> key to make the selection of True, Magnetic or Relative by sequential presses of the key.

The "True" and "Magnetic" modes all depend on having a NAVAID with proper data format connected to the radar system. In addition, the vessel must be underway and generally on a constant heading for several minutes, so that the COG (Course Over Ground) information from the loran or GPS will be valid and usable for the radar display modes. Pressing the MODE key places the radar in the "True" mode of operation. In this mode, EBL1 and EBL2 bearings are indicated in true bearing as determined by the NAVAID input. The character "T" will be displayed to the right of the EBL bearing characters to indicate the type of bearing input. The ship's COG data from the NAVAID is added to the radar display directly above the SHM and the vessel's speed is shown in the lower right of the display in this mode. Pressing the MODE key again places the radar in the "Magnetic" mode of operation. In this mode, EBL1 and EBL2 bearings are indicated in magnetic bearing as determined by the NAVAID or optional magnetic flux sensor input. The character "M" will be displayed to the right of the EBL characters to indicate the type of bearing input. The ship's COG data from the NAVAID is added to the radar display directly above the SHM and the vessel's speed is shown in the lower right of the display.

When the flux sensor data is available, the "M" character will be displayed in highlighted block form M.

3 - 7

۳.1

(1) STANDARD MODE

EBL's with on-screen readouts, give relative bearing data.

(2) TRUE MODE

EBL's with on-screen readouts, instantly show true bearings to targets. Own ship's true bearing and own ship's speed are shown.

(3) MAGNETIC MODE

EBL's with on-screen readouts, instantly show magnetic bearings to targets. Own ship's magnetic bearing and own ship's speed are shown. Magnetic bearing data is best when inputted from the optional magnetic flux sensor.

(12) LL/TD KEY LL/TD

The LL/TD key is a three position key which selects Latitude/ Longitude, Time Difference or OFF for the display. Just press the key for your preference. L/L or TD data can only be displayed if you are connected properly to a Loran C or GPS Receiver.

(i) WAYPOINT KEY WPT

When the WPT (waypoint) key is pressed, and the radar is connected to a NAVAID with the necessary data output, a waypoint symbol at the bearing and range to the selected waypoint can be presented on the radar display. Numeric data, showing the waypoint's Latitude/ Longitude, bearing and range, and own ship's speed, appears at the bottom of the display. "WPT" characters in the upper right corner of the display indicate that the waypoint mode is ON.

If the radar is receiving course data from the optional magnetic sensor, the waypoint bearing data from the loran must be in "Magnetic" to enable the mode.

If the optional magnetic sensor is not used, the loran COG (course) data can be in "True" or "Magnetic" as determined by the Loran-C. The waypoint mode will be enabled when the true or magnetic mode matches the loran course input.

If the waypoint is not within the selected range scale of the radar, only the dashed line indicating the bearing to the waypoint can be displayed. When the waypoint appears on the range scale in use, the waypoint is displayed as a () with the center (own ship) and the waypoint interconnected by a dotted line.

Should data be lost from the heading sensors or from the Loran C, the WPT mode will disabled and the message "NO DATA" will appear on the display.

The Waypoint mode cannot be used if there is no course data from the Loran Navigator, or magnetic sensor or if there is no BWC sentence data available from the Navigator.

When using the WPT mode on higher speed vessels the waypoint symbol will tend to lag behind the actual waypoint. Often this condition is due to the lag in getting data from the Loran and is more noticeable on the shorter range scales.

• THE TARGET ALARM KEY ALM

_!

,

This radar has two types of alarm zones; the IN (approach) alarm and the OUT (leave) alarm. The IN alarm is effective for alerting the operator to targets approaching own ship. An "OUT" alarm is an alarm that sounds when the targets leave a prescribed set zone. The OUT alarm is useful for monitoring anchorage conditions, or when pair trawling, or for towing operations.

The <u>ALM</u> key turns the Alarm mode "ON" or "OFF". When the Alarm mode is ON, "ALM I" or "ALM O" is displayed on the upper right side of the screen.

The alarm is preset to detect radar targets above the noise. If sea clutter or incidental weak echoes trip the alarm, the level of targets can be selected by the operator to avoid false alarming.

The alarm zones are set by positioning VRM1 and VRM2 circles at the desired alarm distances from own ship.

When sector alarms are desired, the sectors are formed by positioning EBL1 and EBL2 to define the borders of the desired alarm zone sector areas.

ALARM KEY OPERATION

MAKING THE ALARM ZONE:

The most simple and effective alarm zone is made by setting VRM1 close to own ship and VRM2 to the outside desired safety zone distance that you wish to maintain. So, just press the <u>ALM</u> key. The "MAKE ZONE" menu appears. Turn on VRM1 and set the desired distance. Turn on VRM2 and set that distance. Press the <u>ALM</u> key again. The Alarm Zone will now be dis-

played as solid rings near the VRM ring positions.

The "SET LEVEL" menu appears. Target level 4 is automatically chosen for you. If you want to select a higher (stronger) level, press the \blacktriangle key to pick target size detection between levels 1 and 7. You can use the \checkmark key to choose more sensitive detection levels if you desire. When the selection has been made press the alarm key $\boxed{\text{ALM}}$ again and the alarm zone is now "on" using the "IN" type of zone. Targets at the programmed level entering into the zone will sound the alarm.

MAKING SPECIAL ZONES (Sectors)

To make sector type zones just turn "on" EBL's 1 and 2 together with VRM's 1 and 2. The only special rule for making sector zones is that the left edge of any sector zone is set by EBL #1. The right side is set by EBL #2. The sector is then the combination of EBL's 1 and 2 and VRM's 1 and 2.

The diagram below demonstrates the area of the alarm zones when EBL1 and EBL2 are reversed.

One use for a sector zone is to draw the zone around an island or fixed target when you plan to anchor. Set the zone for an "QUT" alarm. If the anchor drags, the alarm will sound when the fixed target tries to leave the zone.

ALARM ZONE MEMORY

Most operators prefer to use the same alarm zone most of the time and occasionally will design special alarm zones as the need arises. These radars have a built-in memory to retain the zone that you use most often so that it is not necessary to always remake alarm zones.

MEMORIZING AN ALARM ZONE

To memorize an alarm zone, first make the zone following the normal procedure. After selecting the target size (if desired) and the alarm "IN" is displayed, press and hold the alarm key until the display beeps and the alarm characters on the screen right side become highlighted. At this time the zone will have been memorized for use any time.

To activate the "memorized" alarm zone just press and hold the \boxed{ALM} key until the display beeps. Your memorized zone will reappear. The zone will be displayed as an "IN" type zone. If you want to change to an "OUT" zone, press the \boxed{ALM} key one time and "ALM O" will be displayed on-screen showing the "OUT" alarm is "in use".

(1) TARGET EXPANDER KEY EXP

The \boxed{EXP} (target expand) key, allows the operator the ability to make small targets appear larger on the display for better viewing. By alternately pressing the \boxed{EXP} key, the function can be turned on and off.

10 INTERFERENCE REJECTION KEY IR

The \overline{IR} (interference reject) key, when activated, reduces noise on the display caused by other radars operating nearby in the same frequency band. This function is also effective in reducing some background noise. When active, the "IR" characters are displayed below the EBL characters at upper screen left. By pressing the \overline{IR} key again, the IR function is turned off.

If you are navigating in a port area serviced by a "RACON" beacon you should turn <u>"off"</u> the IR mode to see the racon signals.

(1) SHIP'S HEADING MARKER KEY SHM

Normally the ship's heading marker is continuously displayed to show own ship's heading on the radar screen. When the SHM (Ship's Heading Marker) key is pressed and held, the ship's heading marker will temporarily not be displayed. When the key is released again, the ship's heading marker will again be displayed. This feature allows small targets, under the Heading Line, to be clearly seen.

(1) RANGE RINGS KEY RR

The \boxed{RR} (range rings) key turns on or off the display of the fixed range rings. The fixed range rings are usually used to "estimate" the distances to targets. The interval between the range rings is displayed on the lower left of the screen just below the range scale indicator for your reference.

() TIMED TX KEY TIME

The TIME key allows the operator to program the radar to automatically transmit for a programmed period and return to standby for a prescribed period. This permits the user to maintain a radar watch while minimizing the power consumption experienced during full transmit operation. To use the Time TX mode, proceed as follows: (1) Press the TIME key

- The menu screen displays "SET TX PERIOD 10, 20, 30 SCANS".
- (2) Use the range ▲/▼ keys to select the desired number of radar scans during transmit operation. The selected scan period is displayed in highlighted numbers.
- (3) Press the TIME key again.

.. .

The menu screen now displays "SET STBY PERIOD 3, 5, 10, 15 MIN".

- (4) Set the standby time using the range ▲ or ▼ key. The selected standby time is displayed in highlighted numbers.
- (5) The menu will disappear after 7 seconds.

TO TURN "TIMED TX" MODE ON

Press and hold the TIME key until you hear the beep and the "Timed TX ON" message is displayed.

TO TURN TIMED TX MODE OFF

Press and hold the <u>TIME</u> key until the beep is heard and the "Timed Tx OFF" message is displayed. The <u>TIME</u> key needs to pressed for only about 3-5 seconds to turn the mode ON or OFF, and the time mode can be turned off any time the operator desires by pressing and holding the <u>TIME</u> key until the OFF message appears.

BRILLIANCE/DIMMER KEY DIM/BRILL

This <u>DIM/BRIL</u> (DIMMER/BRILLIANCE) key is used to adjust the brilliance of the screen and also the illumination of the front panel. To adjust, the brilliance level proceed as follows:

(1) Press the DIM/BRIL key.

The menu screen displays "BRIL (1-8) ▲ ▼".

(2) Press the range ▲ or ▼ keys to adjust to the desired brilliance level 1 (Low) to 8 (Maximum).

- •

(3) Press the UIM/BRIL key again to adjust the key panel backlighting.

The menu screen now displays "DIM (0-7) \blacktriangle \checkmark ".

- (4) Press range or keys to set the desire illumination level. The backlighting level is displayed after DIM characters on the screen between 0 (off) to 7 (maximum).
- (5) The menus will disappear after 7 seconds.

3.2 USING THE CONTROLS

Radar magnetrons, during their aging process, may take several minutes to completely stabilize on frequency. So, after switching to on and tuning initially, the tuning should be rechecked after the first 10 minutes:

Symptoms that the equipment may be out of tune are a lack of distant echoes, or sometimes, the appearance of double echoes (one echo behind the another). Normally it is possible to "fine-tune" the radar by selecting a comparatively weak echo and then set the TUNE control level where the strongest echoes are displayed.

3.2.2 GAIN Control

The correct setting of the GAIN control is for a light background speckle to be just visible on the screen on the long range scales. The equipment is then in its most sensitive condition. Objects will be detected at the greatest possible range. With too little gain, weak targets may be missed and not displayed, with a decrease in detection range. With excessive gain the difference between echoes and background noise will be substantially reduced, making target observation more difficult.

In areas around strong targets (buildings, hills, towers, etc.), the gain might be temporarily reduced to clarify the picture. This should be done with care so important targets will not be missed. With the gain at its normal setting, clutter from rain or snow may obscure the echo from a ship inside a squall or storm. A temporary reduction in gain along with the proper RAIN CL/SEA CL settings will usually permit the stronger and more distinct ship's echo to be distinguished.

Detection of targets beyond the storm may, however, require slightly higher gain than normal, since the storm may have attenuated but not completely obscured the echoes from the targets. The GAIN control should always be reset to the optimum level following range scale changes. In addition, when environmental conditions change, readjustment of the gain may be required.

3.2.3 SEA CLUTTER Control

Whereas the GAIN control affects the strength of echo returns at all ranges, the effect of SEA CLUTTER control is greatest on nearby returns, becoming progressively less as range increases. The SEA CLUT-TER control is effective up to a maximum of about three miles.

 ± 2

In particular, the SEA CLUTTER control reduces the strength of the mass of random signals received from waves at short range. The STC level used should be sufficient to reduce the strength of sea clutter while still allowing small nearby targets to be distinguished. The level should never be set so high so as to blank out all nearby returns.

The sensitivity of the SEA CLUTTER control is variable, thus enabling an optimum picture to be obtained under adverse weather conditions.

Maximum reduction in the strength of close-range clutter takes place when the control is set to maximum. When it is set to minimum there is no reduction in the strength of nearby clutter.

The SEA CLUTTER control may be useful to reduce effects from rain or snow clutter in the immediate vicinity of the vessel. A temporary increase in the setting will permit stronger echoes from ships, and some navigational marks inside storms or squalls, to be distinguished.

At close range in crowded regions the control may be temporarily advanced to clear the picture. This should be done with care, so as to avoid missing important target returns.

The SEA CLUTTER control should be always checked and reset to the minimum required level position after any temporary alteration or when environmental conditions improve.

It is important to remember that both GAIN and SEA CLUTTER levels should be checked and adjusted each time a new range scale is selected. This is important to assure that excessive sea clutter or insufficient gain will not cause important targets to be missed or not displayed.

3.2.4 RAIN CLUTTER Control

During heavy rain or snow storms the RAIN CLUTTER control may be used to improve the detection between echoes and the storm clutter. When operating the RAIN CLUTTER, you will notice the reduction of background returns from land and large targets. This is normal. The rain storm should be minimized and allow targets to be seen within the storm.

3.2.5 IR Interference Rejection

When other radars are using the same frequency band as that of your own radar, interference typically appears arranged in curved spokes as shown in Fig. 3-1. The radar interference is most noticeable on longer range scales.

Activating the IR feature will eliminate this type of interference as well as affecting reduction of the background noise.

In general, the IR should be set to "ON" for normal operation to allow maximum target presentations on the radar display.

The IR feature is activated by the SELECT and SET keys.

FIG. 3-1 RADAR INTERFERENCE

3.2.6 EXPANSION MODE

From time to time, targets may appear too small in size on the display. In this situation, activating the "expansion" mode will allow the displayed targets to be enlarged on the display, providing greater visibility to the operator.

The expansion mode is activated by the EXP key.

3.3 NAVIGATION WITH THE RADAR

3.3.1 Obtaining a Position Fix

The Model R10X/R11X Radar is an accurate and reliable navigational aid for determining your ship's position. Figure 3-2 shows examples of alternative methods of using radar sightings from prominent navigational points which can be identified on a chart. A position fix based on two or more navigational points will furnish an accurate fix, especially when the points are separated by close to 90° from each other relative to your ship.

FIG. 3-2 POSITION FIX METHODS

3.3.2 Collision Avoidance Techniques

The moment a new target appears on the screen, its range and relative bearing should be noted. This is best done by putting the target information directly onto a plotting sheet or chart.

As in visual observation, "a target which stays at a constant bearing indicates a collision course."

As soon as a series of plots taken at intervals of 3 minutes indicates a closing range with no significant change in successive bearings, positive course change action should be considered and "The Regulations for Preventing Collisions at Sea" should be observed.

$$3 - 18$$

3.3.3 Determining Your Radar Line-of-Sight Range (Target Detection Range)

When searching for distant targets, your radar line-of-sight range to the target can be a limiting factor. Radar waves behave like light waves but they are refracted slightly more, increasing the distance to the radar horizon slightly more than that to the optical horizon (however, displayed range is correct). As Fig. 3-3 shows, the radar line-of-sight range is a combination of the radar horizon of your ship's radar scanner and the radar horizon of the target.

The distance to the radar horizon from radar scanner of height "h" meters, under standard conditions, may be calculated from the formula

Distance (nm) =
$$2.23 \sqrt{h}$$

For example, a scanner at height of 5 meters has a radar horizon of 5 nm.

A 5 meter cliff has a radar horizon of 5 nm. Therefore, under standard conditions, the cliff should begin to appear on the screen when the ship comes nearer than 5+5=10 nm.

FIG. 3-3 RADAR HORIZON

3.4 FALSE ECHOES

Occasionally, signals appear on the screen at positions where there is no visual target. These targets could be false echoes. The following conditions are the most common cause of false echoes.

3.4.1 SIDE ECHOES

In your antenna some of the radiation escapes on each side of the main beam of energy and is known as "side lobes". If a large target is very close to your ship, may be reflected by the target and they will be displayed on the screen as an echo. (See Fig. 3-4)

These echoes sometimes appear as arcs, forming echoes at each side of the true echo. Sometimes they are joined together if the side echoes are strong.

3.4.2 Indirect Echoes

Indirect echoes may appear when there is a large target, such as a passing ship at a short range, or a reflecting surface, such as a funnel on your own ship in line with the antenna. The signal on first striking the smooth side of the large target, will be reflected, and the echo returns to the antenna and is shown on the display. However, the same reflection hits other masts or obstacles and then gets picked up by the radar antenna with enough strength to appear as a target on the radar screen.

3.4.3 Multiple Echoes

Multiple echoes could appear if there is a large target having a wide vertical surface parallel to your own ship at a comparatively short ranges. The signal will be reflected by the wide vertical surface, then the reflected signal strikes your own ship, and it will return along the same paths to the target. This will be repeated.

Thus, the multiple echoes will appear beyond the true target's echo on the same bearing as shown in Fig. 3-6. This is not very common.

FIG. 3-6 MULTIPLE ECHOES

· · .*

3 - 21
3.4.4 Ghost Ech des

The ghost echoes may appear if there is a target having a wide smooth surface near your own ship. As shown in Fig. 3-7, the cause of the ghost echoes is similar to that of the indirect echoes.

The ghostechoes appear on the screen as if you saw the target reflected in a mirrot.

FIG. 3-7 GHOST ECHOES

3.4.5 Shadows

۰.

Although the scanner unit should be ideally placed where there is a good all-around view, as far away as possible from any part of the ship's superstructure or rigging to reflect the beam, there may be some obstructions. An obstruction will throw either a complete or partial shadow as shown in Fig. 3-8.

If there are targets in such shadow sector, target's echoes may not be displayed on the screen. Thus, it is important to know the bearings and width of all shadow sectors, and it can be checked by turning the SEA CLUTTER control to zero when light rain clutter covers much of the screen and the sea is calm.

Any shadows will then be shown as dark sectors in the clutter.

FIG. 3-8 SHADOWS

3 - 23

SECTION 4

MAINTENANCE

4.1 USER PREVENTIVE MAINTENANCE

Continuous satisfactory operation of the radar can depend on how well you take care of your equipment. These simple maintenance tips can save you time and money, and help you avoid premature equipment failure.

- 1) Always keep the equipment as clean as possible. Remove dirt, dust, or water-spray from the display and scanner during the boat clean up.
- 2) During routine ships maintenance, make a thorough inspection of the radar system including the following points:
 - a. Check all hardware for tightness.
 - b. Check for evidence of any corrosion on the scanner unit, display unit, or its cable and connectors. Clean as required.
 - c. Check the cable connections and terminal strip connections for cleanliness and tightness. Make sure the wiring is free from chafing or abrasions.

* . .

₹1

4.3 OPEN ARRAY SCANNER

Set the safety switch (S101) of the Scanner Unit to OFF before working on the radar scanner.

4.3.1 The Antenna Array

The face of the radiator should never be painted, however it should be kept clean from built-ups of dirt, dust, caked salt or soot because deposits of these particles can cause a considerable decrease in the radar's performance.

Use a soft wet cloth or a cloth dampened in alcohol when cleaning the array. Never use solvents such as gasoline, benzine, trichlorethylene, or ketone.

4.3.2 Rotating Drive Unit

1) Oil Seal To lubricate the rotating drive unit seal, remove the grease cap located on the side of the array base plate, and using a grease gun, add grease until it starts to leak out of the seal. This lubrication is required every 6 months. Use Mobiluxe #2 Grease or equivalent.

2) Lubrication to gears

After removing transmitter receiver unit, apply a light coating of grease (MOBILUX Grease No. 2 Mobil Oil Company or equivalent) into lubricating hole.

Lubrication should be done every six months.

FIG. 2-4 OIL SEAL

4 - 3

4.2 RADOME SCANNER

4.2.1 Radome

Wipe the surface of the Radome with a clean, soft cloth. Remove any paint, dirt, or caked salts. Heavy deposits of dirt or caked salt on the surface of the Radome can cause a considerable drop in the radar's performance. Avoid using chemical cleaners or solvents. Alcohol is preferred or light detergent as a cleaning agent.

4.2.2 Lubrication

Periodic replacement of lubricants is recommended.

Locate the main drive gear, clean away old lubrication residue and dirt. Using an appropriate applicator apply a light coating of grease (MOBILUX Grease No. 2 Mobil Oil Company or equivalent) on the gear of the main shaft and the drive motor.

Cleaning and lubrication should be done approximately every six months.

FIG. 4-1 LUBRICATION

4.2.3 Mounting

Check the mounting bolts of the Scanner Unit and tighten if necessary.

LUBRICATING HOLE

FIG. 4-3 LUBRICATION TO GEARS

4.4 DISPLAY UNIT

The face of the cathode-ray tube may, in time, accumulate a film of contaminants which tends to dim the picture.

Be sure Radar is "OFF", use glass cleaner and soft cloth or towels to clean CRT glass, key board, and radar cabinet.

SECTION 5

ADJUSTMENT AND FAULT FINDING

5.1 ADJUSTMENT

13 ;

. .

5.1.1 Adjustments upon Replacing Components

Although the radar is delivered adjusted for optimum performance, it may be necessary to make adjustments after a major component has been replaced or if a fault is suspected during operation.

NOTE

REPLACEMENT ITEM	ADJUSTMENT REQUIRED	See Sect. #
Magnetron V201	Tuning	2.6.3 c)
MIC Frontend E301	Tuning	2.6.3 c)
Cathode-ray tube V501 Display PCB	Adjusting centering magnet Adjusting intensity Adjusting focus	
Reed SW S101	Bearing Alignment	2.6.3 A)

5.1.2 Display Unit

- 1) Intensity adjustment (See Fig. 5-1)
 - a. Remove the cover from Display Unit.
 - b. Set BRILLIANCE for maximum level.
 - c. Adjust RV551 on CRT Monitor PCB, so that PPI is of suitable brightness.
- 2) Focus adjustment (See Fig. 5-1)
 - a. Remove the cover from Display Unit.
 - b. Adjust RV505 on CRT Monitor PCB so that the sweep line, rings, and targets on the screen are as small and clear as possible.

3) H. HOLD

Adjust RV503 on CRT Monitor PCB so that horizontal screen is kept in sync.

- 4) II. SIZE and V. SIZE
 Adjust L502 and RV501 on CRT Monitor PCB so that the rings are round.
 Note: Using a ruler, adjust for equal diameters N/S E/W.
- 5) V-LINEAR

Adjust RV502 on CRT Monitor PCB so that the rings are round.

6) Beam Centering adjustment on CRT (See Fig. 5-1) Rotate the two knobs simultaneously or individually so that the beam center coincides with the center of CRT.

FIG. 5-1 CRT MONITOR ADJUSTMENT

-

5.1.3 Scanner Uunit

A) AVR voltage adjustment

AVR output voltage adjust RV1 in the PC201 (Power Supply PCB). Adjust the DC voltage between the TP2 <u>AVR OUT</u> (positive) and 2A (negative) so that it will be 7.0 V.

B) Tune Indicator Adjustment

- Note: This adjustment has been made at the factory at the time of delivery, however, the adjustment may be required when the receiver, MIC, modulator or magnetron is replaced. When the maximum tuning point agrees with the tune indicator, this adjustment is not necessary.
- a) Adjust the Tune Control on the display unit for maximum target echoes.
- b) Connect the voltmeter to J2-7 (R10X) or J301-8 (R11X) as shown in Fig. 5-4 and Fig. 5-5.
- c) Adjust RV1 to get a tune indicator output of 0.7-0.8 V.
- d) Recheck that the maximum tuning point and the tune indicator maximum agree.

1.0

FIG. 5-4 RECEIVER ADJUSTMENT RADOME SCANNER

FIG. 5-5 RECEIVER ADJUSTMENT OPEN ARRAY SCANNER 5 – 5

5 - 4

• !

5.2 TROUBLE-SHOOTING

5.2.1 General

While the X-Series Radars are highly reliable systems, early signs and detection of component fatigue can sometimes be spotted during regular operational checks.

When a problem is observed, corrective service should be arranged to avoid failure at critical times at sea.

5.2.2 Fault Finding

(1) Regular operational checks

(preventative maintenance)

The electrical performance of the equipment should be evaluated at periodic intervals by qualified Raytheon Technicians and the results recorded. Changes in test results may indicate an aging or failing component. Table 5-1 provides a check list of items.

Whenever an abnormal result is obtained from a test, appropriate corrective maintenance should be employed to prevent serious damage or failure modes.

CAUTION: In making checks, be alert to the high voltage points existing throughout the equipment.

(2) Fuse

A fuse seldom blows out without some cause. Even if a fuse is merely replaced and does not blow again, it still may be necessary to make further checks of the circuits associated with the fuse.

Table 5-2 shows a table of fuses employed in the equipment.

(3) Fault finding procedure

Often the display on the CRT can help indicate which major circuit is at fault. It may be found quicker to check-out the equipment according to the trouble shooting guide (Table 5-3).

In general, the common causes of trouble frequently encountered include abnormal resistances, intermittent variable resistors, switches and relays.

In the following fault finding procedure, it is assumed that only a VOM is available; the use of an oscilloscope simplifies the procedure, and may prove necessary in some cases.

Table 5-3 is the trouble shooting guide and check-out procedure, Table 5-4 shows typical voltages and resistances at significant points throughout the equipment. The internal resistance of the tester used in measurements was 20 k Ω/V dc, 8 k Ω/V ac.

TABLE 5-1 OPERATION CHECK LIST

Unit to be checked	Check item	Correct condition	Remarks	Measuring point
	a. Input voltage	Refer to Note		TB1011A~2A
Scanner Unit	b. AVR output voltage	7 V		PC501-CD6-K ~ground
	c. Mag. current	12 V		PC501-TP1 ~ground
Display Unit	a. Input voltage	Refer to Note	,	J401-1~2
	b. AVR output voltage	5 V		TP1~ground
	c. Observation of screen sensitivity. sweep length, sweep linearity, sweep center, ring and illumina- tion.			
	d. Check of the operating controls			

Note: Allowable variation of input voltage. DC11 V~42 V

TABLE 5-2 FUSES USED

Location Part No.		Rating current	Protective circuit	Туре	Remarks		
Display unit	F401	6.3 A	All circuit	Glass tube 6.3 A	dc 12 V		
	F401	3.15 A	All circuit	Glass tube 3.15 A	dc 24 V, 32 V		
	F402	5 A	Scanner motor	Glass tube 5 A	dc 12 V		
	F402	3.15 A	Scanner motor	Glass tube 3.15 A	dc 24 V, 32 V		

5 - 7

. ,

TABLE 5-3 TROUBLE SHOOTING GUIDE

Trouble	Remedy
1. Does not start at OPERATE switch to STBY.	 Check: Blown fuse F401. Check input power circuits. Fault of contact on S401. Fault of power supply circuit on PC5. Fault of contact on connector of PC5. Fault of rectifier diodes on PC5.
2. Scanner fails to rotate.	Check: • Fault of S102. (Safety Switch OFF) (R11X) • Fault of contact on terminal boards. • Fault of M101. • Fault of drive mechanism.
3. Scanner rotates but rotation of sweep is abmormal	Check: • Fault of encoder M101. • Fault of main circuit for the Display Unit.
4. No picture on the screen.	 Fault of CRT display unit or its supply voltages. Check: Open heater of CRT. Fault of contact on CRT socket. Fault of contact on CRT cap. Fault of video circuit
5. Only horizontal line screen.	 There may be fault in vertical sweep generator, amplifier circuits and deflection coil. Check: Fault in vertical sweep generator, amplifier circuit
6. Incorrect sweep • Start of sweep is not centered on the screen. • Markers are oval.	 Adjust CENTERING MAGNET. Adjust horizontal or vertical hold. Adjust vertical length and linearity. Adjust height as necessary.

Trouble	Remedy
7. Range rings on the screen but no noise and no echoes:	 Fault circuit between IF amplifier of receiver unit and input circuit of display unit video amplifier. Check: Fault of GAIN, STC control settings. Fault of receiver unit. Fault of contact on terminal boards and connector.
8. Noise and range rings on the screen but no echoes.	If no transmission is present, check the modulator and magnetron. Check: If transmission appears to be present as indicated by the correct MAG. I reading on Tester. PC501 TP1 = 12 VDC • Failure of Local Oscillator tuning. If transmission appears to be present, carry out the Local Oscillator tuning procedures and check the MIC. • Fault of MIC Mixer. If no transmission is present, • Whether the lead wire to magnetron is grounded to chassis. • Fault of magnetron.
9. Poor sensitivity. Dim echoes.	Check: • Reduction of transmitting output power. • Fault of magnetron. → Check of MAG. I reading on PC501-TP1. • Fault of MIC Frontend. • Fault of CRT. • Failure of Local Oscillator tuning. • Failure of FOCUS adjustment. • Failure of INTENSITY ADJ. • Fault of video amplifier circuit on PC6. • Fault of receiver unit.

Trouble	Remedy
10. NO VRM or	Check:
VRM cannot be	• Fault of S401.
controlled.	• Fault of main circui (PC1).
13. NO EBL or	Check:
EBL cannot be	• Fault of S401.
controlled.	• Fault of main circuit (PC1).
14. No alarm zone	Check:
marker, cannot	• Fault of S401.
be controlled or no	• Fault of main circuit (PC1).
alarm sound.	• Fault of Buzzer BZ1.

Table 5.4 shows typical voltage and resistances at significant points throughout the equipment.

TABLE 5.4 TYPICAL VOLTAGES AND RESISTANCES

- (A) Inter-unit terminal board
 - Note: Resistance measurements shall be made under the following conditions:

POWER switch-off S101 -ON.

Resistance values shall be measured between measuring point and ground unless otherwise specified, and negative terminal of the tester is grounded as a rule.

The tester used for this measurement is 20 k Ω/V DC, 8 k Ω/V ac.

Voltage measurements shall be made with the following display control conditions:

POWER switch-ON, RAIN CLUTTER -min, GAIN -max, SEA CLUTTER -min.

Ship's power supply is dc 12 V.

STC		MIN
FTC	•••••	MIN

TUNE CENTER GAIN MAX P.S. = 12 V (D.C.)

RADOME RADAR

Measuring	Pasistanas	Voltag		
Point	(Ω)	0.125 ~ 1.5 (nm)	3, 6, 12, 16 (nm)	Remarks
TB101 VD	6×10	-0.11	-0.11	DC 0.3 V
1 A~2 A	5×10	11.3	11.2	12 V
J101 1	24×10	0	10.5	12 V
2	22×10	-0.015	-0.005	0.3 V
4	300×10	2.65	2.65	3 V
5	4×10	12	12	12 V
6	20×10	0.25	0.25	3 V
7	1.5×10k	17.0	17.0	30 V
8~2 A	140×10	8.7	8.6	12 V
9	7.5×10	2.4	2.4	3 V

OPEN ARRAY RADAR

Monaurina	Desistant a	Voltag	Voltage (V)				
Point	(Ω)	0.125 ~ 1.5 (nm)	3, 6, 12, 24 (nm)	24 Remarks			
J 8-1	6×10	-0.11	-0.11	DC 0.3 V			
1 A~2 A	4.5×10	11.0	10.9	12 V			
J101 1	24×10	0	10.5	12 V			
2	22×10	-0.015	-0.005	0.3 V			
4	300×10	2.7	2.6	3 V			
5	4.3×10	12	12	12 V			
6	20×10	4.2	4.2	12 V			
7	1.8×10k	17.0	17.0	30 V			
8~2 A	9.5×1k	8.2	82	12 V			
9	55×10	2.1	2.1	3 V			

÷.)

∞ × 10	-9 BP	8×10	9 BP
∞ × 10	-8 1B	∞ × 10	8 1B
∞ × 10	-7 TUNV	∞ × 10	7 TUNV
200×10	-6 TUNI/BR	200×10	6 TUNI/BR
$1K \times 10$	-5 GAIN	$1K \times 10$	5 GAIN
$1K \times 10$	-4 STC	$1K \times 10$	4 STC
0×10	-3 E	0×10	з Е
∞ × 10	-2 TRIG	$\infty \times 10$	2 TRIG
300×10	J2-1 PW	170×10	J1011 PW
∞ × 10	J1-1, 3	8 × 10	2A
∞ × 10	J1-4	8 × 1()	١٨
∞ × 10	J1-2	1	M+
0×10	-2	0×10	VDE
8 × 10	J8-1	8 × 10	TB101 VD
Resistance (11)	Point	Resistance (12)	Point
OPEN ARRAY	Measuring	RADOME	Measuring
			SCANNER UNIT
		ote given in item (A).	Note: Refer to 1
nection of cables.	ector without con	es at inter-unit conn	(B) Resistanc

DISPLAY UNIT

15	14	13	12	11	10	9	8	7	6	5	4	ω	2	J402 1	Measuring Point	
26 × 10	0 × 10	8×10	600×10	4×10	23×10	∞ × 10	8 × 10	∞ × 10	5.6×10	0×10	0×10	23×10	~ × 10	~ × 10	Resistance (Ω)	

5 - 12

TABLE 5-5 OF TRANSISTORS USED

TYPE	KIND, USE	SUPPLIER	Vcbo	Vceo	Vbeo	L	Р.	h	le le	ft	V _{cr} (V)
			(V)	(V)	(V)	•€	• •	min.	max.	(MHz)	sat.
2SA495GTM-Y	PNP HF Amp	TOSHIBA	-50	-50	-5	-150 mA	400 mW	120	240	200	-0.4
25A817-Y	PNP Switching	TOSHIBA	-80	-80	-5	-300 mA	600 mW	120	240	100	-0.4
25A1010-K	PNP High Speed High	NEC	-100	-100	-7	-3.5 A	40 W	100	200		-0.6
	Voltage Switching										
2SA1015-Y	PNP AF Amp	TOSHIBA	-50	-50	-5	-150 mA	400 mW	120	240	80	-0.3
2SA1145-Y	PNP AF Amp	TOSHIBA	-150	-150	-5	-50 mA	800 mW	120	240	200	-1.0
2SA1242-Y	PNP Switching	TOSHIBA	-35	- 20	-8	-5 A	10 W	160	320	170	-1.0
2SA1244-Y	PNP Switching	TOSHIBA	-60	-50	-5	-5 A	20 W	70	240	60	-0.4
2SA1261-K	PNP High Speed High	NEC	-100	-100	-7	-10 A	60 W	100	200		-0.6
	Voltage Switching										0.0
2SB906-Y	PNP AF Power Amp	TOSHIBA	-60	-60	-7	3 A	20 W	100	200	6	_10
2SC1627-Y	NPN Voltage Amp	TOSHIBA	80	80	5	300 mA	600 mW	120	240	100	0.5
2SC1675	NPN AF Amp	NEC	50	30	5	30 mA	250 mW	40	180	150	0.5
2SC1815-BL	NPN AF Amp	TOSHIBA	60	50	5	150 mA	400 mW	350	700	80	0.5
2SC1815-Y	NPN AF Amp	TOSHIBA	60	50	5	150 mA	400 mW	120	240	80	
2SC2983-Y	NPN Power Amp	TOSHIBA	160	160	5	1.5 A	15 W	120	240	100	0.1
2SC3098	NPN VHF-UHF LN Amp	TOSHIBA	30	20	3	50 mA	150 mW	30	240	2500	1.5
2SC3303-Y	NPN Switching	TOSHIBA	100	80	7	5 A	20 W	120	240	190	
2SC3187	NPN Video cct.	National	300	300	7	100 mA	250 mW	50	240	120	0.4
2SC3328-Y	NPN Power Amp	TOSHIBA	80	80	5	2 A	900 mW	120	230		1.5
2SD1680	NPN H-Deflection Out.	National	330	200	6	7 A	200 mW	120	240	100	0.5
2SJ142	Pch FET Switching	NEC		-100	∓ 20	I 13 A	25 W	1.5	45		1
2SK302-GR	Nch FET VHF Amp	TOSHIBA		20	+5	30) m A	150 mW				
2SK363	Nch TET AF Amp	TOSHIBA		••	20	50 (11/1	130 110				
2SK525	Nch FET Switching	TOSHIBA		150	+20	+10 A	40 W				
2SK736	Nch FET Switching	NEC		100	+20	+15 A	40 W				
IRF840	Nch FET Switching	IR		500	+20	±15 A	125 W				
IRFZ44	Nch FET Switching	IR		60	- 20	+ 35 A	125 W				

TABLE 5-6 OF DIODES USED

TYPE	KIND USE	SUPPLIER	V _{RM} (V)	(V)	IFM	l _o	Р	V, (V)	t,,	REMARKS
11DF2	F.R.D.	IR	220	200	30 A	1 A		0.98	30 ns	<u> </u>
1K34A	AM Detector	UNIZON	- 75	-60	150 mA	50 mA				
151588	High Speed Switching	TOSHIBA	35	30	360 mA	120 mA	300 mW	1.3	4 ns	
ISS184	High Speed Switching	TOSHIBA	85	80	300 mA	100 mA	150 mW	0.72*	1.6 ns	*l.=10 m3
155226	High Speed Switching	TOSHIBA		80		100 mA			1.6 ns	
ISV149B	Varactor	TOSHIBA		15						
31DF2	F.R.D.	IR	200			1.6 A		0.98		
5KF20	F.R.D.	IR	220	200	80 A	5 A		0.98	35 ns	
EMIZ	General Purpose	SANKEN	250	200	45 A	1.0 A		0.97		
ERA22-02	F. R. D.	FUJI ELECTRIC		200	10 A	0.5 A		1.5	0.4 µs	
ERA22-08	F.R.D.	FUJI ELECTRIC		800	10 A	0.5 A		1.5	0.4 45	1
ERB44-04	F.R.D.	FUJI ELECTRIC		400	30 A	1.0 A			0.4 µs	
RB83-004	General Purpose	FUJI ELECTRIC		40	80 A	1.7 A	[]	0.55		}
F6P20F	F. R. D.	IR	220	200	60 A	6 A		0.98*	30 ns	* per lug
F6P40F	F.R.D.	IR	440	400	60 A	6 A		1.25*	30 ns	* per log
F10KF20	F.R.D.	IR	220	200	120 A	10 A		1.03	35 ns	periog
1Z9C1	Zener V,=9.3 V	HITACHI					500 mW			
1Z11A3	Zener $V_x = 10.3$ V	HITACHI					500 mW			
1Z3B2	Zener $V_x = 3.1 V$	HITACHI					500 mW			
H25C1	Zener $V_x = 5.1 V$	HITACHI					500 mW			
HZ6C1	Zener $V_1 = 6.1 V$	HITACHI					500 mW			
HZ15-3	Zener V, = 15.5 V	HITACHI					500 mW			
HZ18BP	Zener $V_x = 19.1 V$	HITACHI					800 mW			
HZ24BP	Zener V, = 25.6 V	HITACHI					800 mW			
TLR123	Gap LED	TOSHIBA		4	20 mA		60 mW	2.8		
SM-1XN02	General Purpose	ORIJIN		200	45 A	1.5 A		1.0*		*1
SRT-7HP	High Voltage	Shindengen	8 K		20 A	0.35 A		14	0.35	19-10
U05C	General Purpose	HITACHI	300	200	100 A	2.5 A		1.1	3.0 45	
U05J	General Purpose	HITACHI	1000	800	100 A	2.5 A		1.1	3.0 4	
U06C	General Purpose	HITACHI	300	200	35 A	1.1 A		1.4	3.0 45	
VIIN	F.R.D.	HITACHI	1800	1500		0.4 A		2.5	0.4	

TABLE 5-7 OF INTEGRATED CIRCUITS USED

•

_

. :

TYPE	KIND. USE	SUPPLIER	REMARKS
AN5132	VIF Detector	National	$V_{cc} = 13.8 \text{ V}, P_D = 1.1 \text{ W}$
AN5763	B/W TV V-Defection Sig. Processing and Output Cir.	National	$V_{CC(MAX,1}$ =15.6 V, $P_{INMAX,1}$ =1.33 W, $V_{CSC-S(V)}$ =5 V, $I_{Y(P-P)}$ =715 m A_{P-P}
AN5790N	H-Sig. Processing Circuit for CRT Displays	National	$V_{CC(MAX,1} = 13.2 \text{ V}, P_{IKMAX,1} = 1.44 \text{ W}, V_{CC(MAX,1} = 50 \text{ mA}, V_{CSC(SCH)} = 7.5 \text{ V}, f_{IK} = 700 \text{ Hz}/\mu\text{s}, \tau_{HG} = 2 \sim 40 \ \mu\text{s}, f_{HG} = 14 \sim 60 \text{ kHz}$
MC1350P	IF AMP	MOTOROLA	$V_{(MAX,)}^{*} = 18 V, V_{A(C(MAX,))} = V^{*}, V_{IN(MAX,)} = 5.0 V, P_{(MMAX,)} = 625 mW$
NE521N	High Speed Comparator	SIGNETICS	$V^{+}/V^{-}_{(MAX,)} = \pm 7 V, V_{IDR(MAX,)} = \pm 6 V, V_{IN(MAX,)} = \pm 5 V, P_{INMAX,)} = 600 mW$
NJM4558D	OP. Amp	NJRC	$V_{IIMMAX,I} = \pm 30 \text{ V}, P_{IMMAX,I} = 500 \text{ mW}, \text{ SR} = 1 \text{ V}/\mu \text{s} (\text{RL} \ge 2 \text{ k}\Omega)$
NJM78M05FA	Regulator	NJRC	$V_{IN(MAX_{i})} = 35 V, P_{IX(MAX_{i})} = 7.5 W, V_{ij} = 5 V$
HM53461ZP-12	65536 word×4 bit Video RAM	HITACHI	$V_{T(MAX,)} = -1.0 \sim +7.0 \text{ V}, P_{T(MAX,)} = 1.0 \text{ W}, V_{CC} = -0.5 \sim +7.0 \text{ V}, t_{RAC} = 120 \text{ ns}$
HM6264ALP-15	8192 word×8 bit SRAM	HITACHI	$V_{cc} = 5.5 \text{ V}, P_T = 1 \text{ W}$
HM63021P-28	2048 word×8 bit Line Memory	HITACHI	$V_{T(MAX,j} = -0.5 \sim +7.0 \text{ V}, P_{T(MAX,j} = 1.0 \text{ W}, V_{CC} = 5 \text{ V}, t_{yy} = 28 \text{ ns}$
PST532A	System Reset, Battery Backup	Mitsumi	Detect Voltage 4.2 V, Battery Charge Output 50 mA min.
TA78DL05S	Regulator	TOSHIBA	$V_{IN(MAX,1)} = 29 V, P_{IKMAX,1} = 20 W, V_0 = 5 V$
TA78DL12P	Regulator	TOSHIBA	$V_{IN(MAX,1)} = 29 V, P_{IKMAX,1} = 20 W, V_{I} = 12 V$
TC524256Z-10	262144 word×4 bit DRAM	TOSHIBA	$V_{CCMAX,J} = -1.0 - 7.0 \text{ V}, I_{CMAX,J} = 50 \text{ mA}, P_{IMMAX,J} = 1 \text{ W}, V_{CC} = 5 \text{ V}$
TL082CP	OP. Amp	TI	$V^*/V^{(MAX_c)} = \pm 18 V$, PD=680 mW, SR=13 V/ μ s
TL431CLPB	Voltage Regulator	TI	$V_{KA(MAX,)} = 37 \text{ V}, I_{K} = -100 - 150 \text{ mA}$
TL494CN/UPC494C	Switching-V Regulator	TI/NEC	$V_{CC(MAX,J} = 41 \text{ V}, V_{IN(MAX,J} = V_{CC} + 0.3 \text{ V}, I_{CMAX,J} = 250 \text{ mA}$
TL499ACP	Switching-V Regulator	TI	$V_{\text{INTPINIMAX},1} = 35 \text{ V}, V_{\text{INSPINIMAX},1} = 10 \text{ V}, V_{\text{INMAX},1} = 35 \text{ V}, I_{\text{SWMAX},1} = 1.0 \text{ A}$
TLP521	Photo Coupler	TOSHIBA	[LED]: $I_{FUMAX,j} = 50 \text{ mA}$, $I_{FPMAX,i} = 1 \text{ A} [TR]$: $V_{LEEMAX,j} = 5.5 \text{ V}$, $V_{LEEMAX,j} = 7.0$, $I_{LIMAX,j} = 50 \text{ mA}$, $P_{CIMAX,j} = 100 \text{ mA} [per 1 circuit]$, $P_{EMAX,j} = 150 \text{ mW} [per 1 circuit]$
UPD6326C	CMOS 6 bit D/A Converter	NEC	$V_{100} = V_{CC} \sim 15 \text{ V}, \ I_{100} = 15 \text{ mA}$
UPD72020GC-8-3B6	G.D.C.	NEC	$V_{\text{INNMAX,}} = -0.5 \sim +7.0 \text{ V}, V_1 = -0.5 \sim V_{\text{DD}} + 0.3 \text{ V}, V_0 = -0.5 \sim V_{\text{DD}} + 0.3 \text{ V}$
UPD78C10G-36	Micro Computer (CPU)	NEC	$V_{101} = 7 V_{1} l_{101} = 30 mA$

5 - 14

5 - 15

,

5.3 REPLACEMENT OF OPEN ARRAY SCANNER

5.3.1 Radiator

- 1) Loosen the rock screw with the screw driver.
- 2) Turn the retaining ring clockwise (arrow direction) with holding the radiator.
- 3) Remove the radiator.
- 4) To reassemble, reverse the above procedure.

5.3.2 Transmitter Receiver Unit

- 1) Disconnect connectors on the transmitter receiver unit.
- 2) Loosen 4 screws holding the transmitter receiver unit.
- 3) Loosen 2 screws holding the receiver unit.
- 4) Fully loosen 2 screws at the side of the diode limiter.
- 5) Remove the transmitter receiver unit while spreading space between the diode limiter and the magnetron.
- 6) To reassemble, reverse the above procedure.

5.3.3 Drive Motor 1) Remove 2 screws holding the drive motor. 2) Remove the drive motor from turning mechanism plate. 3) To reassemble, reverse the above procedure.

REMOVE SCREWS

5 - 17

÷.)

7

SECTION 6

TECHNICAL DESCRIPTION

6.1 SCANNER UNIT

6.1.1. Radome Scanner

The scanner unit consists of the radiator, the motor-encoder, radiator rotating mechanism, bearing reset sw. transmitter and receiver units and power supply unit. These components are housed within the 18" radome.

1) Radiator

ξ.

:

The radiator is horizontally polarized printed array which is constructed on an plastic frame. The radiator, approximately 15" in length, is coupled to the transmitter and receiver via a T-junction and rotary joint.

At half power points horizontal beamwidth is 6° and vertical beamwidth is 25°. Side lobes are reduced by better than -21 dB with respect to the main beam. The direction of maximum radiated power is perpendicular to the radiator. (Figure 6-1)

FIG. 6-1 RADIATOR PATTERN

7.2

2) Motor-Encoder

A demotor is used to rotate the radiator. The encoder section of the assembly produces the bearing pulses for rotation synchronization. A bearing sync pulse is generated every 0.176 degrees of rotation (2048 pulses per 360°) at 5 V de amplitude. These pulses are sent through J1-9 to the Bearing Pulse circuit in the Display Unit.

3) Radiator Rotating Mechanism

Mechanical coupling between the radiator and the motor-encoder is effected by a reduction drive mechanism. The motor rotates at approx. 24 rpm.

4) Bearing Reset Sw

The bearing reset switch produces the signal for the bearing reset circuits when the permanent magnet fitted on the main gear passes across Reed Switch S101. The resulting bearing reset signal is mixing with tune indicator signal (TUNI) and sent to the bearing reset circuit in the Display Unit to synchronize the scanner position on the display.

6.1.2 Open ArrayScanner

The open array scanner unit consists of the radiator, the motorencoder, the radiator rotating mechanism, the bearing reset circuit, the transmitter, and the receiver.

A) Radiator

The radiator is a horizontally polarized, printed array which is constructed on an aluminum frame. The radiator, 2.5 feet in length, is coupled to the transmitter and the receiver through a T-junction and rotary joint. The radiator is driven at 24 rpm by the motor-encoder via a gear reduction mechanism.

At the half power points, the horizontal beamwidth is 3.3 degrees with a vertical beamwidth of 25 degrees.

Side lobes are better than -23 dB with respect to the main beam.

The direction of maximum radiated power is perpendicular to the radiator (Fig. 6-2).

Fig. 6-2 RADIATOR PATTERN

B) Motor-Encoder

A ± 13.5 VDC motor is used to rotate the radiator. The encoder section of the assembly produces bearing pulses for the rotation synchronization. A bearing sync pulse is generated every 0.176 degrees of rotation (2048 pulses per 360 degrees) at 5 V amplitude. These pulses are sent to the Bearing Pulse Circuit in the Display Unit.

C) Bearing Reset Sw

The bearing reset switch produces the signal for the bearing reset circuits when the permanent magnet fitted on the main gear passes across Reed Switch S101. The resulting bearing reset signal is mixing with tune indicator signal (TUNI) and sent to the bearing reset circuit in the Display Unit to synchronize the scanner position on the display

6.1.3 Transmitter

The transmitter consists of the solid state modulator circuit and the 1.5 kW magnetron.

A) Modulator

A line-type pulser is used in the modulator and consists of a charging choke, FET switch, pulse transformer and PFN.

By setting the X-MIT/OFF key on the indicator control panel to "ON", the transmitter trigger pulse is fed to the base of TR1 in the modulator from the transmit trigger generator circuit in the display unit.

The modulator high voltage of +220 VDC is fed to the PFN capacitors C7, C8 and C9 via L1. Because of the resonant charging action of L1; the PFN charges to almost twice the input voltage. Since the charging efficiency is about 90% the PFN voltage is nearly +400 V. Upon receiving the positive pulse at the gate of the FET (TR3), TR3 conducts, and the charged voltage across the PFN capacitors is immediately discharged through TR3 and the pulse transformer T1. Consequently the pulse duration determined by the PFN appears on the primary windings of the pulse transformer T1 and is stepped up to the cathode of the magnetron via T1 secondary. The pulse peak voltage on the primary of T1 is -180 V, and the secondary voltage is -1.8 kV.

The pulse selection relay K1 is controlled by the range keys on the indicator front panel. This will provide two different pulse lengths: 0.08 μ sec, and 0.5 μ sec (R10X) or 0.08 μ sec and 0.7 μ sec (R11X) in accordance with the range scale selected. The pulse repetition frequency (PRF) changes automatically according to the operating pulse length. (See Table 6-1).

TABLE 6.1 RANGE, PULSE LENGTH, AND PRF RELATIONSHIPS

Range	Pulse length	PRF
0.125, 0.25, 0.5, 0.75, 1.5 nm	0.08 μs	2250 Hz
3, 6, 12, 16 nm (R10X)	0.5 μs	750 Hz
3, 6, 12, 24 nm (R11X)	0.7 μs	750 Hz

B) Magnetron

While the high voltage pulse is fed to the cathode of the magnetron, the magnetron generates high energy oscillations in the region of 9445 MHz for the duration of the input pulse.

The operating point of the magnetron is at a voltage of -1.8 kV and a current of 2 A.

FIG. 6-3 TIME TABLE OF THE TRANSMITTER

C) Power Supply Unit (PC101)

The power supply unit consists of the AVR circuit (IC1, TR5, TR6) and the converter circuit (IC2, TR9, TR10) with rectifier circuits.

AVR Circuit

The AVR circuit is used to perform step down switching and to produce a regulated 7 V dc output from the ship's mains.

Converter Circuit

TR9 and TR10 are FET switches controlled by IC2 which is the power oscillator and driver. The 22.25 kHz square at 7 V wave appears in the primary winding of T1. The secondary output of T1 is fed to the various rectifier circuits. The rectifier circuits produce the +220 V, +13.5 V, -13.5 V and +7 V for the scanner circuits.

6.1.4 Receiver Unit (R10X)

The receiver unit consists of the MIC Frontend and the receiver PCB and STC PCB.

A) MIC Frontend

The MIC Frontend consists of a low-noise RF amplifier, a double balanced mixer and the local oscillator. The received signal is amplified by a low-noise amplifier fed to the double balanced type mixer which presents a good signal-to-noise ratio to the receiver. The mixer output frequency is 60 MHz. The local oscillator tuning is achieved by the adjustment of the operator's tune control on the display control panel.

B) Receiver PCB

1) IF Amplifier Circuit

The IF amplifier consists of a low-noise, gain controlled IC amplifier IC1, IC2 and IC3 and a bandwidth selector circuit TR2. IC1, IC2 and IC3 are gain controlled by the Gain and STC control signals from the Gain and STC (Anti-Clutter Sea) circuit on the STC PCB. The maximum gain is obtained when voltage of IC1-5, IC2-5 and IC3-5 is 4 volts.

When the gate voltage of TR2 is 0 volt, the bandwidth is wide, 10 MHz. When the gate of TR6 is -4 V the bandwidth will be narrow, 3 MHz.

2) Detector Circuit

The detector circuit IC4 operates as a sensitive detector amplifier. The positive video signal appears IC4-12, the IF component is removed and the video signal is fed to the video circuit.

3) Video Circuit

The video circuit consists of TR7 and TR3. The emitter follower TR3 operates as an impedance transformer to drive the coaxial cable which feeds the video signal to the display unit. The video signal can be checked at TB1-VD.

4) Tuning Indication Circuit-1

The tuning indicator circuit consists of amplifier TR4, detector TR5, emitter follower TR6 which charges C19 (STC PCB) to the detector voltage.

C) STC PCB

1) Tuning Indicator Circuit-2

The detector voltage which charges C19 is sent to the display unit as a tuning indication voltage by buffer amplifier IC8. The range of the tuning indication voltage is +4 V (detuned) and -0.7 V (tuned in long pulse).

2) Gain-STC Circuit

The receiver has a built-in Gain-STC circuit. The gain control voltage from the display unit is 12 volts for maximum sensitivity, and 0 volts for minimum sensitivity.

The STC control circuit consists of TR2 and TR3. This circuit uses only the negative portion of the transmitter trigger as the STC pulse. The positive portion is removed by CD1.

TR2 will be turned "On" with the receipt of the transmit trigger (STC pulse). TR2 will be turned "On" and C12 will charge. When the transmit trigger (STC pulse) ends, TR2 will be turned "Off". C12 will discharge to the 0 V through R17 and RV4. The discharge rate will be determined by the time constant of R17, RV4 and C12. The slope of the STC signal can be varied by the adjustment of RV4. The STC signal is combined with the Gain control voltage and applied to the IC1, IC2 and IC3 (Receiver PCB).

3) Main Bang Suppression (MBS) Circuit

The main bang suppression circuit consists of TR1. This circuit uses only the negative portion of the transmitter trigger as the MBS pulse. The positive portion is removed by CD2. TR1 will be turned "On" with the receipt of the MBS pulse. TR1 will be turned "On" and C17 will charge. When the MBS pulse ends, TR1 will be turned "Off". C17 will discharge to the 0 V through R28. The discharge rate will be determined by the time constant of C17 and R28. The MBS signal is combined with the Gain control voltage and STC signal, and applied to the IC1, IC2 and IC3 (Receiver PCB).

6.1.5 Receiver Unit (R11X)

The receiver unit consists of the MIC Frontend and the receiver PCB.

A) MIC Frontend

The MIC Frontend consists of a low-noise RF amplifier, a double balanced mixer and the local oscillator. The received signal is amplified

by a low-noise amplifier fed to the double balanced type mixer which presents a good signal-to-noise ratio to the receiver. The mixer output frequency is 60 MHz. The local oscillator tuning is achieved by the adjustment of the operator's tune control on the display control panel.

B) Receiver PCB

1) IF Amplifier Circuit

The IF amplifier consists of a low-noise, gain controlled IC amplifier IC1, IC2 and IC3, and a bandwidth selector circuit TR1 and TR2.

ICI, IC2 and IC3 are gain controlled by the Gain and STC control signals from the Gain and STC (Anti-Clutter Sea) circuit. The maximum gain is obtained when voltage of IC1-5, IC2-5 and IC3-5 is 4 volts.

The bandwidth selector IC6 receives the pulse length selector signal PW. When there is no pulse length signal, IC6 will be "Off", the gate voltage of TR2 will be 0 volt, the pulse length is 0.08 μ s and the bandwidth is wide, 10 MHz. When the pulse length signal is available (when the pulse length is other than 0.08 μ s) IC6 will be turned "On" and the gate of TR2 will be -4 V and the bandwidth will be narrow, 3 MHz.

2) Detector Circuit

The detector circuit IC4 operates as a sensitive detector amplifier. The positive video signal appears across IC4-12, the IF component is removed and the video signal is fed to the video circuit.

3) Video Circuit

The video circuit consists of TR11 and TR9. The emitter follower TR9 operates as an impedance transformer to drive the coaxial cable which feeds the video signal to the display unit. The video signal can be checked at J1-6.

4) Tuning Indication Circuit

The tuning indicator circuit consists of amplifier TR3, detector TR4, emitter follower TR5 which charges C44 to the detector voltage. This detector voltage is sent to the display unit as a tuning indication voltage by buffer amplifier IC8. The range of the tuning indication voltage is +4 V (detuned) and -0.7 V (tuned in long pulse).

5) Gain-STC Circuit

The receiver has a built-in Gain-STC circuit. The gain control voltage from the display unit is 12 volts for maximum sensitivity, and 0 volts for minimum sensitivity.

The STC control circuit consists of TR8 and TR10. This circuit uses only the negative portion of the transmitter trigger as the STC pulse. The positive portion is removed by CD7.

TR8 will be turned "On" with the receipt of the transmit trigger (STC pulse). TR8 will be turned "On" and C56 will charge. When the transmit trigger (STC pulse) ends, TR8 will be turned "Off". C56 will discharge to the 0 V through R61, and RV3. The discharge rate will be determined by the time constant of R61, RV3 and C56. The slope of the STC signal can be varied by the adjustment of RV3. The STC signal is combined with the Gain control voltage and applied to the IC1, IC2 and IC3.

6) Main Bang Suppression (MBS) Circuit

The main bang suppression circuit consists of TR7. This circuit uses only the negative portion of the transmitter trigger as the MBS pulse. The positive portion is removed by CD8. TR7 will be turned "On" with the receipt of the MBS pulse. TR7 will be turned "On" and C57 will charge. When the MBS pulse ends, TR7 will be turned "Off". C57 will discharge to the 0 V through R63. The discharge rate will be determined by the time constant of C57 and R63. The MBS signal is combined with the Gain control voltage and STC signal, and applied to the IC1, IC2 and IC3.

6.2 DISPLAY UNIT

The display unit consists of the Main Control PCB's, the adjustment PCB, the Receive Buffer PCB, the Power Supply PCB, and the CRT and its Display Control PCB.

6.2.1. Main Control PCB

6.2.1.1 Video Input Circuit

The incoming video signal from the receiver in the scanner is first routed to the FTC circuit components consisting of CD1 and C2.

The Varicap diode CD1 is controlled by the voltage supplied from the front panel RAIN CLUTTER Control in the range of +24 V to 0 V dc. Maximum FTC occurs when the voltage is 0 V dc.

6.2.1.2 A/D Converter

The A to D converter changes the filtered video signal from an analog signal into a 3 bit digital signal. The A/D converter consists of IC's 2-6. Since the conversion must occur at high speed, four comparator ICs are used. The threshold level is set by RV1 (Upper) located on the Receive Buffer PCB (CQA-116). The digitized video output is then sent for storage in the buffer memory.

6.2.1.3 Sampling Clock Generator

The Sampling Clock Generator consists of crystals CX2 and CX3, along with IC25 and IC29. The CX2 operates at 30 MHz and CX3 operates at 22.4 MHz. The 22.4 MHz is used to set the timing of the 0.125, 0.25 and 0.5 nm range scales, and the 30 MHz is used the remaining range scales.

6.2.1.4 Buffer Memory

IC30 and IC31 are Buffer Memories, consisting of 2K bit \times 8 dual port input data and output data using random access. Each IC is written to alternately at each transmission and a read-out is made simultaneously.

The buffer memory timing and transmitter triggering are shown in the figure below.

6.2.1.5 Video Processor Circuit

The Video Processor consists of IC35 \sim IC39, and performs two functions on the video signal.

a. Interference Rejection Processing

b. Expander Processing

The Interference Rejection Processing is performed by comparing the bit-by-bit content of the digital video stored from each successive radar transmission when the IR function is enabled by the operator. The IC35 and IC37 perform the interference rejection in this radar.

Expander Processing is performed by extending one digital video cell to 8 digital video cells. IC35, IC37, IC38 and IC39 perform the expansion in this radar.

6.2.1.6 Video Memory

The start of the data readout of buffer memory is triggered on the trailing edge of the bearing pulse from the scanner unit. The bearing pulse is wave shaped by IC29. This clock is used for data processing of IC28. The video data which has passed through IC28 is transfered to the video memory IC41. IC41 is a DRAM consisting of 256K bit×4. IC41 is used to produce a picture of 4 planes of which 3 will be used.

The address signals used to write into and readout of the video memory are generated in IC28. The output data from the video memory is entered into IC22 the video signal mixer/processor.

6.2.1.7 Graphic Control Memory

This radar use 8 bit CPU (1C7), and the Graphic Display Controller. (1C8), 1C7 (CPU) and the 1C8 (GDC) principally control the graphic system of the on screen display of the VRM, EBL, bearing scale, fixed range markers, and other peripheral parts. The CPU is provided with memory of 512K bit of ROM in IC6 and 64 K bit of RAM in IC5. The RAM memory has battery backup through IC1. The data of range, EBL, VRM, CRT brilliance, EXP, and IR will be maintained after shutdown of power.

The CPU paints the various character data, VRM, EBL, Range Marker, etc. through the GDC and performs processing of the data from the scan converter and from the keys on the control panel.

The content of the memory is read out by parallel-serial converter IC18–IC20 and sent to video output circuit.

6.2.1.8 Video Output

The data which has been converted into raster scan data is read each raster. The 3 bit image signal is digital to analog converted by R8, R9 and IC22, and converted into video signals having 8 levels and outputted to the buffer amplifier TR2. The graphic data is input to TR2 via CD1 and IC22. When the image brilliance control signal is outputted from IC23 and applied to TR1, the CRT brilliance is varied in 8 steps. The video signal along with the IIS and VS are sent to the monitor display.

6.2.1.9 Optional Inputs

This radar can be connected to the Loran C and Magnetic Flux Sensor.

A) Loran C

The signal outputted from the Loran C of NMEA0180, 0182, 0183 or JRC standard, will display the LAT/LON or TD's at the bottom of the display screen. For Waypoint data to be displayed, the data <u>must</u> be NMEA0183 or JRC standard. The signal enters at J4, and passes through 1C7, 1C8 and 1C9 (in Receive Buffer PCB) to CPU.

B) Magnetic Sensor

The output from the Magnetic Sensor is displayed at the top of the

display screen. The data enters at JJ_{1} passes through 1C7, 1C8 and 1C9 (in Receive Buffer PCB) and is passed to CPU.

[Jumper settings for Main Control PCB] J9 and J10 determine radar type

6.2.2 Control PCB

The control PCB has 4 controls for the TUNE, GAIN, RAIN CLUT-TER and SEA CLUTTER. There are 22 keys which perform various functions including turning the radar ON/OFF. The Control Panels are back-lighted in 8 control steps.

There are 6 variable resistors mounted on the adjustment PCB, which are necessary for proper alignment when the installation has been completed.

6.2.3 Power Supply PCB

The AVR converter circuit consists of a duty control AVR converter circuit (IC1–IC3 and TR3, TR4) and power ON/OFF control and X-MIT control circuit (IC2, IC5, IC6, TR5 and TR6).

IC1 controls the switching duty from the error signal of IC2 and drives the switching transistor TR3 and TR4. Consequently, the converter outputs regulated -5V, +5V and +12V dc. IC5 produces the power "ON" signal by depressing ST-BY/OFF switch on the Control Panel and the transmit signal by depressing X-MIT/OFF switch. When the ST-BY/ OFF and X-MIT/OFF switches are depressed at the same time, IC5-2 is cleared and the power supply circuit turns off.

6.2.4 Display Monitor

The Display Monitor will operate with +12 V from the power supply, and the HS (Horizontal Sync.), VS (Vertical Sync.), and the video signals. The HS and VS signals are TTL (+) polarity, so the video image will be at maximum brilliance at +3.5 V and with a video signal of 20 MHz bandwidth.

The Display control board has the adjustments for H-Hold, Contrast. V-Hold, V-Gain, V-Size, Focus, Sub-Bright, and H-Size.

The CRT is used in a vertical position, so the horizontal adjustments will effect the vertical, and the vertical adjustments will effect the horizontal.

SECTION 7

PARTS LIST

7.1 ELECTRICAL PARTS LIST

.

1.1 ELECTRICAL PARTS LIST

•

RIOX SCANNER UNIT TYPE 50004

MAIN CHASSIS TYPE CQC-537

EF.	TYPE	DESCRIPTION	JRC P/N
101	NJS6933		5EZAA00020
1101	H-7BDRD0023		7BDRD0023
AT101	SR-1 FM4. 9X4. 9X6		5MPAB00001
1103	640250-2		5JWAH00693
1105	IL-G-2S-S3C2		5JWAD00070
IC101	H-7PCRD0811		7PCRD0811
T103	640706-1		5JTAN00020
T 105	IL-G-C2-0001		5JWAD00214
\$101	NRS-109		5KRAA00036
[†] 201	RMC-1		5VMAA00059
VI	B4-6		1166140002
iC101	H-7ZCRD0340A		7ZCRD0340A

MODULATOR PCB TYPE CNM-149

IEF.	TYPE	DESCRIPTION	JRC P/N
C1	DD10-979E472P500	500V, 4700PF	5CAAA03534
(2	ECQ-B1H103KZ3	0.01UF 50V	5CRAA00771
C3	DD107-979SL221J50	220PF, 50V	5CBAB02016
C4	ECQ-V1H104JZ3		5CRAA00617
(5	ECEA1EKS330B	25V 33UF	5CEAA01988
C6	ECQ-B1H103K3	0.01UF 50V	5CRAA00771
¢7	ECW-H10H153HR		5CRAA00602
C8	ECW-H10H153HR		5CRAA00602
C9	ECW-H10H183HR		5CRAA00882
C10	ECQ-V1H104JZ3		5CRAA00617
C11	DD10-979E472P500	500V, 4700PF	5CAAA03534
C12	ECQ-V1H104JZ3		5CRAA00617
Ç13	ECQ-V1H104JZ3		5CRAA00617
Ç14	ECQ V1H104JZ3		5CRAA00617
C15	ECQ-V1H104JZ3		5CRAA00617
C16	ECE-A1HU222		5CEAA01783

REF.	ΤΥΡΕ	DESCRIPTION	JRC P/N
C17	ECEA1HU101B	50V 100U	5CEAA02306
C18	ECQ-V1H104JZ3		5CRAA00617
C19	ECE-A1HKS100B	50V 10UF	5CEAA02486
C20	ECQ-B1H103KZ3	0.01UF 50V	5CRAA00771
C21	ECE-A1CU472		5CEAA01980
C22	ECQ-B1H222KZ3	2200P	5CRAA00954
C23	ECE-A1CU222	2200UF 16V	5CEAA01757
C24	ECE-AICU222	2200UF 16V	5CEAA01757
C25	ECE-A1CU222	2200UF 16V	5CEAA01757
C26	ECEA2WU3R3B	450V, 3.3UF	5CEAA03007
C27	ECEA2WU3R3B	450V, 3.3UF	5CEAA03007
C28	ECQ-V1H104JZ3		5CRAA00617
C29	ECE-A1HKS100B	50V 10UF	5CEAA02486
C30	ECEA1EKS330B	25V 33UF	5CEAA01988
C31	ECQ-V1H104JZ3		5CRAA00617
C32	ECQ-V1H104JZ3		5CRAA00617
C33	ECQ-V1H10JZ3		5CRAA00617
C34	ECQ-V1H104JZ3		5CRAA00617
C35	ECQ-V1H104JZ3		5CRAA00617
C36	ECQ-B1H103KZ3	0.01UF 50V	5CRAA00771
C37	ECQ-B1H472KZ3	4700P 50V	
CD1	V11N TYPE2		5TXAE00683
CD2	HZ18BPRE		5TXAE00843
CD3	U05JTYPE2	800V 2.5A	5TXAE00817
CD4	V06C TYPE2		5TXAE00747
CD7	SRT-7HP		5TXDL00005
CD8	1S1588-TPB2		5TXAD00335
CD9	U05JTYPE2	800V 2.5A	5TXAE00817
CD10	U05JTYPE2	800V 2.5A	5TXAE00817
CD11	V06C TYPE2		5TXAE00747
CD12	V06C TYPE2		5TXAE00747
CD13	HZ15-3RE		5TXAE00622
CD14	1S1588-TPB2		5TXAD00335
CD15	F5KF20		5TXAG00321
CD16	1S1588-TPB2		5TXAD00335
CD17	HZ6C1RE		5TXAE00516
CD18	HZ6C1RE		5TXAE00516
CD19	V06C TYPE2		5TXAE00747
CD20	V06C TYPE2		5TXAE00747

7 - 2

REF.	TYPE	DESCRIPTION	JRC P/N
CD21	11DF2FC		5TXAG00239
CD22	11DF2FC		5TXAG00239
CD23	11DF2FC		5TX AG00239
CD24	11DF2FC		5TX AG00239
CD25	11DF2FC		5TXAG00239
CD26	11DF2FC		5T X A G00239
CD27	VIIN TYPE2		5TXAE00683
CD28	VIIN TYPE2		5TXAE00683
CD29	1S1:88-TPB2		5TXAD00335
CD30	1S1588-TPB2		5TX AD00335
CD31	U05 TYPE2	800V 2.5A	5TXAE00817
IC1	UPC494C		5DA A A00136
IC2	UPC494C		5DA A A00136
IC3	TLP521-1-Y		5T7AD00265
IC4	NJM78M05FA		5DAAN00375
ICS4	PRT-807	5ZZA 100014	
JI	IL-G9P-S3T2-E		51W A D00383
J2	IL-G12P-S3T2-E		51WAD00082
]3	640388-2		51WAH00683
J4	B5PSHF-1AA		5JWAP00135
J5	IL-G2P-S3T2-E		5 IW A D00067
KI	LZ-12		5KLAC00055
LI	H-6LZRD00045		6LZRD00045
L2	H-71.ZRD0101		7LZRD0101
L3	H-7LCRD0039		7LCRD0039
L4	H-7LCRD0037		7LCRD0037
L5	SC-02-20G		5LGA B00081
L6	SC-05-100		5LGA B00009
L7	HP-054S		5LGA B00036
PC201	H-7PCRD1151A		7PCRD1151A
R1	NAS1/4 100JRP	1/4W, 10 OHM	5RBAA02776
R2	NAS1/4 102JRP	1/4W, 1K OHM	5RBAA02777
R3	NAS1/4 102JRP	1/4W, 1K OHM	5RBAA02777
R4	NAS1/4 102JRP	1/4W, 1K OHM	5RBAA02777
R5	NAS1/4 471JRP	1/4W, 470 OHM	5RBAA02778
R6	ERG-2SJ221P	2W, 220 OHM	5REAG02604
R7	NAS1/4 472JRP	1/4W, 4.7K OHM	5RBAA02779
R8	NAS1/4 472JRP	1/4W, 4.7K OHM	5RBAA02779
R9	ERG-2AN JP470S	2W 47 OHM	5REAG01258
R10	ERX-2ANJP4R7S		5REAG01357

REF.	TYPE	DESCRIPTION	JRC P/N
R11	NAS1/4 472JRP	1/4W, 4.7K OHM	5RBAA02779
R12	NAS1/4 472JRP	1/4W, 4.7K OHM	5RBAA02779
R13	ERD-50TJ472	1/2W 4.7K OHM	5RDAA00851
R14	NAS1/4 103JRP	1/4W, 10K OHM	5RBAA02780
R15	NAS1/4 562JRP	1/4W, 5.6K OHM	5RBAA02832
R17	NAS1/4 472JRP	1/4W, 4.7K OHM	5RBAA02779
R18	ERD-50TJ332	1/2W 3.3K OHM	5RDAA00847
R19	NAS1/4 472JRP	1/4W, 4.7K OHM	5RBAA02779
R20	NAS1/4 103JRP	1/4W, 10K OHM	5RBAA02780
R21	NAS1/4 102JRP	1/4W, 1K OHM	5RBAA02777
R22	NAS1/4 104JRP	1/4W, 100K OHM	5RBAA02828
R23	NAS1/4 103JRP	1/4W, 10K OHM	5RBAA02780
R24	NAS1/4 222JRP	1/4W, 2.2K OHM	5RBAA02781
R25	NAS1/4 472JRP	1/4W,4.7K OHM	5RBAA02779
R26	NAS1/4 682JRP	1/4W,6.8K OHM	5RBAA02727
R27	ERD-50TJ151	1/2W 150 OHM	5RDAA00815
R28	ERD-50TJ151	1/2W 150 OHM	5RDAA00815
R29	NAS1/4 102JRP	1/4W,1K OHM	5RBAA02777
R30	NAS1/4 102]RP	1/4W,1K OHM	5RBAA02777
R31	ERG-2SJ104P	2W 100K OHM	5REAG01491
R32	NAS1/4 472JRP	1/4W,4.7K OHM	5RBAA02779
R33	NAS1/4 471JRP	1/4W, 470 OHM	5RBAA02778
R34	NAS1/4 103JRP	1/4W, 10K OHM	5RBAA02780
R35	NAS1/4 101JRP	1/4W, 100 OHM	5RBAA02785
R36	NAS1/4 470JRP	1/4W, 47 OHM	5RBAA02819
R37	ERX-1ANJ1R8	1W,1.80HM	5REAG01422
R38	NAS 1/4 100JRP	1/4W,10OHM	5RBAA02776
R39	ERD-50TJ150	1/2W 150HM	
RVI	GF06P-1K OHM	IK OHM	5RMA B00059
RV2	GF06P-1K OHM	ік онм	5RMAB00059
CUT 1	1400 TO 000 D 1	TO 220	57K DC00002
SHII	M30-10-220-D-1	TO 220	52KBG0002
SH12	M30-10-220-D-1	10.220	52K DG00002
SHT3	M30-10-220-D-1	TO 220	52K BG0002
SHI4	M30-10-220-D-1	TO 220	52K BC00002
5H15	M30-10-220-D-1	10.220	324000000
T1	H-71.PRD0086		7LPRD0086
T2	H.71.TRD0182		7LTRD0182
TBI	M106D-M-5P		5JTBF00753
TPI	LC-2-G YEL		5JTCW00015
TP2	LC-2-G YEL		5JTCW00015
	2010 122		

*

Έ.

3.4

7 - 4

	TYPE	DESCRIPTION	JRC P/N			TYPE	DESCRIPTION	JRC P/N
REF.			5JTCW00015		REF.	C2214SI 142221.F.TP	2200PF	5C A A D00792
TP3			51TCW00015		CII	C32103L111222J-L-11	22000	5C A A D00702
TP4	LC-2-G YEL		51TCW00015		C12		2200FF	5CEA 40200132
TP5	LC 2 G YEL		STTCW00015		C13	ECEATEKS1001	100	5CEAA03004
TP6	LC-2-G YEL		5/TCW00015		C14	C3216CH1H120J-E-TP	1286	5CAAD00784
тр7	LC-2-G YEL		3) 1 C 1 00010	1	C15	C3216CH1H220J-E-TP	22PF	5CA A D00869
	DECISION TPF2		5TCAF00781		C16	C3216CH1H100D-F-TP	10PF	5CAAD00785
TRI	23C10131 11 CC		5TAAG00238		C10	C2216CH11100D D TT	2200PF	5CAAD00792
TR2	25A1242-1	500V 8A	5TZBE00026		C17	C52103C112225-C-11	1011	5CFA A03004
TR3	IKP840	5007 011	5TCAF00781		C18	CONCULUZION F TR	2305	5C A A D00794
TR4	25C18151 1FE2		5TCAF00579		CI9	CONCERNING E TR	SOV LOOPE	5C A A D00790
TR5	2SC3328-Y				C20	C3216CH1H101)-E-1F	JUN 1001 F	JCAAD00100
TDC	251142		5TKAD00128	4 4	C21	C3216SL1H222]-E-TP	2200PF	5CAAD00792
I KO	25C1627Y TPE2		5TCAF00808		C22	C3216SL1H222I-E-TP	2200PF	5CAAD00792
IR/	2501021 T TO DD		5TCAF00810		C22	C3216CH1H2221.E.TP	2200PF	5CAAD00792
TRS	25801711122		5TKAD00116		C23	C3216CH1H330LF.TP	33PF	5CA A D00794
TR9	251/36		5TKAD00116		C24	C2210CITITI330JFE TT	2200PF	5CAAD00792
TR10	25N/30				C25	C32103L111222J-D-11	200011	00111200102
TRI	2SC2983-Y		5TCAF00578		C26	ECEA1EKS1001	10U	5CEAA03004
TDC2	SP-30-BS-AN-0		5ZKAF00051		C27	C3216CH1H050C-E-TP	50V 5PF	5CAAD00800
1 835	0. 0. 10 10				C28	C32161B1H103K-E-TP	50V 0.01UF	5CA A D00789
					C29	C3216CH1H070D-E-TP	7PF	5CAAD00977
					C30	C3216JB1H103K-E-TP	50V 0.01UF	5CAAD00789
	RECEIVER C	HASSIS TYPE CGH-1	/3		C31	C3216SL1H222J-E-TP	2200PF	5CAAD00792
					C32	ECEA1EKS100I	10U	5CEAA03004
REF.	TYPE	DESCRIPTION			C33	C3216SL1H222-E-TP	2200PF	5CAAD00792
E301	NJT1946		SEZAA00021		C34	C3216SL1H222J-E-TP	2200PF	5CAAD00792
					C35	ECEA1EKS1001	10U	5CEAA03004
				T	C3(ECEALCKS470	4711	5CF À A 03005
					C30	CONCULUION E TP	INPE	5C A A D00785
	DECENTE	DOB TYPE CAF-286			(37	C3210CH1H100DETP	1000	5C A A D00785
	RECEIVER	CPCB THE GALLES			C38	CJ216CHIHI00D-E-IF	101 F 2200 PE	SC & A D00702
		DECODIDITION	JRC P/N	· · ·	- C39	C3216SL1H222J-E-TP	220055	SCA AD00794
REF.	TYPE	DESCRIPTION	5CAAD00792		C40	C3216CH1H330J-E-TP	3325	5CAAD00794
CI	C3216SL1H222J-E-TP	2200PF	5CA A D00785					COL E D D D D D D D D D D
C2	C3216CH1H100D-E-TP	1024	5C A A D00792		C41	C3216CH1H050C-E-TP	50V 5PF	5CAAD00800
C3	C3216SL1H222J-E-TP	2200PF	5CA A D00792		C42	C3216SL1H222J-E-TP	2200PF	5CAAD00792
C4	C3216SL1H222J-E-TP	2200PF	5CAAD00792		C43	ECEA1EKS1001	10U	5CEAA03004
C5	C3216SL1H222J-E-TP	2200PF	5CAAD00132		C44	C3216CH1H050C-E-TP	50V 5PF	5CAAD00800
			5CEA 403004	7	C45	C3216CH1H070D-E-TP	7PF	5CAAD00977
C6	ECEA1EKS100I	10U	5CEA A D00784	•	•			
C7	C3216CH1H120J-E-TP	12PF	5CA A D00860		C46	C3216SL1H222J-E-TP	2200PF	5CAAD00792
C8	C3216CH1H20J-E-TP	22PF	JUAA 100003	1	C47	ECEA1EKS100I	10U	5CEAA03004
C9	C3216CH1H100D-E-TP	10PF	JUAADUUTOJ		C48	C3216CH1H100D-E-TP	10PF	5CA AD00785

2200PF

C3216SL1H222J-E-TP

5CAAD00792

.

C9

C10

7 - 7

2200PF

10U

C3216SL1H222J-E-TP

ECEA1EKS1001

C49

C50

5CAAD00792

5CEAA03004

÷. !

.

PFF.	ΤΥΡΕ	DESCRIPTION	JRC P/N
151	C3216C31111050C-E-TP	50V 5PF	5CAAD00800
-52	ECEA1FSN4R7I	4.7U	5CEAA03006
~53	C3216SI 1H2221-E-TP	2200PF	5CAAD00792
-5J	ECQ-V111041Z3		5CRAA00617
255	C3216SL11122J-E-TP	2200PF	5CAAD00792
	_		
C56	ECEA1EKS100I	10U	5CEAA03004
257	C3216SL1H222J-E-TP	2200PF	5CAAD00792
258	C3216SL1H222J-E-TP	2200PF	5CAAD00792
C59	ECEA1EKS1001	10U	5CEA A03004
260	C3216CH1H101J-E-TP	50V 100PF	5CAAD00780
cDi	HZ3B2	3V	5TXAE00107
CD2	155226 TE85L		5TXAD00320
(C) C	MC1350P		5DDAS00011
102	MC1350P		5DDAS00011
1C3	MC1350P		5DDAS00011
	A NE120		5DAAR00105
104	171355 1		BRTE00046
<u>]</u> [171255-1		BRTE00046
J2 1201	1712J3-1		5JWAD00093
J 301			7LARD0103A
LI	n-ILAKDOIO3A		
L2	H-7LARD0101A		7LARD0101A
L3	H-7LARD0101A		7LARDOIUIA
L4	H-7LARD0102A		7LARD/102A
L5	H-7LARD0102A		7LARDOI02A
L6	H-7LARD0101A		7LARDOI0IA
L7	H-7LARD0083		7LARD0083
L8	H-7LARD0084		7LARD0084
PC1	H-7PCRD1147C		7PCRD1147C
PDI	H-7PDRD0018A		7PDRD0018A
RI	ERJ-8GEY J223V	1/8W 22K OHM	5KEAGU1754
R2	ERJ-8GEY1151V	1/8W 150 OHM	5REAG01728
R3	ERJ-8GEY J220V	1/8W 22 OHM	5REAG01718
Rŧ	ERJ 8GEY J223V	1/8W 22K OHM	5REAG01754
R5	ERJ-8GEYJ151V	1/8W 150 OHM	5REAG01728
R6	ERJ-8GEYJ220V	1/8V 22 OHM	5REAG01718
R7	FR 1.8GEV 1993V	1/8W 22K OHM	5REAG01754
RS	FR 1.86FV 1473V	1/8W 680 OHM	5REAG01758
RQ	FR1.8GFY 1222V	1/8W 2.2K OHM	5REAG01742
R10	ER 8GEY 1220V	1/8W 22 OHM	5REAG01718
R11	ER 1-8GEY 1681V	1/8W 680 OHM	5REAG01736

REF.	TYPE	DESCRIPTION	JRC P/N
R12	ERJ-8GEYJ473V	1/8W 47K OHM	5REAG01758
R13	ERJ-8GEYJ470V	1/8W 47 OHM	5REAG01722
R14	ERJ-8GEYJ332V	1/8W 3.3K OHM	5REAG01744
R15	ERJ-8GEY J220V	1/8W 22 OHM	5REAG01718
R16	ERJ-8GEYJ332V	1/8W 3.3K OHM	5REAG01744
R17	ERJ-8GEYJ332V	1/8W 3.3K OHM	5REAG01744
R18	ERJ-8GEY J332V	1/8W 3.3K OHM	5REAG01744
R19	ERJ-8GEYJ331V	1/8W, 330 OHM	5REAG01732
R20	ERJ-8GEY J561V	1/8W 560 OHM	5REAG01735
R21	ERJ-8GEYJ102V	1/8W 1K OHM	5REAG01738
R22	ERJ-8GEY J471V	1/8W 470 OHM	5REAG01734
R23	ERJ-8GEYJ100V	1/8W 10 OHM	5REAG01714
R24	ERJ-8GEYJ331V	1/8W, 330 OHM	5REAG01732
R25	ERJ-8GEY J683V	1/8W 68K OHM	5REAG01760
R26	ERJ-8GEY J221V	1/8W, 220 OHM	5REAG01730
R27	ERJ-8GEY J331 V	1/8W, 330 OHM	5REAG01732
R28	ERJ-8GEY J470V	1/8W 47 OHM	5REAG01722
R29	ERJ-8GEY J332V	1/8W 3.3K OHM	5REAG01744
R30	ERJ-8GEY J473V	1/8W 47K OHM	5REAG01758
R31	ERJ-8GEY J472V	1/8W 4.7K OHM	5REAG01746
R32	ERJ-8GEY J470V	1/8W 47 OHM	5REAG01722
R33	ERJ-8GEYJ103V	1/8W 10K OHM	5REAG01750
R34	ERJ-8GEY J222V	1/8W 2.2K OHM	5REAG01742
R35	ERJ-8GEYJ102V	1/8W 1K OHM	5REAG01738
R36	ERJ-8GEY J100V	1/8W 10 OHM	5REAG01714
R37	ERJ-8GEY J122V	1/8W 1.2K OHM	5REAG01739
RV1	GF06VT-2-100 OHMM		5RMAB00161
TRI	2SK302-GRTE85L		 5TKAA00225
TR2	2SK302-GRTE85L		5TKAA00225
TR3	2SA495GTM·Y (TPE2)		5TAAG00325
TR4	2SC3098-TE85L		5TCAF00529
TR5	2SK302-GRTE85L		5TKAA00225
TR6	2SA495GTM-Y (TPE2)		5TAAG00325
TR7	2SA1015Y-TPE2		5TAAG00294
W301	H-7ZCRD0336		7ZCRD0336

÷

TSC PCB TYPE CCG-125

- 191

¢

REF.	TYPE	DESCRIPTION	JRC P/N
CI	C3216SL1H222J-E-TP	2200PF	5CAAD00792
C2	C3216SL1H222J-E-TP	2200PF	5CAAD00792
CI	ECEA1EKS1001	10U	5CEAA03004
C4	202L2502 225K5471	25V 2.2UF	5CSAC00826
C5	ECQ-V1H104JZ3		5CRAA00617
C6	C3216JF1H104Z-E-TP	50V 0.1UF	5CAAD01268
C7	C3216JF1H104Z E-TP	50V 0.1UF	5CAAD01268
C8	C3216SL1H222J E-TP	2200PF	5CAAD00792
C9	ECEA1EKS1001	10U	5CEAA03004
C10	ECEA1ESN4R71	4.7U	5CEAA03006
сн	ECEAICKS470I	47U	5CEAA03005
C12	C3216JB1H103K-E-TP	50V 0.01UF	5CAAD00789
C13	C3216CH1H221J-E-TP	220PF	5CA A D00790
C14	ECEA1EKS100I	10U	5CEAA03004
C15	ECEA1ESN4R7I	4.7U	5CEAA03006
C16	ECEA1CKS4701	47U	5CEAA03005
C17	C3216CH1H150J-E-TP	15PF	5CAAD00787
C18	ECEA1EKS100I	10U	5CEAA03004
C19	ECQ-B1H332JZ3	3300PF 50V	5CRAA00586
C20	ECEA1CKS470I	47UF	5CEAA03005
C21	C3216JF1H104Z-E-TP	50V 0.1UF	5CAAD01268
C22	C3216JF1H104Z-E-TP	50V 0.1UF	5CAAD01268
CD1	1SS226 TE85L		5TXAD00320
CD2	1SS226 TE85L		5TXAD00320
CD3	1SS184 TE85R		5TXAD00291
CD4	1SS184 TE85R		5TXAD00291
CD5	1SS226 TE85L		5TXAD00320
CD6	TLR123		5TZAD00101
CD7	1SS226 TE85L		5TXAD00320
IC1	TA78DL12P		5DAAD00636
IC2	NJM78M05FA		5DAAN00375
IC3	NJM4558D		5DAAF00027
IC4	NJM4558D		5DAAF00027
IC5	TL082CP		5DDAL.00326
Л	IL-G-9P-S3L2-E	9P	5JWAD00090
J2	SGB-XH-A		5JWA P00451
PCI	H-7PCRD1154A		7PCRD1154A
PDI	H-7PDRD0019A		7PDRD0019A

RFF.	TYPE	DESCRIPTION	JRC P/N
RI	FRI-8GEY 1103V	1/8W 10K OHM	5REAG01750
D2	FRI-8GEV 1472V	1/8W 4.7K OHM	5REAG01746
N2	EKJOOLIJIIEV		
R3	ERJ-8GEYJ103V	1/8W 10K OHM	5REAG01750
R4	ERJ-8GEYJ103V	1/8W 10K OHM	5REAG01750
R5	ERJ-8GEYJ102V	1/8W 1K OHM	5REAG01738
R6	ERJ-8GEY J273V	1/8W 27K OHM	5REAG01755
R7	ERJ-8GEY J223V	1/8W 22K OHM	5REAG01754
R8	ERJ-8GEY J473V	1/8W 47K OHM	5REAG01758
R9	ERJ-8GEY J223V	1/8W 22K OHM	5REAG01754
R10	ERJ-8GEYJ473V	1/8W 47K OHM	5REAG01758
R11	ERJ-8GEYJ153V	1/8W 15K OHM	5REAG01752
R12	ERJ-8GEYJ103V	1/8W 10K OHM	5REAG01750
R13	ERJ-8GEYJ103V	1/8W 10K OHM	5REAG01750
R14	ERJ-8GEYJ103V	1/8W 10K OHM	5REAG01750
R15	ERG-1SJ470		5REAG01286
R16	ER J-8GEY J391V	1/8W, 390 OHM	5REAG01733
R17	ERI-8GEYJ183V	1/8W 10K OHM	5REAG01753
R18	ERJ-8GEYJ470V	1/8W 47 OHM	5REAG01722
R19	ERI-8GEY 1222V	1/8W 2.2K OHM	5REAG01742
R20	ER1-8GEY 1471V	1/8W 470 OHM	5REAG01734
R21	ERI AGEY 1221V	1/8W 220 OHM	5REAG01730
R22	FRI SGEY 1122V	1/8W 1.2K OHM	5REAG01739
NUL			
R23	ERJ-8GEYJ561V	1/8W 560 OHM	5REAG01735
R24	ERJ-8GEYJ471V	1/8W 470 OHM	5REAG01734
R25	ERJ-8GEY J332V	1/8W 3.3K OHM	5REAG01744
R26	ERJ-8GEYJ102V	1/8W 1K OHM	5REAG01738
R27	ERJ-8GEY J470V	1/8W 47 OHM	5REAG01722
R28	ERJ-8GEY J562V	1/8W 5.6K OHM	5REAG01747
R29	ERJ-8GEYJ470V	1/8W 47 OHM	5REAG01722
R30	ERJ-8GEYJ102V	1/8W 1K OHM	5REAG01738
R31	ERJ-8GEY J220V	1/8W 22 OHM	5REAG01718
R32	HMGL1/4A-10M OHM J		5REAA05607
R33	ERJ-8GEYJ103V	1/8W 10K OHM	5REAG01750
R34	ERJ-8GEYJ222V	1/8W 2.2K OHM	5REAG01742
R35	ERJ-8GEYJ471V	1/8W 470 OHM	5REAG01734
R36	ERJ-8GEYJ681V	1/8W 680 OHM	5REAG01736
R37	ERJ-8GEYJ332V	1/8W 3.3K OHM	5REAG01744
R38	ERJ-8GEY J332V	1/8W 3.3K OHM	5REAG01744
R39	ERJ-8GEY0R00V	00HM	5REAG01775

7 - 11

REF.	TYPE	DESCRIPTION	JRC P/N
R41	ERJ-8GEY J392V	1/8W 3.9K OHM	5REAG01745
R42	ERJ-8GEY J182V	1/8W 1.8K OHM	5REAG1741
R43	ERJ-8GEY J331 V	1/8W 330 OHM	5REAG01732
R44 RV1 RV2 TR1 TR2	ERJ-8GEYJ470V GF06UT-2-1-10K OHM GF06UT-2-10K OHM 2SA1015Y-TPE2 2SA1015Y-TPE2	1/8W 47 OHM 1/2W 10K OHM 1/2W 10K OHM	5REAG01722 5RMA B00128 5RMA B00128 5TA AG00294 5TA AG00294
TR3	2SC1815Y TPE2		5TCAF00781
TR4	2SC1815Y TPE2		5TCAF00781

.

RIIX SCANNER UNIT TYPE 50005

RADIATOR TYPE NAX-30

REF.	ТҮРЕ	DESCRIPTION	JRC P/N
PC101	H-7PCRD1168		7PCRD1168

÷ -

v

. .

MAIN CHASSIS TYPE CQC-549

REF.	TYPE	DESCRIPTION	JRC P/N
A101	N JS6933		5EZA A00020
M101	H-7BDRD0027		7BDRD0027
MT101	SR-1 FM4.9X4.9X6		5MPA B00001
P104	H5P-SHF-AA		5]WAP00144
P105	H4P-SHF-AA		5JDAH00028
P107	IL-G-2S-S3C2		5JWAD00070
PT104	SHF-001T-0.8SS		5JDAH00029
PT105	SHF-001T-0.8SS		51DA H00029
PT107	IL-G-C2-0001		5JWAD00214
S101	NRS-109		5KRAA00036
S102	S-116		5SA A B00809
ZC101	H-7ZCRD0353		72CRD0353

MODULATOR CHASSIS TYPE CMN-287

14

REF.	TYPE	DESCRIPTION	JRC P/N
P106	640250-2		5JWAH00693
PT106	640706-1		5JTAN00020
V201	RMC-1		5VMAA00059
Wl	B4-6		1166140002

MODULATOR PCB TYPE CNM-151

REF.	TYPE	DESCRIPTION	JRC P/N
Cl	DD10-979E472P500	500V, 4700PF	5CAAA03534
C2	ECQ-B1H103KZ3	0.01UF 50V	5CRAA00771
C3	DD107-979SL221J50	220PF, 50V	5CBAB02016

-

REF.	TYPE	DESCRIPTION	JRC P/N
C1	ECQ-V1H1041Z3		5CRAA00617
C5	ECEA1EKS330B	25V 33UF	5CEAA01988
C6	ECQ-B1H103KZ3	0.01UF 50V	5CRAA00771
C7	ECW-H10H153HR	•	5CRAA00602
C8	ECW-H10H183HR		5CRAA00802
C9	ECW-H10H333HR	1KV, 0.033UF	5CRAA01084
C10	ECQ-V1H104JZ3		5CRAA00617
CH	DD10-979E472P500	500V, 4700PF	5CAAA03534
C12	ECQ-V1H104JZ3		5CRAA00617
C13	ECQ-V1H104JZ3		5CRAA00617
C14	ECQ-V1H104JZ3		5CRAA00617
C15	ECQ-V1H104JZ3		5CRAA00617
C16	ECE-S1HU332K	50V, 3300UF	5CEAA03034
C17	ECEA1HU101B	50V 100U	5CEAA02306
C18	ECQ-V1H104JZ3		5CRAA00617
C19	ECE-A1HKS100B	50V 10UF	5CEAA02486
C20	ECQ-B1H103KZ3	0.01UF 50V	5CRAA00771
C21	ECE-A1CU682		5CEAA02655
C22	ECQ-B1H222KZ3	2200P	5CRAA00954
C23	ECEA2WU3R3B	450V, 3.3UF	5CEAA03007
C24	ECEA2WU3R3B	450V, 3.3UF	5CEAA03007
C25	ECE-A1CU222	2200UF 16V	5CEAA01757
C26	ECE-A1CU222	2200UF 16V	5CEAA01757
C27	ECE-A1CU222	2200UF 16V	5CEAA01757
C28	ECE-A1EU332	25V, 3300UF	5CEAA03035
C29	ECE-A1EU332	25V, 3300UF	5CEAA03035
C30	ECS-F1VZ105BB	1U 35V	5CSAA00274
C31	ECQ-V1H104JZ3		5CRAA00617
C32	ECQ-V1H104JZ3		5CRAA00617
C33	ECQ-V1H104JZ3		5CRAA00617
C34	ECQ-V1H104JZ3		5CRAA00617
C35	ECQ-B1H103KZ3	0.01UF 50V	5CRAA00771
C36	ECQ-B1H103KZ3	0.01UF 50V	5CRAA00771
C37	DD07-979B102P500	1000PF 500V	5CAAA03662
CDI	VIIN TYPE2		5TXAE00818
CD2	HZ18BP		5TXAE00347
CD3	U05JTYPE2	800V 2.5A	5TXAE00817
CD4	SM-1XN02 LFK4		5TXAL00121
CD7	SRT-7HP		5TXDL00005

REF.	τγρε	DESCRIPTION	JRC P/N
CDS	1S1588-TPB2		5T X A D00335
CD9	U05ITYPE2	800V 2.5A	5TXAE00817
	U05ITYPE2	800V 2.5A	5TXAE00817
ÇDI.			
CD11	SM-1XN02 LFK4		5TXAL00121
CD12	SM-1XN02 LFK4		5TXAL00121
CD13	HZ15-3RE		5TXAE00622
CD14	1S1588-TPB2		5TXAD00335
CD15	F10KF20		5TXAG00312
0210			
CD16	IS1588-TPB2		5 T X A D00335
CD17	HZ6CIRE		5TXAE00516
CD18	VIIN TYPE2		5TXAE00818
CD19	VIIN TYPE2		5TXAE00818
CD20	11DF2FC		5TXAG00239
CD21	11DF2FC		5TXAG00239
CD22	11DF2FC		5TXAG00239
CD23	11DF2FC		5TXAG00239
CD24	11DF2FC		5TXAG00239
CD25	11DF2FC		5TXAG00239
CD26	31DF2FC		5TXAG00313
CD27	31DF2FC		5TXAG00313
CD28	31DF2FC		5TXAG00313
CD29	31DF2FC		5TXAG00313
CD31	HZ6C1RE		5TXAE00516
CD32	U05JTYPE2	800V 2.5A	5TXAE00817
CD33	1S1588-TPB2		5TXAD00335
CD34	1S1588-TPB2		5TXAD00335
IC1	UPC494C		5DAAA00136
IC2	UPC494C		5DAAA00136
IC3	TLP521-1-Y		5 T Z A D00265
Л	641986-1		5 J W A H00953
J2	IL-G-9P-S3T2-E		5 JWA D00383
J3	IL-G-12P-S3T2-E		5JWAD00082
J4	B5P-SHF-1AA		5JWA P00135
J5	B4P-SHF-1AA		5 J W A P00089
]6	640388-2		5JWA H00683
J 7	IL-G-2P-S3T2-E		5JWAD00067
J8	641983-1		5JWA H01053
KI	LZ-12		5KLAC00055
LI	H-6LZRD00045		6LZRD00045

λ,

2

~~ ** * * *

7 - 14

REF.	TYPE	DESCRIPTION	
L.2	H-7LZRD0101	==sekir non	JKC P/N
L3	H-7LCRD0040A		/LZRD0101
L4	H-7LCRD0037		/LCRD0040A
L5	SC-02-20G		7LCRD0037
			2LGA 800081
L6	SC-10-100		5LGA 800011
L7	HP105Z	10A 180UH	5LGA B00070
PC201	H-7PCRD1155A		7PCRDU55A
RI	NAS1/4 100JRP	1/4W, 10 OHM	5RBA 402776
R2	NAS1/4 102JRP	1/4W, 1K OHM	5RBAA02777
R3	NAS1/4 102JRP	1/4W IK ORM	
R4	NAS1/4 102JRP	1/4W 1K OHM	58 BAA02777
R5	NAS1/4 471JRP	1/4W 470 OHM	5R BA A 02777
R6	ERG-2SJ221P	2W 220 OHM	SRDAAU2778
R7	NAS1/4 4721RP	1/4W 4 7K OUM	5REAG02604
		Mark Ona	5KBAA02779
R8	NAS1/4 472JRP	1/4W, 47K OHM	5 D B A A 03770
R9	ERG-2ANJP470S	2W 47 OHM	SEDEACO1059
R10	ERX-2ANJP4R7S		SPEACO1258
R11	NAS1/4 472JRP	1/4W 4 7K OHM	500 A A 00770
R12	NAS1/4 472JRP	1/4W 47K OHM	5R BAA02779
	-	o to, the onm	JRDAAU2779
R13	ERD-50UJ472		5RDA A01534
R14	NAS1/4 103JRP	1/4W. 10K OHM	5RBAA02780
R15	NAS1/4 752JRP	1/4W, 7.5K OHM	5RBA A02831
R17	NASI/4 472JRP	1/4W,4.7K OHM	5RBA A02779
R18	ERD-50UJ332	1/2W, 3.3K OHM	5RDAA02197
DIA			
R19	NAS1/4 472JRP	1/4W, 4.7K OHM	5RBAA02779
R20 Day	NAS1/4 103JRP	1/4W,10K OHM	5RBAA02780
R21 Duo	NASI/4 102JRP	1/4W, 1K OHM	5RBAA02777
R22	NAS1/4 104JRP	1/4W.100K OHM	5RBAA02828
R23	NAS1/4 103JRP	1/4W,10K OHM	5RBAA02780
R24	NAS1/4 222JRP	1/4W 22K OHM	5DBA A 02791
R25	NAS1/4 472JRP	1/4W, 4.7K OHM	5884 40270
R26	NAS1/4 622JRP	1/4W, 6.2K OHM	5884402775
R27	ERD-50UJ151	1/2W, 150 OHM	5RDA A 02108
R28	ERD-50UJ151	1/2W.150 OHM	5804402198
			VKDAAV4170
R29	NAS1/4 471JRP	1/4W, 470 OHM	5RBAA02778
R30	ERD-50UJ182	1/2, 1.8K OHM	5RDAA02216
R31	NAS1/4 101JRP	1/4 100 OHM	5RBAA02785
R32	NAS1/4 104JRP	1/4W, 100K OHM	5RBAA02828
R33	NAS1/4 102JRP	1/4W.1K OHM	5RBAA02777

	REF.	
		TYPE
	R34	ERG-1ANJ222U
	R35	ERX-2ANJR39S
	R36	NAS1/4 103JRP
	R37	NAS1/4 101JRP
	R38	ERG-2ANJP104S
	R39	NAS1/4 100JRP
	R40	NAS1/4 100JRP
	R41	NAS1/4 470JRP
	R42	NAS 1/4 101 JRP
	R43	ERX-2ANJP5R6S
<i>.</i>	RVI	GF06UT-2-1K OHM
	SHTI	H-72SRD0015
	SHT3	M30-TO-220-D-1
	Tl	H-7LPRD0086
	T2	H-7LTRD0183
	TPI	LC-2-G YEL
	TP2	LC-2-G YEL
	TR1	2SC1815Y TPE2
	TR2	2SA1242-Y
	TR3	IRF840
	TR4	2SC1815Y TPE2
	TR5	2SC3328Y TPE6
	TR6	25]142
	TR7	2SC1627YTPE2
	TR8	2SA817YTPE2
	TR9	IRFZ-44
	TR10	IRFZ-44
	TRII	2SA1261-K
	TR12	2SK363VTPE2
	TR13	2SC1815Y TPE2

RECEIVER CHASSIS TYPE CGH-175

DESCRIPTION

1W, 2.2K OHM

1/4W, 10K OHM

1/4W, 100 OHM

2W 100K OHM

1/4W, 10 OHM

1/4W, 10 OHM

1/4W,1000HM

TO-220

500V 8A

1/4W, 47 OHM -

2W,0.39OHM

JRC P/N

5RDAA02201

5REAG03479

5RBAA02780

5RBAA02785

5REAG01247

5RBAA02776

5RBAA02776

5RBAA02819

5RBAA02785

5REAG01357

5RMAB00117 72SRD0015

5ZK BG00002 7LPRD0086 7LTRD0183 5JTCW00015 5JTCW00015

5TCAF00781 5TAAG00238

5TZBE00026

5TCAF00781

5TCAF00815 5TKAD00128 5TCAF00808 5TCAF00810 5TZBE00043 5TZBE00043 5TAAB00097 5TCAF00816

5TCAF00781

REF.	TYPE	DESCRIPTION	JRC P/N
E301	NJT1946		5EZAA00021
TPI	60789-2		5JWAH00086

7 - 16

7 - 17

-)

REF.	TYPE	DESCRIPTION	JRC P/N
TP2	60789.2		5JWAH00086
TP3	60789-2		5JWAH00086
TP4	60789-2		5JWAH00086
TP5	60789.2		5 JW A H00086
TP6	60789-2		5JWAH00086

RECEIVER PCB TYPE CAE-436

REF.	ТҮРЕ	DESCRIPTION	JRC P/N
CI	C3216CH1H100D-E-TP	10PF	5CAAD00785
C2	C3216SL1H222J-E-TP	2200PF	5CAAD00792
C3	C3216SL1H222J-E-TP	2200PF	5CA A D00792
C4	C3216SL1H222J-E-TP	2200PF	5CAAD00792
C5	C3216CH1H070D-E-TP	7PF	5CAAD00977
C6	C3216CH1H220J-E-TP	22PF	5CAAD00869
C7	C3216CH1H100D-E-TP	10PF	5CAAD00785
C8	C3216SL1H222J E TP	2200PF	5CAAD00792
C9	C3216SL1H222J-E-TP	2200PF	5CAAD00792
C10	C3216CH1H070D-E-TP	7PF	5CAAD00977
сн	C3216CH1H220J-E-TP	22PF	5CAAD00869
C12	C3216CH1H100D-E-TP	10PF	5CAAD00785
C13	C3216SL1H222J-E-TP	2200PF	5CAAD00792
C14	C3216SL1H222J-E-TP	2200PF	5CAAD00792
C15	C3216CH1H220J-E-TP	22PF	5CAAD00869
C16	C3216CH1H270J-E-TP	27PF	5CA A D00793
C17	C3216CH1H101J-E-TP	50V 100PF	5CAAD00780
C18	C3216CH1H101J-E-TP	50V 100PF	5CAAD00780
C19	C3216SL1H222J-E-TP	2200PF	5CAAD00792
C20	C3216CH1H270J-E-TP	27PF	5CAAD00793
C21	C3216SL1H222J-E-TP	2200PF	5CA A D00792
C22	C3216CH1H101J-E-TP	50V 100PF	5CAAD00780
C23	C3216CH1H050C-E-TP	50V 5PF	5CAAD00800
C24	C3216CH1H070D-E-TP	50V 7PF	5CAAD00977
C26	ECE-AICKS470B	47UF	5CEAA01707
227	C3216CH1H100D-E-TP	10PF	5CAAD00785
C28	C3216CH1H100D-E-TP	10PF	5CAAD00785
229	C3216CH1H330J-E-TP	33PF	5CAAD00794
230	C3216CH1H050C-E-TP	50V 5PF	5CAAD00800

REF.	TYPE	DESCRIPTION	JRC P/N
C31	C3216SL1H222J-E-TP	2200PF	5CAAD00792
C32	ECE-ALEKS100B	10UF 25V	5CEAA01750
C33	C3216CH1H050C-E-TP	50V 5PF	5CAAD00800
C34	C3216SL1H222J-E-TP	2200PF	5CAAD00792
C35	C3216CH1H070D-E-TP	7PF	5CAAD00977
C36	C3216CH1H100D-E-TP	10PF	5CAAD00785
C37	C3216SL1H222J-E-TP	2200PF	5CA A D00792
C38	ECE-A1EKS100B	10UF 25V	5CEAA01750
C39	C3216SL1H222J-E-TP	2200PF	5CAAD00792
C40	ECE-A1EKS100B	10UF 25V	5CEAA01750
C41	C3216CH1H050C-E-TP	50V 5PF	5CAAD00800
C42	ECE-A1EKN4R7B	4.7UF 25V	5CEAA01959
C43	C3216SL1H222J-E-TP	2200PF	5CAAD00792
C44	ECQ-B1H332JZ3	3300PF 50V	5CRAA00586
C45	C3216SL1H222J-E-TP	2200PF	5CAAD00792
C46	ECQ-V1H104JZ3		5CRAA00617
C47	ECE-A1EKS100B	10UF 25V	5CEAA01750
C48	ECQ-V1H104JZ3		5CRAA00617
C49	C3216CH1H221J-E-TP	220PF	5CAAD00790
C50	ECE-AICKS470B	47UF	5CEAA01707
C51	C3216JF1H104Z-E-TP	50V 0.1UF	5CAAD01268
C52	ECE-A1CKS470B	47UF	5CEAA01707
C53	ECE-A1CKS470B	47UF	5CEAA01707
C54	ECE-ALEKN4R7B	4.7UF 25V	5CEA A01959
C55	ECE-ALEKN4R7B	4.7UF 25V	5CEA A01959
C56	C3216JB1H103K-E-TP	50V 0.01UF	5CAAD00789
257	C3216CH1H1501-E-TP	15PF	5CA A D00787
258	C3216SL1H2221-E-TP	2200PF	5CA A D00792
C59	ECE-AIEKS100B	10UF 25V	SCEA A01750
260	C3216SL1H2221-E-TP	2200PF	5CA A D00792
261	ECE-AIEKS100B	10UF 25V	5CEAA01750
C62	C3216SL1H222J-E-TP	2200PF	5CA A D00792
263	ECE-A1EKS100B	10UF 25V	5CEAA01750
C64	C3216SL1H222J E TP	2200PF	5CAAD00792
265	ECE-A1EKS100B	10UF 25V	5CEAA01750
266	C3216SL1H222J-E-TP	2200PF	5CAAD00792
267	ECE-A1EKS100B	10UF 25V	5CEAA01750
68	C3216SL1H222I-E-TP	2200PF	5CAAD00792
69	ECE-AIEKS100B	10UF 25V	5CEAA01750

2 14

7 - 18

7 - 19

. .

EF.	TYPE	DESCRIPTION	JRC P/N
270	ECQ-VIH104JZ3		5CRAA00617
271	202L2502 225K5471	25V 2.2UF	5CSAC00826
	FCF. AIEKSIMAR	10UE 25V	5CEAA01750
.72	CODES NERSING	2200PF	5CAAD00792
273	C22105L11222JEFT	22001 - 22PF	5CAAD00869
.74		2200PF	5CAAD00792
275	C32103L11222J.C.11	10UF 25V	5CEAA01750
276	ECE-AIEKS100D	1001 207	
~77	C3216SL1H222J-E-TP	2200PF	5CA A D00792
78	ECE-AIEKS100B	10UF 25V	5CEAA01750
779	C32161B1H103K-E-TP	50V 0.01UF	5CAAD00789
	C32161B1H103K-E-TP	50V 0.01UF	5CAAD00789
CDI	CZ3B2	3V	5TX AE00107
	100000 70001		5T X A D00320
CD2	155226 1 2652		5TXAD00320
CD3	155220 TEOSL		5TXAD00320
CD4	155220 1 E85L		5TZAD00101
CD5	TLR123		5TZA D00101
C1/6	I EKILJ		
CD7	1SS226 TE85L		51 X AD00320
CD8	1SS226 TE85L		5TXAD00320
CD9	1SS184 TE85R		5TXAD00291
CD10	1SS184 TE85R		5TXAD00291
IC1	MC1350P		5DDAS00011
102	MC1350P		5DDAS00011
102	MC1350P		5DDAS00011
	A N 5132		5DAAR00105
104	TA78DL12P		5DAAD00636
IC5 IC6	NJM4558D		5DAAF00027
			5DAAF00027
IC7	NJM4558D		5DDAL00326
1C8	TL082CP		5DAAN00375
1C9	NJM78M05FA		BRTE00046
J1	171255-1		BRTE00046
J2	171255-1		
J3 .	171255-1		BRTE00046 BRTE00046
J4	171255-1		BDTF00046
J5	171255-1		BETENNIA
J6	171255-1		DR 1 500040
J7	171255-1		DR I E00040
1301	IL-G-12P-S3T2-E		5JWAD00082
11	H-7LARD0103A		7LARD0103A
1.1			

7 - 20

REF.	TYPE	DESCRIPTION	JRC P/N
L2	H-7LARD0101A		7LARD0101A
L3	H-7LARD0101A		7LARD0101A
L4	H-7LARD0102A		7LARD0102A
			`
L5	H-7LARD0102A		7LARD0102A
L6	H-7LARD0102A		7LARD0102A
L7	H-7LARD0101A		7LARD0101A
L8	LAP02KRR33K		5LCAA00478
L9	H-7LARD0084		7LARD0084
PC1	H.7PDRD0022		7PDRD0022
PC201	H.7PCRD1172		7PCRD1172
R1	FRI-AGEY 1223V	1/8W 22K OHM	5REAG01754
R1 D2	EDL&GEVIISIV	1/8W 150 OHM	5REAG01728
R2 D1	EDLACEV 1223V	1/8W 22K OHM	5REAG01754
KJ	EKJ-60121 J225 V		
R4	ERJ-8GEYJ151V	1/8W 150 OHM	5REAG01728
R5	ERJ-8GEY J223V	1/8W 22K OHM	5REAG01754
R6	ERJ-8GEYJ151V	1/8W 150 OHM	5REAG01728
R7	ER I-8GEY 1332V	1/8W 3.3K OHM	5REAG01744
R8	ERJ-8GEYJ681V	1/8W 680 OHM	5REAG01736
R9	ERJ-8GEYJ222V	1/8W 2.2K OHM	5REAG01742
R10	ERJ-8GEY J681V	1/8W 680 OHM	5REAG01736
R11	ERJ-8GEY J473V	1/8W 47K OHM	5REAG01758
R12	ERJ-8GEY J681V	1/8W 680 OHM	5REAG01736
R13	ERJ-8GEY J222V	1/8W 2.2K OHM	5REAG01742
			555 A (201722
R14	ERJ-8GEYJ331V	1/8W, 330 OHM	SREAG01732
R16	ERJ-8GEYJ102V	1/8W 1K OHM	SREAG01738
R17	ERJ-8GEYJ471V	1/8W 470 OHM	SKEAGUI734
R18	ERJ-8GEYJ103V	1/8W 10K OHM	5REAG01750
R19	ERJ-8GEYJ103V	1/8W 10K OHM	5REAG01750
R20	FRI-8GEY 1472V	1/8W 4.7K OHM	5REAG01746
R21	FR 1.8GEY 1220V	1/8W 22 OHM	5REAG01718
R22	FR1.8GEY 1220V	1/8W 22 OHM	5REAG01718
R23	FRL&GEV1220V	1/8W 22 OHM	5REAG01718
R24	ERJ-8GEYJ220V	1/8W 22 OHM	5REAG01718
R25	ERJ-8GEYJ100V	1/8W 10 OHM	5REAG01714
R26	ERJ-8GEY J221V	1/8W 220 OHM	5REAG01730
R27	ERJ-8GEYJ683V	1/8W 68K OHM	5REAG01760
R28	ERJ-8GEYJ331V	1/8W, 330 OHM	5REAG01732
R29	ERJ-8GEY J331V	1/8W, 330 OHM	5REAG01732
R30	ERJ-8GEYJ332V	1/8W 3.3K OHM	5REAG01744

· . *

1

REF.	TYPE	DESCRIPTION	JRC P/N
R31	ERJ-8GEYJ473V	1/8W 47K OHM	5REAG01758
R32	ERJ-8GEY J472V	1/8W 4.7K OHM	5REAG01746
R33	ERJ-8GEY J103V	1/8W 10K OHM	5REAG01750
R34	ERJ-8GEYJ470V	1/8W 47 OHM	5REAG01722
R35	ERJ-8GEY J222V	1/8W 2.2K OHM	5REAG01742
R36	ERJ-8GEYJ470V	1/8W 47 OHM	5REAG01722
R37	HMGL1/4A-10M OIII	MJ	5REAA05607
R38	ERJ-8GEYJ103V	1/8W 10K OHM	5REAG01750
R39	ERJ-8GEYJ471V	1/8W 470 OHM	5REAG01734
R40	ERJ-8GEY J222V	1/8W 2.2K OIIM	5REAG01742
R 11	ERG-1SJ470		5REAG01286
R 12	ERJ-8GEYJ102V	1/8W 1K OHM	5REAG01738
R43	ERJ-8GEYJ102V	1/8W 1K OHM	5REAG01738
R44	ERJ-8GEYJ102V	1/8W 1K OHM	5REAG01738
R45	ERJ-8GEYJ104V	1/8W 100K OHM	5REAG01762
R 16	ERJ-8GEY J331V	1/8W, 330 OHM	5REAG01732
R47	ERJ-8GEY J331V	1/8W, 330 OHM	5REAG01732
R 18	ERJ-8GEY J220V	1/8W 22 OHM	5REAG01718
R 19	ERJ-8GEYJ102V	1/8W 1K OHM	5REAG01738
R50	ERJ-8GEY J470V	1/8W 47 OHM	5REAG01722
R51	ERJ-8GEY J561V	1/8W 560 OHM	5REAG01735
R52	ERJ-8GEY J681V	1/8W 680 OHM	5REAG01736
R53	ERJ-8GEYJ221V	1/8W 220 OHM	5REAG01730
R54	ERJ-8GEY J471V	1/8W 470 OHM	5REAG01734
R55	ERJ-8GEYJ103V	1/8W 10K OHM	5REAG01750
R56	ERJ-8GEYJ102V	1/8W 1K OHM	5REAG01738
R58	ERJ-8GEYJ332V	1/8W 3.3K OHM	5REAG01744
R59	ERJ-8GEY J471V	1/8W 470 OHM	5REAG01734
R60	ERJ-8GEYJ470V	1/8W 47 OHM	5REAG01722
R61	ERJ-8GEYJ103V	1/8W 10K OHM	5REAG01750
R62	ERJ-8GEY J470V	1/8W 47 OHM	5REAG01722
R63	ERJ-8GEYJ562V	1/8W 5.6K OHM	5REAG01747
R64	ERJ-8GEY J393V	1/4W 22K OHM	5REAG01757
R65	ERJ-8GEYJ223V	1/8W 22K OHM	5REAG01754
R66	ERJ-8GEY J223V	1/8W 22K OHM	5REAG01754
R67	ERJ-8GEY J473V	1/8W 47K OHM	5REAG01758
R68	ERJ-8GEY J100V	1/8W 10 OHM	5REAG01714
R69	ERJ-8GEYJ473V	1/8W 47 K OHM	5REAG01758
R70	ERJ-8GEYJ103V	1/8W 10K OHM	5REAG01750

	REF.	TYPE	DESCRIPTION	JRC P/N
	R71	ERJ-8GEYJ102V	1/8W 1K OHM	5REAG01738
	R72	ERJ-8GEYJ153V	1/8W 15K OHM	5REAG01752
`	R73	ERJ-8GEYJ103V	1/8W 10K OHM	5REAG01750
	R74	ERJ-8GEYJ103V	1/8W 10K OHM	5REAG01750
	R75	ERJ-8GEYJ220V	1/8W 22 OHM	5REAG01718
	R76	ERJ-8GEYJ332V	1/8W 3.3K OHM	5REAG01744
	R77	ERJ-8GEYJ222V	1/8W 2.2K OHM	5REAG01742
	R78	ERJ-8GEYJ391V	1/8W, 390 OHM	5REAG01733
	R79	ERJ-8GEYJ472V	1/8W 4.7K OHM	5REAG01746
	R80	ERJ-8GEYJ102V	1/8W 1K OHM	5REAG01738
	R81	ERJ-8GEYJ102V	1/8W 1K OHM	5REAG01738
	R82	ERJ-8GEYJ332V	1/8W 3.3K OHM	5REAG01744
	R83	ERD-8GEYJ332V	1/8W 3.3K OHM	5REAG01744
	R84	ERJ-8GEYJ821V	1/8W 820OHM	5REAG01737
	RV1	GF06UT-2-100 OHM		5RMAB00149
	RV2	GF06UT-2-10K OHM	1/2W 10K OHM	5RMAB00128
•	RV3	GF06UT-2-10K OHM	1/2W 10K OHM	5RMAB00128
	RV5	GF06UT-2-10K OHM	1/2W 10K OHM	5RMAB00128
	TR1	2SK302-GRTE85L		5TKAA00225
	TR2	2SK302-GRTE85L		5TKAA00225
	TR3	2SC3098-TE85R		5TKAA00226
	TR4	2SK302-GRTE85L		5TKAA00225
	TR5	2SA495GTM·Y (TPE2)		5TAAG00325
	TR6	2SC1815Y TPE2		5TCAF00781
	TR7	2SA1015Y-TPE2		5TAAG00294
	TR8	2SA1015Y-TPE2		5TAAG00294
	TR9	2SA1015Y-TPE2		5TAAG00294
	TR10	2SC1815Y-TPE2		5TCAF00781
	TR11	2SA495GTM-Y (TPE2)		5TAAG00325

Ś

7

4

.

RIOX/RIIX DISPLAY UNIT TYPE 50003/50006

MAIN CHASSIS TYPE CML-312

REF.	TYPE	DESCRIPTION	JRC P/N
C401	ECE-A1HS101	50V100UF	5CEAA01368
C402	ECE-A1HS101	50V100UF	5CEAA01368
F401	MF51NN-6.3A		5ZFAD00336
F402	MF51NN-5A	250V	5ZFAD00045
FS401	FH043		5ZFAN00003

7 - 23

REF.	TYPE	DESCRIPTION	JRC P/N
FS402	FH043		5ZFAN00003
1101	SRCN2A13-3P		5JCAC00399
1102	SRCN2A25-16P		5JCAC00307
1102	BNC-RM-3510-E	BNC	5ZJUF00004
J403 J404	BNC-RM-3510-E	BNC	5ZJUF00004
1405	SG-8022 # 01		5JJAL00064
S101	MPSW00961A	R-SIDE	MPSW00961A
S102	MPSW00962A	L-SIDE	MPSW00962A
W401	H-7ZCRD0306B		7ZCRD0306B
W402	H-7ZCRD0307A		7ZCRD0307A

MAIN CONTROL PCB TYPE CMC-622

REF.	ΤΥΡΕ	DESCRIPTION	JRC P/N
BTI	CR2032-THB		5ZBBJ00001
	ECQ-V1H104JZ3		5CRAA00617
C2	FK26Y5V1H104Z-006		5CAAD01318
C1	DD105-289CH330150		5CAAA03505
C5	DD105-289CH330J50		5CAAA03505
C6	ECQ-B1H472KZ3	50V, 4700P	5CRAA01004
C7	DD105-289SL101J50		5CAAA03507
C8	ECQ-V1H104JZ3		5CRAA00617
C9	DD104-289CH050C50		5CAAA03503
C10	DD104-289CH050C50		5CAAA03503
CU	DD104-289CH150J50		5CAAA03504
C12	DD104-289CH150150		5CAAA03504
C13	FK26Y5V1H104Z-006		5CAAD01318
CLA	EXF-P8471ZW	470PX8	5CX AD00005
C15	FK26Y5V1H104Z-006		5CAAD01318
C16	FK26Y5V1H104Z-006		5CAAD01318
C17	FK26Y5V1H104Z-006		5CAAD01318
C18	FK26Y5V1H104Z-006		5CAAD01318
C19	FK26Y5V1H104Z-006		5CAAD01318
C20	FK26Y5V1H104Z-006		5CAAD01318
C21	FK26Y5V1H104Z-006		5CAAD01318
C27	FK26Y5V1H104Z-006		5CA AD01318
C22	FK26Y5V1H104Z-006		5CAAD01318
C23	EK26Y5V1H104Z-006		5CAAD01318
C24	FK26V5V1H104Z.006		5CAAD01318
C23	1 N201 3 1 111 0 12 000		

. •	DEE	TYPE	DESCRIPTION	JRC P/N
	C26	FK26Y5V1H104Z-006		5CAAD01318
	C27	FK26Y5V1H104Z-006		5CAAD01318
	C28	FK26V5V1H104Z-006		5CAAD01318
	C20	FK26Y5V1H104Z-006		5CAAD01318
	C29	FCF.AIFUI018		5CEAA01813
	0.50	ECERTEONID		
	C31	ECE-A1EU101B		5CEAA01813
	C32	ECE-A1CU470B	16V 47UF	5CEAA01982
	C33	ECE-A1CU470B	16V 47UF	5CEAA01982
	C40	FK26Y5V1H104Z-006		5CAAD01318
	C41	ECQ-B1H102KZ3	50V 1000P	5CRAA00811
	C42	DD804-276B102K50		5CAAA03511
	C43	RPE132-901CH331K5		5CAAA03512
	C44	DD109-989SL471J50		5CAAA03509
	C45	ECQ-V1H104JZ3		5CRAA00617
ΎΥ.	C46	ECQ-B1H223KZ3	50V 0.022V	5CRAA00816
	C47	FCF.AIFU330B		5CEAA01822
	C48	FCF-AIFU330B		5CEAA01822
	C49	FCF.AIEN100SB		5CEAA02975
	C49	EK26Y5V1H104Z-006		5CAAD01318
	C52	DD104-989SL330J50		5CBAB02769
	CE4	DD107 090CH690150		5CAAA03506
	C54	DD107-989C11080330		5CAAA03508
	C50	EK26V5V1H1047.006		5CA A D01318
	C57	DD106 09051 151 150		5CBA B02809
	C58	EK26V6V1H1047.006		5CAAD01318
	C01	FR20154111042.000		
	C70	FK26Y5V1H104Z-006		5CAAD01318
	C72	FK26Y5V1H104Z-006		5CAAD01318
	CD1	1S1588-TPB2		5TXAD00335
·	CD2	1S1588-TPB2		5TXAD00335
	CD3	1S1588-TPB2		5TX AD00335
	CD5	1S1588-TPB2		5TXAD00335
	CD6	HZ9C1	1/2W 9V	5TXAE00303
	CD7	1S1588-TPB2		5TXAD00335
	CD8	1S1588-TPB2		5TXAD00335
	CD9	1S1588-TPB2		5TX AD00335
	CD10	1S1588-TPB2		5TXAD00335
	CD11	1S1588-TPB2		5TXAD00335
	CX1	CSA11. 0MT020		5UNAB00042
	CX2	CSA30.0 0MX040		5UNAB00079
	CX3	CSA22.4MX040		5UNA B00080

7 - 24

7 - 25

. ,

REF.	TYPE	DESCRIPTION	JRC P/N
ICI	PST532A		5DZCY00011
IC2	TC74HC11AP		5DDAE01335
IC3	TC74HC573AP		5DDAE01345
1C4	ТС74НС139АР		5DDAE01242
IC5	HM6264ALP-15		5DA A G00380
IC6	H-7DERD0129	AM27C512-155DC	7DERD0129
IC6-1	MPNN24692		MPNN24692
IC7	UPD78C10G-36		5DDAC00574
IC8	UPD72020GC-8-3B6		5DDAC00829
IC9	TC74HC573AP		5DDAE01345
IC10	TC74HC573AP		5DDA E01345
IC11	HM53461ZP-12		5DAAG00400
IC12	HM53461ZP-12		5DA A G00400
IC13	HM53461ZP-12		5DAAG00400
IC14	HM53461ZP-12		5DA A G00400
			00111000100
IC15	HM53461ZP-12		5DA A G00400
IC16	TC74HC157AP		5DDAE01337
IC17	TC74HC32AP		5DDA E01196
IC18	TC74HC195AP		5DDA F01506
1C19	TC74HC195AP		5DDA F01506
			JUDILLOIM
IC20	TC74HC195AP		5DDAE01506
IC21	TC74HC74AP		5DDAE00731
IC22	TC74IIC08AP		5DDAE01240
IC23	UPD6326C	D/A	5DDAC00496
IC24	TC74HC32AP		5DDAE01196
IC25	TC74HCU04AP		5DDAE01270
1C26	TC74HC221AP		5DDAE01399
IC27	TC74HC32AP		5DDAE01196
IC28	H-7DGRD0007		7DGRD0007
IC29	TC74HCU04AP		5DDAE01270
IC30	HM63021P-28		5DAAG00394
IC31	HM63021P-28		5DAAG00394
IC32	TC74HC175AP		5DDAE01313
IC33	TC74HC157AP		5DDAE01337
IC34	TC74HC157AP		5DDAE01337
IC35	H-7DPRD0067	GAL16V8	7DPRD0067
IC36	TC74HC283AP		5DDAE01326
IC37	H-7DPRD0066	GAL16V8	7DPRD0066
IC38	TC74HC85AP		5DDAE01330
IC39	TC74HC393AP		5DDAE01310

.

	REF.	TYPE	DESCRIPTION	JRC P/N
	IC40	NJM4558D		5DAAF00027
	IC41	HM534251ZP-10		5DAAG00670
	IC42	TC74HC174AP		5DDAE01327
	IC46	HD74221P		5DDAF00225
	IC47	H-7DPRD0065	GAL16V8	7DPRD0065
	IC48	TC74HC08AP		5DDAE01240
	ICS1	1C26-2806GS4		5ZJAA00276
	J1	68100-012	12P	5JWBE00182
	J2	68100-008	8P	5JWBE00216
	J3	IL-G-9P-S3L2-E	9P	5JWA D00090
	J4	IL-G-6P-S3L2-E	6P	5JWAD00092
<i>4</i> 5	J5 🕔	B6B-EH-A		5JWAP00267
	J6	74232-10	10P	5JWDW00025
	J 7	IL-G-10P-S3L2-E	10P	5JWAD00068
	J8	IL-G-12P-S3L2-E		5 JW A D00084
	J9	68931-203	3P	5JWBE00188
	J10	68931-203	3P	5JWBE00188
	J12	742J2·10	10P	5JWDW00025
	P1	66464-102		5JWAM00127
	P2	66464-102		5JWAM00127
	PC1	H-7PCRD1152A		7PCRD1152A
	R1	ERD-25UJ563T	56K OHM 1/4W	5RBAA01588
	R2	ERD-25UJ103T	10K OHM 1/4W	5RDAA01547
	R3	IHR-2-103JA		5RZAB00793
	R4	MHR-7-103JA		5RZAB00987
ŧ.	R5	ERD-25UJ153T	1/4W 15K OHM	5RBAA01594
	R6	ERD-25UJ391T	390 OHM 1/4W	5RBAA01625
	R7	ERD-25UJ102T	1K OHM 1/4W	5RDAA01542
	R8	MHR-3-102JB	1KX3	5RZAB01345
	R9	1HR-2-471JB		5RZAB01376
	R10	ERD-25UJ152T		5RBAA01507
	R12	ERD-25UJ470T		5RBAA01551
	R13	ERD-25UJ471T	470 OHM 1/4W	5RBAA01541
	R14	ERD-25UJ472T	4.7K OHM 1/4W	5RBAA01549
	R15	ERD-25UJ122T	1.2K OHM 1/4W	5RBAA01539
	R16	MHR-8-103JA	10K OHM X8	5RZA B00709
	R17	ERD-25UJ472T	4.7K OHM 1/4W	5RBAA01549
	R18	ERD-25UJ100T	1/4W 10 OHM	5RBAA01576
	R19	ERD-25UJ105T	1/4W 1M OHM	5RBAA01616
	R20	ERD-25UJ105T	1/4W 1M OHM	5RBAA01616

а . .

7 - 26

REF.	TYPE	DESCRIPTION	JRC P/N
R21	ERD-25UJ471T	470 OHM 1/4W	5RDAA01541
R 22	ERD-25UJ912T	9.1K OHM 1/4W	5RDAA01827
R23	ERD-25UJ103T	10K OHM 1/4W	5RDA A01547
R24	ERD-25UT471T	470 OHM 1/4W	5RDAA01541
R 25	ERD-25UJ682T		5RDAA01713
R26	ERD-25UJ471T	470 OHM 1/4W	SKDAA01541
R27	ERD-25UJ103T	10K OHM 1/4W	5RDAA01547
R28	ERD-25UJ101T	1/4W 100 OHM	5RDA A01599
R29	ERD-25UJ102T	IK OHM 1/4W	SRDA A01542
R30	ERD-25UJ101T	1/4W 100 OHM	5KDAA01599
R 31	ERD-25U[101T	1/4W 100 OHM	5RDAA01599
R32	ERD-25U1102T	1K OHM 1/4	5RDAA01542
R33	ERD-25U1101T	1/4W 100 OHM	5RDAA01599
R34	ERD-25U1102T	1K OHM 1/4W	5RDAA01542
R 35	ERD-25UJ221T	220 OHM 1/4W	5RDAA01543
R 36	ERD-25UJ104T	100K OHM 1/4W	5RDAA01623
R 37	ERD-25UJ473T	1/4W 47K OHM	5RDAA01618
R 38	ERD-25UJ103T	10K OHM 1/4W	5RDAA01547
R 39	1HR-3-103JA	10K OHM X3	5RZA B00532
R 40	ERD-25UJ132T		5RDAA01742
	CDD of Hanget	2 2K OTHE LAW	52114 401548
R41	ERD-25032221	2.2K UIIW 1/4W	SREA C02088
K-11	ERG-2SJ150P	2W 15 OHM	5PFAC03217
K45	ERG-25J500P	10K OUM 1/AW	5RDA A01547
R 48	ERD-250 J103 I	1/4W 260 OHM	5RDA A01610
K49	ERD-250 J361 1	1/4 00 500 0 1101	JEDIDICION
TRI	2SA1015Y-TPE2		5TAAG00294
TR2	2SC1815Y TPE2		5TCAF00781
TR3	2SC1815Y TPE2		5TCAF00781
TR4	2SC2983		5TCAF00623
TR5	2SA1244-Y		5TAAG00220
7.06	0000000 V		5TCAF00525
110	230303-1 28 A 1015 V T DE2		5TAAG00294
	23A10131-11-64	2P	7ZCRD0311A
W I	N-12CKD0311A	21	

.

ADJUSTMENT PCB TYPE CCB-351

REF.	TYPE	DESCRIPTION	JRC P/N
BZI	MEB-12-5		5UBBB00001
PDI	H-7PDRD0016		7PDRD0016

REF.	TYPE	DESCRIPTION	JRC P/N
RI	ERD-25PJ103T		5RDAA02188
RV1	GF06UT-2-10K OHM	1/2W 10K OHM	5RMAB00128
RV2	GF06UT-2-10K OHM	1/2W 10K OHM	5RMAB00128
RV3	GF06UT-2-20K OHM	1/2W 20K OHM	5RMAB00130
RV4	GF06UT-2-500 OHM	1/2W 500 OHM	5RMA B00132
RV5	GF06UT 2 50K OHM		5RMA B00118
RV6	GF06UT-2-5K OHM		5RMAB00119
RV7	GF06UT-2-50K OHM		5RMAB00118
W1	FS2N101.6A10		5ZCCA00035

RECEIVE BUFFER PCB TYPE CQA-116

REF.	TYPE	DESCRIPTION	JRC P/N
C1	ECQ-B1H472KZ3	50V, 4700P	5CRAA01004
C2	DD105-289SL101J50		5CAAA03507
C3	ECE-A1EN4R7SB		5CEAA03051
Č4	ECE-AIEN4R7SB		5CEAA03051
C7	ECE-AIEU101B		5CEAA01813
C8	FK26Y5V1H104Z-006		5CAAD01318
C9	FK26Y5V1H104Z-006		5CAAD01318
C10	ECE-A1CU470B	16V 47UF	5CEAA01982
CII	EXF-P8471ZW	470PX8	5CXAD00005
C12	FK26Y5V1H104Z-006		5CAAD01318
C13	ECE-A1CU470B	16V 47UF	5CEAA01982
C14	FK26Y5V1H104Z-006		5CAAD01318
C16	ECE-AICU470B	16V 47UF	5CEAA01982
C17	FK26Y5V1H104Z-006		5CAAD01318
C19	FK26Y5V1H104Z-006		5CAAD01318
C20	ECQ-V1H104JZ3		5CRAA00617
CD1	1SV149B		5TXAD00332
CD2	1S1588-TPB2		5TXAD00335
CD3	1K34A		5TXCH00001
CD4	1S1588-TPB2		5TXAD00335
CD5	1S1588-TPB2		5TX AD00335
IC2	NE521N		5DAAL00024
1C3	NE521N		5DAAL00024
ICI	NE521N		5DAAL00024
IC5	NE521N		5DAAL00024

3.

7 - 29

1. 4 2

REF.	TYPE	DESCRIPTION	JRC P/N
IC6	MC74F148N		5DAA J00607
IC7	TC74HC04AP		5DDAE01194
IC8	TLP521-2-A		5TZAD00208
IC9	TC74HC157AP		5DDAE01337
Л	IL-G-6P-S3L2-E	6P	5JWAD00092
]2	68931-206	6P	5JWBE00181
Pl	66464-102		5JWAM00127
P2	66464-102		5JWAM00127
PD1	H-7PDRD0014B		7PDRD0014B
R1	ERD-25UJ560T	1/4W 56 OHM	5RDAA01602
R2	ERD-25UJ821T	820 OHM 1/4W	5RDAA01604
R3	ERD-25UJ103T	10K OHM 1/4W	5RDAA01547
R4	ERD-25UJ102T	1K OHM 1/4	5RDAA01542
R5	ERD-25UJ101T	1/4W 100 OHM	5RDAA01599
R6	ERD-25UJ681T	1/4W 680 OHM	5RDAA01627
R7	ERD-25UJ821T	820 OHM 1/4W	5RDAA01604
R8	ERD-25UJ220T	22 OHM	5RDAA01622
R9	ERD-25UJ331T	1/4W 330 OHM	5RDAA01480
R11	ERD-25UJ103T	10K OHM 1/4W	5RDAA01547
R12	MHR-6-152JB	1.5K OHM X6	5RZAB01340
R13	ERD-25UJ222T	2.2K OHM 1/4W	5RDAA01548
R14	ERD-25UJ471T	470 OHM 1/4W	5RDAA01541
R15	ERD-25UJ222T	2.2K OHM 1/4W	5RDAA01548
R16	ERD-25UJ471T	470 OHM 1/4W	5RDAA01541
R17	ERD-25UJ102T	1K OHM 1/4	5RDAA01542
R18	ERD-25UJ103T	10K OHM 1/4W	5RDAA01547
R24	ERD-25UJ681T	1/4W 680 OHM	5RDAA01627
R25	ERD-25UJ222T	2.2K OHM 1/4W	5RDAA01548
R26	ERD-25UJ111T	110 OHM 1/4W	5RDAA01832
RV1	RVG0707V100-10-501M	500 OHM	5RVAF00026
RV2	RVG0707V100-10-501M	500 OHM	5RVAF00026
TRI	2SC1815BLTPE2		5TCAF00780
TR2	2SC1815BLTPE2		5TCAF00780
TR3	2SC1815BLTPE2		5TCAF00780
W3	H-77CRD0308A	12P	7ZCRD0308A

4
÷
-T
Т
-
(

,

٠,

CONTROL PCB-A TYPE CCK-591

DEE	TYPE	DESCRIPTION	JRC P/N
	11.C.2P.S312.F		5JWAD00094
J1	11 7 0 0 0 0 0 0		7PDRD0010
PDI	A COOLO		5WAAB00258
PLI	A590140		5W A A B00258
PL2	AS90140		5W A A B00258
PL3	AS90140		311 AAD00230

CONTROL PCB-B TYPE CCK-592

REF.	TYPE	DESCRIPTION	JRC P/N
PD1	H-7PDRD0011A		7PDRD0011A
PLI	AS90140		5WAAB00258
PI 2	A \$90140		5WAAB00258
DL 2	A \$90140		5WAAB00258
PL4	AS90140		5WAAB00258
PL5	AS90140		5WAAB00258
P1	FRD-25P1472	1/4W 4.7K OHM	5RDAA01183
R1 R2	FRD-25P1103	1/4W 10K OHM	5RDAA01146
R2 123	FRD-25P1683	1/4W 68K OHM	5RDAA01265
	RK11K113 10KB L30	10K OHM	5RZBG00098
KV1	DC24		
RV2	RK11K113 10KB L30	10K OHM	5RZBG00098
	DC24	1017 01114	5P7BC00098
RV3	RK11K113 10KB L30	IOK OHM	3122000000
	DC24		CD 7 D C 00009
RV4	RK11K113 10KB L30	10K OHM	2K2DG0098
	DC24		
W1	FS2N152.4A10		52CCA00036

POWER SUPPLY PCB TYPE CBD-1026

DEE	TYPE	DESCRIPTION	JRC P/N
CI	ECE-ALHIII02	50V 1000UF	5CEAA01780
	ECE ALCULATE	100UF 16V	5CEAA01827
C2	ECE AICUINIB	100UF 16V	5CEAA01827
C3	ECE-AICUIUD	100UF 16V	5CEAA01827
C4	ECE-AICOIOIB	2200D	5CRAA00954
C5	ECQ-B1H222KZ3	22001	benniter

REF.	TYPE	DESCRIPTION	JRC P/N
C6	ECQ-B1H103KZ3	0.01UF 50V	5CRAA00771
C7	ECQ-B1H103KZ3	0.01UF 50V	5CRAA00771
C8	ECEA1CU222B	16V 2200UF	5CEAA02870
C9	ECE-A1HU221	50V 220U	5CEAA01843
C10	ECE-A1CU222	2200UF 16V	5CEAA01757
<i>c</i> 11	ECO V1H10/172		ECD & & 00617
CH	ECQ. V1H104J23		5CD A 400617
012	ECQ: V1H104JZ3		5CRA400017
	ECQ-VIHI04J23		5CRAA00017
C14	ECQ-V1H104123		5CRAA00617
C15	ECQ- V 11104323		5CRAA00017
C16	ECQ-V1H104JZ3		5CRAA00617
C17	ECQ-V1H104JZ3		5CRAA00617
C18	ECE-A1HU221	50V 220U	5CEAA01843
C19	ECE-A1HU100B	50V 10UF	5CEA A02184
C20	ECE-A1HU100B	50V 10UF	5CEAA02184
C21	ECE-A1HU100B	50V 10UF	5CEA A02184
C22	ECQ-B1H103KZ3	0.01UF 50V	5CRAA00771
CDI	U05C		5TX A E00034
CD2	HZ11A3	1/2W 10V	5TX A E00269
CD3	1S1588		5TXAD00040
CD4	F6P20F		5TXAG00288
CD5	11DF2FC		5TXAG00239
CD6	11DF2FC		5TXAG00239
CD7	F6P40F		5TXAG00289
CD8	HZ5C1	5V 1/2W	5TXAE00130
CD9	1S1588		5TXAD00040
CD10	V06C	200V 1.1A	5TXAE00016
IC1	TL494CN		5DDAL00546
IC2	TLP521-2-GB		5TZAD00234
IC3	TL431CLPB		5DDAL01271
1C4	TL499ACP		5DDAL01290
104	TC4013BAP		5DDAE00817
100	TC4011BP	MOS	5DDA E00053
100	B7P.VH		51WA P00291
12	B2B.FH		51WA P00213
52	DEDELL		0, 1111 00010
LI	SC-05-10J		5LGAB00058
L2	HP 0131		5LGA B00059
L3	FL-9H472J-H	4.7MH	5LCAA00653
L4	HP-013J		5LGA B00059
L5	FL-5H101K	100UH	5LCAA00013

REF.	TYPE	DESCRIPTION	JRC P/N
PC1	H-7PDRD0009A		7PDRD0009A
PC501	H-7PCRD1115A		7PCRD1115A
R1	ERD-25UJ103T	10K OHM 1/4W	5RDAA01547
R2	ERD-25UJ472T	4.7K OHM 1/4W	5RDAA01549
R3	ERD-25UJ472T	4.7K OHM 1/4W	5RDAA01549
R4	ERD-25UJ222T	2.2K OHM 1/4W	5RDAA01548
R5	ERD-25UJ682T		5RDAA01713
R6	ERD-25UJ472T	4.7K OHM 1/4W	5RDAA01549
R7	ERD-25UJ103T	10K OHM 1/4W	5RDAA01547
R8	ERD-25UJ472T	4.7K OHM 1/4W	5RDAA01549
R9	ERD-25UJ472T	4.7K OHM 1/4W	5RDAA01549
R10	ERD-25UJ472T	4.7K OHM 1/4W	5RDAA01549
R11	ERD-50TJ331	1/2W 330 OHM	5RDAA00823
R12	ERD-50TJ331	1/2W 330 OHM	5RDAA00823
R13	ERG-2AN J100	2W 10 OHM	5REAG00048
R14	ERG-2AN J100	2W 10 OHM	5REAG00048
R15	ERD-25UJ102T	1K OHM 1/4W	5RDAA01542
R16	ERD-25UJ102T	1K OHM 1/4W	5RDAA01542
R17	ERD-25U1102T	1K OHM 1/4W	5RDAA01542
R18	ERD-25UJ103T	10K OHM 1/4W	5RDAA01547
R19	FRD-25U1222T	2.2K OHM 1/4W	5RDAA01548
R20	ERD-25U1471T	470 OHM 1/4W	5RDAA01541
R21	ERD-25U1823T		5RDAA01921
R21	FRD-25UJ472T	4.7K OHM 1/4W	5RDAA01549
R23	ERD-25UJ102T	1K OHM 1/4W	5RDAA01542
R24	FRD-25U1472T	4.7K OHM 1/4W	5RDAA01549
R25	ERD-25U1472T	4.7K OHM 1/4W	5RDAA01549
R26	ERD 50T 1470	1/2W 47 OHM	5RDAA00803
R27	ERD-25U1471T	470 OHM 1/4W	5RDAA01541
R28	ERD-25UJ103T	10K OHM 1/4W	5RDAA01547
P 29	FRD-25U1333T	1/4W 33K OHM	5RDAA01591
R30	ERD-25U1103T	10K OHM 1/4W	5RDAA01547
R31	ERD-25U1103T	10K OHM 1/4W	5RDAA01547
R32 -	ERD-25U1103T	10K OHM 1/4W	5RDAA01547
R33	ERD-25UJ103T	10K OHM 1/4W	5RDAA01547
834	ERD-25U1471T	470 OHM 1/4W	5RDAA01541
R35	ERD-25U1471T	470 OHM 1/4W	5RDAA01541
R36	ERD-25U1471T	470 OHM 1/4W	5RDAA01541
R37	ERD-25UJ222T	2.2K OHM 1/4W	5RDAA01548
RV1	GF06X-1K OHM	1K OHM	5RMAB00105

Ч.

.

{

7 - 32

7 - 33

5
REF.	TYPE	DESCRIPTION	JRC P/N
T1	H-7LTRD0173		7LTRD0173
TPI	LC-2-G YEL		5JTCW00015
TRI	2SC1627-Y		5TCAF00299
TR2	2SA1010 K		5TAAB00034
TR3	2SK525		5TKAA00160
TR4	2SK525		5TKAA00160
TR5	2SB906Y		5TBAE00088
TR6	2SB906Y		5TBAE00088
W2	H-7ZCRD0313A		7ZCRD0313A
ZSI	H-7ZSRD0012		7ZSRD0012

CRT MONITOR PCB TYPE CCN-199

REF.	TYPE	DESCRIPTION	JRC P/N
C501	ECQ-B1H103KZ3	0.01UF 50V	5CRAA0077
C502	ECQ-B1H223KZ3	50V 0.022U	5CRAA0081
C503	ECS-F1VE334BB	35V, 0.33U	5CSAA0028
C504	ECS-F1VZ475BB	35V, 4.7U	5CSAA0028
C505	ECS-F1VZ475BB	35V, 4.7U	5CSAA0028
C506	ECE-A1EU100	25V 10UF	5CEAA0184
C507	ECE-A1CU330B	33UF 16V	5CEAA0182
C508	ECE-A1CU221B	220UF 16V	5CEAA0183
C509	ECQ-V1H333JZ3		5CRAA0080
C510	ECEA1AU102		5CEAA0217
C511	ECQ-B1H153KZ3	50V, 0.015U	5CRAA0100
C512	ECQ-B1H153KZ3	50V, 0.015U	5CRAA0100
C513	ECCF1H390J		5CAAF0007
C514	ECE-AIVU4R7		5CEAA0189
C515	ECQ-V1H333JZ3		5CRAA0080
C516	ECH-S1H272JZ3	50V, 2700P	5CBAA0017
C517	ECQ-P1H272JZ3	50V 0.0027U	5CRAA0100
C518	ECQ-B1H562KZ3	50V 5600P	5CRAA0100
C519	ECE-A1CU221B	220UF 16V	5CEAA0183
C521	ECQ-B1H472KZ3	50V, 4700P	5CRAA0100
C522	ECW-H10H273KR		5CRAA0077
C523	MMB35K475	35V, 4.7U	5CRAR0013
C524	ECE-A1CU221B	220UF 16V	5CEAA0183
C525	ECE-A1CU222	2200UF 16V	5CEAA0175
C526	ECKD2H103KB5		5CBAA0017

7 - 34

FF.	TYPE	DESCRIPTION	JRC P/N
-527	FCKD2H103KB5		5CBAA00176
528	ECE-A2AU100B		5CEAA02534
7529	Bob minorate		6ZZAB02953
2530	MMHF63K105	63V, 1UF	5CRAR00074
2531	ECE-A2AU100B		5CEAA02534
2533	DD12-63B 272K500	2700, 500V	5CAAA03577
2551	DD109-63SL221J50	50V,220P	5CAAA03639
2552	DD09B222K500		5CBAB00943
2553	ECEA2CU2R2B	2.2U 160V	5CEAA02836
2554	DD106F103Z50	50V 10000PF	5CBAB00400
555	ECEA2CU4R7B	4.7U 160V	5CEAA02835
2050	ERB.12.01		5TXAK00131
20502	1S1588.TPR2		5TXAD00335
20502	FR 844.04		5TXAK00108
20503	FRB44.04		5TXAK00108
0004	ERDITO		
D505	ERB83-004		5TXAK00132
20506	ERA22-08		5TXAK00133
0507	ERA22-02		5TXAK00134
20508	FRA 22.08		5TXEH00001
D551	FM17	200V 1A	5TXAN00061
	EMIZ	••••	
CD552	HZ24BP	24V 0.8W	5TXAE00372
CD553	HZ24BP	24V 0.8W	5TXAE00372
C501	AN5763		5DAAR00049
C502	AN5790N		5DAAR00050
501	RTB-1.5-4F	4PIN	5JDAH00066
551	RT-01N-2.3A		5JTC D0008 1
.501	H-7LWRD0060		7LWRD0060
.502	H-6LWBS07018		6LWBS07018
.551	LAP02KR3R9K	3.9UH	5LCAA00610
C501	H-7PCRD1162		7PCRD1162
20502	H-7PCRD1163		7PCRD1163
PDI	H-7PDRD0017		7PDRD0017
2501	ERD-25U1472T	4.7K OHM 1/4W	5RDAA01549
2502	ERD-25U 1913T		5RDAA01580
2503	ERD-25UJ683T	68K OHM 1/4W	5RDAA01705
R504	ERD-25UJ6R8T	6.8 OHM 1/4W	5REAG02375
R505	ERD-25UJ1R0T	1 OHM	5RDAA01733
R506	ERD-25UJ153T	1/4W 15K OHM	5RDAA01594
R507	ERD-25UJ4R7T		5RDAA01550
R508	ERD-25UJ471T	470 OHM 1/4W	5RDAA01541

REF.	TYPE	DESCRIPTION	JRC P/N
R509	ER D-25UJ153T	1/4W 15K OHM	5RDAA01594
R510	ER D 25UJ332T	3.3K OHM 1/4W	5RDAA01544
R511		*	6ZZAB10000
R512	ERD-25UJ273T	1/4W 27K OHM	5RDAA01615
R513	ERD-25UJ222T	2.2K OHM 1/4W	5RDAA01548
R514	ERD-25U1223T	22K OHM 1/4W	5RDAA01545
R515	ERD-25UJ220T	22 OHM	5RDAA01622
R516	ERD-25UJ100T	1/4W 10 OHM	5RDAA01576
R517	· ·		6ZZA B02953
R518	ERD-25UJ473T	1/4W 47K OHM	5RDAA01618
R520	ERD-25UJ331T	1/4W 330 OHM	5RDAA01480
R521	ERD-25UJ153T	1/4W 15K OHM	5RDAA01594
R522	ERD-50T J272	1/2W 2.7K OHM	5RDAA00845
R523	ERD-25UJ331T	1/4W 330 OHM	5RDAA01480
R551	ERD-25UJ221T	220 OHM 1/4	5RDAA01543
R552	ERD-25U1102T	1K OHM 1/4	5RDAA01542
R553	ERD-50V 1202		5RDAA01574
R554	ERD-25U1680T	68 OHM 1/4W	5RDAA01587
R555	ERD-25U1103T	10K OHM 1/4W	5RDAA01547
R556	ERD-25UJ184T	1/4W 180K	5RDAA01811
R557	ERD-25U1103T	10K OHM 1/4W	5RDAA01547
R558	ERD-25U1220T	22 OHM	5RDAA01622
R559	ERD-25U1101T	1/4W 100 OHM	5RDAA01599
R560	ERD-25U1183T	18K OHM 1/4W	5RDAA01605
R561	ERD-25UJ101T	1/4W 100 OHM	5RDAA01599
R562	ERD-25U1221T	220 OHM 1/4	5RDAA01543
R563	ERD-25U [683T	68K OHM 1/4W	5RDAA01705
R564	HMGL1/2A-22M OHM J		5REAA05621
R565	ERD-25U1222T	2.2K OHM 1/4W	5RDAA01548
RV501	RVG0707V101-10-104M	100K OHM	5RVAF00140
RV502	RVG0707V101-10-103M	10K	5RVAF00136
RV503	RVG0707V101-10-102M	1K OHM	5RVAF00141
RV504	RVG707V101-10-504M	500K	5RVAF00166
RV505	VG152L7SB2M OHM	B-2M OHM	5RMAC00130
RV506	RVG0707V101-10-303M	30K	5RVAF00157
RV507	RVG0707V101-10-201M	200	5RVAF00135
T501	H-7LPRD0094		7LPRD0094
T502	H-6LRBS00054		6LRBS00054
TH501	ERT-D2WHL333S	33K	5CBAA00178
TR501	2SD1680		5TDAR00019

7 - 36

REF.	TYPE	DESCRIPTION	JRC P/N
TR551	2SC3187		5TCAG00082
TR552	2SC1675-K		5TCAB01389
W501	H-72CRD0319A		7ZCRD0319A
W502	H-7ZCRD0310B		7ZCRD0310B
W503	H-72CRD0314A		72CRD0314A
Z501	OSH2425-SP		5ZKAE00099.
Z503	MPNN24734	CCN-199	MPNN24734
Z551	S7-524T-200		5ZJAT00085

CRT UNIT TYPE CKJ-106

REF.	TYPE	DESCRIPTION	JRC P/N
T502	H-7LGRD0040		7LGRD0040
V501	E2871B39-SDHT	CRT ONLY	5VBAB00061
W511	H-7ZCRD0332	/	7ZCRD0332
W512		*	6ZZAB10000

۶.

PARTS LOCATION LIST

Reference to Fig. 122

Assembly Drawing of RIOX Scanner Unit

REF.	TYPE	DESCRIPTION	JRC P/N
1		Radome Assy Containin	g MPBX17317
		of No.2	6
2		Nut,Special	MTL033810A
3		Radome	MTV002343
4		Radiator Assy	MPAE00501
5		Gear Assy Containing	MPGK02946
		of No.6	
c	1(710)		
6	M I 101	Magnet SR-1	5MPAB0001
<i>i</i>		Rotary Joint Assy	MPA B01684
8		Bearing	BRGK01325
9		Ring, Retaining	BRTG01192
10		Bearing	BRGK01324
11		Plate.Retaining	MTB144765
12		Housing	MTC002285
13		Main Chassis Assy	MPBC07978
14		Packing, Rubber	MTT020323
15	V201	Magnetron RMC-1	5VMAA00059
16	MIDI		600 0 00000
10	MIDI	Motor Assy	7BDRD0023
18			MPBC09503
10		RCV PCB Assy	CAE-286
20		STC PCB Assy	CCG-125
20		Cover	MT B194039A
21		Cover	MTB194040A
22	E301	Micro Front End	5EZAA00021
		NJT1946	
23	A 101	Diode Limiter NJS6933	5EZAA00020
24		Blank .	
25		Cover	MPSC00703
26		Plate Radiator	MTB144781
27	PC201	Modulator PCB Assy	CNM-149
28	S101	Reed Switch NRS-109	5KRA A00036
29		Cable Clamp	MTC003327
30		Bolt,Special	MPTG02028A
31		Seal Washer	BRTG03190

REF.	TYPE	DESCRIPTION	JRC P/N
32		O-Ring	BRPK00019
33		Connector,Cable	BR [D00113
34		Rope	MPX P01279
35		Sems Screw	BSNC04012B
36		Sems Screw	BSN B04010B
37		Sems Screw	BSNC05012B
38		Sems Screw	BSNC04016B
39		Sems Screw	BSNC04020B
40		Sems Screw	BRTG03318
41		Sems Screw	BSNC03006B
42		Sems Screw	BSNC03008B
43		Sems Screw	BSNC03010B
44		Spacer	MTB143380A
45		Spacer	MTD004993
46		Cover	MTC003325
47		Sems Screw	BSNA04020B
48		Spacer	MTK000360

. . .

1. 16

7 - 38

7 - 39

. .

PARTS LOCATION LIST

Reference to Fig123&Fig124

Assembly Drawing of RIIX Scanner Unit

F	REF.	TYPE	DESCRIPTION	IRC P/N
1		NAX-30	Radiator Assy	MDA E00692
2			Upper Housing Assy	MPRCOORD
	2-1		Housing	MT DC03803
	2-2		Hinge	MTR104255C
	2.3		Plate	MTB104256
			i lute	WI D154650
3			Lower Housing Assy	MPBC09810
	3-1		Housing	MTV003668
	3.2		Packing	MTT028574
	3.3		Shaft	MTL042586B
	3-4		Stay	BRDM00446
	3.5		Dista	
	3-5		Plate	M I B194257A
	3.0		Packing	MTT028575B
	3-1		Cable Clamp	BRBP00008
	3.0		Bolt	BRTG00563
	3-9		Washer,Spring	BRTG00747
	3-10		Washer,Seal	BRPK00332
	3-11		O-Ring	BRPK00083
4			Plate	MTB194254C
5			Motor	
6			SHM Switch	
7			m	
1	7 1		Turning Assy	MPGK03761
	7-1		Rotating Joint Assy	MPAB02196
	7.2		Gear	MTV003674A
	7.3		Cover	MTL042608
	7-4		Bearing	BRGK01324
	7.5		Ring Retaining	BRTG00735
	7.6		Housing	MTC003613
8			Waveguide, T. Junction	MPA B02197
9			Plate.Retaining	MTB194258
10			V-Ring	BRPK00673
11			Mr (m)	
11			Mounting,Ring	MTV003669
12			O-Ring	BRPK00068
13			Guide Pin	MTL042585
14			Switch Cover	MPPK00925

NOTES I. THE DISTANCE BETWEEN THE UNITS AS FOLLOWS.

MAXIMUM

STANDARD

STANDARD MAXII SCANNER UNIT TO DISPLAY UNIT 55m 20 2. ELIMINATING THE INTERFERENCE ON FREQUENCIES USED FOR MARINE COMMUNICATIONS AND NAVIGATION DUE TO OPERATION OF THE RADAR. ALL CABLES OF RADAR ARE TO BE RUN AWAY FROM THE CABLES OF RADIO EQUIPMENT (EX. RADIOTELEPHONE, LORAN COMMUNICATIONS RECEIVER AND DIRECTION FINDER ETC.). ESPECIALLY INTER-WIRING CABLES BETWEEN SCANNER UNIT AND DISPLAY UNIT OF THE RADAR SHOULD NOT BE RUN PARALLEL WITH THE CABLES OF RADIO EQUIPMENT. 20 m

FIG. 101 GENERAL SYSTEM DIAGRAM R10X

UNI	_ESS	01	HERWISE	SPECIFIED
014	DIMENSION		ECIFIED	TOLERANCE
	0	10	16	±
OTER	16	tə	50	± 2
64.6M	50	TQ	250	± 4
PYTER	250	16	1000	± 8
677ER	1000	n	3000	± 12

COLOR	WHITE
WEIGHT	APPROX. 12.1 15s (5.5kg)

20mm DEEP

FIG. 102 OUTLINE DRAWING OF R10X SCANNER UNIT

	REF. 15	TYPE	DESCRIPTION Toggle Switch	JRC P/N
	16	CMN-287	Modulator Assy	MDMW02048
	16-1		Chassis	MTB194259C
	16-2		Cover	MTB194262B
	16-3	CNM-151	PCB	
	16-4		Magnetron	
	17	CGH-175	Receiver Assy	MDHW01051
	17-1		Chassis	MTB194265A
	17-2		Cover	MTB194266
	17-3	CAE-436	PCB	
	17-4		MIC	
	17-5		Diord-Limiter	
	17-6		Plate	MTB194261A
	17-7		Cover	MTL042609A
	18		Cable Clamp	MTB06992W
	19		Cable Clamp	CKS-10-L
	20		Washer,Speciol	BRTG03258
-	21		Screw	BRTG04671

PARTS LOCATION LIST

Reference	to Fig.125
-----------	------------

Assembly Drawing of RIOX/RIIX Display Unit

	REF.	TYPE	DESCRIPTION	
	1		Best	JRC P/N
	1.1		Dezel Assy	MPBC08948
	1.2		C	MPBC08977
	1.3		Сар	MPBC09059
	1.4		Screw	BRTG03883
			Film	MTZ003059
	1.5		Front Panel	MPNM14490
	1.0		Packing, Rubber	MPPK01522
	1-7		Packing, Rubber	MPPK01524
	1.8		Cap,Rubber	MTV003546
	1.9		Gromment	MPNG00277
2			Cabinet Assy	MPBX18999
	2-1		Cabinet	MTV003531
	2.2		Packing Rubber	MTV003560
	2-3		Packing Rubber	MPPK01525
	2-4		Nut	BSLN06000B
3			Heat Sink	MTC003609A
4			Chassis	MPBC08865
5			Bracket Assy	MPBX 19001
	5-1		Bracket	MTB183291
	5-2		Washer, Serration	MTV003561
6			Knob	MPTC02475
7			Contact Rubber	MT 1002475
8			Contact Rubber	MTV003540
9		S401	Panel Switch R-Side	MPSW00061A
10		S402	Panel Switch L-Side	MPSW00962A
11		V501	CRT	
12		T502	Deflection Yoke	
13		Pe501	CRT Control PCB Aser	CCN 100
14		PC502	Video PCB Assy	CCIV-199
15		PC1	Main Control PCB Assy	CMC-622
16		PC2	Adjustment PCR Area	CCB-351
17		PC3	Control PCB Asev A	CCK-501
18		PC4	Control PCB Assy R	CCK.592
19		PC5	Power Supply PCB Assy	CBD-1026

REF.	TYPE	DESCRIPTION	JRC P/N
20	PC6	Receive Buffer PCB A	ssy CQA-116
21		Blank	
22		Blank	
23		Bushing, Insulating	MTV003558
24		Cap, Rubber	MPPK01548
25		Cap.Rubber	MPNG00279
26		Packing, Rubber	MTT020295
27		Packing,Rubber	MTT022410
28		Washer	BRTG00553
29		Сар	BRX P00866
30		Plate,Retaining	MTB186295
31		Sheet, Radiating	
32		Hood	MTV003534
33		Knob Assy	MPHD01459
33-1		Knob	MPHD01437A
33-2		Spring,Clamp	BRSR00077
34		Logo Plate (RIOX)	MPNM15207
		Logo Plate (RIIX)	MPNM15208
35		Screw, Tapping	BRTG03437
36		Screw.Tapping	BRTG02970
37		Screw, Tapping	BRTG03100
38		Screw, Tapping	BRTG03095
39		Screw, Tapping	BRTG03848
40		Screw, Tapping	BRTG03616
41		Screw, Tapping	BRTG03217
42		Sems Screw	BSNC03010B
43		Sems Screw	BSNC03012B

7 - 42

FIG. 105 OUTLINE DRAWING OF R10X/R11X DISPLAY UNIT

WEIGHT APPROX. 4.8kg

NOTE; L. --- LARGE WIRE

DISPLAY UNIT

FIG. 107 INTERUNIT WIRING R11X RADAR

106 INTERUNIT WIRING R10X RADAR

5. 19

FIG.

FIG. 109 CIRCUIT DRAWING OF MODULATOR/POWER SUPPLY PCB (CMC-149)

i

÷

FIG. 108 INTERNAL CONNECTION DIAGRAM FOR R10X S . ANNER UNIT

PCIDI H-7PCRDOBII

V201 RMC-1

A 10 I

E 30(

I. IF OUT 2. TUNE

YEL

T

RECEIVER

CAE - 286

ALL RESISTORS ARE 1/8W. ALL CAPACITORS ARE 50V DC FIG. 112 INTERNAL CONNECTION DIAGRAM FOR R11X SCANNER UNIT

PCIOL H-7PCRD1168

ĩ

CNM - 151

FIG. 115 INTERNAL CONNECTION DIAGRAM FOR R10X/R11X DISPLAY UNIT

19 e.

FIG. 124 ASSEMBLY DRAWING OF R11X OPEN ARRAY SCANNER UNIT 2 OF 2

FIG. 125 ASSEMBLY DRAWING OF R10X/R11X DISPLAY UNIT