
The radar scenario involves a transmitter and a receiver (usually al the same 
location) with one or two antennas, a target at range R,  a d  a signal that 
travels tlie round-trip between the radar and the target. The target somnetimes 
bas a velocity relative to the radar, in which case the range rate R is also 
measurable (Fig. 1.1). 

The transmitted signal is usually an electxomngnetic signal (but an acoustic 
one is also a possibility). The signal can be described by a carrier sine wave at 
frequency f, with modulation of one or more of its parameters-amplitude, 
phase, and frequency. 

The changes observed in the returned signal can provide information about 
the target position and sometimes its character. In simple terms, the dday of 
the returned signal yields information on the range. The frequency shift 
(Doppler) yields information on the range rate (velocity). The antma point- 
ing direction yielding maximum return strength (or other criteria) provides the 
azirnufh and elevation of  he target relative to the radar. From the progress of 
some of these parameters with time, the target's trajectory can be estimated. 

DELAY AND RANGE 

In radar the relationship between the dday 7 and the range R 4s given by 

where C, is the velocity of propagation. The factor of $ is the result of the 
round trip travel time. The propagation velocity is not exactly the speed of 
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figure 1.7 A typical radar scene. 

tight C ( C  = 299.7925 m/ps), because radar signals do not propagate in 
vacuum but in a real atmosphere. As we will see at the end of this chapter, 
they do iiot propagate in s.traight lines either. llowever, a good approxima- I 

tion, which we will generally use, is a straight-line propagation at a constant 
speed C. 

DOPPLER SHIFT AND RANCE RATE 

The Doppler frquency shift will be deked  as the difference between Ihe 
received frequency and the transmitted frequency. Thus 

Neglecthlg second-order effects (relativistic, acceleration, etc.) the Doppler 
shift is related to the range rate R by 

where the wavelength h is given by 

The transmitted frequency of a signal is not a single value, since most 
signals have some bandwidth. Far narrow-band signals replacmg the trans- 
mittad frequency with the carxier frequency is suGcient, whereas for wide-band 
signals more complicated measures, involving Doppler broadening, are neces- 
sary. In our text we will usually assume, for a given target velocity, the same 

Doppler shift lor the entire signal bandwidth. A proof of (1.3) for a continu- 
ous wave (CW) signal i s  given in Insert 1A. 

INSERT l A  Doppler Shift 

I Consider a transmitted sigdal whose volfagc equation is 1 

where is the phase at I = 0. The signal is reflected from a moving point tafgei 
whose range from the radar is given by 

R ( t )  - Ro 4- RI (1A.2) 

where R, i s  the r a n g  at t = 0 and where it was assumed that the acceleration 
and higher range derivativ& are equal to zero. The signal received back at the 
radat, neglecting attmuatian, ir the one transmitted T seconds earlier-namely, 

1 where ihe delay is given by I 

Ignoring the change in range during the signal travel time, pjnce usually 
R C, we can use the value of T that existed at the time d receiving-namely, 
at 1; hence 

Substituting (1A.6) in (1A,4) yields 

All the terms in the argument that multiply 27rt are Irequencies. Hence we 
define 
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and rewrite (1A 7) as 

2 * ( ~ , . +  f D ) t -  4~f , -  ++, 
C 

which leads to a received frequency of 

f~ -IT + fn (1A.10) 
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If the antenna has a gain G, and it is pointing in the direction of the target, 
then the power density at the target area would be multiplied by G. Now 
assume that the target reflects back all the power intercepted by its effective 
arm, and the reflection pattern is isotropic, If the effective area of that 
isotropic target is a, then the power that it reflects isotropic,zlly is given by 

P,G o 
Reflected power = - 

47rR2 

THE RADAR EQUATION 

The target's range, velocity, and hearjng can be measured very accurately 
when the return signal-to-noise ratio (SNR) is very high. They can be detected 
within a certain range and velocity windows, at somewhat lower SNR.  The 
radnr equation is our source of information on the expected return signal and 
SNR. 

Assume that a radar transmits a pulse with power P,, and seeks the return 
from a target at a range R (Fig. 1.2). If the radar transmitting antenna had an 
isotropic radiation pattern, hen it would have spread the power with spherical 
symmetry, and the power flux per unit area at range R would have been 

PT 
Power density = - 

4 n-RZ 

Figure 1.2 Power densities in the radar scene. 

Since the power is reflected isotropically, the reflected power density back 
at the radar is 

P,Ga 
Reflected power denaty = - 

( 4 7 ~ ~ ' ) '  

If the radar's receiving antenna has an effective wea A,  then the power 
received by the aiitema is given by 

In Insert 18 we will show that the relationship between the antenna gain G 
and its effective i r h  A is given by 

Inserting (1.6) in (1.5) yields the basic radar equation 

The radar equation was developed assuming a target with area r and with 
the rare quality of an isotropic reflection pattern. Most targets are not 
isotropic. So that we may still be able to use the radar equation, we will 
replace each real target with an isotropic target and change the area of the 
isotropic target until i t  produces the same return power as the original target. 
Thus, o is the area of a target that reflects back isotropically and would have 
caused the same return power as the original target. 

The u area of a target is called its radar cross seciinn. Usually the physical 
area of a real target will be quite different horn its o. Furthermore, most 
targets exhibit different a's at diirerent aspect angles and at different Erquen- 
cies. The next chapter is devoted to the issue of radar cross section. Table 1.1 
lists typical values of o for several targets. 
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Figure f .4  Illumination geomeby between two parabolic antennas. 

l t -  

Figure 1.5 A coherent puke lra~n. 
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width, followed by a synchronous detector and an mtegratnx. The topic of 
matched filters will be discussed separately in a later chapter. Here it will 
suffice to mention that a bandpass filter with a rectangular response over the 
bandwidth fa (in hertz) is a good representative of a matched filter to a single 
pulse of duration t , ,  if the bandwidth is related to the pulse duration as 

The thermal noise power after such a filter is given by 

N = FKT,fB = No j, 

where 

F is the receiver noise figure, 
K is Boltztnann's constant (= 3 -38 x W . s/"K), 
T, is the temperature in degrees Kelvin, 
No is the noise (one-sided) spee~al power density in watts per hertz. 

Having the noise power (1.9) and the signal power (1.71, it is now possible 
to write the radar equation in terms of signal-to-noise ratio 

P , G ~ X ~ O  
SNR, = 

(4g )3~"N,fB 

SNR, is the signal-ta-noise power ratio when only one pulse is returned 
from tbe target. Normally Ihe  target is illuminated for a relatively long period 
of time TI, and the number or pulses that can be used is M, where 

and where f, is the pulse repetition freq~~mcy. 
The synchronous detector used in the receiver maintains phase information 

[through the in-phase (1) and the quadrature (Q) components] and therefore 
allows coherent integration of the M pulses. The issue of coherent and 
noncohereat integration will be further discussed in the chapter on radar 
detection. Here ii t l l  sate to mention that the SNR of M coherently 
integrated pulses is M times the SNR of a single pulse; that is, 

Noting that the average transmitted powef i s  g i~en by 



ELECTROMAGNETIC PROPAGATION IN  THE REAL ATMOSPHERE 73 12 R A D A R  MEASUREMENTS 

Equations (1.121, (1.14), and (1.19) assumed coherent Integration of the 
received signal ever the entire illumination time. If this is not the case, then 
the radar equation should be modifid to include an integation loss. The 
integration loss will be discussed in more detail in the chapter on radar 
detection. Integration loss and antenna efficiency are not the only losses that 
should be accounted lor in the radar equation. For example, a loss term 
should be added because of the erroneous assumption that the radiation 
pattern is uniform over the antenna beamwidth. A very practical loss is due to 
attenuation and mismatch in the transmission line. A practical discussion of 
most loss factors can be found in [I]. It is customary to include all the losses in 
one coefficient L (>  I), uhich appears in the denominator of the radar 
equation. Sjnce L covers also the antenna eficiency, Eq. (1.19) will be 
rewritten as 

and using it and (1.10) in (1.12) yields 

PAvEXrG2h2u 
SNR = 

( ~ T ) ~ R ~ N ,  

Note that P-T, is the energy transmitted by the radar during the 
illumination time of t h e  target, and it is this energy that determines the SNR 
that results from optimal processing of the signal during lhe entire target 
illumination t h e .  

To show that (1.14) is independent of the type of signal, let us transmit a 
CW signal for the entire illumination t h e .  This signal can be treated as one 
pulse of duration T,. We can therefore use (1.10) with the fnllowjng replace- 
ments : 

SNR = 
PAVEAD is  

4 d 4 N 0 L  sb 

The loss term L should appear also in the other versions of the radar 
equation-in particular, q. (1.14). 

We will conclude the first chapter with a discussjon of radar propagation 
velocity and direction as they behave in a real atm6sphere. 

which will also yield (1.14). 
The illumination time of a point target by a scanning radar is a functlon of 

the antenna scan rate and the antenna beamwidth in the scan plane. The 
antenna beamwidth is obviously related to the antenna gain. A simple rela- 
tionship can be deduced from realizing that there are 4rl-(180/~)~ = 41,253 
square degrees in a sphere. An antenna with 3-dB hemwidths 8F, and 8,, in 
the two principal planes, radiates into OM#, square degrees out of a total of 
41,253. The antenna efficiency p, is usually about 0.5. Thus 

E LECTROMAGNETfC PROPACATlON IN THE REAL ATMOSPHERE 

The propagation velocity in any homag~neous medium is given by 

where 8, and 8 ,  are in degrees. When 8, and 8, are in radians, where n is the refractive index. Since n i s  very close to one, it is more 
milvenient to use N, defined by 

knother form of the radar equation is suitable for a surveillance radar, 
which scans a two-dimensional angular region of 6E square radians. If the total 
scam time is t,, then the, target illumination time is given by, 

A common semiempirical expression far N is 

where 

Using (1.18) and (1B.7) in (1.14) yields T is the air temperature in degrees Kelvin, 
P is the air pressure in millibars, 
e is the water vapor pressure in millibars. 

P A V ' E ~ ~ P A  IS 
SNR = - 

4rrR4No 61 
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Table 1.2 Refraction Index as a Function of Hei~ht for a Standard Atmosphere 

AU three parameters affecting N are usually changing with altitude. At a 
given altitude, they also change with the weather conditions. Assuming stan- 
dard atmosphere, the average N as function of the altitude h ,  is given in Table 
1.2. 

The last column is an empirical fit for the measured change of N with 
altitude ( a  is the earth radius = 6370 km). The fit is good to an altitude of 
about 5 km. This linear model of the refractive index with height is also called 
the effective 4/3 earth radius model and will be described later in this chapter. 

Since N changes with altitude, ray propagation suffer bending unless its 
direction is perpendicular to the earth surface. Thus, the antenna's pointing 
direction, based on maximum signal, will not necessarily indicate the correct 
geometrical direction to the target. Maximum bending occurs when the radar 
looks toward the horizon. It is well known that the apparent sun at sunset is 
seen between 0.5' and 1" above its true direction. Tables for the elevation 
angle error [2] ,  for a target at  a height of 70 km (practically outside the 
atmosphere), indicate an elevation error of 0.92" for an initial elevation of O", 
and an error of 0.24" for an initial elevation of 3". Exact calculations of the 
bending and the elevation angle error involve complicated ray tracing. The 
linear model, however, yields relatively simple expressions, which are sum- 
marized below, with the geometry as defined in Fig. 1.7. 

In Fig. 1.7 the radar is on the surface of the earth at point S, where the 
index of refraction is ns The target is at point T, at an altitude h above the 
spherical earth. The index of refraction n is spehrically stratified and con- 
centric with the earth. The trace of the ray from S t o T  (heavy line) is bent. 
The initial elevation angle is 8,. The local elevation angle at T is 8 .  The 
bending u is the angle between the tangents to the ray at S and at T. The 
elevation angle error E is the angle between the tangent to the ray at S and 
the straight line connecting S to T. 

We will begin our analysis with two results of geometrical optics. From 
SneU's law for polar wordmates we have 

Figure 1.7 The geometry of radio propagatron through the atmosphere 

From Snell's law and the geometry it can be shown [2]  that 

du cot 9 
-=  -- 
dn n 

and since n is very close to one, 

The simplihed analysis is based on the linear model of the refractive index 
as function of height 

h 
n = n  - -  

40 
(1 27)  

which yields 

Using the h e a r  model m (1.24), and beanng m mind that n ,  = 1, h << 1, 
we get 

cos 8 4a 
-=- 
cos 8, :a + h 
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Equation (1.29) is what gave the linear model its other name-the effective 
4/3 earth radius model. Note that Suell's law (1.24) for an earth with an 
atmosphere that has a constant index of refraction ( n  = ns), and a radius 
4a/3, would reduce to (1.29). Over 'such an earth, there will be no ray 
bending. 

For small 8 ,  Eq. (1.29) becomes 

Also for small 8, Eq. (1.26) becomes 

da 1 
- -- 

8 '  
8 < 1 rad 

dn 

Using (1.28) and (1.30) in (1.31) and mtegrating, we obtain 

For the special case in which 8, = 0, Eq. (1.32) can be solved explicitly, 
yielding 

In (1.33) we have obtained an approximate simple expression for the 
bending of a beam pointed toward the horizon. It should he emphasized again - 
that many simplifying assumptions were made in order to obtain the simple 
expression of (1.33), beginning with the linear model of the refraction index 
and ending with a horizontal pointing ray. 

A plot of (1.33) (hendig as function of height) is given in 15g. 1.8, next to 
the direct integration of (1.25) using (1.24) and the linear model given in 
(1.27). The two curves are indeed very close to each other. 

The linear model predicts n < 1 above h = 8 km, which, of course, cannot 
be correct. A model that avoids this problem is the exponential model given by 

N = N,exp(-0.1439h) (1.34) 

where h is th; altitude (m kilometers). A plot of the expected bending as 
function of the target's height, for the exponential model, is also given in Fig. 
1.8. Note that both the linear model and the exponential model, used in Fig. 
1.8, assumed N, = 319. Note also that Fig. 1.8 is for a horizontal pointing 
beam-namely, 8, = 0. 

The elevation angle error e is different from the bending angle a .  A n  exact 
expression for the elevation angle error as function of 0, a, ns, and n is given 
in the problems of this chapter. Here we will only point out that 

a/2 5 E 5 a (1.35) 

Height (krn, 

Figure 1.8 Ray bendrng vs herght for 8, - 0 

Our limited discussion of electromagnetic propagation in the real atmo- 
sphere ends here. There are many other topics such as more accurate refractive 
index models, ducting effects, and attenuation by atmospheric gases and by 

i 
I 

rain. The interested reader is referred to [2] and [3]. 
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PROBLEMS 

1.1 What will be the Doppler frequency when there is target acceleration 
(namely, R + O)? 

1.2 For the Doppler shift from a moving target if relativistic effects are 
considered, the received frequency is gveu by 
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Far an electromametic wave and target radial velocity of 300 mps, 
compare this expression to the simplified one (1.3). 

1.3 TP police radars were using awustic signals (whose velocity d propa- 
gation is 333 m/s), and a car was traveling away from the radar at a 
speed of 120 h / h ,  what would be the measurement error if the 
relativistic effect (see Problem 1.2) was ignored? 

1.4 A radar with antenna gain G, is illuminating a t a r s t  antenna whose 
gain (pointing toward the radar) is G I .  A receiver is cannected at the 
target antema. Half the power r e c e i d  hy the target antenna is 
forwarded to the receiver and the other half i s  reflected back to the 
radar. 
(a) Find an expressj.on for the ratio betweefl ihe power received by fhe 

target receiver and the power received by the radat. 
fi) What is the mtio, in decibels, when GI = T;, = 100 and R/A = 10 4 ?  

1.5 Police radar is desiped to receive a return from a car, with a radar 
cross section o, up to a distance of X ,  = 50 m. The car is equipped 
with a radar detector. The efective area of the detector antenna is ko 
( k  = 0.001). The other radar parameters are G = 100 and X = 0.02 rn. 
Assuming that the cm's rada detector has the same sensitivity as the 
radar receiver, at what distance wjll the radar detector provide a 
warning? 

1.6 The radar parameters are: PAW = 1 kW, TI - 0.05 S, P = 5, h = 0.2 
m, and G = 100. What i s  the range from which a target with 0 = 10 mZ 
will yidd an SNR of 20 dB? 

1.7 Find the ground distance to the radar horizon from an antenna at 
height h. Assume the linear model of the refractive index. 

1.8 NT'of 319 was obtained for the standard surface parameters: T = 28X°K, 
P = 1013 mb, and e = 10.2 mb. Find the {separate) effects of the 
following practical meteorological changes on NNs: AT = lo0, AP = 10 
mb, and Ae = 3 mb, 

1.9 hove that thc elmatian angle error is given by 

cns a - sin a tan B - fn J n , )  
tan e = 

(n/n,)tan 8, - sin a - ws a tan 61 

1.10 Extend Table 1.2 by addin8 a column for the exponentid model. 

A major parameter in the radar equation is thc target's radar cross section (o). 
A verbal defuljt~on of o was given in Chapter 1. There is some correlation 
betwcen cr and the s u e  of the target, but other factors such as configuration, 
aspect angle, and wavelength also affect its value. In this chapter we will 
discuss deterministic expressions of a for some simple geometrical bodies and 
several wmman statjstical behaviors of more complex targets. 

SPHERES 

The: cross section u of a sphere of radius a is shown in Fig. 2.1 as function of 
the circumference (normalbed with respect to A). In the optical region (large 
spheres) the asymptotic expression is given by 

For small spheres (Kayleigh region) the asymptotic eexpressiun is 

D = aa'9(k0)~,  .u K h 

where 
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ZlTa/X 

Figure 2.1 Radar cross sectton of a sphere. 

ln between these two regions lies the resonance (Mie) region, in which the 
behavior is indeed osciIIatory, with a peak oE approximately 3.6 at a = X/2?r. 
The resonant mode is explained by a creeping wave that travds 8 ~ 0 ~ n d  thc 
rear of the sphere and adds constructively or destructively to the spmlar 
reflection from the front of the sphere. Wbether the addition is c~nstructive or 
destructive depends on the additional distance traveled by the creeping wave, 
wluch is a function of the radius of the sphere. 

It should be noted that because of its symmetrical shape, a sphere exhibits 
the same 1~ at all aspect angles, and that o is very well knotvn. Furthermore, in 
the optical region a is independent of h. Thus a sphere can serve as a g o d  
calibration device in radar measurements. 

The general approximations for the Rayldgh and optical regions are as 
Follows: 

In the Rayleigh region of a rounded smooth object of volume V 

In the optical region of s smooth curved surface normal to the incident 
wave, m which a, and a, aTe tbe two radii of curvature of the surface, 

Setting a, = a,  = a in (2.5) will yield (2.1); however, (2.4) differs from (2.2) 
in the coefficient, which is 64/9 rather than 9. 

PLANAR SURFACES 

When a large, smooth surface is placed perpendcula~ to the range vector from 
the radar (i.e., nor~nd incidence), and its area is A, then its efiective aperture, 
which intercepts the power flux density, is also A .  If that power is ~efiected 

isotropicaUy then n will be equal to A. But a large smooth surface reflects 
most of the  power hack in the perpendicular direction, with tt gain reIated to 
the  aperture A, as was calculated in Inscrt IA as follows: 

Thus, the effecfive Gross section o f  a large, smooth pime in the normal 
direction is 

The queatinn of what is "smooth" wiU be discussed in C h a p k ~  4. Equation 
(2.7) says that a of a large plane is much larger than the area A of that plane, 
but only at a normal incidence. 

At other than normal incidence the dependence of u on Lhhe mgIe of 
incidence B (measured From the normal), lor a sguure flat plate is given by [l] 
as 

where a is the length of the side. For a circular. flat plate, 

7ru 
0 = - 

tanZ@ 
[ ~ , ( 2  ka sin o ) ] ~  

where a is the radius of the disk and J l ( x )  i s  the Bessd functian of the first 
order. 

Note that (2.8) reduces to (2.7) at B = 0, but drops aff rapidly, following 
the (sin x ) / x  shape, with a h t  null at O = X / ( 2 a )  radians. For a = IOh, the 
first null occurs at Q = 2.9O. Thus we sea that the large hackscattering of a flat 
plate has a pattern that becmnes narrower the larger the plate is. When it is 
desired to take advantage of this large n at other than normal incidence, it is 
possible to  use a corner reflector. 

CORNER REFLECTORS 

A corner reflector can p~ovide a large cross section over a wide range of aspect 
angles. A cut along a dihedral m e r  is shown in Fig. 2 2 ,  in which the 
reflection concept is also demonstrated. The ray tracing shows that whatever 
the incident angle, after two speculm reflections the reflected ray is always 
parallel to the incident ray. However, the area that participates in the 
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Figure 2.2 Reflection from a corrlm 

reflection process and its projection on the plane noma1 to the i n c i d e n ~  are 
maximum at ol -- 45" and drops in either direction. This area is called the 
effective area. If the dihedral corner is symmetsical with width d (of each wall) 
and height b, then tbt effective area is given by 

Am=2abshrw ,  0 5  a 5 4 S b  (2.10) 

The cross section is related to the effective area approximately as if it were 
the area of a perpendicular large plant [see (2.7)]; hence 

Using (2.3 0) in (2.11) will yield an approximate expression for the crass 
section of a dihedral comer reflector; that is, 

For 45" I ar 2 90" use 90' - a instead d a. 
Setting a = 45" in (2.11) will yield the rnkximu~n cross se~tion available 

from a dihedral corner reflector (see Fig. 2.3a): 

S r a  2h2 
a- = - xz (dihedral) 

Equation (2.12) ignores the Fact that at a = 0 there is normal incidence on 
om of the walls of the comer reflector, which should yidd the strong, flat plate 
reflection rather than the zero reflection predicted by (2.12). Furthermore, this 
Ral plate reflection should extend i o  small negative a, until the: shadowing 
effect of the other wall becomes significant. Note also that the Rat plate 
reflection blends ~ 4 t h  the dihedral refleelion without a phase (delay) step. A 
modd suggested in [2]  for a square dihedral is 

(c) 
(6) 

Figure 2.3 Corner reflectors: (a) Dihedral, (!I) Triangular trihedral. (c) Square 
rr~ hedral (d) Retrofiecror. 

where 

16ra4 
OD = - 

h2 sin2u, O I a 2 4Sup zero elsewhere 

and 

sin(ka sin a) 
- 20" a < 45 ', zero elsewhere 

A plor of (2.14) is given in Fig. 2.4 for a case in which o = l5h. Despite its 
simpliciry , the model agrees fairly well with measurements. 
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The reflation from a dihedral comer reflector is insensj-tive to lhe incidence 
angle in only one pIane (e.g., azimutll}. To extend this quality to the ather 
plane (e-g., elevation) it is necessaq to use a trihedral reflector. There are 
several configurations of tribedrd corner reflectors. Two are shown in Fig. 2.3. 
?be triangular trihedral (Fig. 2.3b) has a maximum radar cross section of 

47ia4 
u- = - 

2hZ (triangular trihedral) 

and its angular coverage can be described by a 3-dB drop at about 20" off the 
symmetry axis. The square trihedral (Fig. 2.3~)  has a larger maximum cross 
section (but narrower angular coverage); that is, 

1 2 ~ 0 ~  
0- = - 

h2 (square trjhedral) 
(2.16) 

where a is deli ned in Fig. 2.3. 
In order to yield complete spherical coverage, at least eight trihedrals are 

necessary (Fig. 2.3dJ. Such a body is called a retroflectur. Retroflectors are 
used extensively to enhance biendly radar returns. 

RADAR CROSS SECXION OF ANTENNAS 

Many drivers have noticed the strong reflection from the eyes of a cat caught 
in the light beam 01 their car at night. The same phenomenon makes antennas 
strong backscatterms when they lace the radar. Thc backscattering from 
antennas is  also strongly dependent on the load at the anlcnna terminals. This 
can h e  explained by the part of the power received by the antenna and either 
absorbed in the load, if it is wdl matched to the antenna impedance, or 
reflected back arid retransmitted, with some phme and amplitude changes. The 
retransmitted field may be constructively or destructively added to thr: portion 
of the field directly reflected from the antenna. structure. T h e  ability to aEect 
the backscattering of  antennas by changing their load can be used in several 
ways. One use is to mark a specific return relative to other undesired [clutter} 
returns by modulating t h e  scalterer using impedance switching. Such mod- 
ulated scatterers are used in microwave measurements [3]. Modulated scatterers 
are also used for calibration and testing of Doppler radars, by setting the 
modulation rate at the expected Doppler rate. A completely opposite applica- 
tion is to impedance-load an antennalike refkctor to reduce i t s  sadar cross 
section. 

I-Iere we will deal anly with the most basrc antenna-the dipole. Dipole 
backscattering and the effect of Wereal l o a h g  at its center were studied by 
Hanington [4j and Harrington and Mautz [Sj. They showed that rhe radar 
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crass section of a short-circuited small dipdo of length L and wire radius a is 
given by 

For a small open-cirruited dipole, a is given by 

Both dipoles can reach resonance. At resonance the cruss section is given by 

The shorted dipole reaches resonance when L = O.45X, and the open- 
circuited dipole reaches resonance when L = 0.871. Small dipoles of otber 
lengths can be resonated by loading them with the appropnate inductive 
reactance. At resonance they will also exhibit the maximum (T given by (2.19). 

Comphng (2.19) to [2.18) we note that a thin dipole ( L  / a  = 150) of length 
= 0.45X, when its load is switched from a s h u r ~  circuit to an open circuit, 

exh~bits a drop in its a/A3 from 0.716 down to 0.002, namely a drop of 26 dB. 
Finally, note that the clipole gain i s  ti = 1.5, and that 0.716 = 1.5*/~. Thus 

(2.19) can be written as 

This relationship between the antenna gain md its radar moss section is a 
good approximation for other antennas as wdl. 

MULTIPLE SCATTERERS 

When several scatterers contncbute to the return, they should be added 
ve~~orially, taking into consideration the phase differences. Bmause a is 
related to power, whereas phase i s  a qudity of fields or voltages, the quantity 
that will be associated with phase and vector sum will be &. In  general the 
total radar cross section of M scatterers is given by 

where ciH and R ,  are, respectively, the crass section of and Ihe range to the 
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- -L ~ l t h  individuaI scatterer. Note that the round-trip distance is accounted fox in 
the cxponent by having a 47r rather than a 2n factor. The model in (2.21) 
ignores shadmhg and multiple reflections bctween the individual scatterers. 

For a rnultiplescalterms target, if the number af  scatterers is larger than 
two and tlie spacing is longer than few wavelengths, then the total cross 
section becomes strongly dependent on aspect angle and there is a very 
complicated scattering pattern. To demonstrate such a pattern we have calcu- 
lated the total cross seclion of 6ve scatterers located w a plane, st the 
Cartesian coordinates (2'0); (1,3); (-I,l); ( - 3 ,  -2); and (0, -2). The 
wavelength is 0.28 (in the same units). To simplify the analysis the individual 
scatterers were chosen to be spheres, which exhibit no dependence ol vm on the 
aspect angle. Purchermore, all spheres are of the same size; that is, g,, = a,. 

The resulting two-dimensional pattern of u(Q)/u, in dB, is given in Fig. 
2.5. It is clearly a very complicated pattern, with peaks as high as M 2  (14 dB 
Ear h4 = 5) and very deep nuUs (theoretically shere can be nulls down to zero). 
Furthermore, the. angular spaclng between peaks and nulls is  sometimes: only a 
fraction of a degree. 

Figure 2.5 Calrvlated radar crass section af five point scatferers in a plane. 
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Cfoss section u 

Figure 2.6 A hrstogram o f  tile radar cross section of hve points compared to an 
exponential probabrlity dens~ty furrction, 

Considering that t h i s  complicated pattern resulted lrom a rather simple and 
idealized target (five equal spheres), it is obvious that any real-world multiple- 
scatterers target (e.g., an aircraf~) WU yield an awn more comphcated pattern. 
For such a target i t  makes sense: to abandon the deterministic approach and to 
treat its u as a random variable, Thus we went one step further and calculated 
the histogram of the 360 values of o(O) obtained a1 I" intervals of (3. (a, = 1 
was cl~osen.) The result is platted in Fig. 2.6. Superimposed OD it  (dotted line) 
is an exponential probability density function (PDF) given by 

1 - 0  

p ( c r j = : e x p ~ ,  0 m I l s a ,  zeroclstwhere (2.22) 

m which F = MD, = 5. Here it sufices to point out tha good agreemm-nl 
between 'the histogram and the exponentid PDF. A theoretical justification 
will be given in the next section. 

FLUCTUATI NC TARGETS 

Complex bodia (e.g., aircraft) have been mapped to yield their radar ~ r m s  
section in various planes as a runctic~n of the aspect angle. However, because 

of their motion relative tn the radar, the aspect angle changes, and it may be 
more practical to describe them in term of the probability density function 
(PDP) of their D. The same is true with rough surfaces, such as the mean or a 
terrain, which clzangc comt.mBy due to either the surface motion or the radar 
motion that brings different sections of the surface into view. These kind of 
targets are called f l u c t u a  targets, and another parmeter of importance in 
their regard is the power-frequency spectrum or tb autocorrelation function, 
which indieam how fast meaningful changes in o occur. 

When the target is constructed from many inrlependen~Iy positioned 
scatterers, the PDF of its a can usually be described by a J<ayl~igh PDF (for 
power), also called exponentrnl PDF. 

1 -a 
= i e ~ p  I, O *. aI zero elsewhere, 

0 
(2.23) 

where t7 is the average radar cross section. Since n is linearly related to the 
received power, (2.23) is the power version of the Rayleigh PDF. To convert to 
the amplitude version we kst, note that, ~gnoring constants, the amplitude A 1s 
related to power (and hence to o )  as 

Hence 

wRich yields 

when 

l NSERT 2A Multiple-Scatteters Rayleigh Distributian 

In th is  insert we will present a heuristic analysis h t  explains the origin of a 
Rayleigh PDF when the target is constructed horn many independently posi- 
tioned scatteters of similar size. Cansider that the radar ilIuminales an area that 
can be described by M reflectors. The common illumination meam that the 
antenna beam sees dl the 1W reflectors, and, because of the extended duraiion of 
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Figure 27 Three common PRFs of the signal arnpi~tude from f/urtuariog targets. 

The exponentid distribution can be seen as a special case from a distribu- 
tion family called chi-square, and described by PDF 

Fquation (2.26) reduces to (2.23) by choosing k = 1. (Recall that O! = 1 .) 
When the reflected signal contains a dominant constant component in 

addition to a Rayldgh-distributed random component, it can be described by  
~hoosing k = 2 in the chi-square PDF, which yields 

The PDF of the signal amplitude corresponding to p,(a) is 

where A is related to o as in (2.24). P S ( A )  is plotted in Fig. 2.7 as curve III, 
with a most probable value A, - 2. Note that the mean value of A is 
A , ( ~ V / ~ ) ' J ' ,  and the mean-square value of A is (4/3)A;. 

As was indicated before, the sate of the fluctuations is also of importance. 
H o ~ v e r ,  instead of getting into the fine details of the autocorrelation func- 
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Table 2.1 Classification of Fluctuating Targets 

Case k in Eq.  (2.31) Fluctuat~ons Rate 

Swerling I k - 7 (Rayleigh) Scan-to-scan 
Swerl ing I I k = 1 (Rayleigh) Pulse-to-puls~ 
Swerl~ng 1 1 1  k - 2 (Domrnant + Rayleigh) Scan-to-scan 
Swerling IV k = 2 (Dominant + Rayleigh) PLI lse-to-pulse 

tion, it u customary to divide the rate of change into two categories: (a) where 
there are no changes in the amplitude of all the pulses in a train of pulses 
(usually the pulses received in one scan of I h e  radar antenna over the target), 
but that amplitude is a single random variable with one of the PDFs 
mentioned above; (b) where the amplitude of each pulse in the train is a 
statistically independent random variable with the same PDF. The f i s t  case is 
called "scan-to-scan fluctuating target", whereas the second case is called 
" pulseto-pulse fluctuating target". 

In addition to the amplitude, we can add an " incoherenq" restriction on 
the initial phase of each pulse-namely, that m both cases the initial. phase of 
each pulse is a statistically independenf random variable *i;itl~ a uniform PDF. 
(It is unhkely that the initial phase will remain constant, even when the 
fluctuations rate i s  slow.) 

So far we have defined two PDFs and two rates of fluctuations, which can 
yield four combinations. These combinations were studied extensively by 
SwerLing and are named after him, as shown in Table 2.1. 

Recently there have been other distributions that were found to Gt some 
measured returns better, particularly sea clutter and rain clouds. Far example, 
the Rayleigh PDF given in (2.26) can be considered to be a special case of a 
more general family called Weibull PDF, g i v e n  by 

in whch A is the signd amplitude, B is a scaIe parameter, and C is called a 
shape parameter. Setting C = 2 and = Z A ;  in (2.34) will yield (2.26). 
However, some sea clutter and cloud return measurements yieIded better fits 
when C was smaller than 2, and typically between 1.2 and 2. It can easily be 
shown that the mast probable amplitude of the Weibuil PDF is given by 

The mean value is given by 
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where r( ) is the gamma function. The median value is given by 

The mean-square value is given by 
6 

and the variance by 

Another interesting feature of the Weibull PDF is the fact that the PDF of 
the power (a)  that yelds the Weibull PDF of the amplitude ( A )  is also 
Weibull and has the same fonn but different constants. Thus, replacing A with 
0 and setting C = 1 and B = 5 in (2.34) will yield (2.23), which is the 
lhyleigh PDF for power. 

A plot of p6p,(A), according to (2.34), appears as curve I in Fig. 2.7. The 
shape parameter war chosen as C = 1.5, and R was then calculated (B = 

1.4086) in order to yield the same mean-square vdue as the Raylei& PDF 
(curve 11). 

A usePul Feature of the W e i b d  PDF is the fact that its constants can be 
determined from the straight line 

Y =  C X -  C I n B  (2.40) 

where 

X = h A  

and 

Note that the integration is perfamed on the meamred PDF. 
Results of measurements [El of sea clutter at low grazing angles, between 

0.5' and 0.72", for sea state 3 reveal an excellent fit to a straight line, whch 
mafirms that a Weibull PDF is a good model for the mcasured sea clutter. 
The slope of the straight line yields (for ths case of sea clutter) a shape factor 
C = I.585. 

Anolher PDF sometimes used to 6t sea clutter data is the log-normal PDF 

The lag-normal PDF obtained its name from the fact that. if lu A is 
considered to be the variable 

Y = l n A  (2.44) 
then p(Y)  is a normal PDF uith a mean a and a standard deviation P. Like 
Weibull PDF, tog-normal PDF has the same form for the PDFs 'sf the 
amplitude A and the power o. Cluttw sea return of high-resolution radar 
showed very good fit to h e  following representation of a log-normal PDP of n 

where o, is the median radar cross section, and @ is the standard deviation of 
In( O/O,>. 

With regard to the log-normal PDF, it is easy to show that the relations 
between the average, the most probable, and the median value of u are simple 
functions of /3: 

and 

a, - B 2  
- = exp - 
U M  2 

We have by no means exhausted the discussim of different PDFs for the 
enormous variety of fluctuating radar targets. Such PDFs as I', K, Rician are 
also used, Describing the target statistics faithfully becomes very importan1 
when iechques of automatic threshold adjustment are used, which are called 
constant false-alarm rate (CFAR). Chapter 12 covers this important concept. 

The discussion on fluctuating targets referred to c~mplcx targets, as well as 
ground and sea returns, which were termed clutter. Only the statistic& 
qualitites of clutter were discussed. Chapter 4, dedicated to clutter, will cover 
other concepts that affect the average o af clutter, such asincident angle, type 
of illumination, polarity, type of tenah, and roughness. 
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PROBLEMS 

2 1  Two metal spheres, one w ~ t h  radius a and the other with radms 2a,  act 
as a target for a radar at wavelength A ( a  > A). The spheres are spaced 
more than several wavelengths apart. The total radar cross section of the 
two spheres o is changmg with aspect angle. Fmd the ratlo ado, , .  
(Ignore shadowmg effects.) 

2.2 Draw an arbitrary wavefront (perpendicular to the propagatmg rays) in 
front of a cut of a comer reflector (Fig. 2 2 ) ,  and prove that the total path 
length between the two crossmgs of that wavefront by any ray 1s a 
constant equal to twice the shortest d~stance between the wavefront and 
the vertex of the comer reflector. 

2.3 Show that the effectwe area of a dihedral comer reflector 1s 

where a and b are as defined in Fig. 2.3a 

2.4 What will be the angular spacmg between the incident and reflected rays 
if the comer of a dihedral reflector has an angle of 90" + fi? 

2.5 What is the angle of symmetry of a trihedral comer reflector? 

2.6 Show that the average, mean-square, and median values of the Rayleigh 
PDF (for amplitude) are 

2.7 Find the average, mean-square, and median values of p,(A) (dominant 
+ Rayleigh). 

2.8 The median o is easier to measure than the average o, because it does not 
require h e a r  receivers. (The median is the value that is exceeded half the 
time.) Find the ratio F/o, for a Rayleigh distribution. 
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