

Two Basic Radar Types

Pulse

Transmission

Continuous Wave

Pulse Transmission

Pulse Width (PW)

Length or duration of a given pulse

Pulse Repetition Time (PRT=1/PRF)

- PRT is time from beginning of one pulse to the beginning of the next
- PRF is frequency at which consecutive pulses are transmitted.

PW can determine the radar's minimum detection range; PW can determine the radar's maximum detection range.

PRF can determine the radar's maximum detection range.

Pulse Radar Components

Continuous Wave Radar Employs continual RADAR transmission

Separate transmit and receive antennas

Relies on the "DOPPLER SHIFT"

Doppler Frequency Shifts

Continuous Wave Radar Components

*** Pulse Vs. Continuous** Wave

Pulse Echo

Single Antenna Gives Range, usually Alt. as well Susceptible To Jamming Physical Range Determined By PW and PRF. **Continuous Wave Requires 2 Antennae** Range or Alt. Info **High SNR** More Difficult to Jam **But Easily Deceived** Amp can be tuned to look for expected frequencies

RADAR Wave Modulation

Amplitude Modulation

- Vary the amplitude of the carrier sine wave

Frequency Modulation

- Vary the frequency of the carrier sine wave

Pulse-Amplitude Modulation

- Vary the amplitude of the pulses

Pulse-Frequency Modulation

- Vary the Frequency at which the pulses occur

Modulation Types

Two Basic Purposes: Radiates RF Energy **Provides Beam Forming and Focus** Must Be 1/2 of the λ for the maximum λ employed (Depends on f spectrum) Wide Beam width pattern for Search, **Narrow for Tracking**

Concentrating Radar Energy or Beam-forming

Linear Arrays

Uses the Principle of wave summation (constructive interference) in a special direction and wave cancellation (destructive interference) in other directions.

Made up of two or more simple half-wave antennas.

Quasi-optical

Uses reflectors and "lenses" to shape the beam.

Reflector Shape

Paraboloid - Conical Scan used for fire control - can be CW or Pulse **Orange Peel Paraboloid - Usually CW** and primarily for fire control **Parabolic Cylinder - Wide search** beam - generally larger and used for long-range search applications -Pulse

Examples of Antenna Types

Quasi-optical Arrays

PARABOLOID

TRUNCATED TRUNCATED ORANGE-PEEL PARABOLOID PARABOLOID PARABOLOID (SURFACE (HEIGHT SEARCH) FINDING)

Beam width Vs. Accuracy

Beam width= the arc where signal strength varies by <u>+</u> 3 dB from **maximum.** (50%) Wider beam width = lower accuracy. BW α λ / Antenna dimension

Azimuth Angular Measurement

Azimuth Angular Measurement

Relative Bearing = Angle from ship's heading. True Bearing = Ship's Heading + Relative Bearing

Determining Altitude

Determining Altitude

Wave Guides

Used as a medium for high energy shielding. **Uses A Magnetic Field** to keep the energy centered in the wave guide. **Filled with an inert** gas to prevent arcing due to high voltages within the wave guide.

Factors That Affect Radar Performance

Signal Reception Receiver Bandwidth Pulse Shape Power Relation Beam Width Pulse Repetition Frequency Antenna Gain **Radar Cross Section** of Target

Signal-to-noise ratio Receiver Sensitivity Pulse Compression Scan Rate Mechanical Electronic Carrier Frequency Antenna aperture

Radar Receiver Performance Factors

Signal Reception Signal-to-Noise Ratio Receiver Bandwidth Receiver Sensitivity

Signal Reception

- Only a minute portion of the RF is reflected off the target.
- Only a fraction of that returns to the antenna.
- The weaker the signal that the receiver can process, the greater the effective range.

Signal-to-Noise Ratio

Measured in dB!!!!! Ability to recognize target in random noise.

- Noise is always present.
- At some range, noise is greater that target's return.

Noise sets the absolute lower limit of the unit's sensitivity.

Threshold level used to remove excess noise.

Receiver Bandwidth

The frequency range the receiver can process

- **Receiver must process many frequencies**
 - Pulse are generated by summation of sine waves of various frequencies.
 - Must receive with frequency shifts from Doppler

Reducing the bandwidth

- Increases the signal-to-noise ratio-less broadband component (good)
- Distorts the transmitted pulse(bad)

Receiver Sensitivity

Smallest return signal that is discernible against the noise background

mW range

An important factor in determining the unit's maximum range

Lowest return strength that can be detected is denoted S_{min} or <u>Min. Detectable</u> <u>Signal</u>

Pulse Effects on Radar Performance

> Pulse Shape Pulse Width Pulse Compression Pulse Power

Pulse Shape

Determines range accuracy and minimum and maximum range. Ideally we want a pulse with vertical leading and trailing edges. Very clear signal – easily discerned when listening for the echo Some receivers reduce rain clutter on displays by discarding pulses that do not change rapidly

Pulse Width

Determines the range resolution. Determines the minimum detection range $Rh_{min, unambig} = (c PW) / 2$ Can also determine the maximum range of radar. The narrower the pulse, the better the range resolution.

Pulse Compression

Increases frequency of the wave within the pulse.

Allows for good range resolution while packing enough power to provide a large maximum range.

Pulse Power

The means to get the signal out a long way.

- High peak power desirable to achieve maximum ranges.
- Low power results in more compact radar units with less power required to operate.

Average power is the time-averaged transmission power for a pulse radar Duty cycle- the ratio of peak power to average power for pulsed radar DC= PW / PRT= P_{ave} / P_{peak}

Other Factors Affecting Performance

Scan Rate and Beam Width Narrow beam require slower antenna rotation rate **Pulse Repetition Frequency** Determines radar's maximum range(tactical factor) Rh_{max}= (c PRT) / 2

Carrier Frequency

Determines antenna size, beam directivity and target size.

Radar Cross-section (α)

Radar Cross Section (What radar can see(reflect)) **Function of target:** Size shape Material Aspect Carrier frequency

Theoretical Maximum Range Equation

 $Rh_{max} = [P_t G \sigma A_e]^{1/4} / [(4\pi)^2 S_{min}]^{1/4}$

P_t= Transmitted power

G= Antenna gain (function of beamforming efficiency & power efficiency)

A_e= aperture (receive area of antenna)

Summary of Factors and Compromises

Summary of Factors and Compromises

<u>Factor</u>	Desired	<u>Why</u>	Trade-off Required
Pulse Shape	Sharp a rise as possible Tall as possible	Better range accuracy More power /longer range	Require infinite bandwidth, more complex Requires larger equipment/more power
Pulse Width	Short as possible	Closer minimum range More accurate range	Reduces maximum range
Pulse Repetition Freq.	Short	Better range accuracy Better angular resolution Better detection probability	Reduces maximum range
Pulse Compression	Uses technique	Greater range Shorter minimum range	More complex circuitry
Power	More	Greater maximum range	Requires larger equipment & power
Beam Width	Narrow	Greater angular accuracy	Slow antenna rate, Detection time
Carrier Frequency	High	Greater target resolution Detects smaller targets Smaller equipment	Reduces maximum range
Receiver Sensitivity	High	Maximizes detection range	More complex equipment
Receiver Bandwidth	Narrow	Better signal-to-noise ratio	Distorts pulse shape

Types of Radar Output Displays A Scan (amplitude v. range) Used for gunfire control Accurate Range information B Scan Used for airborne fire control

Range and Bearing, forward looking

E Scan

Used for Altitude

PPI

Most common type Used for surface search and navigation Displays target bearing and range

Specific Types of Radar

Pulse Doppler

- Carrier wave frequency of return compared with that of orignal pulse in mixer to detect moving targets.
 - Gives bearing, range, and relative motion.
 - Limited by blind speeds- occurs when range changes by $\frac{1}{2} \lambda$ from pulse to pulse.
- Frequency Agile Systems Difficult to jam.

Specific Radar Types

Moving Target Indicator (MTI) System

Signals compared with previous return to enhance moving targets. (search radars)

Stationary targets exhibit no phase shift and can be cancelled in a component known as a canceller.

Moving radar receivers send the platforms speed as a correction to the phase comparator.

FMCW Radar

Uses FM pulse to determine range in CW system

> Use for radar altimeters and missile guidance. Rh= (cT Δ f) / (2(f₂-f₁)

Figure 9-4. FMCW theory of operation.

