

Fig. 3—1 R12O6XXIR121OXX

SECTION 4 TECHNICAL DESCRIPTION

4~1 GENERAL

The theory of operation for the Radar Set R12O6XX and R121OXX is presented here with descriptions following the functional block diagram circuits.

The schematic diagrams for each electronic subassembly together with the component parts layout for each assembly and parts list are contained within SECTION 6 of this manual.

4.2 ANTENNA UNIT

The antenna unit consists of the RF radiator housed in a separate array assembly and coupled to a rotary joint assembly on the pedestal housing. The radiato~. rotating mechanism, antenna motor/encoder assembly, bearing reset circuitry transmitter and receiver modules are all mounted within the pedestal housing. The Functional Block Diagram for the Antenna unit is shown in Fig. 4-2.

4.2.1 **RADIATOR**

The purpose of the RF radiator is to shape the main transmitted beam of the radar during the transmission phase of the radar's operating cycle and to receive any incoming echo pulses during the receive portion of the cycle.

The radiator is a horizontally polarized, non—resonant, end fed slotted waveguide array. The radiator either 4 foot or 6 foot in length is coupled to the transmitter and the receiver through a short waveguide section a rotary joint and a circulator assembly.

Electrically, the array produces a horizontal beamwidth either of 2 for the 4' array or 1.2 for the 6' array at the half power points with a vertical beamwidth of 30 or 25 respectively. The direction of the beam (maximum radiated power) is essentially perpendicular to the face of the radiator. Within +1-10 of this main beam, the side lobes are reduced by greater than -23 dB. Outside of this area, the sidelobes are reduced by more than -26 dB.

The array is typically rotated at 24 rpm by the antenna motor—encoder assembly though the gear reduction assembly.

Fig. 4-1 RADIATOR

4.2.2 RADIATOR ROTATING MECHANISM

The antenna drive mechanism consists of a 10 VDC motor and a gear reducer assembly. The DC operating power for the motor is supplied from the ship's DC power via the interunit cable through the antenna motor power supply control circuit. When the Radar is turned to the X—MIT condition, the motor drives the gear reducer assembly through a 5.6:1 ratio to provide the antenna rotation of approximately 24 rpm.


This electrical/mechanical assembly is designed to maintain the antennas rotation in wind speeds up to 100 knots.

4.2.3 MOTOR-ENCODER

The antenna motor also includes a pulse encoder as part of its assembly. The encoder section produces the bearing pulses for display sweep generation, transmitter triggering, and rotation synchronization. A bearing sync pulse is generated every 0.176 degrees of rotation or 2048 pulses per each rotation at 5V amplitude. These pulses (BP) are sent down to the Bearing Pulse circuitry in the display unit via TB102 –BP.

4.2.4 BEARING RESET CIRCUIT

The Bearing Reference Generator circuit, also known as the ship's heading marker circuit, produces a 5V signal each time a shutter mounted directly on the main gearing breaks the light path of the LED to the photocoupler. CD1 is mounted on the Reference Generator PCB (CCJ – 73). This output pulse is used to synchronize the bearing of the display sweep line with the scanner rotation.

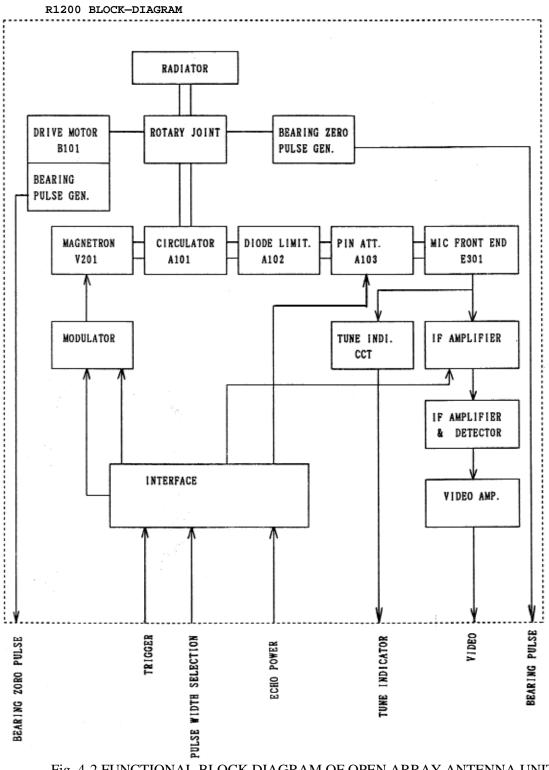


Fig. 4-2 FUNCTIONAL BLOCK DIAGRAM OF OPEN ARRAY ANTENNA UNIT

4.3 TRANSMITTER UNIT

The transmitter consists of the solid state modulator circuits, the 6kW or 10kW magnetron, and the Power Supply.

A solid state type pulse design is used by the modulator and primarily consists of a pulse generator circuit, power MOSFET switch, and pulse transformer.

When setting the X— MIT/OFF key on the indicator control panel at the display unit to ON, the transmitter trigger pulse is sent via the interunit cable from the transmit trigger generator circuit

in the display unit to the modulator.

Generally the pulse width of the pulse generator circuit is controlled by the range key selections on the indicator front panel. Four different pulse lengths:

 $0.08 \sim u \sec 0.4 / 2 \sec 0.8 \sim u \sec and 1.2 / 2 \sec (in accordance with the range scale or menu selections) are provided. The Pulse Repetition Frequency (PRF) changes automatically to match the selected operating pulse length (See Table$

4—i).

Upon receiving the positive trigger pulse at its gate, TR7 and TR8 conduct and the charged voltage across capacitors C2 and C3, is immediately discharged through TR7, TR8 and the primary winding of the pulse transformer Ti. Consequently, the pulse in the primary winding of the pulse transformer Ti, is stepped up by more than 10 times by the Ti secondary ~ winding to drive the cathode of the magnetron. The peak pulse voltage on the primary of Ti is -360V, and on the secondary -4.5kV at 6kW output, -5.5kV at 10kW output.

TABLE 4-i RANGE, PULSE LENGTH, AND PRF RELATIONSHIPS R1210XX TYPE

K1210AA 111L		
Range	Pulse Length	PRF
0.125, 0.25, 0.5, 0.75, i.5NM	0.08 /.z s	2000Hz
3, 6NM	0.4 /.L s	i500Hz
12, 24NM	0.8 ~u s	750Hz
48, [72]*NM	1.2 /.L s	500Hz

4.4 RECEIVER UNIT

The receiver unit consists of the passive Diode Limiter, the PIN Attenuator, the MIC Front End, and the Receiver IF PCB (CAE — 323).

The PIN Attenuator includes a PIN diode which limits the RF microwave power in accordance with control current. The current is driven by the control circuit located on the scanner Control PCB (CCB—452).

The MIC Front End (E30i) device consists of low-noise RF amplifier, a double

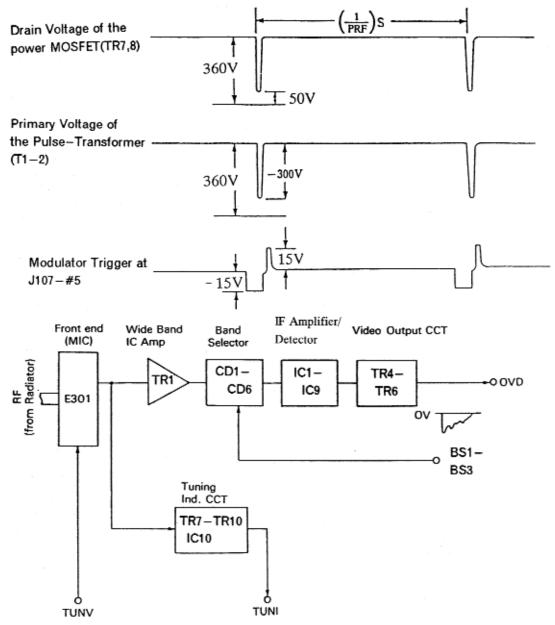
balanced mixer, and the local oscillator. The received radar echo signals at 9410 MHz are first amplified in the low – noise RF amplifier. The signals are then sent into the double balanced mixer of the MIC. The MIC Local Oscillator is tuned by the adjustment of the operator's Tune control on the display unit front panel to be 60MHz higher than the magnetron's operating frequency for maximum target detection. The output is fed into the double balanced mixer. The balanced mixer output of 60 MHz echo signals is then coupled into the 60MHz IF amplifier.

Receiver PCB (PC3O1:CAE-323)

The Receiver PCB contains *the* 60MHz IF amplifier, bandwidth control circuits, video detector, tune circuitry and the video output circuitry.

IF Amplifier Circuit

The IF amplifier consists *cf* low noise amplifier TRi, and bandwidth selector circuits CDi through CD6.


Th€bandwidth selectors ar~ controlled by voltages supplied from 1C7 located on the ~(B .452 Scanner Control PCB The voltage enables components to be a(tiv ~ted in the amplifier cm i ut ~() the receiver has a 20MHz, 6MHz or a 3MHz bandwidth characteristic. The selection of bandwidth depends on the pulse length ~ selector signal (PW) from th~ ~ Display Unit which will be determined by the range in use.

When no pulse length signal is present at CCB —452 Scanner Control PCB , ICi will be OFF and the gates A, B, and C of IC6 will be H. In this condition, the pulse length in operation is 0.08 /2 s and the bandwidth of the receiver is widened to 20MHz. When the pulse length signal is other 0.08 \sim U 5, gates of ICi will be turned On . When the input A of 1C6 is H, the bandwidth will become 6MHz. When the input B and C of 1C6 are H, the bandwidth will become narrow at 3MHz.

Video Detector Circuit

ICi through 1C9 at CAE--323 operate as logarithmic amplifiers and video detector to remove the 60MHz IF component from the incoming signals. The negative going signals appear across R36 where the IF component is removed by filter R32, Li3, C4i and C42. The detected signals, now at video frequency rates, are sent to the video output circuit

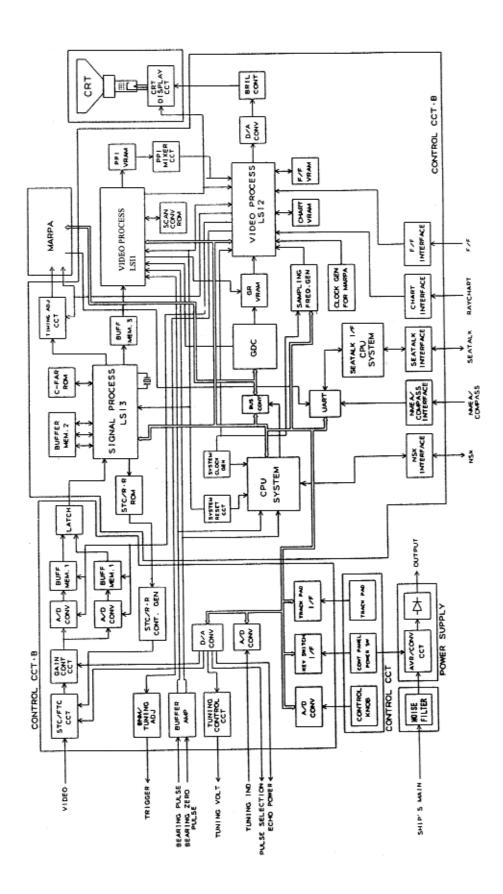
Video Output Circuit

The video output circuit at CAE $_{-323}$ consists of emitter follower TR4, TR5 and TR6. The emitter follower operates strictly as an impedance transformer to drive the 50 ohms coaxial cable which carries the video signal to the display unit. The video signal is shown in Fig. 4—4.

Tuning Indication Circuit

The tuning indicator circuit at CAE —323 consists of amplifier TR8 and TR9, detector TRiO, and emitter follower TRiO. TRiO discharges C77 to the detected signal voltage. This voltage is sent to the display unit as a tuning indication voltage via buffer amplifier ICiO. The range of the tuning indication voltage varies normally between +4V (detuned) and —0.7V (peaked tuning in long pulse). SCANNER CONTROL UNIT (CCB-452)

ATT Driver Circuit


The PIN Attenuator driver 1C7, TR6, TR12 is controlled with DC bias (EPWR) and Main Bang Suppression (MBS) trigger, via TRi2.

This circuit will drive the PIN Diode to control the microwave power fed to the MIC in the receiver unit (to desired level). These levels are controlled to i/i, i,2, 1/4, 1110 of the peak output power, and MBS will always be applied.

Motor Control Circuit

This circuit will drive the scanner motor for constant rotation of the antenna array. After the TX switch on the display unit is set to ${}_{x}$ —MIT , the MC signal (about +7V), is fed to this circuit. The IC9 ${}_{a}$ ICi2 are active, and TRii will go to ON. The motor will start to rotate and generate the Bearing pulses BP. IC9 and IC10 detect the BP frequency. Variations are sent to ICi2 to control the scanner rotation for a constant BP frequency.

Fig. 4-5 DISPLAY UNIT FUNCTIONAL BLOCK DIAGRAM

4.5 DISPLAY UNIT

The display unit normally contains the Main Control PCB including the Seatalk Interface circuit, the Power Supply PCB, the Power Filter PCB, MARPA PCB, the CRT and the CRT Display Control PCB, and the Control Panel PCBs. If separately ordered, the display may also include the optional NSK PCB.

4.5.1 SIMPLIFIED BLOCK DIAGRAM

Fig. 4 – 5 shows the fundamental circuits of the display unit in a simplified functional block diagram. Most system operations within the display unit occur primarily on the Main Control PCBs (CMC—786, CMC—843). It is on these PCBs that most of the signal processing takes place. The following is a brief description of the main circuit functions of the display unit.

4.5.2 MAIN CONTROL PCBS

4.5.2.1 VI DEO I NPUT CIRCUITRY(CMC-843)

The incoming video signals from the receiver in the scanner are first routed through the GAIN and STC circuit components consisting of TRi, TR2 and TR3. The GAIN signal is fed from 1C3, the STC signal is fed from IC4, IC5 and ICi7 and Rain Rate signal is fed from 1C3, IC6 and ICi8 generated by IC47 in CMC –786. The IC17, ICi8, Ri08 and Ri09 are D/A converters. The data of these ICs are supplied from PROM 1C47. Next stage, video signals are passed through the FTC circuit consisting of CD6, CD7, R29 and R30.

The diode CD6 and CD7 are controlled by the voltage supplied from IC7 which is determined by the front panel RAIN CLUTTER control. Maximum FTC occurs when the voltage level at CD6/CD7 cathode is about 3VDC.

4.5.2.2 AID CONVERTER(CMC-843)

The A/D converter changes the incoming video signal from analog video signals into 8 bit digital signals. The A/D converter consists of ICi2 -ICi3. Since the conversion must occur at high speed, two A/D converter ICs are used. The digitized video output is then sent to ICi4 to ICi5 the Video buffer memory.

4.5.2.3 BUFFER MEMORY(CMC-843)

ICi4 and ICi5 are buffer memories capable of 2K word x 8 bit dual port input data and output data handling. The buffer memories are used to temporarily store the digitized video input signals according to the clock timing for the range scales in use for the video processor.

4.5.2.4 LSI1(IC60) & LSI2(IC78)/VIDEO MIXER, SAMPLING CLOCK GENERATOR(CMC-786)

The LSI1(IC6O) receive the Bearing Pulse signal (BP) generated by the antenna motor/encoder assembly to synchronize the timing of the scan converter and to control the various cldck inputs and outputs for the video memory and display. When the bearing pulses are received, 1C60 generates the system trigger at TIYLOU and is sent over to LS2(1C78). 1C78 also generates the radar transmit pre—trigger at TffL2. This trigger signal is sent over to IC11 where the 0 – NM delay timing adjustment is applied. The outputs at ICii provide complimentary drive signals to TRi2 and TRi3. These amplifiers boost the output transmit trigger (TRIG) level to +i2VDC in amplitude.

The Sampling Clock Generators consist of VCO (Voltage Cont:olled Oscillator), along with 1C83 and 1C84. The VCO operates from 23 MHz t 55 MHz. This is the reason the Variable Range Scale is stepped by 1/2, i/3, i/6 each range scale. Totally R1200XX series radar has 0.i25, 0.25, 0.375, 0.5, 0.75, i, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8, 9, iO, i2, 14, 16, 18, 20, 24, 28, 32, 36, 40, 48, 56, 64, 72 NM. R1206XX has 33 range scales, and

R12iOXX has 36 ranges.

The LSIi and LSI2 can perform additional processing functions on the video signal when activated in menu. They are:Wakes Processing, Zoom Processing, Target Expander Processing, true motion and signal integration.

The Expander Processing is performed by extending by the target digital video pulse length up to 8 additional digital video cells whenever target expansion is enabled in the menu.

4.5.2.5 LSI3IVIDEO PROCESSOR o

The interference rejection processing is performed by LSI3 comparing the bit—by—bit content of the digital video stored from each successive radar transmission whenever the JR function is enabled by the operator.

The sampling clock oscillators generate the frequencies necessary to create the various signals including those used for controlling the processing of the digital video signals into the memories.

4.5.2.6 **VIDEO MEMORY(CMC-786)**

The start of the data readout of the video buffer memory is triggered on the trailing edge of the Bearing Pulse from the scanner unit. This clock is used for

data processing in LSI1. The processed video which has passed through LSI1 is now transferred to the video memory IC61 through IC64.

These ICs are VRAM consisting of 512 X 5i2 X 8 memory planes which are used to produce the video picture (including wakes) data.

The address signals used to write into and read out of the video memory are generated in LSi 1. The output data from the video memory is entered into LSI2(1C78), the video signal mixer/processor.

4.5.2.7 CONTROL PCBs

The XX series radars use two separate Keypad Control PCB assemblies to activate the radar system and control its functions. These Keypad Control PCBs interface directly into the Main Control PCBs via connectors J4ii and J4i2 to 1C37 and path through the I/O port JC25 – JC26 and the CPU.

Panel B contains 2 of the 20 key switches used by radar. PC403, on the right side of the front panel A, contains the remaining 18 key switches and the four variable controls for the TUNE, GAIN, FTC and STC. Each panel includes LEDs for backlighting the keyboard panels and the LED intensity can be controlled in 8 levels of brightness by the menu selection via the DIM line. The operating voltage for the LEDs originates at IC3i and IC36 on the Main PCB.

4.5.2.8 CPU & GCM (GRAPHIC CONTROL MEMORY)

This radar uses an i6bit CPU (IC1), and a Graphic Display Controller (IC27) to principally control the graphic system of the on—screen display of VRM, EBL, Bearing Scale, Range Markers, and other graphic characters. The CPU receives operating instructions from the 2Mbit EPROM in IC10 and system setting stores data in the i28Kbits of RAM available in ICii. The RAM memory has a battery backup through CD2 so that the settings of Range, EBL, VRM, EXP, and JR will be maintained in memory after each shutdown of power.

The GDC (Graphic Display Controller) paints the various character data, VRM, EBL, Range marker, etc. under direction of the CPU ~ to graphic VRAM memories JC34 – JC4O.

4.5.2.9 VIDEO OUTPUT O

In JC78, data which has been written into the Video Mixer/Processor by the range and sample clock timing signals will now be read out to the CRT monitor in raster scan timing;that is, the

Horizontal frequency of 24KHz and 60Hz Vertical frequency.

The 3 bit digital video signals are reconverted into analog video signals having **8** levels and outputted to the buffer amplifier TR6. The graphic data is also mixed in 1C78. When the brilliance control is changed, the brilliance control signal is outputted from D/A converter IC3i at CMC – 843A and applied to IC85. The CRT brilliance will be varied in 8 steps. The combined video signals (radar targets and display graphics) along with the horizontal (HS) and vertical (VS) synchronization signals are sent to the monitor display. When the Power Save mode is operated, the SAVE signal is applied to the monitor display too.

4.5.2.10 DISPLAY **MONITOR**

The Display monitor receives its operating supply voltage from the +25VDC supplied by the Power Supply PCB. The video signal is sent to TRi through TR5 amplifiers before coupling to the CRT cathode. RV1 sets the contrast level of the video for the CRT.

The horizontal sync signal operates the horizontal oscillator IC1. The oscillator provides the drive to run the HV flyback transformer and generate the operating voltages for the CRT as well as the horizontal deflection coil.

The vertical sync signal operates the Vertical oscillator IC2. The oscillator output at VOUT drives the vertical deflection coil.

Traditional adjustments are provided to set the focus, CRT brightness, vertical hold, size, and linearity, horizontal hold, and the video contrast.

The CRT is mounted and arranged in the - portrait - mode in the XX radar. Therefore, the horizontal adjustments will effect the vertical picture and vice - versa, the vertical adjustments will effect the horizontal aspects of the picture.

4.5.3 **OPTIONAL INPUTS**

The XX Series radars can receive various input signals from Navaids, Flux Sensors, Fishflnders, Raychart Units, and Seatalk Data networks. The inputs from the Raytheon V850 and V80i0 Fishflnders and from the Raychart Units are digital video and the horizontal/vertical sync signals to drive the XX display. The Inputs from Seatalk, the flux sensor, and Navaids will be digital data conforming to the NMEA 0i83, JRC serial, or Seatalk formats to drive various radar features such as Waypoint Mode or the MARPA.

If more than one data type is present at the radar inputs (for example; flux sensor and NMEA, or NMEA and Seatalk) a system priority has been established in the radar's software to respond to the inputs in driving the features. The assigned priorities are set in this manner:

HEADING:	 i. GYRO/LOG Data (CMJ—3041304A including the kit of MDLWiO664) 2. Flux Sensor (NMEA0183"HDG, HDM, VHW, MDT' sentence) 3. Seatalk Data (Heading via Autopilot compass) 4. Navaid Data (NMEA 0183 -RMC, RMA, VTG -sentences)
POSITION:	1. Navaid Data (NMEA 0183 RMC, RMA, GLL, GTD" sentences) 2. Seatalk Data
SPEED:	 i. GYRO/LOG Data (CMJ—304/304A including the kit of MDLWiO664) 2. Navaid Data (NMEA 0183 -RMC, RMA, VTG, JRC FORMAT" sentences) 3. Seatalk Data

WAYPOINT: i. Navaid Data (NMEA 0i83 - RMB, BWC - sentences) 2. Seatalk Data

SEATALK: i. Seatalk Data only

The NAVAID input is connected at J403 pins 1 and 2. The signal is coupled via J409 to ICiO6 (Optical Isolator), to Inverters ICiO2, to the UART 1C92, and finally to the CPU IC1.

The HEADING data input essentially follows a similar route. The signal is connected at J403 Pins 3 and 4, coupled via J409 to ICiO7 (Optical Isolator), Invertors ICiO2, to the UART IC92, and finally to the CPU ICi.

The SEATALK bus provides two—way communication of navigation data between units connected to the bus. The radar can receive External Cursor inputs or Route Plan information, in addition to position, course, heading, speed and other navigation data.

The path for input of Seatalk data is via J405 Pins 2 and 3 to the Seatalk Interface part of CMC-786. This part converts the incoming Seatalk data into NMEA 0183 to feed 1C91, and consists of 1C96 (CPU), 1C97 (ROM)

and 1C98 (RAM).

The video inputs from Raychart at J406 and the V850/80i0 Color Fishfinders at J404 is routed via J409 to the JC108 through ICiii buffer amplifiers and then into the Video Mixer/Processor JC78.

The flshfinder video appears only in the PIP (picture in picture/window) mode.

The Raychart video can appear in either a full screen presentation mode or in <u>PIP</u> (window) mode. The CSEL signal, produced from operation of the Raychart \sim CHT ON \simeq key on the Raychart controller unit determines which chart display mode is to be used at CPU IC 1.

4.5.4 POWER SUPPLY (CBD-1296)

The Power Supply converts the ship's DC input voltage to the necessary DC voltages to operate the radar system. These output voltages include regulated +25VDC, +15VDC, -15VDC, +5VDC, +3OVDC and +36OVDC.

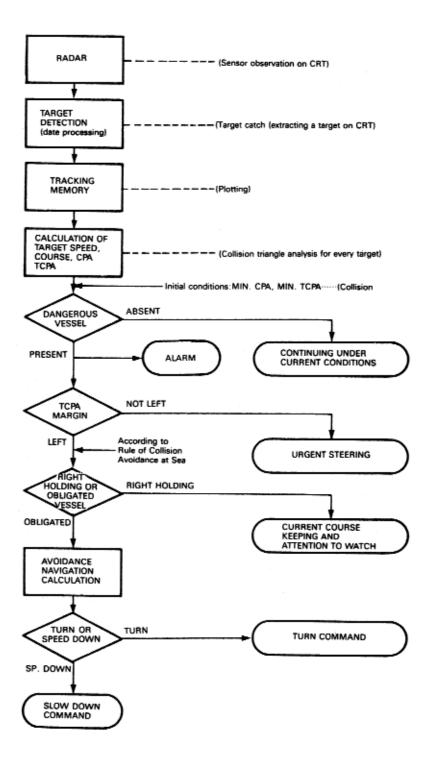
The power supply can begin operation when the \sim STBY/OFF \sim switch is pressed on the Control PCB. The STBY signal toggles 1C3 – ii output and TR6 <u>conducts</u>. This enables the Vcc supply to the AVR converter circuit. When the \sim X— <u>MIT/OFF</u> \sim key is ~ pressed, 1C4 – 13 operates TRiO and TRi5 to enable the OPE output.

The AVR consists of IC1, IC2, as well as TR1 and TR2. IC2 controls the switching of the power FETs TR3 and TR4. Sensing of the AVR output occurs from the output of +5VDC line, sampled via RVi, compared at 1C7 and controlled via ICi $_{-6}$ to the AVR. RVi is normally set by monitoring the +5VDC output at TP2 and adjusting for +5VDC, $\pm 0.iVDC$.

When both the $\frac{BY/O-1}{I}$ and $\frac{I}{XMIT/OFFJ}$ keys are pressed together, IC3 resets 1C4 output and shut off the Vcc from the AVR ICi. This will turn the power supply and the radar system to OFF.

4.5.5 MARPA PCB(CDC-826)

When the MARPA is used in the radar display, acquisition and track calculations of the targets movement are performed and can provide predictions of the targets course, speed and CPA and TCPA to own ship if essential data input to the MARPA unit.


Necessary inputs to the MARPA include:

Magnetic or True Heading Data Speed of Own Ship data Target Video Bearing Pulse data SHM data

The Heading data and speed of own ship are ordinarily provided by the NSK unit, NMEA or Seatalk inputs to the radar, while the target video, bearing pulse data and SHM signals are available in the display unit.

The MARPA outputs include video symbol and vector data, graphic calculation data, buzzer activate command.

Fig. 4—8 MARPA LOGIC

SECTION 5 MAINTENANCE

5.1 GENERAL

The purpose of this section is to provide servicing instructions to the service technician. The XX—Series Radar is designed to provide long periods of trouble—free operation, however it is recognized that environmental and other factors may result in a need for occasional service. Warning

This radar equipment contains high voltage. Adjustments require specialized service procedures and tools only available to qualified service technicians, and there are no user serviceable parts or adjustments. The operator should never remove the radar unit cover nor attempt to service this equipment. For technicians servicing this equipment, it is important that you comply with all safety precautions set forth in this manual.

5.1.1 **PRODUCT AND CUSTOMER SERVICE**

In the event that your XX—Series Radar is in need of service, the dealer from whom the radar was purchased, or an authorized Raytheon dealer should be contacted for assistance. The authorized Raytheon dealer is best equipped to handle your inquiries. If, after contacting your dealer, you have further questions and require further assistance, you may contact Raytheon Marine Company directly at 1-800-539-5539.

WARNING

A mechanical hazard exists from the internal rotating gears of these antenna systems. Use extreme caution when working on or around these antenna systems. Always secure the radar power at the main breaker panel before attempting any work on the antenna system.

5.2 **PREVENTIVE MAINTENANCE**

Continuous satisfactory operation of the radar can depend on how well you take care of your equipment. These simple maintenance tips can save you time and money, and help you avoid premature equipment failure.

- i. Always keep the equipment as clean as possible. Remove dirt, dust, or water—spray from the display and antenna during boat clean up.
- 2. During routine ships maintenance, make a thorough inspection of the radar system including the following points:
 - a. Check all hardware for tightness.
 - b. Check for evidence of any corrosion of the scanner unit, display unit, or its cable and connectors. Clean as required.
 - c. Check the cable connections and terminal strip connections for cleanliness and tightness. Make sure the wiring is free from chafing or abrasions.

5.2.1 HIGH VOLTAGE ARC PREVENTION

High voltage components within the MTR assembly and the display unit must be kept clean and dust free to prevent the possibility of HV arcing. Diesel soot and dirt should be removed with a sash brush and dry cloth.

5.2.2 INSPECTION (MONTHLY INTERVALS)

During routine ships maintenance, make a thorough inspection of the radar system including the following items:

- 1. Check all hardware for tightness.
- 2. Check for evidence of any corrosion on the scanner unit/and display unit, or cable and connectors. Clean as required.
- 3. Check the cable connections and terminal strip connections for cleanliness and

tightness. Make sure the wiring is free from chafing or abrasions.

5.2.3 CLEANING (MONTHLY INTERVALS)

Wash the exterior of the pedestal and the display unit with a clean, soft, lint fresh water. array with fresh water. Clean the face of _free cloth slightly dampened with

WARNING

A mechanical hazard exists from the internal rotating gears of these antenna systems. Use extreme caution when working on or around these antenna systems. Always secure the radar power at the main breaker panel before attempting any work on the antenna system.

5.2.4 LUBRICATION

Pedestal should be lubricated every 6 months as follows.

Pedestal Lubrication (Semi – Annual Intervals)

- i. De—energize radar equipment at the main breaker panel.
- 2. Shut off pedestal safety switch.
- 3. Apply a general bearing grease compound, (Moly Kote 33, RMC *PiN* 981955— i), using a grease gun, through the grease cap located on the side of the array support bracket. Add grease until it begins to leak out of the seal below the array mounting bracket.
- 4. Turn on pedestal safety switch and operate radar system in order to verify proper operation.
- 5. Shut off pedestal safety switch and remove power from system.
- 6. Wipe up any excess grease or spillage.
- 7. Place pedestal safety switch to ON.
- 8. Reapply power to the radar equipment.

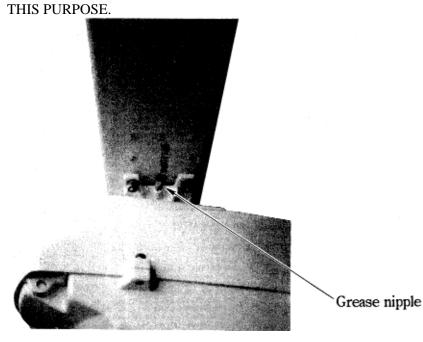
Pedestal Motor Gear Lubrication (Semi - Annual Intervals)

~ De—energize radar equipment at the main breaker panel and place

pedestal safety switch to OFF.

- 2. Remove antenna motor.
- 3. Apply general bearing grease compound, Moly Kote 33, (RMC P/N 981955—1) to motor gear and also internal antenna bull gear through motor mounting hole. Rotate antenna array in order to properly coat entire gear.
- 4. Reassemble antenna motor.
- 5. Place Pedestal safety switch to ON.
- 6. Reapply power to the radar equipment. Fig. 5—i PEDESTAL LUBRICATION

5.2.5 CONNECTOR MAINTENANCE


(SEMI-ANNUAL INTERVALS OR AS REQUIRED)

During installation and maintenance, it is recommended that Dow Corning Compound #4 silicone grease (RMC PiN 230—iOi4P5) be inserted inside the power and control cable connectors on the rear of the display unit. This silicone grease is an insulator and may be used to protect RF, power, and control connector pins from the corrosive effects of the marine environment.

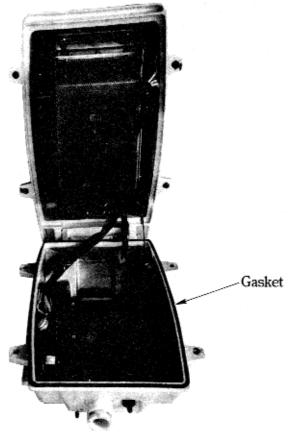
Carefully squeeze a small amount of DC $_-4$ compound inside the connector on the pins. Do not fill the entire connector cavity. When the connector is installed, the DC—4 compound seals out the air preventing any possibility of pin corrosion.

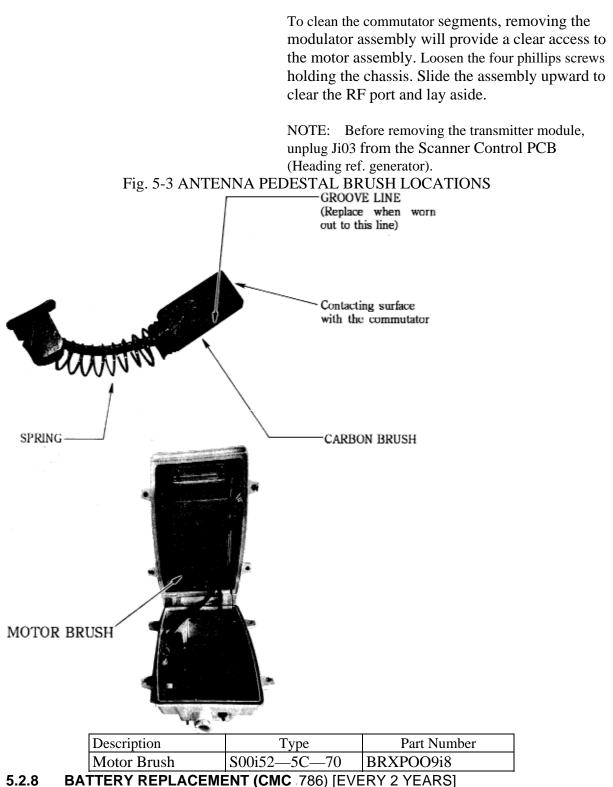
CAUTION

NEVER USE RTV OR SILICONE SEALANT WITHIN ELECTRICAL CONNECTORS. DC-4 COMPOUND IS SPECIFICALLY DESIGNED FOR

5.2.6 GASKET MAINTENANCE (SEMI-ANNUAL INTERVALS)

Every 6 months Pedestal gaskets should be carefully lubricated, using silicone grease (Dow Corning #4 RMCPiN23O— iOi4P5). The primary locations to lubricate with this grease are shown in figure 5.2.


Fig.5-2 GASKET LUBRICATION


5.2.7 ANTENNA PEDESTAL BRUSHES REPLACEMENT PROCEDURE (ANNUAL)

Part of the routine maintenance program should include a periodic inspection of the condition of the motor brushes and commutator segments after every 200 hours of use. The useful life of the brushes is approximately 3000 hours. The brushes should be replaced when they have worn to the groove located at one _half its length.

The commutator of the motor should be inspected for wear and cleaned of excess carbon buildup. To clean and polish the commutator segments, use a common pencil eraser.

In order to access the motor brushes, unscrew the four securing bolts around the pedestal housing and open the unit. Unscrew the two motor brush holders located on either side of the antenna motor and remove the brushes. Inspect for wear as shown, replace with new brushes if worn to line on the body of the brush as shown in the drawing.

The Lithium Battery (BT1) on the Main Control PCB (CMC –786) should be replaced every 2 years or as required when the voltage reaches 2.00 Vdc. The purpose of this onboard battery is to maintain certain memory functions such as the hour meter, last position of Range Rings, EBLs, VRMs, etc., when the radar is switched off. If the Display Unit does not return to the last used condition of those functions (i.e., Range, Range Rings, EBLs, VRMs, etc.) when the

unit was turned off, then the Lithium Battery (BT1) should be replaced per the following procedure. $_{\circ}$

1. De – energize the radar equipment by securing the input power to the Display Unit.

- 2.. Reriove the Display Unit interconnect cable and power cable.
- **a** Remove the Display Unit cover (10 screws) and the Main Control PCB (CMC 786) from the chassis.
- 4. With soldering iron and de –soldering tool remove battery BTi from the Main Control PCB. Use caution not to short out battery leads.
- 5. Install replacement lithium battery (P/N 5ZBAD00089) noting proper battery polarity.

Check that battery voltage is greater than $3.00 \pm .2$ Vdc. If less than 2.50 Vdc, the battery may not be used and should be replaced with new battery before voltage drops below 2.00 Vdc.

6. Replace Main Control PCB and rear cover.

5.2.9 CRT SURFACE CLEANING

The surface of the cathode –ray tube may, in time, accumulate a film of contaminants which tends to dim the picture.

Be sure Radar is "OFF", use glass cleaner and soft cloth or towels to clean CRT glass, key board, and display cabinet.

5.2.10 FUSE

A fuse seldom opens without some cause. Even if a fuse is merely replaced and does not blow again, it still may be necessary to make further checks of the circuits associated with the fuse.

TABLE 5 – 1 shows a table of fuses employed in the equipment.

Location	Part No.	Rating	Protective	Туре	Remarks
	Current	circuit			
DISPLAY	P401	10A	Scanner motor	Glass tube	10A dc 12V
DISPLAY	F401	6.3A	Scanner motor	Glass tube	6.3A dc 24V,32V
DISPLAY	F402	15A	All circuit	Glass tube	15A dc 12V
DISPLAY	F402	8A	All circuit	Glass tube	8A dc 24V,32V

TABLE 5—i FUSES USED

5.2.1 1 RECOMM EN DED TEST EQUI PMENT, TOOLS AND MATERIALS:

Table 5—2 Lists the test equipment, lubricants, and special tools that are useful in maintaining the radar system.

TABLE 5-2

Recommended Test Equipment, Tools, and Materials (Not Supplied) • or equivalent

1			
TEST EQUIPMENT			
Multimeter	i	*Simp~on	260
Digital Voltmeter	1	*Fluke	77
Oscilloscope	1	*Tektronix	335
Probe, Oscilloscope, iOX	2	*Tekfronix	P6105
Frequency Counter	1	*Fluke	i900A
Waveguide Termination Kit,			
X— Band [Dummy Load]	i	Raytheon	G26i472 —1
TOOLS			
Trimpot Adjustment Tool	2	Raytheon	i035670— i

Grease Gun	Grease Gun		*plews		30–	-121
MATERIALS	MATERIALS					
Grease, Gene	ral Bearing.					
Dow Coming	, Moly Kote 33	i	Raytheon		9819	955 _i
Grease, Silico	one Gasket					
Dow Coming	, DC4					
Compound		1	Raytheon		230—i	.Oi4P5
Grease, Sil	icone Lubrication		-			
GE-G6987		i	Raytheon	1	036383	3—i
NO _AL— O	X	1	Raytheon	10	035909 -	-1
Unit	Check item		Correct condition		Measurin	
to be checked					point	-
Scanner Unit	Scanner Unit a.Ships main Input volt		Refer to note	TB 102((M+ M	[—)
	b.Input voltage		+15VDC	TB101-	-(+15)	VDC
			—15VDC		-(15)	VDC
			+360VDC	TB101-	(+360)	VDC
	c.Mag.current		12VDC TB101 —		—(MO)	
	a.Input voltage		Refer to note	J401—1	—3	
Display Unit						
	b.AVR output voltage		5VDC	TP2—gi	round(PC5	O1)
	c.Observation of screen					
	sensitivity, Sweep length sweep					
	linearity, sweep center, ring and					
	illumination.					
	d. Check of the operating	g				
	controls					

Note: Allowable variation of input voltage, iO.8VDC-42VDC

5.3 **OPERATIONAL CHECKOUT**

Turn the radar on.

The clock will count down, showing the remaining warm—up time. After approximately 90 seconds, the unit will beep and ST— BY will be displayed on the CRT.

If you are unfamiliar with the operating controls of this radar, please take a few moments to familiarize yourself by reviewing the operating instructions found in Chapter 3 –Operation.

Press the ~ X-MJT ~ key and look for the presence of radar targets on the screen.

Checktheoperation of the \sim selection keys for each range scale. Observe that the sweep is the correct length and has the proper number of range rings. Observe that the \sim ON—SCREEN \sim characters are positioned and focused properly.

After approximately 10 minutes of operation, check the TUNE control for $_{\circ}$ maximum target returns occurring at the center of the TUNE control rotation.

If any readjustment of the Display Unit is required, check the instructions for alignment in the following sections or refer to the particular 5.4 – Alignment and Service.

TABLE 5-3 OPERATION CHECKLIST

5.3.1 **POST INSTALLATION SETUP ADJUSTMENTS**

Following the operational checks, two alignments A) and B) are normally required for proper operation. The procedure for performing these adjustments are found in 5.4.2.iO (Bearing) and 5.4.2.9 (Display Timing).

They are:

Other adjustments that may reQuire touchun include: All adjustments are made electronically using operations on the Initial Setting" menu.

5.3.2 TROUBLE-SHOOTING GUIDE

While the i2O6XX/12iOXX Radars are highly reliable systems, early signs and detection of component fatigue can sometimes be spotted during regular operational checks.

When a problem is observed, corrective service should be arranged to avoid failure at critical times at sea. In some cases, problems may be cleared by a system Master Reset.

5.3.3 MASTER RESET

The first step in attempting to clear any problem associated with the general operation of this radar is to perform a SOFT <u>MASTER RESET</u>. This is done by starting with the radar turned off. Press and hold the $\frac{1}{2}$ <u>RANGE</u> $A = \frac{1}{2}$ and $\frac{1}{2}$ <u>RANGE</u> $\frac{1}{2}$ and $\frac{1}{2}$ <u>RANGE</u> $\frac{1}{2}$ keys simultaneously. While holding these keys, press the STBY/OFF key to turn the radar on. The SOFT MASTER RESET will not reset the radar's initial settings (i.e. Bearing, STC, Tune, Timing,...).

A <u>HARD MASTER</u> RESET is performed in a similar manner. The <u>I</u> RANGE <u>A</u> <u>I</u> and <u>I</u> RANGE <u>V</u> <u>I</u> and the EBL keys</u> are pressed simultaneously as the unit is powered on with the <u>tSTBY/OFF</u> <u>I</u> key. This should be performed anytime a component or PCB within the radar is replaced. This function will clear the radar's RAM and initial settings returning the radar to factory settings.

It should be noted that micro components within the Radar are generally not field replaceable. Therefore, most repairs to the radar typically go to the PC board level only. A replacements parts list for the R12O6XX/R121OXX Radar systam can be found in Section 6.

A) Relative Bearing Adjustment	5.4.2.iO
B) Display Timing Adjustment	5.4.2.9
Video Circuit Adjustment	5.4.2.8
Antenna Height Selection	5.4.2.11
Interlace Adjustment	5.4.2.12
Buzzer Volume Adjustment ~	5.4.2.i3

REPLACEMENT ITEM	ADJUSTMENT REQUIRED	See Sect.#	
Magnetron V20i	Tuning	5.4.2.8	
MIC Frontend E30i	Tuning	5.4.2.8	
Cathode—ray tube V50i	Adjusting Centering Magnet	5.4.2.7	
Display PCB	Adjusting contrast Adjusting focus	5.4.2.2	
		5.4.2.3	
SHM Unit	Bearing Alignment	5.4.2.10	
CALIFICNI			

CAUTION:

In making any measurements or other checks, be alert to the high voltage points existing throughout the equipment.

5.4 ALIGNMENT AND SERVICE

Although the radar is delivered from the factory adjusted for optimum performance, it may be necessary to make adjustments after a major component has been replaced or if a fault is suspected during operation.

The alignments detailed in paragraphs 5.4.2.9 through 5.4.2.ii should normally be accomplished when the radar is installed and/or when necessary.

5.4.1 ANTENNA PEDESTAL RECEIVER ALIGNMENTS

The Antenna Pedestal Receiver alignments are normally not accomplished in the field due to the complexity and awkwardness of gaining access to the Receiver PCB. For the sake of completeness, however, we have provided the following Receiver alignment procedures.

NOTE

Do NOT adjust or attempt to adjust Li thru L8. These are factory adjustments only.

5.4.1.1 TUNE INDICATOR ADJUSTMENT

This adjustment matches the maximum tuning peak of Radar Video with the maximum tune bar deflection on the display. If both agree, this adjustment is not required.

1. Select the range scale 3NM above.

2. Adjust RV1 on the Receiver PCB(PC3O1) for the tuning level indication of 6 or 7 on CRT.

5.4.1.2 ~ FACTORY ADJUSTMENTS

It is important to note that the tuning coils located on the Receiver PCB are primarily used to adjust for proper narrow/medium/wideband operation. These components set the IF Amplifier bandwidth and general receiver sensitivity.

These adjustments require specialized test equipment and are normally set at the factory. No adjustment to the receiver tuned circuits should be performed

in the field.

5.4.2 DISPLAY ALIGNMENTS

HIGH VOLTAGE WARNING

Only qualified licensed service technicians should remove the equipment covers and service this equipment. This equipment contains High Voltage and requires specialized service procedures and tools only available to qualified licensed service technicians.

When aligning this equipment, all standard safety precautions must be followed.

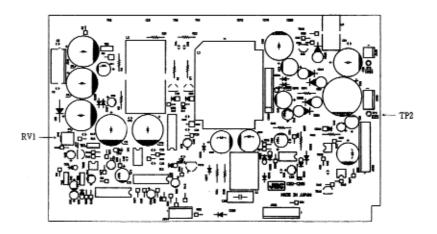
The following display alignment procedures are to be performed after corrective maintenance to assure proper operation or at any time system performance is not as specified.

Remove all power to the display unit.

Remove the 8 screws at the rear of the Display Unit and Lower the rear panel to gain access to the Power Supply PCB.

Figure 5—4 details the Power Supply PCB adjustment and Figure 5—5 shows the locations of the CRT monitor PCB adjustments.

5.4.2.1 DISPLAY AVR VOLTAGE ADJUSTMENT


Ihe tollowing adjustment correctly sets the values of the output voltages on the Display Power Supply PCB (CBD—i296). Refer to FIG. 5—5 below while performing these adjustments.

- 1. Reconnect power to the radar system
- 2. Place the positive lead of a OVM to TP2 and the negative lead to ground.

3. Adjust RVi so that reading on DVM is +5.i + 1 - .i VDC.

Fig. 5-4

4. Remove power and replace the display rear panel to its correct position.

5.4.2.2 CONTRAST ADJUSTMENT

- 1. Set front panel BRILLANCE to the maximum level.
- 2. Adjust RV1 on CRT Monitor PCB(PC405), so that PPI is of suitable brightness without losing sharp focus.

5.4.2.3 FOCUS ADJUSTMENT

Adjust RV7 on CRT Monitor PCB so that the range rings, EBL, and target video are clear and well defined \sim

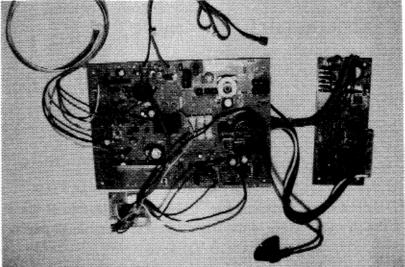
5.4.2.4 HORIZONTAL HOLD ADJUSTMENT

Adjust RV2 on CRT Monitor PCB so that horizontal screen is in sync.

5.4.2.5 HORIZONTAL SIZE/VERTICAL SIZE ADJUSTMENT

Adjust LV1 and RV5 on CRT Monitor PCB so that the rings are round.

NOTE


Use a ruler to adjust for equal diameters in the N/S and E/W radius.

5.4.2.6 **VERTICAL LINEARITY ADJUSTMENT** Adjust RV3 on CRT Monitor PCB so that the rings are round.

5.4.2.7 BEAM CENTERING ADJUSTMENT •

Rotate the two tabs simultaneously or individually so that the beam center coincides with the center of CRT.

Fig. 5-5 CRT MONITOR ADJUSTMENTS

5.4.2.8 1 NITIAL SETUP ADJUSTM ENTS

Before starting the initial adjustments verify the following control settings are in effect: --- PANEL

... MENU/DISPLAY OPTIONS ...

Press <u>~4~UJ</u>, ~A~Q/CNL~ and <u>rGUARDJ</u> keys simultaneously to get "INITIAL SETTING" menu. Use the trackpad to select the desired menu item and press ENTER~

1) Preadjustment

Adjust_the "Indicator Bar" level on the bottom of the screen as follows using the \underline{I}

RANGEA ANGEY keys.

2) <u>TUNEPRESET ADJUSTMENT</u>

Normal tuning of the radar should be indicated on the Radar Display by observing maximum target returns with the -TUNE -control at its mid scale position. If the maximum tune point is at the edge of the rotary adjustment, perform the following readjustment. After about iO minutes of operation:

®Set the radar to the 3NM range scale or above.

- © Set GAIN for normal noise level on the display.
- © Set TUNE control of the front panel at mid scale position.
- ® Select "TUNE PRESET" from "INITIAL SETTING".

®Adjust the "Indicator Bar" level on the bottom of the screen to get the clearest picture of the targets on searching the all region, using the RANGEZ and RANGEX keys.

® Press ENTER key.

	2		
Range Scale	: 24N	M.	
[TUNE] knob	: Cen	ter	
[RAIN CL] knob	: Full CO	CW	
[SEA CL] knob	: Full CO	CW	
[GAIN] knob	: Full CV	N	
- TUNE «	: MANU	AL	
«PROCESS «	: OFF		
rECHO PWR "	: FUI	L	
"ANTENNA HEI	GHT"	: 5-	lOm
"STC MAX LEV	/EL"	:	half (indicator bar level)
"GAIN MAX LEV	VEL"		: half (indicator bar level)
"COMPARATOR	SET"		: quarter (indicator bar
			level)

3) COMPARATOR SET ADJUSTMENT

This function determines the threshold voltage for quantitizing the received video <u>signal</u> <u>into</u> the <u>digital video</u> signal.

~:D Set <u>~ GAIN]</u> and <u>~ RAIN CL ~</u> knobs fully clockwise.

© Select -COMPARATOR SET -from -INITIAL SETTING -

©Adjust the <u>Indicator Bar - level</u> on the bottom of the screen with the <u>I-ANGE</u> and <u>IATGE~~J</u> keys. so that the level is three steps down just_before the noise base appears.

R Press <u>~ ENTER ~</u> key.

4) GAIN MAX LEVEL ADJUSTMENT

This function will determine the suitable Receiver Noise Level at maximum

gain. _____

- **C:D** Set [<u>~AI~1</u> knob and <u>~</u> knob fully clockwise.
- © Select "GAIN MAX LEVEL "from "INTIAL SETTING "
- © Check the output voltage of TP7 on main control (B) PCB CMC—843 using an oscilloscope.
- **(&** Adjust the -Indicator Bar -level on the bottom of the screen, so that the voltage_difference between the noise base level and the_suppression level by ~ SEA CL ~

control will be about 0.0SV, using \sim RANGE $4 \sim J$ and [iANGE 'V keys.

~ Press $\sim ENTER_1$ key.

5) STC MAX LEVEL ADJUSTMENT

The STC MAX controls how far out in range the STC gain ~ reduction should be effective.

- **C:D** Set $\underline{\text{AIN}}_{i}$ and $\underline{\text{SEA CL }}$ knobs fully clockwise.
- © Select STC MAX LEVEL from "INITIAL SETI'ING" menu.
- \bigcirc Adjust the Indicator Bar level on the bottom of the screen, so that the noise on the screen will disappear at 6NM, using g [iANGE **A** and ~ RANGEY ~ keys.
- R Press [~'ITER~ key.
- 6) READJUSTMENT
 - ~: D Readjust COMPARATOR SET
 - © Readjust TUNE PRESET".

5.4.2.9 DISPLAY TIMING ADJUSTMENT ("0" NM ALIGNMENT)

This is the radar timing adjustment to ensure that targets are at their proper range on the display unit. Display timing is most critical on the i/8NM range. i) Set the range at 0.125 NM.

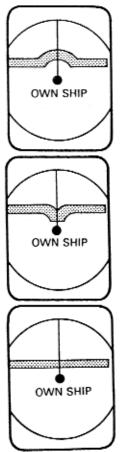
- 2) Locate a dock, seawall or bridge on the display. Observe whether the radar target <u>is straight</u> <u>on the display</u>. If <u>not</u>, <u>adjustment</u> is indicated.
- 3) Press <u>LMENi~i</u> + [<u>ACQ/CNL~</u> + <u>~UARDJ</u> for the Initial Setting menu. <u>Then select</u> DISPLAY TIMING with the Trackpad and press the

 $L \sim J_{key.}$

4) Adjustthe -<u>Indicator Bar -shown</u> in the lower part on the display using the [<u>RANGE Aj</u> / <u>rRANGE V ~ keys so</u> that the object appears to be straight on the display. Press the <u>~</u> <u>ENTER ~</u> key when setting is correct.
BANK PUSHING DISPLAY BANK PULLING DISPLAY NORMAL TIMING EARLY TIMING LATE

Fig. 5-60 NM ALIGNMENT

5.4.2.10 RELATIVE BEARING ADJUSTMENT


This alignment should be performed when the installation is complete to ensure that target

returns on your display appear at their proper bearing with respect to the ship's bow. Proceed as follows:

- Identify a suitable target (e.g., ship or buoy, etc.), preferably between i.5 and 3 NM in range on the screen.
- Using an accurate means other than the radar (visual means) establish the relative <u>bearing of</u> the target.
- 3) Press the <u>~ MENU ~</u> + [ACQ/CNL $\underline{1}$ + [GUARD~J key for the Initial Settings menu. Then select RELATIVE BEARING ADJ."
- 4) Put the EBL i marker on the selected target using the trackpad.
- 5) Press $\sim ENTER \sim$ key.

0

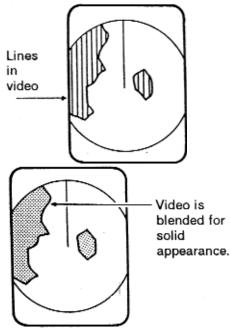
- 6) Now move the EBL 1 marker to the desired bearing for the target measured in Step <u>2 using</u> the trackpad again.
- 7) Press [<u>~NTER</u>]. The targets will now be repositioned as desired on screen.

5.4.2.11 ANTENNA HEIGHT SELECTION

This selection chooses a proper STC curve according to the vessels radar antenna height. Select the antenna height nearest to the value matching your antenna location above sea level.

The values are 0—5m, 5— i0m, iO—20m, over 20m.

- i. Press $LM \sim i \sim i + \underline{\sim} + \underline{\sim} GUARD \sim$ for the initial setting menu.
- 2. Select ANTENNA HEIGHT with the trackpad.
- 3. Select the <u>desired value</u> using the <u>~ RANGE A~</u> <u>~ RANGE V ~</u> keys.
- 4. $_{\circ}$ Press the <u>LENTER ~</u> key.


5.4.2.12 INTERLACE (SYNCHRONIZATION) ADJUSTMENT

This adjustment synchronizes the scanning line positions so that they are adjacent to each other. The ideal interlace adjustment occurs when there are no visible lines appearing in the video pattern. This is normally set at the factory and should not require field adjustment.

- 1. Select <u>~ MENU ~</u> + <u>LACQ/CN1~~ ~</u> + <u>~ GUARD~</u> for the initial <u>setting menu</u> and select <u>-INTERLACE ADJ</u> with the trackpad. Press <u>EI~TT~i</u>
- 2. <u>Adjust the <u>Indicator bar</u> shown in the lower part on the screen using the <u> \sim RANGE A</u></u>

 $\sim RANGE \sim$ keys so that no separation between the lines (Blends) can be seen. Press $\sim ENTER$] to end.

POOR INTERLACE SYNCNORMAL (INTERLACE PROPERLY ADJUSTED)

5.4.2.13 BUZZER VOLUME ADJUST

At the time of shipment, the Buzzer sound has been adjusted to the maximum position. To lower the volume, perform the following.

- 1) Select ~ <u>~ + ~ARDj</u> for the initial setting menu with the trackpad and press ENTER_~. Select BUZZER VOLUME.
- 2) Adjust the Indicator Bar shown in the lower part of the display using the <u>down key</u> for suitable buzzer sound level.
- 3) Press $\underline{-NT}\overline{-i}$ when finished.

5.4.3 FAULT FINDING PROCEDURES

Often the display on the CRT can help indicate which major circuit is at fault. It may be quicker to check –out the equipment according to the trouble shooting guide that follows (TABLE 5—4).

In general, the common causes of trouble frequently encountered include abnormal resistances, intermittent variable resistors, switches and relays.

In the following fault finding procedure, it is assumed that only a VOM is available; the use of an oscilloscope simplifies the procedures and may prove necessary in some cases.

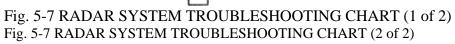
TABLE 5—4 is the trouble shooting guide and check—out procedure. TABLE 5 – 5 shows typical voltages and resistances at significant points throughout the equipment. The internal resistance of the voltmeter used in these measurements was $20k \sim / V dc$, 8 k 0 / V ac.

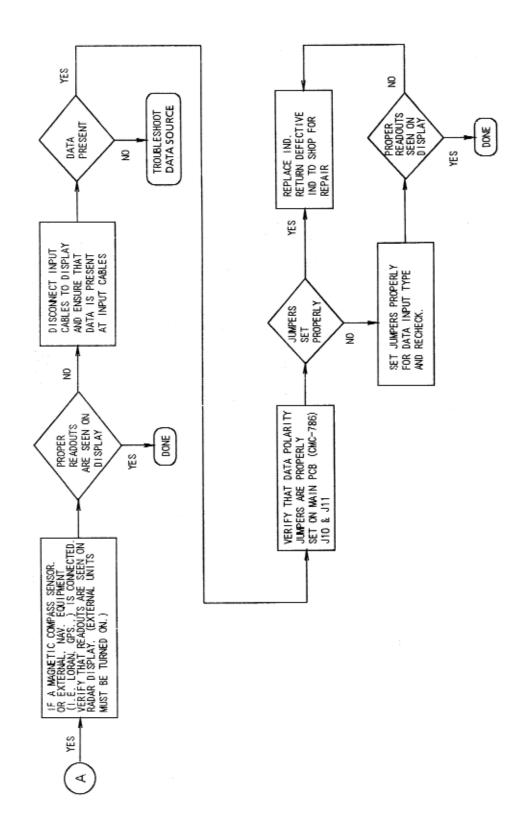
_

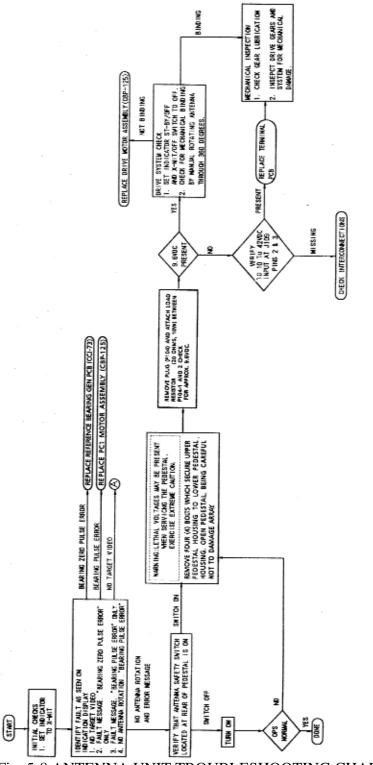
	Trouble	Remedy
1.	Does not POWER—UP.	Check:
		Blown fuse F402
		Check input power circuits.
		Faults of contact on PC404
		Faults of power supply circuit on PCSOi
		Faults of contact on connector of PC5Oi
		Faults of rectifier diodes on PC5Oi
2.	Scanner fails to rotate.	Check:
		Fault of SiOi. (Safety Switch OFF)
		Fault on contact on terminal boards.
		Fault of MiOi CBP—i25/BiOi.
		Fault of drive mechanism.
3		Fault of cdiinection between CBP— i25/BiOi
	rotation of sweep is	Check:
	abnormal.	Fault of encoder (BP/BZ)
		Fault of main circuit for the Display Unit.
4	No picture on the screen.	Fault of CRT display unit or its supply voltages.
		Check:
		Open heater of CRT.
	0	Fault of contact on CRT socket.
		Fault of contact on CRT cap.
		Fault of video circuit, and power save circuit.
5	Only horizontal line	There may be fault in vertical sweep generator,
	screen.	amplifier circuits and deflection coil.
		Check:
		Fault in vertical sweep generator, amplifier

 TABLE 5-4 TROUBLE SHOOTING GUIDE

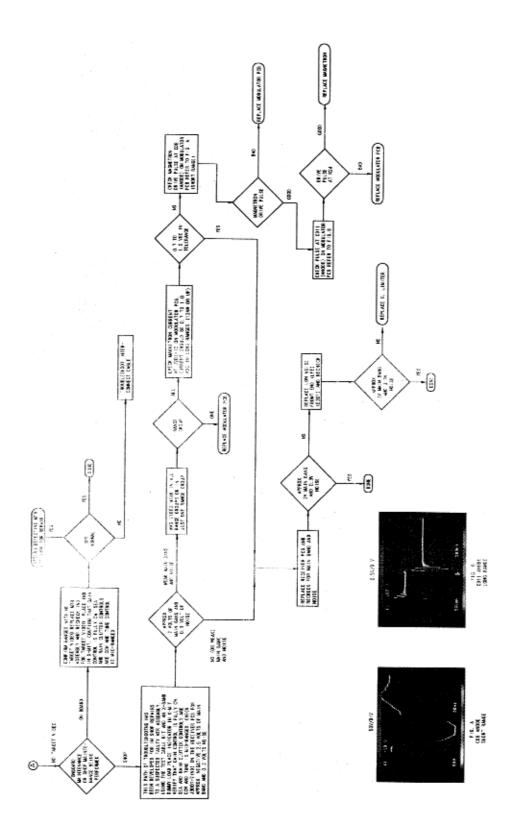
1	I	circuit.		
6.	Incorrect sweep	Adjust CENTERING MAGNET.		
0.	-	0		
	—Start of sweep is ~	Adjust horizontal or vertical hold.		
	not centered on the	Adjust vertical length and luiearity.		
	screen.	Adjust height as necessary		
_	-Markers are oval.			
7.	Range rings on the screen	Fault circuit between IF amplifier of receiver unit		
	but no noise and no	and input circuit of display unit video		
	echoes.	amplifier.		
		Check:		
		Fault of GAIN, STC control settings.		
		Fault of receiver unit.		
		Fault of contact on terminal boards and		
		connector.		
	Trouble	Remedy		
8.	Noise and range on the	If no transmission is present, check the		
0.	screen but no echoes.	modulator and magnetron.		
	sereen but no centes.	Check:		
		If transmission appears to be present as		
		indicated by the correct MAG.I reading on		
		Tester.		
		CQD-i248, TB1, MO ~ 12VDC		
		Failure of Local Oscillator tuning If		
		transmission appears to be present, carry out the		
		Local Oscillator tuning procedures and check the		
	~	MIC. Fault of the MIC Mixer.		
		If no transmission is present, ensure the		
	~	lead wire to magnetron is grounded to chassis.		
		Fault of magnetron.		
9.	Poor sensitivity. Dim	Check:		
	Echoes.	Reduction of transmitting output power. Fault of		
		magnetron.		
		~ Check of MAG.I reading on CQD—i248,		
		TB1,MO ~ i2VDC		
		Fault of MIC Frontend.		
		Fault of CRT.		
		Failure of Local Oscillator tuning.		
		Failure of FOCUS adjustment.		
		Failure of INTENSITY ADJ.		
		Fault of video amplifier circuit on		
		PC402.		
10	N VDV VDV	Fault of receiver unit.		
10.	No VRM or VRM cannot	Check:		
	be controlled.	Fault of PC403.		
		Fault of main circuit (PC4O1).		
ii.	NoEBLorEBL cannot be	Check:		
	controlled.	Fault of PC403.		
12.	No alarm rono mortor	Fault of main circuit (PC4Oi).		
12.	No alarm zone marker, cannot be controlled or no	Check: Fault of PC403.		
	alarm sound.	Fault of main circuit (PC4Oi)		
Maar	Puring Desistance			
Meas	suring Resistance	Voltage(v) FUNCTION		


Point	(C_)				
		0.i25.i.5	3.6	i2	
		(NM)	(NM)	(NM)	
TBiOi					
+360	44K	360	355	360	+360V
TRIG	100	0.09	0.06	0.05	Trigger
PW	12K	0	4.4	6.6	Pulse Width
+15	950	i5.4	15.4	15.5	+i5V
—is	ii.5K	—i6.7	—16.7	—i6.7	—iSV
EPWR	10K	0.4m	0.4m	0.4m	Reduce Power
MO .	234	65m	0.2m	O.2m	TX Monitor
xi	7.2	8.06	8.06	8.06	MAG. Heater
TBiO2					
VD	300	0.i3	—0.i3	0.13	Video
TNC	4.7K ~	i5.7	15.7	15.7	Tuning Volt
TNI	cx~	5~3	5.3	5.3	Tune Indicator
BP	0/ со	2.1	2.1	2.i	Bearing Pulse
BZ	0/~X'	5.i	5.i	5.i	Zero Pulse
MC	a~	6.0	6.0	6.0	
					Motor Control
M-	00				
		24.0	24.0	24.0	Ship's Power
M+	00				


SCANNER UNIT(Interunit Cable disconnected) DISPLAY UNIT(Interunit Cable disconnected)


DISPLAY UNIT(Interunit Cable disconnected)				
Resistance : (0)	FUNCTION			
44k	+360V			
100	TRIGGER			
12k	Pulse Width			
950	+i5V			
28k	—i5V			
234	TX Monitor			
7.2	MAG. Heater			
cx~	Video			
4.7k	Tuning Voltage			
cx~	Tuning Indicator			
00 ~	Bearin& Pulse Zero			
0/~	Pulse			
0/~	Motor Control			
со	~~			
со	j Ship's Power			
	J Ship S Fower			
со				
Resistance (~)				
0.i				
80 X iO				
0.				
1				
	$ \begin{array}{c} 44k \\ 100 \\ 12k \\ 950 \\ 28k \\ 234 \\ 7.2 \\ cx \\ 4.7k \\ cx \\ 00 \\ 0/ \\ 0/ \\ co \\ $			

	4	80 X iO
	5	0.
		1
0	6	5.6 X 10
	7	77 X iO
	8 9	0.i
		2i.6 X 10
	10	2 X 10
	ii	2 X 10
	12	$10 i2 X i0^3$
	13	X 106
	14	98 X iO iO^3
	15	16 X
	16i7	28 0. iø~
		1
		Х
	18	42 co $i0^5$
	19	$35 \text{ X } \text{i}0^3$
	20	$i2 X i0^2$
	21	$30 \text{ X} \text{ i}0^6$
	22	X
	23	0.i
	24	со



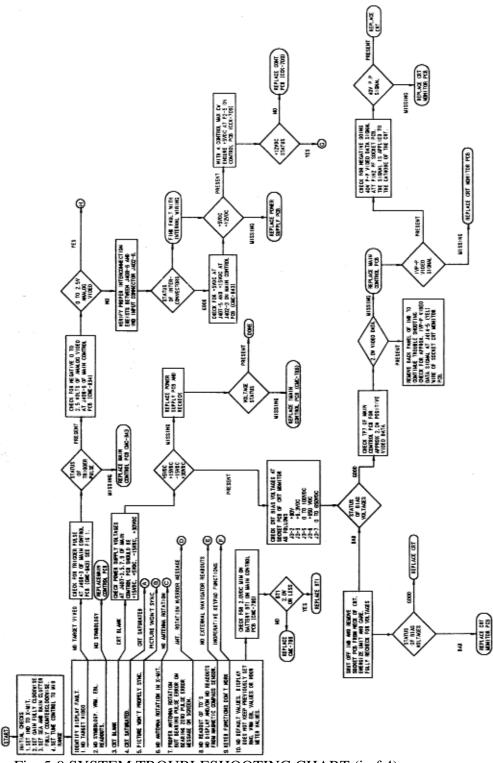
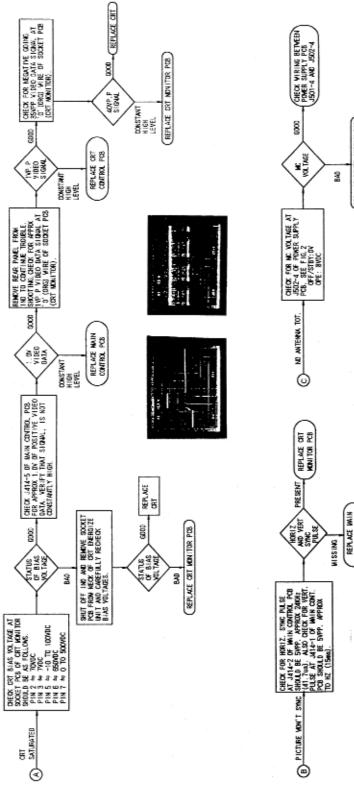
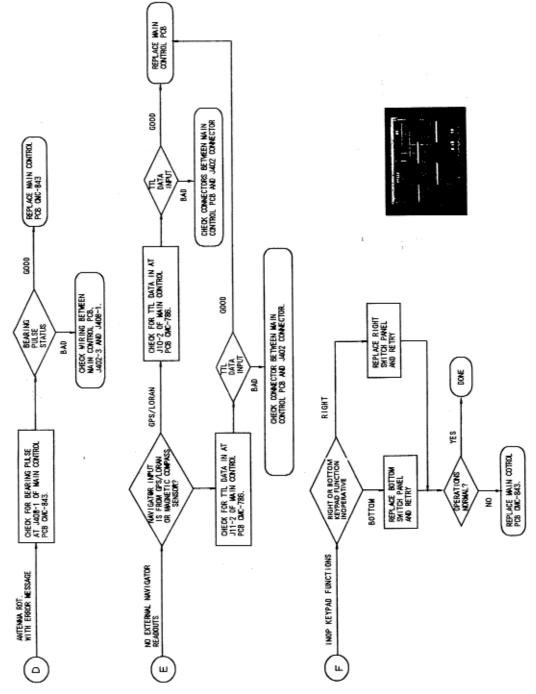




Fig. 5-9 SYSTEM TROUBLESHOOTING CHART (i of 4) Fig. 5-9 SYSTEM TROUBLESHOOTING CHART (2 of 4)

REPLACE POWER SUPPLY PCB REPLACE WIN CONTROL POB Fig. 5-9 SYSTEM TROUBLESHOOTING CHART (3 of 4)

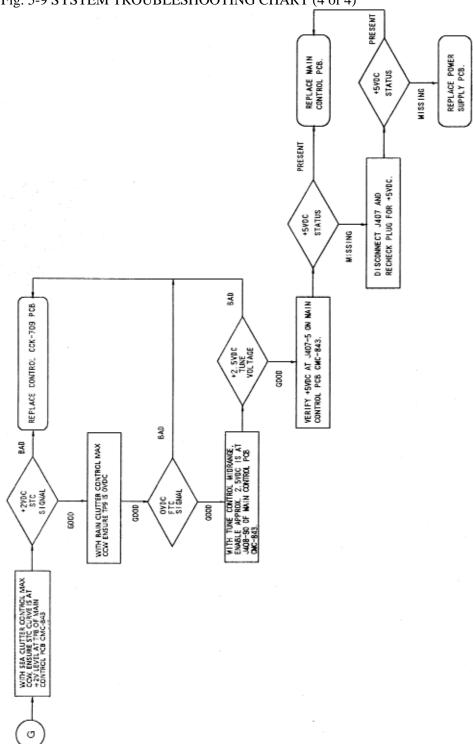


Fig. 5-9 SYSTEM TROUBLESHOOTING CHART (4 of 4)

5.6 **MAGNETIC SENSOR COMPENSATION**

CAUTION

ALL COMPASSES MUST BE CAREFULLY CHECKED AGAINST KNOWN HEADING REFER-ENCES BEFORE BEING USED FOR NAVIGATION.

XX Heading Sensor Compensation Adjustment

Although each XX Heading Sensor is calibrated at the factory, magnetic field distortions on the vessel can introduce errors in the reported heading. These errors can be minimized by proper sensor placement and then removed by compensating the compass after it has been mounted. The XX Heading Sensor is equipped with an auto—compensation capability in which it automatically measures the surrounding magnetic field distortion and compensates for it, thereby, removing the resulting heading errors.

Nevertheless, one should carefully locate the sensor and carefully align the sensor parallel with the keel line of the boat, as previously ouflined in the Installation section of this manual.

Automatic compensation removes the need to manually adjust N/S and E/W compensation potentiometers because the system performs this continually and with greater accuracy.

The Heading Sensor is a always in - compensation mode - so there is no special procedure required to begin auto—compensation. Every time the vessel completes a 360 turn within the time constraints of the system, the sensor will check its accuracy and recompensate itself if required.

Both - hard - (magnetic) and - soft - (iron) errors are automatically compensated by this procedure. This procedure will produce excellent accuracies $(\pm 1 \cdot)$ even on vessels with steel hulls. This procedure may happen during the normal use of your boat. When it does, the sensor will check the calibration and adjust itself if anything has changed.

XXHeading Sensor - Compensation Procedure (Part 11

Compensating the XX Heading Sensor following installation is very important to ensure its accuracy. The procedure involves turning the boat continuously through two large, lazy circles at a slow speed (the circles may be slightly out of round or elliptical if necessary). During this procedure, it is critical that the boat

remains level and slow enough so that the 2 circles take approximately 4 minutes to complete (2 minutes per circle). The vessel cannot go too slowly, but if it goes too quickly at any point while doing the circles, the sensor is programmed to ignore the data to ensure a perfect compensation. Figure out how big a circle the vessel must make to keep at a slow, steady speed through $360 \cdot$ Once the conditions for a 2 minute circle are calculated, keep on circling 2 more times in exactly the same manner. The Heading Sensor will latch on to the first good data it gets and won't replace it unless it gets a better set of data.

- 1. Select a calm day and a clear area without too much current or tide. Watch out for excessive pitching and rolling, as this can make the boat turn in surges faster than the Sensor will accept.
- 2. Turn the boat continuously through 720 (2 large, lazy circles) in a slow, smooth, and steady turn. Make each full circle take 2 minutes to complete. (Try to time the turn so that it takes about 30 seconds or more to turn 90 degrees).
- 3. After completing two full circles according to the above parameters, the auto—compensation procedure is now complete.

XX Heading Sensor - Compensation Procedure (part 2)

Following Auto compensation, one should check the sensor's alignment by comparing the sensor readings on the radar display with the ship's recently calibrated magnetic compass readings for several headings or by navigation between known reference points chosen from a chart. The magnetic readout on the radar should then be compared to the correct chart courses.

Should the sensor's readings vary by a small but constant amount in one direction or the other, the heading sensor housing may be rotated slightly clockwise or counterclockwise to eliminate this error.

- 1. Slightly loosen the mounting screws securing the sensor to the mounting surface to permit rotation of the housing.
- 2. If the sensor reads "less ", rotate the housing clockwise.
- 3. If the sensor reads more -, rotate the housing counterclockwise.
- 4. When the headings match correctly, tighten the mounting screws to secure the sensor housing in place.
- 5. This completes the alignment procedures for the heading sensor.

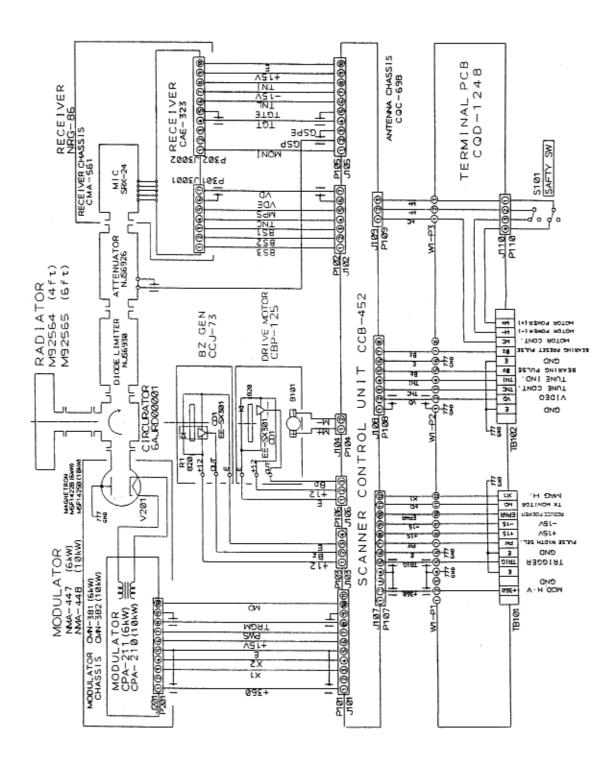
SECTION 6 PARTS LIST AND DRAWINGS

6.1 INTRODUCTION

This chapter contains schematic diagrams, assembly drawings and parts lists for Radar Set R12O6XX and Ri21OXX. Assembly drawings will assist in identifying and locating components. You will find numbers on the drawings are the same as location numbers in the parts list tables.

On PCB assembly drawings, components are identified by circuit symbol designations which are listed and described in the appropriate parts list.

The generation breakdown Table 6— 1, provides an index of the parts lists and drawings for assemblies and subassemblies of significant importance associated with the Model R12O6XX and R121OXX. The schematic diagram, assembly drawing, and parts list format is repeated for each assembly and subassembly.


WARNING

This radar equipment contains high voltage.

Adjustments require specialized service procedures and tools only available to qualified service technicians, and there. are no user serviceable parts or adjustments. The operator should never remove the radar unit covers nor attempt to service this equipment. TABLE 6—i

Description	Part No.	Assembly Dwg.	Parts List
I I I		(Fig.)	(TBL)
MTR Unit			, , , , , , , , , , , , , , , , , , ,
Modulator Assembly(6KW)	NMA—447		
Modulator Assembly(10KW)	NMA-448		
Modulator PCB(6KW)	CPA—2ii		
Modulator PCB(10KW)	CPA—2i0		
Magnetron(6KW)	5VMAA00068		
Magnetron(10KW)	5VMAA00051		
Receiver Assy	NRG —86		
Receiver PCB	CAE—323		
Low Noise Front End	5EZAA00021		
PIN Attenuator	NJS6926		
Diode Limiter	NJ56930		
Circulator Assy	6AJRD00001		
Motor Assembly	CBP —12~		
SHM PCB	CCJ-73		
Terminal PCB	CQD—1248		
Antenna Safety Switch	5SAABOO68O		
Display Unit(R1200XX)	M92560		
PS.Heat Sink Assy	MTC300106		
Power Supply PCB	CBD—i296		
Chassis Assy	CML—45i		
Main Control PCB(A)	CMC—786		
Main Control PCB(B)	CMC-843		
Bezel Assy	CML—45i		
Control PCB A	CCK—709		
Control PCB B	CCK—708		
MARPA PCB	CDC-826		
CRT Assembly			
Consisting of:			
CRT Monitor	CKJ—i2i		
Video PCB	CCN—27i		
Deflection Yoke	7LGRDOO42		
CRT	5VBAB00067		
Track Pad	7HZRD0001		

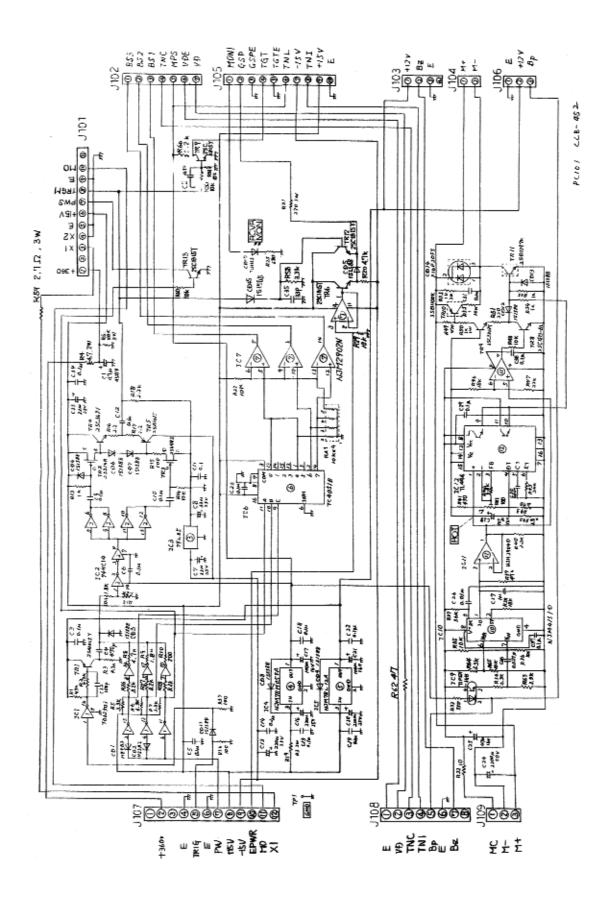
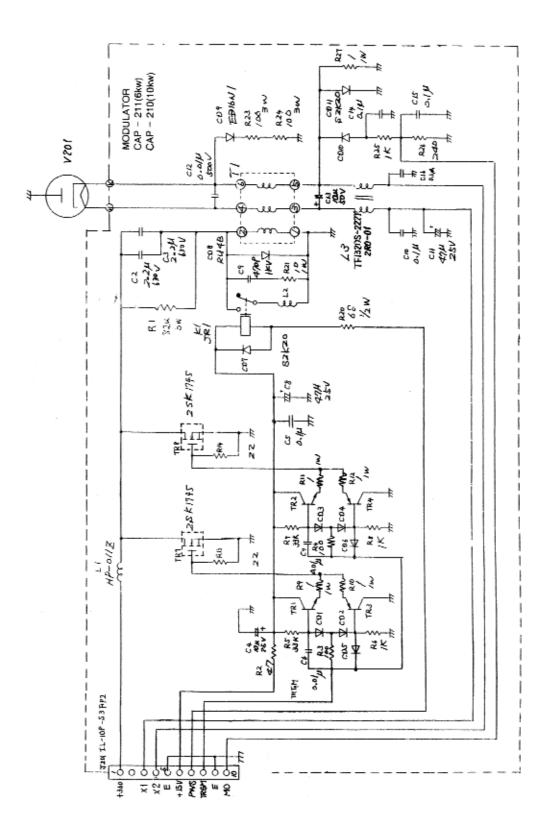

IADLE 0—I				
Model R1200XX Generation Breakdown				

		TABLE 6 Rep~aceab1e F Chassis C Q C6	Parts List s	
REF. AlOl	CIRCULATRO	TYPE H~6AJRDOOOOl	DESCRIPTION	JRC P/N 6AJRD000
A102	DIODE	FCX68 NJS6930		01 5EZAA000
A103	LIMITER ~ ATTENUATOR	NJS6926		24 5ENAC000
AS20 2	ACCESSORY	NJC-9929		19 NJC9929
P101	PLUG	IL-G-11S-S3C2		5J~ADOO3 75
P102	PLUG	IL-G-7S-S3C2	7P	5J~ADOO2 30
P105	PLUG	IL-G-10S-S3C2		50 5J~ADOO 071
P110	PLUG	VHR-4N		5JDAH000 44
P201	PLUG	IL1OS-S3L-(N)		5J\~ADOO O34
P301	PLUG	IL7S-S3L-(N)		5J\~ADOO 0.36
P302	PLUG	IL 1OS-S3L-(N)		5J~ADOO 034
P110 1	PIN	IL-G-C2-SC-0001		5J\~ADOO 388
-	PIN ~	IL-G-C2~SC~0001		5388 5J~ADOO3 88
2 PT10 5	PIN	IL-G-C2-SC-0001		5J\~ADOO 388
9 PT11 O	PIN	BVFL21T-1. 1		5JTCDOO1 55
PT2O I	PIN	IL-C2-0001		55 5J\~ADOO 251
PT3O	PIN	IL-C2-0001		5J~ADOO2 51
-	PIN	IL~C2-0001		5J\~ADOO 251
Slol	SWITCH	S-116-BOl		5SAABOO 68O
		TABLE 6 Replaceable Pa Terminal B CQD- 1	arts List Board	000
REF.			240 DESCRIPTION	JRC P/N
Jib	CONNEC TOR	B4PS-VH		5JDAH000 45
PCi	PCB	H-7PCRD1315A		7PCRD131 5A
11310 1	TERMIN BO AL AD	OTB-136-B-12P	12PIN	
TB1O		OTB-136-B-12P	12PIN	

2		A D		
\fl	CABLE ASSY			7ZCRDO41 8B
REF. BIOI CD1 P104 P106 PC1 Ri	MOTOR PHOTO INTERUPTOR CONNECTOR CONNECTOR PCB RESISTROR	TYPE H-7BDRDOO32 EE-SX3O1 VHR-2N IL-G-3S-S3C2 H-6PCRD00633 ERD-25PJ821	DESCRIPTION 820 OHM 1/4~ J	JRC P/N 7BDRDO 032 5HFAB0 0009 5JVIAPO 0139 5J~ADO 0096 6PCR00 0633
REF. CDI P103 PCi Ri	PHOTO COUPLER PLUG PCB RESISTOR	TYPE EE-SX3OI IL-4S-S3L-(N) H~6PCRDOO633 ERD-25PJ821	DESCRIPTION 4P 820 OHM 1/4~~' J LE 6—4	5RDAA 01156 JRC P/N 5HFAB0 0009 5J~AD0 0032 6PCRD0 0633 5RDAA0 1156
		Replacea	ble Parts List	
		Motor	Assembly	

Replaceable Parts List Motor Assembly CBP- 125 TABLE 6-5 Replaceable Parts List SHM PCB CCJ -73 FIG. 6-2 CIRCUIT DRAWING OF CCB-452 SCANNER CONTROL UNIT

	TABLE 6—6 Replaceable Parts List Antenna Control			
DEE		CCB—		
REF. Cl	CAP,FIX,ELECT	TYPE ECE-A2∖~U4R7	DESCROPTION 4.7UF 450V M	JRC P/N 5CEAA0
C2	CAP,FIX,CER	DD1O4SIA7OJ5O	47PF 50V J	3553 5CAAAO
				1097
C3	CAP, FIX, FILM	ECQ-V1H1O4JL	0. 1UF 50V J	5CRAAO 132G
C4	CAP,FIX,CER	RPE131CH471J5O	470PF 50V J	5CAAA0 2608
C5	CAP, FIX, FILM	ECQ-V1H1O4JL	0. 1UF 50V J	5CRAAO 1326
C6	CAP, FIX, FILM	ECQ-V1H1O4JL	0. 1UF 50V J	5CRAA0 1326
C7	CAP,FIX,ELECF	ECE-A1EU33O	33UF 25V M	5CEAAO1 805
C8		ECE~A1EU33O	33UF 25V M	5CEAAO
C9	T CAP, FIX,	ECQ-V1H1O4JL	0. 1UF 50V J	1805 5CRAAO
do	FILM CAP,F1X,FILM	ECQ-V1H1O4JL	O.1UF 50V J	1326 5CRAA0
Cli	CAP,FIX,FILM	ECQ-V1H1O4JL	0. 1UF 50V J	1326 5CRAA0
C12	CAP,FIX,FILM	ECQ-V1H1O4JL	O.1UF 50V J	1326 5CRAAO
C13	CAP,FIX,ELEC	ECE-A1EU221	22OUF	1326 5CEAA0
	Т		25V M	1844
C14	CAP, FIX, FILM	ECQ-V1H1O4JL	0. 1UF 50V J	5CRAA0 1326
C15	CAP,FIX,FILM	ECQ-V1H1O4JL	O.1UF 50V J	5CRAA0 1326
C16	CAP,FIX,ELEC T	ECE-A1EU221	220UF 25V M	5CEAA0 1844
C17		ECE~A1CU1O1	100UF 16V M	5CEAAO 1800
C18	_	ECQ-V1H1O4JL	O.1UF 5OV J	5CRAA0
C19	CAP,FIX,FILM	ECQ-V1H1O4JL	0.1UF, 50V J	1326 5CRAA0
C20	CAP,FIX,ELEC	ECE-A1EU221	220UF 25V M	1326 5CEAAO
C21		ECE-A1CU1O1	100UF 16V M	1844 5CEAAO
C22	T CAP, FIX,	ECQ-V1H1O4JL	0.1UF 5OV J	1800 5CRAA0
C23	FILM CAP, FIX, CER	RPE131F1O4Z5O	0. 1UF 50V Z	0364 5CBABO 161 1


C24	CAP,FIX,ELECT	ECE-S1HU222J	2200UF 50V M	5CEAA02 234
C25	CAP,FIX,ELECT	ECE-A1CU47O	47UF 16V M	234 5CEAA01 698
C26	CAP,FIX,FILM	ECQ-B1H1O3JF	0.01UF 50V J	5CRAA0 1254
C27	CAP,FIX,FILM	ECQ-V1H1O5JL	1UF 50V J	5CRAA0 1245
C28	CAP,FIX,ELEC T	ECE-A1CU101	100UF 16V M	5CEAAO 1800
C29	CAP,FIX,CER	RPE131F104Z50	0. 1UF 50V Z	5CBABO 1611
C30	CAP,FIX,FILM	ECQ-B1H1O2KF	0.001UF 50V K	5CRAAO 1135
C31	CAP, FIX, FILM	ECQ-V1H1O4JL	0. 1UF 50V J	5CRAA0 1326
C32	CAP, FIX, CER	DD104-63SL101J50		5CAAAO 4300
C33	CAP,FIX,ELEC T	ECE-A1EU33O	33UF 25V M	5CEAAO 1805
C34	CAP, FIX, FILM	ECQ-V1H1O4JL	0.1UF 5OV J	5CRAAO 1326
C36	CAP,FIX,FILM	ECQ-B1H223KF	O.022UF 50V K	5CRAAO 1370
C37	CAP,FIX,CER	RPE131F104Z50	O.1UF 5OV Z	5CBABO 1611
C38	CAP, FIX, CER	RPE13 1F104Z50	0.1UF 5OV Z	5CBABO 161 1
CD1	DIODE	HZ7B-2		5TXAEO O216
CD2	DIODE	HZ5A-2		5TXAEO O136
CD3	DIODE	1S1588		5TXAD0 0040
CD4	DIODE	1S1588		5TXA000 04O
CD5	DIODE	1S1588		5TXAD0 0040
CD6	DIODE	1S1588		5TXAD0 0040
CD7	DIODE	1S1588		5TXAD0 0040
REF. CD8	DIODE	TYPE 1S1588	DESCROPTION	JRC P/N 5TXAD0 0040
CD9	DIODE	1S1588		5TXAD0 0040
CD10) DIODE	TLR123		5TZADO 0101
CD11	DIODE	1S1588		5TXAD0 004O

CD12	DIODE	1S1588		5TXAD0
CD13	DIODE	1S1588		004O 5TXAD0
CD14	DIODE	F16P2OFS		004O 5TXAG0
	DIODE	191700		0358
CD15	DIODE	1S1588		5TXAD0 0040
IC1	TRANSISTOR ARRAY	TD62503P		5DDAE0 0213
IC2	IC	TC74HC14AP	74HC14AP	5DDAE0 1268
IC3	IC	NJM79LO5A	-5V REG.	5DAANO 0130
IC4	IC	NJM78MO5FA	5V REG~	5DAAN0 0375
IC5	IC	NJM78L12A	12V REG.	5DAAN0 0025
IC6	IC	TC4O51BP	4051BP	5DDAE0 0081
IC7	IC	NJM29O2N		5DAAN0 0004
IC9	PHOTO COUPLER	TLP521-1GB	H-5TZADOO212	5DZAD0 0040
IC10	IC	NJM4151D		5DAAN0
IC11	IC	NJM29O4D		0077 5DAAN0
IC12	IC	TL494CN		0045 5DDAL0
JlOl	CONNECTOR	IL-G-11P-S3T2-E	11P	0546 5JViADO
J 102	CONNECTOR	IL-G-7P-S3T2-E		O376 5J~'ADO
J103	CONNECTOR	IL-4P-S3EN2		O119 5JYiAD0
J104	CONNECTOR	B2P-VH	2P	0038 5J~APO
J1O5	CONNECTOR	IL-G-10P-S3T2-E		Ol4O 5J~~'AD
J106	CONNECTOR	IL-G-3P-S3T2-E		00073 5J~AD0
J107	CONNECTOR	IL-G-12P-S3T2-E		Ol4O 5JL~DO
J108	CONNECTOR	IL-G-8P-S312-E	8P	OO82 5J~'ADO
J109	CONNECTOR	B3P-VH		Oll4 5J~APO
PCi	РСВ	H-7PCRD13O9A		O138 7PCRD13
Ri	RESISTOR	ERD-25PJ472	4.7K l/4~ J	O9A 5RDAAO
R2	RESISTOR	ERD-25PJ472	4.7K l/4~Y J	1183 5RDAAO 1183
				1105

R3	RESISTOR	ERD-25PJ472	4.7K	l/4V1 J	5RDAA
R4	RESISTOR	2XL-470HM J	47 OH		O1183 5RHAA
55	DEGLETOD		2.5~Y .		01699
R5	RESISTOR	ERD-25PJ332	3.3K	1/4~' J	5RDAA 01168
R6	RESISTOR	ERD-25PJ332	3.3K	1/4~ J	5RDAA
					O1168
R7	RESISTOR	ERD-25PJ332	3.3K	l~/4~' ~T	5RDAAO
R8	RES ISTOR	ERD-25PJ472	4. 7K	l/4V1 J	1168 5RDAAO 1 183
R9	RESISTOR	ERD-25PJ182	1.8K	l/4~ J	5R0AA01 163
RiO	RESISTOR	ERD-25PJ201	200 OH	IM 1/4~' J	5RDAA0 1235
RU	RESISTOR	ERD-25PJ182	1.8K	l/4~' J	5RDAA
510			4		01163
R12	RESISTOR	ERD-25PJ 122	1. 2K	1/4Vi J	5RDAAO 1 142
R13	RESISTOR	ERD-25PJ102	1K	1/4~ J	5RDAA
				2/ 1 0	01181
R14	RESISTOR	ERD-25PJ103	10K	$1/4 \le J$	5RDAA
					01146
R15	RESISTOR	ERD-25PJ 1 01	100 OHM 1/4V1 J		5RDAAO 1 175
R16	RESISTOR	ERD-25PJ2R2	2. 2 OHM 1/4~ J		5RDAA
-					01201
R17	RESISTOR	ERD-25PJ2R2	2. 2 OHM 1/4~ J		5RDAAO
R18	RESISTOR	ERD-25PJ222	2.2K	1/4w J	12O1 5RDAAO
K10	KL5151 OK	LICD-251 3222	2.21	1/ + w J	1172
R19	RESISTOR	ERG-2SJ430P	43 0	HM 2~ J	5REAG0
					4720
R20	RESISTOR	ERD-25PJ472	4.7K	1/4~ J	5RDAAO 1183
REF		TYPE	DESCR	OPTION	JRC P/N
	DEGLETOD		27 0 OID (17.75 7	
R21	RESISTOR	ERG-1SJ271P	270 OHM	lVi J	5REAG02 393
R22	RESISTOR	ERD-25PJ103	10K	1/4Y1	5RDAAO
				J	1146
R25	RESISTOR	ERD-25PJ241	240 OHM	1/4w J	5R0AA01 236
R26	RESISTOR	ERD-25PJ822	8.2K	J 1/4w	5RDAAO
				J	1149
R27	RES.ISTOR	ERD-25PJ822	8.2K	1/4∼ J	5RDAAO
R28	RESISTOR	ERD-25PJ822	8.2K	1/4w	1149 5RDAA
1120		LINE 201 9022	0.211	J	01149
R29	RESISTOR	ERD-25PJ103	10K	1/4w	5RDAAO
D20	DECICTOD	EDD 2501102	1012	J 1/4 X 7;	1146 580 a a
R30	RESISTOR	ERD-25PJ103	10K	1/4 V1	5RDAA

				J	O1146
R31	RESISTOR	ERD-25PJ103	10K	1/4w	5RDAAO
R32	RESISTOR	ERD-25PJ100	10 OHM	J 1/4w	1146 5RDAAO
				J	1178
R33	RESISTOR	ERD-25PJ751	750 OHM	1/4w J	5RDAA0 1243
R34	RESISTOR	ERD-25PJ332	3.3K	J/4Y1	5RDAAO
D25	RESISTOR	ERD-25PJ103	10K	J 1/4~ J	1I68 5rdaao
R35	RESISTOR	ERD-25PJ105	10K	1/4 ~ J	3KDAAO 1146
R36	RESISTOR	ERD-25PJ103	10K	1/4Yi	5RDAAO
R37	RESISTOR	ERD-25PJ563	56K	J 1/4V1	1146 5RDAAO
N 37	RESISTOR	LICD-251 3 505	501	J	1169
R38	RESISTOR	ERD~25PJ183	18K	1/4\~	5RDAA
R39	RESISTOR	ERD-25PJ473	47K	J 1/4~	01188 5RDAA
К39	RESISTOR	EKD-23FJ4/5	4/K	1/4∼ J	01153
R40	RESISTOR	ERD-25PJ222	2.2K	1/4Yi	5RDAAO
R41	RESISTOR	EDD 2501471	470 OHM	J 1/4V1	1172
K41	RESISTOR	ERD-25PJ471	470 OHM	1/4 V I J	5RDAAO 1155
R42	RESISTOR	ERD-25PJ682	6.8K	1/4~ J	5RDAAO
R43	RESISTOR	ERD-25PJ471	470 OHM	1/4Y1	1189 5RDAAO
N=3	KL51510K		470 01101	J	1155
R44	RESISTOR	ERD-25PJ682	6.8K	1/4Y	5RDAA
R45	RESISTOR	ERD-25PJ243	24K	1 .1 1/4~ J	O1189 5RDAA0
R 4 <i>3</i>	KL515TOK :	LICD-251 J 245	241	1/ 4 /• J	1258
R46	RESISTOR	ERD-25PJ183	18K	1/4Vi	5RDAAO
R47	RESISTOR	ERD-25PJ223	22K	J 1/4'N	1188 5RDAAO
,				J	1147
R48	RESISTOR	ERD~25PJlO3	10K	1/4~ J	5RDAAO 1146
R49	RESISTOR	ERD-25PJ471	470 OHM	1/4w	5RDAAO
5 - 0				J	1155
R50	RESISTOR	ERG-1SJ1O2P	1K	1~ J	5REAG01 864
R51	RESISTOR	ERD-25PJ221	220 OHM	J/4w	
D.52	DEGISTOD	EDE 107VUIDO	1.0104	J	
R52	RESISTOR	ERF-10ZXK1RO	1 OHM		5RHACO 0179
R53	RESISTOR	ERG-2SJ100P	10 OHM	2~	5REAG01
R54	RESISTOR	ERD-25PJ102	1 K	$J_{1/4w}$	388 5RDAAO
KJ4	KL51510K	LKD-23FJ102	IK	J	1181
R55	RESISTOR	ERD~25PJ1O2	1K		5RDAAO
R56	RESISTOR	ERD-25PJ101	100 OHM	J 1/4'II	1181 5RDAAO
1.50				J	1175
R57	RESISTOR	ERD-25PJ101	100 OHM	1/4Vi	5RDAAO

				J	1175
R59	RESISTOR	ERX-3ANJP2R7S	2.7 OHM	3Y1	5REAG0
107	100001011	2101 011 01 210,0	207 01101	J	4721
R60	RESISTOR	ERD-25PJ103	10K ~	1/4w	5RDAAO
			-	J	1146
R61	RESISTOR	ERG-3ANJP1O4S	look	3~	5REAG04
				J	712
R62	RESISTOR	ERD-25PJ470	47 OHM	1/4V1	5RDAAO
				J	1179
R63	RESISTOR	ERD-25PJ332	3.3K		5R0AA0
				J	1168
R64	RESISTOR	ERD-25PJ332	3.3K		5RDAAO
D65	DECICTOD	EDD 25DI102	1012	J 1/4	1168 500 A A
R65	RESISTOR	ERD-25PJ103	10K		5RDAA
D66	RESISTOR	ERD-25PJ222	2.2K	J 1/4 N	O1146 5rdaao
R66	RESISTOR	ERD-23PJ222	2.2 N	1/4~IN J	1172
R67	RESISTOR	ERD-25UJ471	470 OHM	J/4Vi	
R07	KL5151 OK	LICD 2503471	470 01101	J	1337
RA1	ARRAY	M5-l-103J	10K OHMX4	-	5RZBT0
	RESISTOR	1.10 1 1000		01,0	004O
RV1		GFO6P 1000HM	100 OH	М	5RMAB0
					0062
TP1	TEST PIN	LC-2-G	BLK		5JTC~O
					0001
TR1	TRANSISTOR	2SA1015-Y			5TAAG0
					0070
TR2	TRANSISTOR	25J148			5TKABO
REF.		ТҮРЕ	DESCROT	TION	0119 IDC D/N
TR3		2SK982	DESCROF	TION	JRC P/N 5TKAA002
113	TRANSISTOR	251302			23
TR4	TRANSISTOR	2SC3671-B			5TCAFOO9
	110100101011	25000712			17
TR5	TRANSISTOR	2SA1615-L			5TAABOO
					169
TR6	TRANSISTOR	2SC1815~Y			5TCAFOO2
					19
TR7	TRANSISTOR	2SC1815-Y			5TCAFOO2
TR8	TRANSISTOR	2SC1815-BL			19 5TCAF002
110	TRANSISTOR	25C1015-DL			55
TR9	TRANSISTOR	2SC3303-Y			5TCAF005
		2505505 1			25
TRi	TRANSISTOR	2SB1100-K			5TBABOO
0					112
TR1	TRANSISTOR	2SD1297K			5TDAB000
1					58
TR1	TRANSISTOR	2SC18 1 5-V			5TCAFOO2
3					19
TRS		H-7ZSRDOO26			7ZSRDOO2
1 	SHEET			110 1.	6 IIII ATOP LINIT
FIG. 6-3 CIRCUIT DRAWING OF NMA-447,'NMA-448 MODULATOR UNIT					

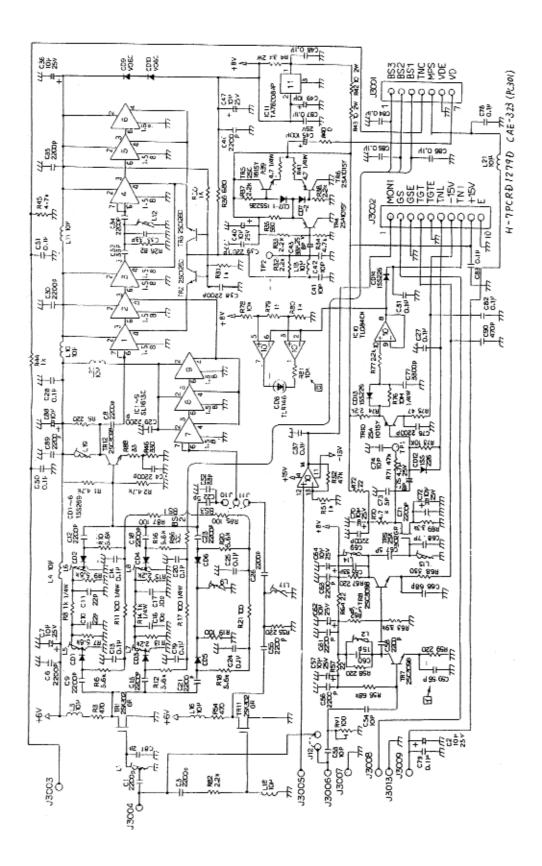


TABLE 6-7 Replaceable Part List Modulator PCB 10k~

		C P A _2	10		
REF.		ТҮРЕ	DESCRI	PTION	JRD P/N
C2	CAP, FIX,	ECQ-E6225JF	2. 2UF	630V	5CRAA
	FILM			J	O 1306
C3	CAP, FIX,	ECQ-E6225JF	2. 2UF	630V	5CRAA
	FILM			J	01306
C4	CAP,FIX,ELEC	ECA1EKF100	10UF	25V M	5CRAA
	Т				01024
C5	CAP, FIX,	RPE13 1F104Z50	0. 1UF	SOY	SCBAB
	CER			Ζ	0161 1
C6	CAP,FIX,FIL	ECQ-B1H1O3KF	O.O1UF	SOY	SCRAA
	Μ			Κ	01086
C7	CAP, FIX,	ECQ-B1H1O3KF	0. O1UF	SOV	SCRAA
G 0	FILM			K	01086
C8		ECE-A1EU47O	47UF	25V	5CEAA
C 0	CT CAD FIV		47005	M	01820
C9	CAP, FIX,	DE0705B47 1K1K	470PF	1KV	SCBAB
C10	CER	DDE121E104700	0 1115	K	00946
ClO	CAP, FIX, CER	RPE131F104ZSO	0. 1UF	SOY Z	5CBAB 0161 1
Cil	CAP FIX FI FC	ECE-A1EU47O	47UF	25V M	SCEAA
CII	T	LCL-AIL04/0	4701	25 V 1VI	01820
C12	CAP,FIX,CER	DD18-64B103KSOO	O.O1UF	SOOV	SCBAB
	, , ,			Κ	OO884
C13	CAP, FIX,	ECE-A1HU1 00	10UF	SOY	SCEAA
	ELECT			Μ	01931
C14	CAP, FIX,	ECQ-V1H1O4JL	0. 1UF	SOY J	SCRAA
C15	FILM CADEIX EU M		O ILIE	COV 2	O1326
C15	CAP,FIX,FILM	ECQ-VIH1O4JL	O.1UF	SOY 3	SCRAA O1326
C16	CAP,FIX,CER	RPE131F1O4ZSO	O.1UF	SOY Z	SCBAB
010	ern "rnn,ezh		0.101	5012	01611
CD1	DIODE	151588			STXAD
					0004O
CD2	DIODE	151588			5TXAD
					0004O
CD3	DIODE	151588			5TXAD
					0004O
CD4	DIODE	151588			STXAD
					0004O
CDS	DIODE	151588			5TXAD
					0004O
CD6	DIODE	151588			STXAD
					0004O
CD7	DIODE	52K2O			5TXAC
	DIODE				00075
CD8	DIODE	RU4B			5TXAN
	DIODE	ED1(NI			00156 STV 41
CD9	DIODE	ED16N1			STXAL

CD10	DIODE	151588			0009O STXAD0
CD11	DIODE	52K20			004O STXAC0
J201	CONNECTOR	IL-10P~S3EN2	lOP		007S SJVIAD
Ki	RELAY	AJ~4211 BOI	101		OO213 SKLAD
N I	KELA I	AJ~4211 DOI			010S0
Ll	COIL	HP-O11Z	200UH 1A		SLCAL0 0063
L2	COIL	H-7LZRDOO88			7LZR000
L3	COIL	TF132OS-222Y2R0-O1	2A2.2M	Н	88 5LRBV0 0006
PC2O	I PCB	H-7PCRD13 lOB			7PCRD1
R1	RESISTOR	ERG-35J823P	82K	3~	3 1 OB 5REAGO
R2	RESISTOR	ERD-50TJ470	47 OHM	J 1/2	4484 5R0AA00
DA	DEGUCTOR		100 010 /	w J	803
R3	RESISTOR	ERD-2SPJ101	100 OHM	l/4∼ J	SRDAAO 117S
R4	RESISTOR	ERD-2SPJ101	100 OHM	l/4~	SRDAAO 117S
RS	RESISTOR	ERD-25PJ333	33K	J 1/4~	5RDAAO
R6	RESISTOR	ERD-2SPJ1O2	1K	J 1/4	1180 SRDAAO
R7	RESISTOR	ERD-25PJ333	33K	Vi J 1/4	1181 5RDAAO
κ/	KL5151 OK	LKD-2513555	55 X	V1	1180
R8	RESISTOR	ERD~2SPJ1O2	1K	J 1/4~	SRDAAO
				J	1181
R9	RESISTOR	ERX-1SJ1ROP	1 OHM	l~ J	SREAGO 1997
RiO	RESISTOR	ERX-1SJ1ROP	1 OHM	1~ J	SREAGO 1997
Rh	RESISTOR	ERX-1SJ1ROP	1 OHM	J l~ J	SREAG
R12	RESISTOR	ERX-1SJ1ROP	1 OHM	l~	O1997 SREAGO
		TABLE 6	. Q		1997
		Replaceable P			
		Modulator Chas			
		CMN—			
REF		TYPE ~	DESCRIF ON	ΡΤΙ	JRC P/N
V2O	MAGNETRO	MSF142SB	011	5	VMAD0
1	N	7BN4-6			068
	RUBBER TUBE	7BN4-6		1	16614000
,112	RUBBER				16614000

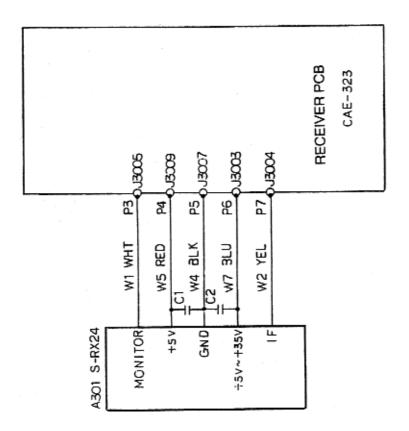
	TUBE			2	,
REF.	TODE	TYPE	DESCRIPTION		JRD P/N
R13	RESISTOR	ERD-25PJ22O	22 OHM	1/4w	5RDAAO121
R14	RESISTOR	ERD-25PJ220	22 OHM	J	7
R2O	RESISTOR	ERD-50TJ680	68 OHM	1/4w	5RDAAO121
R21	RESISTOR	ERG-1SJ100P	10 OHM	J	7
R23	RESISTOR	ERG-3SJ101P	100 OHM	1/2Y	5RDAAOO8
R24	RESISTOR	ERG-3SJ101P	100 OHM	1 J	07
R25	RESISTOR	ERD-2SPJ 102	1K	l~	5REAG0435
R26	RESISTOR	ERD-25PJ241.	240 OHM	J	0
R27	RESISTOR	ERX-1SJ1ROP	1 OHM	3Yi	SREAGO21
Ti	TRANSFORM	H-7LPRDO1O4		J	38
TIll	ER	2SC3671		3V1	5REAGO21
TR2	TRANSISTOR	25C3671		J	38
TR3	TRANSISTOR	25A1615		1/4Yi	5RDAAO1
TR4	TRANSISTOR	2SA1615		J	181
TR7	TRANSISTOR	2SK1745		1/4~	5RDAAO12
TR8	TRANSISTOR	25K1745		J	36
TRZ	TRANSISTOR	M-30 D-3		1~	SREAGO199
1	THERMAL	M-30 D-3		J	7
TRZ	SHEET				7LP~lJOlO4
2	THERMAL				5TCAF0093
	SHEET				2
					5TCAF0093
					2
					5TAABOO1
					6S
					5TAABOO1
					6S
					5TKAAOO26
					4
					5TKAAOO2
					64
					SZKBG0001
					0
					5ZKBG0001
				DODT	0
	FIG. 6-4 C	IRCUIT DRAWING	J OF NKG-86 k	RECEI	VEK UNIT

		TABLE 6—9 Replaceable Parts Receiver PCI CAE— 323	3		
REF.		TYPE	DESCRI PT	ION	JRC P/N
Cl	CAP,FXD CER	C3216SL1H222J-E-TP	2200PF	SOV	SCAADOO7
C2	CAP, FIX, ELEC	ECE-A1EKS100	10UF	J25V	92
C3	Т	C3216SL1H222J-E-TP	2200PF	MSO	SCEAAO19
C4	CAP,FXD CER	C32 16SL1 11222J -E-TP	2200PF	V	16
C6	CAP, FXD CER	C3216SL1H222J-E-TP	2200PF	JSOV	SCAADOO
C7	CAP,FXD CER	ECE-A1EKS100	10UF	JSOV	792
C8	CAP, FIX, ELECT	C3216SL1H222J-ETP	2200PF		SCAADOO7
C9	CAP,FXD CER	C3216SL1H222J-E-TP	2200PF	MSO	92
ClO	CAP,FXD CER	С3216СН1Н27ОЈ -Е-ТР	27PF	Y	SCAADOO
Cli	CAP, FXD CER	C3216CH1H270J-E-TP	27PF		792
C12	CAP,FXD CER	C3216SL1H222J-E-TP	2200PF	JSOY	SCEAAO191
C13	CAP,FXD CER	C3216JF1H1O4Z~E-TP	0.	I5OV	6
C14	CAP, FXD CER	C321GJF1II1O4Z-E-TP	1UF	JSOY	5CAAD007
C15	CAP, FXD CER	C3216SL1fl222J-E-TP	0.	JSOV	92
Cl 6	CAP,FXD CER	C3216C111H 100D-E-TP	1UF	ZSOV	SCAADOO
Cl 7	CAP, FXD CER	С3216СН 111 100Д-Е-	2200PF	ZSOY	792
C18 C19	CAP, FXD CER	TP C3216SLIH222J-E-TP	10PF 10PF	JSOY	SCAADOO7
C19 C20	CAP,FXD CER	C3216JF1H104Z-E-TP	10PF 2200PF	DSOY	
C20 C21	CAP, FXD CER CAP, FXD CER	C321GJF1H104Z-E-TP	0.		SCAADOO7
C21 C22	CAP, FXD CER CAP, FXD CER	C3216SL111222J-E-TP	1UF	JSOY	
C22 C23	CAP, FXD CER	C3216C11111050C-E-TP	0.		SCAADOO7
C24	CAP,FXD CER	C3216SL1H222J-E-TP	1UF	SOY	92
C25	CAP, FX1) CER	C3216JF1H104Z-E-TP	2200PF	Z	SCAADO126
C26	CAP, FXI) CER	C3216JF1H1O4Z-E-TP	SPF	SOY J	8 SCAADO126
C27	CAP,FXI) CER	C3216SL1H222JE-TP	2200PF	SOY C	8
C28	CAP, FXD CER	C3216JF1FI1O4Z-E-TP	0.	SOY J	° SCAADOO7
C29	CAP, FXD CER	C3216JF1H1O4Z-E-TP	1UF	50Y Z	92
C30	CAP,FXD CER	C3216SL1H222J-E-TP	0.	SOY	SCAADOO7
C31	CAP,FXD CER	C3216SL1H222J-E-TP	1UF	Z	8S
C32	CAP, FXD CER	C3216JF1H1O4Z-E-TP	2200PF	SOV J	SCAADOO7
C33	CAP,FXD CER	C3216C111H33OJ-E-TP	0.	SOY	85
C34	CAP, FXD ~	C3216CH1H33OJ -E-TP	1UF	Ζ	SCAADOO7
C35	CER	C3216SL1H222J-E-TP C3216SL1H222J-E-TP	0. 1UF	SOY	92
C36	CAP,FXD CER	ECE-A1EKS100	2200PF	Ζ	SCAADO126
C30 C37	CAP,FXD CER CAP,FIX,ELECT	C3216JF1H1O4Z-E-TP	2200FF 2200PF	SOY J	
C38	CAP, FXD CER	C3216SL1H222J-E-TP	0.	SOY	SCAADO126
C39	CAP,FXD CER	C3216SL1H222J-E-TP	1UF	J	8
C40	CAP,FXD CER	0	33PF	SOY	SCAADOO7
C40 C41	CAP,FIX,ELECT	ECE-A1EKS100	33PF	Z	92 SCA A DOOR
C42	CAP,FXD CER	C3216CH1H100D-E-TP	2200PF		SCAADOO8
C43	CAP, FXD CER	C3216CH1H 100D-E-TP	2200PF	SOY J SOY J	00 SCAADOO7
C4S	CAP,FIX,ELECT	ECE-A1EN33OSB ECE-A1EU101	10UF	SOY J SOY J	92
C46	CAP,FIX,ELECT	C32165L1H222J-E-TP	0.	2SY	SCAADO126
	CAP,FXD CER	C52105L111222J-L-1f	1UF	M	8
			2200PF	SOY	5CAAD0126
			2200PF	SOY J	
				-	

			10UF IOPF 33UF 100UF 2200PF	SOY J 2SV SOY 2SY 2SY SOY	SCAADOO7 92 SCAADO126 8 SCAADO126 8 SCAADO07 92 SCAADO07 92 SCAADO07 92 SCAADO07 92 SCAADO07 92 SCAADO07 94 SCAADO07 92 SCAADO07 8 D SCAADO07 8 D SCAADO07 8 D S
DEE		TYDE	DECODU		92
REF. C47	CAP,FIX,ELECT	TYPE ECE-A1EKS100	DESCRII 10UF	2SY	JRC P/N SCEAAO
G 40			0.1115	M	1916
C48	CAP, FXD CER	C3216JF1H1O4Z-E-TP	0. 1UF	SOY Z	
C49	CAP,FIX,ELECT	ECE-A1EKS100	10UF	2SY M	
C50	CAP, FXD CER	C3216JF1H1O4Z-E-TP	0. 1UF	SOY	

				Z	O1268
C51	CAP. FXD CER	C3216JF1H1O4Z-E-TP	0. 1UF	SOY	SCAAD
001	0.11,1112 0211		0.101	Z	01268
C52	CAP,FXD CER	C3216CH1H33OJ-E-TP	33PF	SOY J	SCAAD
	,				00794
C53	CAP, FXD CER	C3216CH1H 100D-E-	10PF	SOY	SCAAD
		TP		D	OO78S
C54	CAP, FXD CER	С3216СН1Н 100Д-Е-	1 OPF	SOY	SCAAD
		TP		D	OO78S
C55	CAP,FXD CER	C3216SL1H222J-E-TP	2200PF	SOY J	SCAAD
					OO792
C56	CAP,FXD CER	C3216SL1H222J-E-TP	2200PF	SOY J	SCAAD
~			10175		00792
C57	CAP,FIX,ELECT	ECE-AIEKS100	10UF	2SY	SCEAAO
059			220000	M	1916 SCAAD
C58	CAP,FXD CER	C3216SL1H222J-E-TP	2200PF	SOY J	SCAAD
C59	CAP,FXD CER	С3216СН11156ОЈ-Е-	56FF	SOY J	OO792 SCAAD
C39	CAF,FAD CEK	TP	JOFF	201 J	00863
C60	CAP,FXD CER	C3216CH1H15OJ-E-TP	1SPF	SOY J	SCAAD
000		C5210CIIIII505-L-11	1511	5013	00787
C61	CAP,FXD CER	C3216SL1H222J-E-TP	2200PF	SOY J	SCAAD
001			220011	5010	00792
C62	CAP, FIX,	ECE-A 1EKS 100	10UF	2SY	SCEAAO
	ELECT			Μ	19 16
C63	CAP,FXD CER	C3216SL1H222J-E-TP	2200PF	SOY J	SCAAD
					OO792
C64	CAP,FIX,ELECT	ECE-A1EKS100	10UF	2SY	SCEAAO
				Μ	1916
C65	CAP,FXD CER	C3216CH1H33OJ-E-TP	33PF	SOY J	SCAAD
~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			~ ~ ~ ~ ~	00794
C66	CAP,FXD CER	C3216CH1H68OJ-E-TP	68PF	SOY J	SCAAD
007	CAD EVD CED		CDE	SOY	00929
C67	CAP, FXD CER	С3216СН1НО5ОС-Е- ТР	SPF	C	SCAAD OO800
C68	CAP EXD CEP	C3216CH1H070D-E-	7PF	SOY	SCAAD
008	CAI, FAD CER	TP	/11	D	00977
C69	CAP FXD CER	C3216SL1H222J-E-TP	2200PF	SOY J	SCAAD
007			220011	5010	00792
C70	CAP, FIX, ELECT	ECE-A1EKS100	10UF	25Y	SCEAAO
	, ,			М	1916
C71	CAP,FXD CER	C3216SL111222J-E-TP	2200PF	SOY J	SCAAD
					OO792
C72	CAP,FIX,ELECT	ECE-A1EKS100	10UF	2SY	SCEAAO
				Μ	1916
C73	CAP,FXD CER	C3216CH1HOSOC-E-	SPF	SOY	
~	~	TP		С	00800
C74	CAP,FXD CER	С3216СН1Н100Д-Е-	10PF	SOY	SCAAD
075		TP ECE A 1EGN/4D7D	4 71 15	D	OO78S
C75	CAP, FIX, ELECT	ECE-A1ESN4R7B	4.7UF	25Y	SCEAAO
C76	ΓΑΡ ΕΥΓΙ ΓΕΡ	C3216SL1H222J-E-TP	2200DE	M SOY J	2277 SCAAD
C/0	CAI, FAD CEK	CJ2105L111222J-E-1P	2200F F	201 J	00792
C77	CAP, FIX, FILM	ECO-B1H332JZ			SCRAAO
					OSS3

C78	CAP, FXD CH	ER C3216JF1H1O4Z-E-TP 0. 1UF	SOY SCAAD
C79	CAP, FXD CH	ER C3216JF1H1O4Z-E~TP 0. 1UF	Z O1268 SOY SCAAD
C81	CAP, FXD CH	ER C32I6CH1HO2OC-E- 2PF	Z O1268 SOY SCAAD
C82	CAP, FXD CE	TP R C3216JF1H1O4Z-E-TP 0. 1UF	C OO798 SOY SCAAD
C83	CAP, FXD CE	R C3216JF1H1O4Z-E-TP 0. 1UF	Z O 1268 SOY SCAAD
C84	CAP, FXD CE	R C3216JF1H1O4Z-E-TP 0. 1UF	Z O 1268 Soy Scaad
C85	CAP, FXD CE	R C3216JF1H1O4Z-E-TP 0.1UF	Z O1268 Soy Scaad
C86	CAP, FXD CE		Z O1268 SOY SCAAD
000	CAI, IAD CL	K C321031 1111042-L-11 0.101	Z 01268
C87	CAP, FXD CE	R C3216JF1H1O4Z-E-TP 0. 1UF	SOY SCAAD Z 01268
C88	CAP, FIX, ELECT	ECE-A1EKS100 10UF	2SY SCEAAO M 1916
C89	CAP,FXD CEI	R C3216SL1H222J~E-TP 2200PF	SOY J SCAAD
C90	CAP, FXD CE	R C3216CH1H471J-E-TP 47OPF	OO792 Soy J Scaad
CD1	DIODE	1SS269-TE85R	OO797 STXADO
CD2	DIODE	1SS269-TE8SR	OS91 STXADO
			OS91 STXADO
CD3	DIODE	1SS269-TE8SR	OS91
CD4	DIODE	1S5269-TE8SR	STXAD OOS91
CDS	DIODE	1SS269-TE8SR	STXAD
CD6	DIODE	1S5269-TE8SR	OOS91 STXAD
			OOS91
ref. CD7	DIODE LED	TYPE DESCRIPTION 1SS226-TE85L	JRC P/N STXADOO3
CD8		TLR146	20
			STZADOO
CDO	DIODE	NOCONACE	23S
CD9 CD10	DIODE DIODE	VO6C VO6C	STXAE000 16
CDIO	DIODE		STXAE0001
			6
CD12	DIODE	1SS226JE85L	STXADOO3 20
CD13	DIODE	1SS226TE85L	STXADOO3
CD14	DIODE	1SS226-TE85L	20 STXADOO3
CD15	DIODE	1SS97(2)	20 STXAAOO3
IC1	IC	SL1613C-DP	13 SDDAA0002


				1
IC2	IC	SL1613C-DP		SDDAA0002 1
1C3	IC IC	SL1613C-DP		SDDAA0002
IC4		SL1613C-DP		1 SDDAA0002
105	IC	SI 1(12C DD		1
IC5	IC	SL1613C-DP ~		SDDAA0002 1
IC6	IC	SL16l3C~DP		SDDAA0002
IC7	IC	SL1613C-DP		SDDAA0002
IC8	IC IC	SL1613C-DP		1 SDDAA000
IC9		SL1613C-DP		21
				5DDAA000 21
IC10	IC	TLO84CN		5DDALOO3
IC11	IC	TA78008AP	8V REG	42 SDAADOOS SS
J3001	CONNECTO	IL-7P-S3FP2	7P	SJ~ADOO14
J3002	R	IL-10P-S3FP2		6
J3003 J3004	CONNECTO R	171255-1 171255-1		SJViADOO2 13
J3004 J3005	K CONNECTO	171255-i		BRTE00046
J3005	R	171255-1		BRTE00046
J3000	CONNECTO	171255-1		BRTE00046
J3008	R	171255-i		BRTE00046
J3009	CONNECTO	171255-1		BRTE00046
00000	R	1,1200 1		BRTE00046
	CONNECTO			BRTE00046
	R			
	CONNECTO			
	R			
	CONNECTO			
	R			
	CONNECTO			
10010	R	151055 1		
J3O13	CONNECTO R	171255-1		BRTE00046
Li	COIL	Fl-7LARDO11S		7LARDO11S
L2	COIL	H-7LARDO113A	10UH	7LARDO113
L3	COIL	LAPO2KR100K	10UH	А
L4	COIL	LAPO2KR100K		SLCAAOO2
				32
				SLCAAOO2
Ιſ	COIL		10111	32 71 A D D O 1 1 2
L5 L6	COIL COIL	H-7LARDO112A H-7LARDO112A	10UH 10UH	7LARDO112 A
L0 L7	COIL	H-7LARDO112A H-7LARDO114A	юоп	A 7LARDO112
L7 L8	COIL	H-7LARDO114A H-7LARDO114A		A
L8 L9	COIL	H-7LARDO114A H-7LARDO118A		7LARDO114
L10	COIL	LAPO2KR100K		A
210				

Lii	COIL	LALO4NA-100K		7LA	RDO114
				A 7LA	RD0118
				A	
				SLC 32	CAAOO2
					CAAOO1
				91	
L12	COIL	H-7LARDO117	10UH		RD0117
L13 L14	COIL COIL	LAPO2KR100K H-7LARDO116		32	CAAOO2
L15	COIL	H-7LARDO1 13A	10UH		RDO116
L16	COIL	LAPO2KR100K			RDO1
L17	COIL	H-7LARDO110A	10UH 0	13A	CAAOO2
L18 L19	COIL COIL	LAPO2KR100K H-7LARDO119A	0	32	.AA002
L19 L20	COIL	LAPO2KR100K			RDO11
			10UH	OA	
				SLC 232	CAAOO
					RDO119
				А	
				SLC 32	CAAOO2
REF.		TYPE	DESCRIPTIO		JRC P/N
L21	COIL	LAPO2KR100K	10UH		SLCAAO
PC3O1	PCB	H-7PCRD1279E			O232 7PCRD12
PC301	PCD	H-/PCKD12/9E			79E
Ri	RESISTOR	ERJ-8GEYJ472V	4.7K OHM	1/8∖~ J	SREAGO 1746
R2	RESISTOR	ERJ-8GEYJ472V	4.7K OHM	1/8'N J	SREAGO
R3	RESISTOR	ERJ-8GEYJ471Y	470 OHM	1/8~	1746 SREAGO
R4	RESISTOR	ERG~2SJ33OP	33 OHM	J 2~ J	1734 SREAGO
174	RESISTOR	LK0*2555501	55 OHW	<u>2</u> .e J	1492
R5	RESISTOR	ERJ~8GEYJ221V	220 OHM	1/8~ J	SREAGO 1730
R6	RESISTOR	ERJ-8GEYJS62V	5.6K OHM	1/8w J	SREAGO 1747
R7	RESISTOR	ERJ-8GEYJ562V	5.6K OHM	1/8~	SREAGO
R8	RESISTOR	ERD-25P31O2	1K OHM		1747 SREAGO
R9	RESISTOR	ERJ-~8GEYJ562V	5.6KOHM	J 1/8~ J	1181 SREAGO
					1747
RiO	RESISTOR	ERJ-8GEYJ562V	5.6K OHM	i/8~ J	SREAGO 1747
Ru	RESISTOR	ERD-25PJ101	100 OHM	l/4~ J	SREAGO 1175
R12	RESISTOR	ERJ-8GEYJ562Y	5.6K OHM	1/8\~	SREAGO 1747
R13	RESISTOR	ERJ-8GEYJ222V	2.2K OHM	J 1/8~	SREAGO

R14	RESISTOR	ERD-25PJ102	1K OHM	J 1742 1/4~ SREAGO J 1181
R15	RESISTOR	ERJ-8GEYJ222Y	2.2K OHM	1/8V SREAGO 1 J 1742
R16	RESISTOR	ERJ~8GEYJ562V	5.6K OHM	1/8~ SREAGO J 1747
R17	RESISTOR	ERD-25PJ101	100 OHM	1/4Yi SREAGO
R18	RESISTOR	ERJ~8GEYJ562V	5.6K OHM	J 117S 1/8V SREAGO 1 J 1747
Ri9	RESISTOR	ERJ-8GEYJ101V	100 OHM	1/8~ SREAGO
R2O	RESISTOR	ERJ-8GEYJ562V	5.6K OHM	J 1726 1/8~ SREAGO
R21	RESISTOR	ERJ-8GEYJ101Y	100 OHM	J 1747 1/8w SREAGO
R26	RESISTOR	ERJ-8GEYJ82OY	82 OHM	J 1726 1/8~ SREAGO
R30	RESISTOR	ERJ-8GEYJ1O2V	1K OHM	J 172S 1/8\~ SREAGO
R31	RESISTOR	ERJ-8GEYJ1O2V	1K OHM	J 1738 1/8w SREAGO
R32	RESISTOR	ERJ-8GEYJ222V	2.2K OHM	J 1738 1/8~ SREAG
R33	RESISTOR	ERJ~8GEYJ222V	2.2K OHM	J O1742 i/8~ J SREAGO
R34	RESISTOR	ERJ-8GEYJ472V	4.7K OHM	1742 1/8w SREAGO
R35	RESISTOR	ERJ-8GEYJ561Y	560 OHM	J 1746 1/8w SREAGO
R36	RESISTOR	ERJ-8GEYJ681Y	680 OHM	J 173S 1/8Vi SREAGO
R37	RESISTOR	ERJ-8GEYJ222Y	2.2K OHM	J 1736 1/8~' SREAGO
R38	RESISTOR	ERJ-8GEYJ222Y	2.2K OHM	J 1742 1/8V SREAGO
R39	RESISTOR	ERD-25PJ4R7	4.7 OHM	1 J 1742 1/4w SRDAAO
R4O	RESISTOR	ERJ-8GEYOROOY	0 OHM	J 12O3 1/8S~ SREAGO
R4i	RESISTOR	ERD-25PJ4R7	4. 7 OHM	177S 1/4w SRDAAO
R42	RESISTOR	ERG-2SJ100P	10 OHM	J 12O3 2SY J SREAGO
R43	RESISTOR	ERG-2SJ100P	10 OHM	1388 2Vi J SREAG
R44	RESISTOR	ERJ-8GEYJ1O2Y	1K OHM	O1388 1/8~' SREAGO
R45	RESISTOR	ERJ-8GEYJ472Y	4.7K OHM	J 1738 1/8~ SREAGO
R46	RESISTOR	ERJ-8GEYJ331Y	330 OHM	J 1746 1/8~ J SREAGO
R5i	RESISTOR	ERJ-~8GEYJ1O2V	1K OHM	1732 1/8~ SREAGO

				N J	1738
R52	RESISTOR	ERJIGEYJ473Y	47K OHM	1/8~	
D54	DECICTOD	EDLOCEVIA71V	470 01114	J	O17S8
R54	RESISTOR	ERJ-8GEYJ471Y	470 OHM	1/8~ J	SREAGO 1734
R55	RESISTOR	ERJ-8GEYJ221Y	220 OHM	J 1/8V	
KJJ	KE51510K	EKJ-OUE I J221 I	220 OI IM	1/0 v 1 J	1730
R56	RESISTOR	ERJ-8GEYJ683Y	68K OHM	1/8w	
100	REDIDTOR			J	1760
R57	RESISTOR	ERJ-8GEYJ22OY	22 OHM	1/8w	
				J	1718
R58	RESISTOR	ERJ-8GEYJ221Y	220 OHM	1/8V	i SREAGO
				J	1730
R59	RESISTOR	ERJ-8GEYJ221Y	220 OHM	1/8V	
REF.		ТҮРЕ	DESCRIPTIC	1 J	1730 JRC P/N
	RESISTOR	ERJ-~8GEYJ332Y	3.3K	1/8w	SREAGO
K 02	KL5151 OK	EKJ-~00E1JJJ21	OHM	J	1744
R63	RESISTOR	ERJ-8GEYJ392Y	3.9K	J/8w	SREAGO
			OHM	J	17SS
R64	RESISTOR	ERJ-8GEYJ22OY	22 OHM	l/8~ J	SREAGO
					1718
R67	RESISTOR	ERJ-8GEYJ221Y	220 OHM	1/8~	SREAGO
				J	1730
R68	RESISTOR	ERJ-8GEYJ331Y	330 OHM	1/8w	SREAGO
R69	RESISTOR	ERJIGEYJ152Y	1.5K	J 1/8w	1732 SREAGO
K 09	KESISIOK	EKJIGE I J152 I	OHM	J	1740
R7	RESISTOR	ERJ-8GEYJ821Y	820 OHM	J 1/8w	SREAGO
0			020 01111	J	1737
R71	RESISTOR	ERJ-8GEYJ473Y	47K OHM	1/8~	SREAGO
				J	17S8
R72	RESISTOR	ERJ-8GEYJ22OY	22 OHM	1/8w	SREAGO
D70	DEGIGEOD	EDIOCEVIIOQU	1012 010 4	J	1718
K/3	RESISTOR	ERJ8GEYJ1O3V	10K OHM		SREAGO 17SO
P 7/	RESISTOR	ERJ~8GEYJ222V	2.2K		
K/4	KL5151 OK	EKJ~0OE I J222 V			1742
R75	RESISTOR	ERJ8GEYJ47OV	47 OHM		
					1722
R76	RESISTOR	HMGL1 ₁ '4A	10M	1/'4\	SREAAO
		10MJ	OHM		
R77	RESISTOR	ERJ-8GEYJ222Y			SREAGO
D7 0	DEGIGEOD		OHM		
K/8	RESISTOR	ERJ-8GEYJ1O3Y			17SO
R7 0	RESISTOR	ERJ-8GEYJ1O2Y			
K 79	KL5151 OK	EKJ-00E1J1021			1738
R8	RESISTOR	ERJ-8GEYJ1O2Y	1K OHM		
0					1738
R81	RESISTOR	ERJ-8GEYJ1O3Y	10K OHM		
~				.J	
R82	RESISTOR	ERJ-8GEYJ222Y			
D 07	DEGIGEOD		OHM		
R85	RESISTOR	ERJ-8GEYJ1O1V	100 OHM	1/8W	SREAGO

				J	1726
R86	RESISTOR	ERJ-8GEYJ1OIY	100 OHM	1/8w	SREAGO
				J	1726
R87	RESISTOR	ERJ-8GEYJ101Y	100 OHM	1/8~	SREAGO
				J	1726
R88	RESISTOR	ERJ-8GEYJ33OY	33 OHM	1/8~	SREAGO
				J	1720
R89	RESISTOR	ERD-25PJ471	470 OHM	l/4~'	SRDAAO
				J	11SS
RY	RESISTOR VAR	GFO6X 100 OHM	100 OHM		SRMABO
1					0102
TP1	TEST PIN	LC-2-G	RED		SJTC~OO
					O13
TP2	TEST PIN	LC-2-G	RED		SJTC~OO
					O13
TR1	TRANSISTOR	2SK3O2GR-			STKAAO
		TE8SL			O225
TR2	TRANSISTOR	2SC126O			STCAB00
					02S
TR3	TRANSISTOR	2SC1260			STCAB00
					02S
TR4	TRANSISTOR	2SA101S-Y			STAAGO
-					O294
TR5	TRANSISTOR	2SC1815-Y			STCAFO
-					O781
TR6	TRANSISTOR	2SA101S-Y			STAAGO
TD7					O294
TR7	TRANSISTOR	2SC3098-TE8SL			STCAFO
TTD ()					OS29
TR8	TRANSISTOR	2SC3098-TE8SL			STCAFO
TDO		AGRADACD			OS29
TR9	TRANSISTOR	2SK3O2GR-			STKAAO
TD 1		TE8SL			O22S
TR1	TRANSISTOR	2SK3O2GR-			STKAAO
1 TD 1	TDANGIGTOD	TE8SL			O22S
TR1 2	TRANSISTOR	2SC3098-TE8SL			STCAFO OS29
2 TRi	TRANSISTOR	2SA1015-Y			
0	IKANSISIOK	25A1013-1			STAAGO O294
U	FIG 45 CID	CUIT DRAWING (CEW	
	FIG. 0-3 CIRC		JF UMA—301 KI		EK CHASSIS

	TABLE 6—10							
		Replaceable Parts List						
			eceiver Chassis					
			CMA— 5 6 1					
REF.		TYPE	DESCRIP	TION	JRC P/N			
A30	MIC	S-RX24			SZZAX0			
1					0029			
Cl	CAP, FIX,	FK24YSY1H1	0.1UF	SOY Z	SCAAD			
	CER	O4Z			O2822			
C2	CAP,FIX,CER	FK24Y5Y1H1	O.1UF	SOY Z	SCAAD			
		O4Z			O2822			
P1	RECEPTACLE	60789-2			SJ~AHO			
					0086			
P2	RECEPTACLE	60789-2			SJ~AHO			
					OO86			
P3	RECEF~ACLE	60789-2			SJ~AHO			
					0086			
P4	RECEPTACLE	60789-2			SJYIAH0			
DC		(0700.0			0086			
P5	RECEPTACLE	60789-2			SJ~AHO			
DC	DECEDTACI	60780 2			0086			
P6	RECEPTACL	00789-2			SJ~AHO			
	E				0086			
P7	RECEPTACLE	60789-2			5JYiAH0			
0		00400 (DL 100)			0086			
~8	~ 1IRE CLAMP	O8432(BL-100)			BRBPOO			
					131			