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Abstract: We give a direct application of probability theory to the problem of deciding which of
a set of possible targets is present. The reliability of discrimination depends on the noise level,
the background hash, the variation of echo with target aspect angles, the energy and shape of the
transmitted pulse, and the number of pulses. The e�ect of each of these variables is calculated and
discussed, leading to some new conclusions about optimal radar design and optimal data processing.
We think that the tactics which might succeed are quite di�erent from those that have been tried
in the past, and give elementary intuitive explanations of why this is so.
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1. INTRODUCTION

If radar systems could distinguish di�erent targets from each other, there would be big advantages
in air safety. Airport tra�c controllers have made serious errors from their inability to determine
which echo on their screen represents which 
ight. In the recent Persian Gulf incident, it appears
that a passenger plane was shot down because a shipboard radar could not distinguish its echo
from that of a �ghter plane. In the near future it will become important to identify di�erent
space vehicles. Presumably, good target discrimination would be helpful also in radar weather
forecasting; and the same principles will apply as well in ultrasound imaging for medical diagnosis.
But although the technical problem of target discrimination has been well recognized and studied
for many years, no good solutions have been forthcoming.

With recent renewed emphasis on the importance of the problem, it appeared that better un-
derstanding of the theoretical problem is a prerequisite for any practical hardware improvements.
Past e�orts have tended to consider the problem as one of physics (electromagnetic/acoustic scat-
tering theory, etc.). But although the physics is well understood, this alone has not led to progress.
More fundamentally, it is a problem of information processing, calling for a full application of prob-
ability theory. There have been few past e�orts to use probability theory, and they have been based
on \sampling theory" methods which are unable to deal with nuisance parameters such as aspect
angle, or to make use of all the supplementary information available to a radar operator or system.

In the present work we go back to fundamentals and consider the problem from the start as
one of probabilistic inference, in which the knowledge from physics is taken for granted and used
to tell us how to formulate the problem. Most important, we use full Bayesian probability theory,
which overcomes the limitations of sampling theory.

A transmitted pulse f(t) gives rise to an echo from a target, of the form

y(t) =

Z
r(t� t0)f(t0)dt0 (1� 1)

where r(t) is the \impulse response function", or as we shall call it, the re
ection function , of the
target, which we consider de�ned for all time. Presumably,

r(t) = 0 when t < 2d=c (1� 2)

where d is the distance to the nearest part of the target, c the velocity of light. In the theory,
however, we do not assume this; the �nal formulas turn out to have the same general form whether
or not (2) is satis�ed. Thus our results would hold also in discrimination problems where the
variable t is not a time, and the physical causality condition (1-2) need not hold.

More important are the meanings of f(t) and y(t) . One could take these to be the forms of the
actual electromagnetic �elds in space; if so, practically all of the following theory would remain valid
but for the addition of position variables as parameters: f(x; t); y(x; t) . However, these results
would then need to be convolved with the properties of antennas and matching circuits before they
would be expressed in terms of the easily measurable quantities, the voltages and currents at the
actual transmitter and receiver terminals.

It is much more convenient to take f(t) to be the transmitted pulse as measured at the
transmitter terminals (presumably a certain reference plane in a coaxial line or waveguide); and
y(t) to be the echo part of the received signal as measured similarly at the receiver terminals. With
this interpretation the following theory is exact as given, and all the functions needed to apply it
are directly measurable with standard laboratory equipment.
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Our re
ection functions are then convolutions:

r(t) = (transmitter function) � (echo in space) � (receiver function): (1� 3)

But in the frequency domain this reduces to a simple product

R(!) = AT (!) E(!) AR(!); (1� 4)

and the e�ects that depend only on the target are separated automatically from the radar design
parameters. In any event, the properties of our targets that are relevant for discrimination with a
given (i.e., already built) antenna system are the R(!) functions, not the E(!) functions.

Note also that the physics of the problem (both electromagnetic scattering theory and antenna
theory) is contained entirely in the r(t) or R(!) functions. Whether these are expressed in a
modal expansion, singularity expansion, creeping wave analysis, or just measured experimentally,
makes no di�erence. What is relevant to the problem before us (decide between a set of possible
targets) is simply the numerical values of the r(t) functions themselves, because they carry all the
information about the target that is in the echoes.

We stress this point because of a widespread belief that determining the poles of the singularity
expansion is essential to target identi�cation, because they are aspect independent. Indeed, if a
few poles could be determined from the received echo, that would lead to the desired identi�cation.
However, separate identi�cation of the poles does not appear feasible in practice because of receiver
noise and the rapid decay of the echo. But it seems obvious that separate pole identi�cation, while
su�cient if it could be accomplished, cannot be necessary.

The reason for this is that probability theory will give us its �nal verdict on any particular target
in the form of a single number, the probability that it is the one present. In calculating it, probability
theory will automatically take into account all the information in the data that is relevant to
this question, and whatever prior information is available. The result will be, presumably, some
average over the joint probability distribution for all the pole positions. To channel the analysis
through a phase of estimating the separate pole positions is not only a larger calculation, but a
less informative one, for this ignores not only correlations in that joint probability distribution, but
also other relevant information that may be in the data.

Indeed, if the returned echoes depend on aspect, it follows that any prior information about
aspect that we have, will help us to make target identi�cation. But once the course of a target
is known, we know a great deal about its aspect. It would be self-defeating to concentrate our
attention on the poles because they are aspect-independent, so strongly that we ignore this highly
cogent information about aspect.

When the physics has been done, in whatever way, and we have the re
ection functions r(t)
for our targets, then the real problem (probability analysis of incomplete information) is ready to
begin. If the poles are indeed the essential factor in target identi�cation, this analysis will tell us
so automatically; and it will tell us also the quantitative way in which they enter into the problem.
Until the results of this analysis are at hand, we are not in a position to judge what role the poles
may play in the problem, beyond intuitive guesswork.

The total data set D � fd(t)g available for processing is not just the target echo y(t) . It has
in general two other unavoidable components:

d(t) = y(t) + h(t) + n(t) (1� 5)
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where h(t) is \hash", representing ground clutter and echoes from any other objects in the antenna
beam or side lobes:

h(t) =

Z
rH(t� t0)f(t0)dt0 (1� 6)

and n(t) is noise. This always includes at least the universal noise from thermal radiation falling on
the antenna. At the frequencies and temperatures of concern to us, (hf � kT ) , thermal radiation
follows the Rayleigh-Jeans equipartition law for the normal modes of space, leading to the Nyquist
thermal noise law corresponding to the antenna radiation resistance [mean-square open circuit
voltage in a bandwidth �f Hz of �V 2 = 4RradkT�f , where k is Boltzmann's constant, 1.36
E-23 joules/degree Kelvin]. In addition, n(t) may have contributions from the internally generated
noise of an imperfect receiver, as discussed in Sec. 2 below, as well as atmospheric disturbances
and jamming signals.

For our purposes, the functional distinction between hash and noise is not that they have
di�erent physical origins, but that they have di�erent e�ects on target discrimination, because h(t)
is systematic (i.e., the same on successive pulses) while n(t) varies from one pulse to the next in a
way that we can neither predict nor control.

Of course, any data function d(t) which can be recorded for computer processing will be
digitized and sampled only at discrete times; but we expect this digitizing to be so good that the
continuum approximation used here is accurate enough for all practical purposes. In any event, the
�nal results are such that the e�ects of coarse digitizing are evident.

Consider now the simplest imaginable problem of discrimination; to decide between two possi-
ble �xed targets, without the complications of aspect angle and hash; and we analyze only the data
from a single pulse. Almost all the conceptual subtleties that have been troublesome in the past
are present already in this simple \baby" version of the problem. After we have worked out its full
solution and understood it thoroughly, we shall �nd it relatively easy to deal with the complications
of the real world, which are matters of technical detail rather than basic understanding.

2. DISCRIMINATION BETWEEN TWO TARGETS

If target A is present, the echo function is

yA(t) =

Z
rA(t� t0)f(t0)dt0; (2� 1a)

while if target B is present it is

yB(t) =

Z
rB(t� t0)f(t0)dt0: (2� 1b)

Then our data from a single pulse will be

d(t) = yA(t) + n(t); if the target is A; (2� 2a)

d(t) = yB(t) + n(t); if the target is B: (2� 2b)

We shall take n(t) to be white Gaussian noise, with expected square �2 ; i.e., we take the probability
of a given noise function n(t) to be proportional to

p(n(t)j�) / exp

�
� 1

2�2

Z
n2(t)dt

�
: (2� 3)
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We indicate this as a conditional probability, conditional on knowledge of � . If � is unknown, it
must be estimated from the data and probability theory tells us the proper way of doing this, as
shown by Bretthorst (1988). But in the present problem, � will be known in advance because it
is essentially the noise temperature of the receiver [see Eq. (2-54) below], and one will surely have
determined this before trying to test the system at all. This simpli�es our calculation.

Now if we knew that A is in fact the true target present, then the probability of getting a
given data function d(t) would be just the probability that the noise would make up the di�erence
in (2-3):

p(DjA�) / exp

�
� 1

2�2

Z
[d(t)� yA(t)]

2 dt

�
(2� 4a)

while if B is true, this probability is

p(DjB�) / exp

�
� 1

2�2

Z
[d(t)� yB(t)]

2 dt

�
(2� 4b)

where we are using D as an abbreviation for the entire run of data d(t) . These are the \sampling
probabilities" for our problem.

But the probabilities we need are the other way around: what is the probability, given the
data, that A is the true target? These are

p(AjD�); p(BjD�): (2� 5)

Probability theory tells us how to obtain them from the sampling probabilities (2-4). By the
product rule, the probability that both A and D are true is

p(ADj�) = p(Aj�) p(DjA�) = p(Dj�) p(AjD�) (2� 6)

since the proposition `AD' on the left-hand side is the same as `DA' (i.e., Boolean logic is commu-
tative). Therefore,

p(AjD�) = p(Aj�) p(DjA�)
p(Dj�) : (2� 7a)

The �rst factor on the right is the \prior probability" p(Aj�) , which is clearly necessary in all
inference from data. That is, to ask \What do you know about A after getting the data D?" does
not make sense | it is not a well posed question | unless we take into account, \What did you
know about A before getting D?". The second factor is the \likelihood", which shows how the prior
probability is updated as a result of getting the evidence of the data D. Likewise, the probability
that B is the true target, is

p(BjD�) = p(Bj�) p(DjB�)
p(Dj�) : (2� 7b)

Now in the simple problem being considered, we are given at the outset that there are only
two possible targets, A and B. Therefore

p(Aj�) + p(Bj�) = 1; (2� 8)

and this is still true after getting the data, so

p(AjD�) + p(BjD�) = 1: (2� 9)
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Then (2-7) and (2-9) give us

p(Dj�) = p(DjA�) p(Aj�)+ p(DjB�) p(Bj�); (2� 10)

which is a special case of a more general probability rule: given a set of any mutually exclusive and
exhaustive propositions fA1; : : : ; Ang and any propositions X, Y,

p(X jY ) =
nX
i=1

p(XAijY ) =
X
i

p(X jAiY ) p(AijY ); (2� 11)

which we shall need later in dealing with multiple targets.

For many purposes we can eliminate p(Dj�) by considering probability ratios, or odds, instead
of probabilities. In the present binary problem these are the same thing; the ratio of probabilities
of A and B is

p(AjD�)
p(BjD�) =

p(Aj�)
p(Bj�)

p(DjA�)
p(DjB�) ; (2� 12)

while the odds on any proposition X with probability p(X) are o(X) = p=(1� p) . But because of
(2-8), (2-9)

p(AjD�)
p(BjD�) =

p(AjD�)
1� p(AjD�) = o(AjD�) (2� 13)

so it does not matter which terminology we use. With multiple targets, odds and probability ratios
are no longer the same.

Using (2-7), the normalization constants that we left out of (2-3) cancel out anyway and the
odds on target A reduce to

o(AjD�) = o(Aj�) exp
�

1

�2
[d � (yA � yB) +

1

2
(yB � yB � yA � yA)]

�
(2� 14)

where we have used the abbreviations

d � yA �
Z
d(t) yA(t) dt; (2� 15)

yA � yA �
Z
yA(t) yA(t) dt;

etc. A term (d � d) has cancelled out. If we have any prior information about which target is likely
to be present, this should be expressed in the prior odds term o(Aj�) . If, as usual, we have no such
information, this term is equal to unity. In either case, �2 log[o(AjD�)=o(Aj�)] is the fundamental
quadratic form, on which all depends.

One reason for past confusion is that di�erent workers have appealed only to their di�ering
intuitions about how the data should be analyzed, without making any attempt to see what prob-
ability theory has to tell us about the problem. Intuition can give us bits and pieces of the truth;
but it almost never gives us the whole truth.

Now we see from (2-12) that, since the data appear nowhere else, the import of the data for
this problem resides entirely in the \likelihood ratio" L = p(DjA�)=p(DjB�) . All other aspects
of the data are irrelevant for the problem of deciding between A and B; few people have perceived
this intuitively. Probability theory tells us, in (2-14), how the data should be processed for optimal
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discrimination between targets. With Gaussian noise, a simple linear operation on the data is the
optimal computation which generates the posterior log-odds in favor of one target over the other.

Now if A is in fact the true target present, then d(t) = yA(t)+n(t) , and the result of this data
processing will be

�2 log o(AjD�) = n � (yA � yB) + yA � (yA � yB) +
1

2
(yB � yB � yA � yA) (2� 16)

or,

�2 log o(AjD�) = n � (yA � yB) +
1

2
(yA � yB) � (yA � yB) (2� 17a)

a \random noise" part and a systematic part. If B is the true target, our computer will �nd instead
the log-odds in favor of A of

�2 log o(AjD�) = n � (yA � yB)� 1

2
(yA � yB) � (yA � yB) (2� 17b)

in which the systematic term has a reversed sign.

The term n � (yA � yB) represents an unavoidable confusion due to noise. Eqs. (2-17) tell us
that if n(t) happens to resemble (yA � yB ), this term will be positive and it will incline us in the
direction of favoring A. If n(t) happens to have the opposite sign, so it resembles (yB � yA ), it
will make us tend to favor B. We shall estimate the magnitude of this term presently [Eq. (2-57)];
but from symmetry it is as likely to be positive as negative, so the expected log-odds in favor of A
comes from the systematic term alone:

�2 hlog o(AjD�)i = �1

2
(yA � yB) � (yA � yB) (2� 18)

with the plus sign if A is true.

Evidently, for best discrimination between A and B we want to make the magnitude of (2�18)
as large as possible. To see how this depends on the re
ection functions and the transmitted pulse,
write the di�erence in re
ection functions (2-1) as

r(t� t0) � rA(t� t0)� rB(t� t0): (2� 19)

We have from (2-1),

(yA � yB) � (yA � yB) =

Z
dt

�Z
dt0 r(t� t0) f(t0)

��Z
dt00 r(t� t00) f(t00)

�

=

Z Z
f(t0)g(t0; t00)f(t00)dt0dt00 (2� 20)

where

g(t0; t00) �
Z
dt r(t� t0) r(t� t00): (2� 21)

Abbreviating the integral in (2-20) by `
R R

fgf ', this is

(yA � yB) � (yA � yB) =

Z Z
fgf (2� 200)

We discuss the maximization problem �rst in the time domain, then in the frequency domain.
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Time Domain

The condition that (2-20) be a maximum for a given total amount of energy radiated, `
R
f2 ' =R

[f(t)]2dt , is found by Lagrange multipliers: in our shorthand notation,

0 = �

�Z Z
fgf � �

Z
f2
�
=

Z
2�f �

�Z
gf � �f

�
(2� 22)

or, the condition for stationarity of
R R

fgf is the integral equation

Z
g(t� t0) f(t0) dt0 = �f(t): (2� 23)

To understand the condition for a maximum, note that if this integral equation had a discrete set
of eigenvalues and normalized eigenfunctions:

Z
g(t� t0)�i(t

0) dt0 = �i �i(t); i = 1; 2; � � � (2� 24)

then we could view it in a very simple way. Given any function f(t) , expand it in the eigenfunctions:

f(t) =
X
i

ai �i(t) (2� 25)

Then we �nd that R R
fgfR
f2

=

P
i jaij2 �iP
i jaij2

(2� 26)

is a weighted average of the eigenvalues. This makes it obvious that the absolute maximum is
achieved when f(t) is proportional to that eigenfunction belonging to the greatest eigenvalue, and
(2-26) shows how much the performance will deteriorate when f(t) is not optimal. This would give
us essentially complete understanding of the problem.

However, our g(t; t0) is not of this type; it has continuous eigenvalues and non-normalizable
eigenfunctions. To see this, note from (2-21) that it is translationally invariant:

g(t0; t00) = g(t0 � t00) (2� 27)

and so, if f(t) was an eigenfunction of (2-23), then f(t� s) would be one also for all real s . There
are two possibilities: (1) there is an in�nite degeneracy; (2) f(t) is an exponential function. This
is symptomatic that things will be simpler in the frequency domain.
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Frequency Domain

Taking note of (2-27), de�ne the fourier transforms

G(!) �
Z
g(t)ei!tdt (2� 28)

F (!) �
Z
f(t)ei!tdt (2� 29)

Then we need some Parseval-type formulas:

Z
g(t0 � t00)f(t00)dt00 =

Z
dt00f(t00)

Z
d!

2�
G(!)e�i!(t

0
�t00) =

Z
d!

2�
G(!)F (!)e�i!t

0

(2� 30)

and Z Z
fgf =

Z
dt0f(t0)

Z
d!

2�
G(!)F (!)e�i!t

0

=

Z
d!

2�
G(!)jF (!)j2 (2� 31)

and the conventional Parseval theorem:
Z
f2(t)dt =

Z
d!

2�
jF (!)j2: (2� 32)

The ratio to be maximized is now
R R

fgfR
f2

=

R
d! jF (!)j2 G(!)R

d! jF (!)j2 (2� 33)

which is, analogous to (2-26), a weighted average of the values of G(!) , weighted according to
the power density of the transmitted pulse at frequency ! . This makes it, again, obvious how the
quality of discrimination for a given transmitted energy depends on the properties of the targets
as described by G(!) , and on the spectrum of the transmitted pulse as described by F (!) .

Now let us relate G(!) more directly to the target re
ection functions. Referring to Equations
(2� 19)� (2� 21), we can make another Parseval-type relation:

g(t0; t00) =

Z
dt r(t� t0)

Z
d!

2�
R(!) e�i!(t

0
�t00) =

Z
d!

2�
jR(!)j2 e�i!(t0�t00) (2� 34)

In other words, we have simply
G(!) = jRA(!)� RB(!)j2 (2� 35)

which makes (2-33) appear very cogent and sensible. This is the usual outcome of a Bayesian
probability analysis; a �nal result that intuition would never have found for us, but which seems
intuitively right after a little meditation.

The transmitted pulse that is optimal for purposes of target discrimination will then have its
spectrum concentrated near the frequency where jRA(!)�RB(!)j reaches its absolute maximum.
In fact, however, in existing radar systems the transmitted pulse will have a spectrum concentrated
rather sharply near some carrier frequency !o which was not chosen with this problem in mind at
all. Then the combined result of the above equations is that, if A is the true target, a single pulse
will give us an expected log-odds in favor of A of approximately

hlog o(AjD�)i '
R
f2(t)dt

2�2
jRA(!o)� RB(!o)j2 ; (2� 36)
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provided that G(!) is not rapidly varying in the neighborhood of !o . The �rst factor on the right
is a kind of signal/noise ratio; i.e., it is something vaguely like

(energy radiated in a pulse)

(noise energy incident on the receiver)
(2� 37)

But to make this precise we must now examine the noise term n(t) , its probability distribution,
and some of the facts of life concerning receiver operation, a little more closely. The term �2 in
(2-36) is essentially the receiver noise temperature TN , but with a conversion factor that requires
some e�ort to derive. Previously we de�ned � only by the probability distribution (2-3).

To �nd this conversion factor exactly, we need �rst a short digression on the meaning of our
transmitter and receiver signals f(t); y(t); n(t) . We decided before to de�ne these as the values
measured at certain reference planes in the coaxial cables or waveguides connecting transmitter
and receiver to their antennas; but until now we did not need to decide whether they are voltages,
currents, travelling wave amplitudes, etc.

Transmission Lines and Receivers

In a transmission line of characteristic impedance Z (which might be the wave impedance of
a waveguide mode), there is a voltage and current v(t); i(t) at this reference plane (which in a
waveguide represent the amplitudes of the transverse electric and magnetic �elds of the mode being
used). The forward and backward traveling wave amplitudes are

f�(t) =
1

2

�
v(t)p
Z
� i(t)

p
Z

�
; (2� 38)

with the meaning that f2+ and f2� are the instantaneous powers in watts, carried by the forward
and backward waves. We verify that, indeed, the di�erence

f2+(t)� f2�(t) = v(t)i(t) (2� 39)

is the net instantaneous power 
ow.

Now we de�ne the transmitter pulse f(t) as the forward wave amplitude, at the transmitter
reference plane, travelling from transmitter to transmitting antenna. Likewise, by y(t) and n(t) we
mean the components of the travelling wave amplitudes at the receiver reference plane, travelling
from receiving antenna to receiver.

We should be aware that there is a di�erence in the circuit conditions for these two waves. In
the transmitter, one will take pains to match the transmission system to the antenna so that all
the energy in the forward wave f(t) is radiated out into space instead of being wasted setting up
standing waves in the transmission line. It will be desirable also to match the receiver transmission
line to the receiving antenna, and we assume henceforth that this has been done.

One might then think na��vely that we should take equal care to match the receiver to its
transmission line so that all the energy captured by the receiving antenna is actually delivered to
the receiver. However, this is not the case for a good receiver. In order to detect radiation it is
not necessary to absorb it; for a magnetic �eld can de
ect a charged particle in an observable way
without delivering any energy to it. An electric �eld can de
ect a charged particle in an observable
way while actually removing energy from it. In fact, an ideal receiver does not run on energy at
all, but re
ects back all the energy incident on it!

The point here is that the receiver is designed not for maximum energy, but for maximum
signal/noise ratio, at its output. Matching the receiver to its transmission line would indeed give
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maximum output energy for a given gain; but that is not what we want. How much of the noise at
the receiver output is ampli�ed noise presented to its input, how much is generated internally by
imperfections (Nyquist thermal noise, shot noise, etc.) in the receiver?

An ideal receiver is one that generates no internal noise, but delivers at the output a sig-
nal/noise ratio equal to that at the input. Suppose, then, that there is a desired signal y(t) and
unwanted noise n(t) , which are wave amplitudes travelling toward the receiver, giving an incident
signal/noise ratio (S=N)inc = y2=n2 . If the receiver presents an in�nite impedance at this reference
plane [ i(t) = 0], then from (2-38) there is a signal voltage vsig(t) = 2

p
Z y(t) and a noise volt-

age vnoise(t) = 2
p
Z n(t) , leading to a signal/noise ratio v2sig=v

2
noise = (S=N)inc , which the ideal

receiver ampli�es and delivers to its output. If the incident noise n(t) is Nyquist noise, carrying
average power P = hn2i = kT�f in a bandwidth �f , then the average v2noise is 4Z kT�f .

Now if we match the receiver to the input transmission line, the signal voltage is cut in half but
the noise voltage is not because we must reckon with a new source of thermal noise, that generated
by the receiver input impedance Z. The impedance which determines the total noise voltage at the
reference plane is now Z/2, the parallel combination of the impedances looking toward receiver and
antenna, and the RMS noise voltage at the reference plane will be reduced only by a factor

p
2

rather than 2. Even if the receiver is ideal from this point on, its output signal/noise ratio cannot
be better than that at the input reference plane, which is now 3 db lower than (S=N)inc .

So, if the receiver generates no internal noise, we would lose 3 db in output signal/noise ratio
by matching it to its transmission line. If the receiver input impedance at the reference plane is
zero rather than in�nite, interchange voltage and current in the above arguments and the 3 db loss
conclusion still holds. If the receiver input impedance is purely reactive, then it will appear in�nite
or zero at some other reference plane, at which these arguments will apply. So quite generally, in
order to deliver the maximum signal/noise ratio at its output, an ideal receiver must re
ect all the
energy incident upon it.

It is only in the limit of an \in�nitely bad" receiver, in which all the output noise is generated
internally, that matched input impedance becomes the condition for maximum signal/noise ratio at
the output. Actual receivers are somewhere between ideal and in�nitely bad, and so they perform
best when partially matched, so that a part of the incident energy is re
ected and radiated back
out the receiver antenna.

This fact surprises many people on �rst hearing; but we note that it is so general that it remains
true in quantum theory, at optical frequencies where hf � kT and the Nyquist noise formula no
longer holds. For initiation of a photochemical reaction it is not necessary that the light energy
be absorbed. For example, it might be thought that the eyes of animals adapted to seeing in the
dark would have pupils that act as perfect black bodies, absorbing all the incident light energy. On
the contrary, it is a familiar fact that the animals with best night vision have eyes that re
ect the
incident light strongly, looking like search-lights in the dark.

The result of this little digression is that while the transmitted signal f(t) is looking into a
matched transmission line, the received signal y(t) + n(t) will not be in general, and the noise
which interferes with target discrimination does not come entirely down the transmission line from
the receiving antenna.
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Receiver Noise Considerations

The noise performance of receivers must be speci�ed in a way that includes both the noise actually
incident on the receiver terminals, and the internally generated noise. In e�ect, we note the output
signal/noise ratio and then imagine an ideal receiver, which would have the same S/N ratio at
its input. The input noise of this ideal receiver is greater than the Nyquist value for the ambient
temperature; but of course it can be written in the Nyquist form with some higher temperature.

Thus we take for the e�ective average of n2(t)

hn2(t)i = kTN �f (2� 40)

where �f is the bandwidth ampli�ed by the receiver, and TN its \noise temperature". One also
speaks of the \noise �gure" of a receiver, being the ratio of its noise temperature to the ambient
temperature. Thus a receiver with a \6 db noise �gure" is one whose noise temperature is four
times room temperature: 4� (20 + 273) = 1172oK .

The fact that we are concerned with a �nite bandwidth greatly simpli�es the probability
description of the noise, because it means that the sampling theorem representation is available.
Given a fourier transform pair

F (!) =

Z
f(t)ei!tdt; (2� 41)

f(t) =

Z
d!

2�
F (!)e�i!t (2� 42)

if it is band limited to frequencies less than 
:

F (!) = 0; j!j � 
 (2� 43)

then de�ne the Nyquist sampling times and sampling functions:

tk � �k



; k = 0; �1; �2; : : : (2� 44)

sk(t) � sin 
(t� tk)


(t� tk)
(2� 45)

Then the theorem is that a band-limited function is a sum of (sinx=x) functions:

f(t) =
1X

k=�1

f(tk)sk(t) (2� 46)

Furthermore, this is an expansion in orthogonal functions, for

Z 1

�1

sj(t)sk(t)dt =
�



sj(tk) =

�



�jk : (2� 47)

Then the integral of a product of band-limited functions is

Z
n(t)g(t)dr =

Z
dt
X
jk

njgksj(t)sk(t) =
�




X
j

njgj (2� 48)
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and, in the special case g(t) = n(t) , Z
n2(t)dt =

�




X
j

n2j : (2� 49)

Note that (2-48) and (2-49) are not merely discrete sum approximations to the integrals; for band-
limited functions they are exact.

Now we de�ned the quantity � in (2-3) by saying that the noise is supposed white, and the
probability of a noise function n(t) shall be

p(n(t)j�) / exp

�
� 1

2�2

Z
n2(t)dt

�
: (2� 50)

This is now, from (2-49),

exp

8<
:�

�

2�2


X
j

n2j

9=
; : (2� 51)

But this states that the variables nj = n(tj) are assigned independent Gaussian distributions with
means hnji = 0 and second moments

hnjnki = 


�
�2�jk: (2� 52)

In other words, our de�nition (2-50) plus the band-limited condition implies white noise in the
sense that values of n(t) separated by Nyquist intervals are independent. The noise is as \white"
as it can be in view of the band limiting.

This enables us to �nd the missing conversion factor between � and the noise temperature
TN . From our de�nition of n(t) as the amplitude of a travelling wave, the expectation of energy
carried by it in the frequency bandwidth �f = 
=2� in some long time interval � is from (2-49),
(2-52),

�




�X
tj=0

n2j = kTN � 
�
2�

(2� 53)

The number of terms in the sum is �=�t = 
�=� , where �t = �=
 is the Nyquist sampling interval.
By (2-52) these terms are all equal. Therefore 
 and � cancel out, and (2-53) becomes simply

�2 =
1

2
kTN (2� 54)

just the average thermal energy per degree of freedom according to the Rayleigh-Jeans law, at
temperature TN . Although the argument leading to this result has been long, we are rewarded in
the end with a pleasant surprise: a beautifully simple formula.

Another equally nice result is the estimated value of the integral (2-48). As we noted before
[Eqs. (2-17), (2-18)] its expectation is, trivially h(n � g)i= 0; but now we can calculate its expected
square. Using (2-48) we have

h(n � g)2i = �2


2

X
jk

hnjnkigjgk = �



�2
X
j

g2j

or, in view of (2-49),

h(n � g)2i = �2
Z
g2(t)dt: (2� 55)

That this turns out so simple and neat is another pleasant surprise. Now we can return to the
log-odds calculation (2-17), (2-36) with all factors known.
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Final Results:

The approximate expected log-odds (2-36) in favor of target A is now simply

hlog o(AjD�)i ' (Energy radiated per pulse)

kTN
jRA(!o)� RB(!o)j2; (2� 56)

the product of two dimensionless factors, one enormously large and one enormously small; we
estimate them separately below. But how much can the calculated log-odds (2-17) vary due to
noise? For reliable discrimination the systematic part (2-56) of the log-odds must be large compared
to its random variability. In (2-17) we saw that the noise contributes a random confusion term to
the log-odds of ��2n � (yA � yB) , and from (2-55) we can estimate this as

�
�R

[yA(t)� yB(t)]2dt

�2

�1=2
(2� 57)

But this integral is just the `
R R

fgf ' that we have evaluated in (2� 31) and (2� 35):

Z
[yA(t)� yB(t)]

2 dt =

Z
d! jF (!)j2 G(!) ' jRA(!o)�RB(!o)j2

Z
f2(t)dt (2� 58)

and we have yet another pleasant surprise: the square of (2-57) is just twice the expected log-odds
(2-36).

Therefore our �nal conclusion for this \baby" version of the problem can be stated very simply:
given the echo functions yA(t) and yB(t) for the two possible targets and the data d(t) obtained
by the receiver from a pulse echo, calculate the dimensionless number

LA � [d � (yA � yB) +
1
2 (yB � yB � yA � yA)]
kTN

(2� 59)

This is the log odds in favor of target A given by a single pulse. The mean value, or \expected
value" of LA is given by (2-18), (2-54) as

M = hLAi = (yA � yB) � (yA � yB)

kTN
: (2� 60)

Di�erent pulses, with randomly varying samples of noise, will yield varying conclusions given ap-
proximately by

log o(AjD�) 'M �
p
2M: (2� 61)

Thus if M > 10 the targets can be distinguished quite reliably. We could hardly have hoped for
an easier prescription. Note that (2-59) and (2-60) are exact; they do not have the approximation
made in (2-36) and (2-56) which supposed that the transmitted pulse spectrum is sharply peaked
at a frequency where G(!) is not rapidly varying.
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Numerical Estimates:

It remains to estimate the numerical values that we might hope for in a real situation. For example,
if the transmitter radiates one Megw for one microsecond and the receiver has a noise temperature
of 1000K, the energy ratio in (2-56) is about

1 joule

1:36 � 10�23 � 1000 joules = 0:75� 1022: (2� 62)

Then to achieve reliable discrimination between any two targets A and B, the re
ection function
factor in (2-56) must be large compared to 10�22 .

To estimate magnitudes for this small factor, we need reasonable guesses for our antenna gains
and the scattering cross-section of a target. Suppose our transmitter radiates the total power Prad
watts. The antenna concentrates the energy as much as possible in the direction of the target, so
the power density incident on the target at distance d is

Pinc = G
Prad
4�d2

watts=m2: (2� 63)

where G is the antenna gain, relative to an isotropic radiator. It can be estimated two ways, from
the beam width or, using the reciprocity theorem, from its absorption cross-section. We illustrate
both methods.

Suppose our antenna is a parabolic dish of diameter 2a, operating at a wavelength � . Its beam
width is, crudely, �� ' �=2a , so its main beam �lls in space a solid angle of about 
 ' �(��=2)2 .
Thus we estimate its gain as

G =
4�



'
�
4a

�

�2

: (2� 64)

On the other hand, consider its absorption properties. An in�nitesimal dipole has an absorption
cross section of 3�2=8� ; i.e. the maximum power that it can extract from a passing plane wave
is the power incident on this area. But this has a gain of 3/2 because of the slight concentration
of �elds in the dipole's equatorial plane (the average of sin2 � over a sphere is 2/3). Therefore the
hypothetical but nonexistent isotropic radiator would have an absorption cross-section of �2=4� .
Now the absorption cross-section of our dish antenna is about equal to its area, �a2 (actually,
slightly less because the dish is not uniformly illuminated by the feeder), and so we estimate the
gain as

G ' �a2

�2=4�
=

�
2�a

�

�2

(2� 65)

in approximate agreement with (2-64). For example, for an 18 inch dish at X band (� = 3 cm) we
estimate a gain of about G ' 2000.

To get crude estimates of scattering cross-sections, suppose that our target is a perfectly
conducting sphere of radius r , large compared to � so that we can use geometrical optics. Consider
the radiation of density Pinc incident on a small area A of the spherical surface. This area �lls a
solid angle, as seen from the center of the sphere, of 
 = A=r2 . But it is re
ected back at twice
the angle of incidence, thus going into a solid angle 4
. Thus the re
ected energy appears at a
distance d from the sphere with a density

Prefl =
PincA

4
d2
= Pinc

�r2

4�d2
; (2� 66)
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con�rming our intuitive feeling that in the geometrical optics limit the back scattering cross-section
� of a perfectly conducting sphere should be just its projected shadow area: � = �r2 . Indeed, in
this limit the back scattering cross-section of a perfectly conducting object of any shape, integrated
over all angles, should be its shadow area, because that is intuitively the amount of energy it
intercepts [However, this intuition fails in the exact forward direction, because of some subtleties
about creeping waves, the Arago bright spot, etc. which do not concern us here].

Then in practice, we expect that the strongest echoes from a metallic target will come from
that part of its surface which presents a perpendicular aspect to the radar system, and has the
greatest radius of curvature. If that 
attest perpendicular surface has principal radii of curvature
r1 , r2 , then we estimate the back scattering cross-section from it to be

� ' �r1r2: (2� 67)

If there is more than one such surface, their echoes will interfere, varying the net backward cross-
section in a way critically dependent on aspect angle.

For a small airplane the single-surface cross-section (2-67) might be, conceivably, less than
one square meter; perhaps 2 or 3 square meters is a reasonable average guess. Of course, at much
lower frequencies, where the geometric optics approximation does not hold and the wing dipole
resonance appears, the back scattering cross-section can be much greater than this, of the order
of the aforementioned 3�2=8� . If the wing dipole resonance of a large airplane is at 6 MHz, this
would lead to � ' 300 m2 .

Now combining Equations (2-63) - (2-67), we estimate the re
ected energy density back at the
radar system to be

Prefl ' Prad � Gt

4�d2
� �

4�d2
watts=m2 (2� 68)

where Gt is the gain of the transmitting antenna. The power intercepted by the receiver antenna
will be Prefl times its absorption cross-section, which is by (2-65), Ar = Gr�

2=4� . Finally, the
power delivered to the receiver is, in terms of antenna absorption cross-sections,

Prec ' Ptrans � �

4��2
� AtAr

d4
; (2� 69)

which is separated into two dimensionless factors, one depending on the target, the other on the
radar antenna design. We compare this with our previous theoretical results. From the de�nition
(1-1) of our re
ection functions, we have

(Energy received)

(Energy transmitted)
=

R
d! jF (!)j2 jR(!)j2R

d! jF (!)j2 (2� 70)

Therefore, if the transmitted energy spectrum is concentrated near !o , we have the estimate

jR(!o)j2 ' �

4��2
� AtAr

d4
: (2� 71)

in which � = 2�c=!o .

For example, if � = 3 m2 , � = 10 cm, At = Ar = 1 m2 , d = 10 km, then (2-71) is about

3� 104

4� � 100
� 1

1016
= 2� 10�15: (2� 72)
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The aforementioned receiver with noise temperature of 1000 K has in a bandwidth 1 MHz an
e�ective input noise power of

kT�f = 1:36� 10�23 � 1000� 106 = 1:36� 10�14 watts; (2� 73)

so if the transmitter radiates 1 Megw, we estimate that the echo can be detected with a signal/noise
ratio

S=N =
106 � 2� 10�15

1:36� 10�14
= 1:5� 105 (2� 74)

or about 52 db, about as good as an audio cassette tape recording. This means that small di�erences
in the echo from di�erent targets should be easily detectable, as far as noise is concerned. The
problem is with the information aspect; we need to know in advance what di�erence to look for.

3. GENERALIZATION TO ASPECT ANGLE

Eq. (2{59) represents the solution to the data processing problem which takes full account of the
noise, but applies only to the special case where the echo from a target is always the same function
y(t) and there is no background hash interference h(t) . Before we have a useful solution for real
problems, we need to make allowance for three complicating features. The echo function always
depends on at least two parameters, the target range and aspect angle; and our signal will always
be contaminated with hash (ground returns from �xed nearby objects).

We shall consider the hash problem relatively trivial, because we can always see some returns,
which we know are pure hash, when no target is in the beam. Therefore the hash, for a given
orientation direction of the antenna, can be known very accurately, and it is rather clear how to
make allowance for it; just subtract the hash h(t) from the data d(t) .

Indeed, when any complicating feature is known very accurately, then probability theory will
tell us simply to adjust the data by subtracting o� its e�ect (or dividing it out, etc.) so as to
take it into account; and then to proceed as if the complication were not present. This has seemed
intuitively obvious to most people without any theoretical analysis (such as when economists do
detrending or seasonal adjustment on their data before analyzing for other e�ects), although we do
not think that anyone has been able to see intuitively the exact conditions under which this \data
fudging" rule is valid, much less what to do when it is not.

It is when a complication is not known accurately that new di�culties of principle arise, and
we need to re-examine from the start what probability theory has to say about the problem; what
is the optimal way to make allowance for its possible disturbing e�ects, while still extracting from
the data all the information possible bearing on the question of interest?

First let us look at the \new complications" problem in a very general way, to see how proba-
bility theory supports the above statements. Suppose that the re
ection function r(t) from target
A depends on some additional parameter � , so that the received echo function y(t) depends on it.
Thus when A is the true target present,in place of (1{1) we have

yA(t; �) =

Z
rA(t � s;�) f(s) ds (3{1a)

and the probability of getting a data set D = fd(t)g becomes, in place of (2{4a)

p(DjA��) / exp
�� 1

2�2

Z
[d(t)� yA(t; �)]

2 dt
	

(3{2a)
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Likewise, target B has another parameter � , and we have

yB(t; �) =

Z
rB(t� s; �) f(s) ds (3{1b)

p(DjB��) / exp
�� 1

2�2

Z
[d(t)� yB(t; �)]

2 dt
	

(3{2b)

But how do we deal with the fact that � and � are unknown?

There are two di�erent ways of organizing the probability calculation to answer this. First,
note that the basic rule (2{7) is still valid without change:

p(AjD�) = p(Aj�) p(DjA�)
p(Dj�) (3{3)

But now the sampling probability that we have, p(DjA��) contains � and the sampling probability
that we want, p(DjA�) , does not; and similarly for target B . To get from one to the other, apply
the sum rule and then the product rule:

p(DjA�) =
Z
p(D�jA�) d� =

Z
p(DjA��) p(�jA�)d� (3{4)

This is a weighted average of all possible values of p(DjA��) , weighted according to the prior
probability p(�jA�) .

Therefore the odds ratio for comparing target A with target B still takes the form (2{12):

p(AjD�)
p(BjD�) =

p(Aj�)
p(Bj�)

R
p(DjA��) p(�jA�)d�R
p(AjB��) p(�jB�) d� (3{5)

Thus probability theory tells us, very sensibly, that if � is unknown, then the best we can do is
to \hedge our bets" by making allowance for all possible values that it might have, taking into
account any information about how likely the di�erent possible values are.

The calculation could be organized di�erently by applying the sum rule and product rule
directly to the �nal probability f(AjD�) :

p(AjD�) =
Z
p(A�jD�) d�=

Z
p(AjD��) p(�jD�) (3{6)

which is a weighted average, now using probabilities of � conditional on the data. Then we apply
the rule (3{3) with a di�erent choice of propositions:

p(AjD��) = p(Aj��) p(DjA��)
p(Dj��) (3{7)

Of course, the calculation via (3{3) { (3{5) is entirely equivalent to the one using (3{6), (3{7),
and we are free to choose whichever one is more convenient computationally. But let us view this
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another way. Suppose our aim were to estimate � from returns known to originate from target A .
Then probability theory would tell us to do the calculation

p(�jDA�) = p(�jA�) p(DjA��)
p(DjA�) (3{8)

Now in the right-hand side of (3{8) we recognize the integrand of (3{4). That integrand is just
proportional to the probability density for � , given the data D . Therefore we recognize three
cases:

I. The prior information alone (for example, information obtained from the returns of
previous pulses) is enough to determine � quite accurately. Then in (3{4) the prior
probability p(�jA�) is not far from a delta function peaking at the indicated value
�̂ , and we should act as if we knew � . This is rather accurately the situation when �
represents some property of the hash (in which case � and � are the same parameter).

II. The data D contain enough information to determine � accurately, even though
the prior information does not. Then (3{8) is sharply peaked at the indicated value
�̂ , and most of the contribution from the integral (3{4) comes from the immediate
neighborhood of this peak. This is the case if � is the target range R ; which is very
accurately known from the echo time even when we have no prior information about
it.

III. The data and prior information are not su�cient to determine � very well. Then the
integrand of (3{5) remains broad, and we have no choice but to use the full integral
formula. In this case, failure to know � is almost sure to cause a deterioration in our
ability to resolve targets. Therefore it becomes crucially important that we make use

of every bit of prior information about � that we can acquire. This may be the case
if � is the aspect angle of the target.

Of course, everything we have said about � applies equally well to � .

What Happened to the Poles? Note that the e�ect of poles in the singularity expansion of the
scattering, although not explicitly visible in the above, has been taken into account automatically
by probability theory { but in much greater generality than just poles. For if there is any feature
of the likelihood p(DjA��) that does not depend on � , then that feature will come through the
averaging over � in (3{4) unchanged. Then if this feature is di�erent for target A and target B ,
it will be part of the information in the odds ratio (3{5) and in the �nal log{likelihood for A over
B .

Indeed, if this �{independent feature is the only signi�cant di�erence between target A and
target B , then it will become automatically the only thing that is contributing to that log{
likelihood; in that case the target identi�cation will arise just from the di�erence in the poles;
and from nothing else.

Thus our very di�erent basic approach to the target identi�cation problem has not in any way
disregarded the perfectly valid argument that poles, being independent of aspect, may provide an
important clue to identi�cation. Rather, our analysis will complete that argument by showing in
exactly what way pole information is to be used optimally in analyzing the data (i.e., what speci�c
function of the pole positions is the one relevant to the identi�cation), and by recognizing that in
general other information might also be cogent for target identi�cation, and it should of course be
taken into account.

But we stress again that, if returned echoes depend on aspect, this does not mean that we
should look only for aspect{independent features. On the contrary, prior information about aspect
may become necessary for target identi�cation.
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CONCLUSION

The above analysis has indicated in a very general way the calculations that should be performed by
a computer analyzing radar data, in order to achieve the maximum possible discrimination between
di�erent targets. Still to be done is to �nd more explicitly: (1) What are the actual re
ection
functions r(t;�) for various targets and aspect angles? In what detail must this information be
stored in the computer in order to achieve near-optimal performance? (2) What prior information
is available about aspect in real situations? Then one would be in a position to write the explicit
computer programs which draw on the stored information and carry out the calculations indicated
above.

It is not possible to predict, at present, exactly how well the resulting systems will perform,
because this depends on information about details of the re
ection functions (how much do they
di�er for di�erent targets) that we do not have. However, from the way this theory has been derived
directly from fundamentals, we can say con�dently that the data processing indicated here will yield
the best performance that it is possible to obtain from the information assumed. Therefore major
e�orts to obtain the re
ection function information for the targets anticipated and wavelengths
available are justi�ed. Once that information is at hand, we would be in a position to predict the
discrimination performance from the theory given here.

It is the writer's belief that, since the signal/noise considerations turned out to be quite favor-
able, very reliable target discrimination is possible in principle, using existing memory capacities
and computing power. For its realization in practice, the present top priority job is to obtain the
aforementioned re
ection function information.


