
Chapter 5


Electromagnetic Waves in Plasmas


5.1	 General Treatment of Linear Waves in Anisotropic 
Medium 

Start with general approach to waves in a linear Medium: Maxwell: 

1 ∂E	 ∂B 
;	 (5.1) �∧B = µoj + 

c2 ∂t 
�∧ E = − 

∂t 

we keep all the medium’s response explicit in j. Plasma is (infinite and) uniform so we Fourier 
analyze in space and time. That is we seek a solution in which all variables go like 

exp i(k.x − ωt) [real part of]	 (5.2) 

It is really the linearised equations which we treat this way; if there is some equilibrium field

OK but the equations above mean implicitly the perturbations B, E, j, etc.


Fourier analyzed:


ik ∧B = µoj + 
−iω 
c2 

E ; ik ∧ E = iωB (5.3) 

Eliminate B by taking k∧ second eq. and ω× 1st 

iω2 

ik ∧ (k ∧ E) = ωµoj − 
c2 

E (5.4) 

So 
ω2 

k ∧ (k ∧ E) + E + iωµoj = 0 (5.5) 
2c

Now, in order to get further we must have some relationship between j and E(k, ω). This 
will have to come from solving the plasma equations but for now we can just write the most 
general linear relationship j and E as 

j = σ.E	 (5.6) 
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σ is the ‘conductivity tensor’. Think of this equation as a matrix e.g.: ⎛ ⎞ ⎛	 ⎞⎛ ⎞ 
jx σxx σxy ... Ex ⎜ ⎟ ⎜	 ⎟⎜ ⎟ ⎝	 jy ⎠ = ⎝ ... ... ... ⎠⎝ Ey ⎠ (5.7) 
jz ... ... σzz Ez 

This is a general form of Ohm’s Law. Of course if the plasma (medium) is isotropic (same 
in all directions) all off­diagonal σ�s are zero and one gets j = σE. 

Thus 
ω2 

k(k.E) − k2E + E + iωµoσ.E = 0	 (5.8) 
2c

Recall that in elementary E&M, dielectric media are discussed in terms of a dielectric con­
stant � and a “polarization” of the medium, P, caused by modification of atoms. Then 

�oE = D P and .D = ρext	 (5.9) ���� − ���� � ���� 
Displacement Polarization	 externalcharge 

and one writes 
P = χ �oE (5.10) 

susceptibility 

Our case is completely analogous, except we have chosen to express the response of the 
medium in terms of current density, j, rather than “polarization” P For such a dielectric 
medium, Ampere’s law would be written: 

1	 ∂D ∂ �∧B = jext + = ��oE, if jext = 0 ,	 (5.11) 
µo	 ∂t ∂t 

where the dielectric constant would be � = 1 + χ. 

Thus, the explicit polarization current can be expressed in the form of an equivalent dielectric 
expression if 

∂E ∂E ∂ 
j + �o = σ.E + � = �o�.E	 (5.12) 

∂t ∂t ∂t 
or 

σ 
� = 1 +	 (5.13) 

−iω�o 

Notice the dielectric constant is a tensor because of anisotropy. The last two terms come 
from the RHS of Ampere’s law: 

∂ 
j + (�oE) .	 (5.14) 

∂t 
If we were thinking in terms of a dielectric medium with no explicit currents, only implicit (in 

∂�) we would write this 
∂t (��oE); � the dielectric constant. Our medium is possibly anisotropic 

∂so we need 
∂t (�o�.E) dielectric tensor. The obvious thing is therefore to define 

1 iµoc
2 

� = 1 + σ = 1 + σ	 (5.15) 
−iω�o ω 
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Then 

k(k.E) − k2E + 
ω2 

c2 
�.E = 0 (5.16) 

and we may regard �(k, ω) as the dielectric tensor. 

Write the equation as a tensor multiplying E: 

D.E = 0 (5.17) 

with 

D = {kk − k21 + 
ω2 

c2 
�} (5.18) 

Again this is a matrix equation i.e. 3 simultaneous homogeneous eqs. for E. ⎞⎛⎞⎛ 
Dxx Dxy ... Ex ⎜⎝ 

⎜⎝ 
⎟⎠ 

⎟⎠ = 0 (5.19)
D Eyx ... ... y 

... ... Dzz Ez 

In order to have a non­zero E solution we must have 

det D |= 0. (5.20) | 

This will give us an equation relating k and ω, which tells us about the possible wavelengths 
and frequencies of waves in our plasma. 

5.1.1 Simple Case. Isotropic Medium 

σ = σ 1 (5.21) 

� = � 1 (5.22) 

Take k in z direction then write out the Dispersion tensor D. ⎞⎛⎞⎛⎞⎛ ω2 
k2 � 0 00 0 0 0 0
 2c⎜⎜⎝ 

⎟⎟⎠ 
⎜⎝ 

⎟⎠ 
⎜⎝ 

⎟⎠ ω2 

2c
� 0
k2D = 0 0 0 0 0 0+− 

k2 
0 0 ω20 0 kk 0 0 

2 �� c

kk k21 ω2 
2c⎤⎡ 

−k2 + ω
2 
� 0 02c

−k2 + ω
2 

0=

⎢⎢⎣ 

⎥⎥⎦ (5.23)
� 02c
ω2 

0 0 2c

Take determinant: �2
ω2 ω2 

−k2 + � 
2c

det D
|
 =|
c

� = 0. (5.24)

2 

Two possible types of solution to this dispersion relation: 
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(A) 
ω2 

− k2 + � = 0. (5.25) 
2c ⎞⎛⎞⎛ 

0 0 0 Ex ⎜⎝ 0 0 0
 ⎜⎝ 
⎟⎠ E
 ⎟⎠ = 0 Ez = 0. (5.26) y⇒ ⇒

0 0 ω2 
� Ez2c

Electric field is transverse (E.k = 0) 

Phase velocity of the wave is 
ω c 

= (5.27) 
k 

√
� 

This is just like a regular EM wave traveling in a medium with refractive index 

kc 
N ≡ = 

√
� . (5.28) 

ω 

(B) 
ω2 

� = 0 i.e. � = 0 (5.29) 
2c ⎞⎛⎞⎛ 

Dxx 0 0 Ex ⎜⎝ 0 D 0
yy 
⎜⎝ 

⎟⎠ E
 ⎟⎠ = 0 Ex = Ey = 0. (5.30) y⇒ ⇒

0 0 0 Ez 

Electric Field is Longitudinal (E ∧ k = 0) E � k.


This has no obvious counterpart in optics etc. because � is not usually zero. In plasmas

� = 0 is a relevant solution. Plasmas can support longitudinal waves.


5.1.2 General Case (k in z­direction) ⎤⎡ 
−N2 + �xx �xy �xzω2 2k2c⎢⎣ 

⎥⎦ ,
 N2−N2 + �D =
 = (5.31) yx yy yz 2 ω2c
�zx �zz zy 

When we take determinant we shall get a quadratic in N2 (for given ω) provided � is not 
explicitly dependent on k. So for any ω there are two values of N2 . Two ‘modes’. The 
polarization E of these modes will be in general partly longitudinal and partly transverse. 
The point: separation into distinct longitudinal and transverse modes is not possible in 
anisotropic media (e.g. plasma with Bo). 

All we have said applies to general linear medium (crystal, glass, dielectric, plasma). Now 
we have to get the correct expression for σ and hence � by analysis of the plasma (fluid) 
equations. 
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5.2 High Frequency Plasma Conductivity 

We want, now, to calculate the current for given (Fourier) electric field E(k, ω), to get the 
conductivity, σ. It won’t be the same as the DC conductivity which we calculated before 
(for collisions) because the inertia of the species will be important. In fact, provided 

ω � ν̄ei (5.32) 

we can ignore collisions altogether. Do this for simplicity, although this approach can be 
generalized. 

Also, under many circumstances we can ignore the pressure force −�p. In general will 
be true if ω � vte,i We take the plasma equilibrium to be at rest: vo = 0. This gives a 

k 
manageable problem with wide applicability. 

Approximations: 
Collisionless ν̄ei = 0 

‘Cold Plasma� �p = 0 (e.g. T � 0) (5.33) 
Stationary Equil vo = 0 

5.2.1 Zero B­field case 

To start with take Bo = 0: Plasma isotropic Momentum equation (for electrons first) 

∂v 
mn + (v.�)v = nqE (5.34) 

∂t 

Notice the characteristic of the cold plasma approx. that we can cancel n from this equation 
and on linearizing get essentially the single particle equation. 

∂v1 
m = qE (Drop the 1 suffix now). (5.35) 

∂t 

This can be solved for given ω as 
q 

v = E (5.36) 
−iωm 

and the current (due to this species, electrons) is 

2nq
j = nqv = E (5.37) 

−iωm 

So the conductivity is 
2nq

σ = i (5.38) 
ωm 

Hence dielectric constant is 

i nq2 1 
� = 1 + σ = 1 − = 1 + χ (5.39) 

ω�o m�o ω2 
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Longitudinal Waves (Bo = 0) 

Dispersion relation we know is 

2nq 1 
� = 0 = 1 − (5.40) 

m�o ω2 

[Strictly, the � we want here is the total � including both electron and ion contributions to 
the conductivity. But 

σe 

σi 
� 

mi 

me 
(for z = 1) (5.41) 

so to a first approximation, ignore ion motions.] 

Solution � � 

ω2 = 
neq

2 
e . (5.42) 
�ome

In this approx. longitudinal oscillations of the electron fluid have a single unique frequency: 

1 
22nee

ωp = (5.43) . 
me�o 

This is called the ‘Plasma Frequency’ (more properly ωpe the ‘electron’ plasma frequency). 
If we allow for ion motions we get an ion conductivity 

iniq
2 

σi = i (5.44) 
ωmi 

and hence 

2 
i�tot = 1 + 

i 
(σe + σi) = 1 − 

neqe 
2 

+ 
niq 1 

(5.45) 
ω�o �ome �omi ω2 

= 1 − ω2 + ω2 /ω2 
pe pi 

where 
1 
22niq

ωpi ≡ i (5.46) 
�omi 

is the ‘Ion Plasma Frequency’. 

Simple Derivation of Plasma Oscillations 

Take ions stationary; perturb a slab of plasma by shifting electrons a distance x. Charge 
built up is neqx per unit area. Hence electric field generated 

E = − 
neqex 

�o 
(5.47) 
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Figure 5.1: Slab derivation of plasma oscillations 

Equation of motion of electrons 
dv neq

2xe me = − ; (5.48) 
dt �o 

i.e. � � 
2d2x neq

+ e x = 0 (5.49) 
dt2 �ome 

Simple harmonic oscillator with frequency 

2neq
ωpe = e Plasma Frequency. (5.50) 

�ome 

The Characteristic Frequency of Longitudinal Oscillations in a plasma. Notice 

1. ω = ωp for all k in this approx. 

2. Phase velocity ω can have any value. 
k 

3. Group velocity of wave, which is the velocity at which information/energy travel is 

dω 
vg = = 0 !! (5.51) 

dk 

In a way, these oscillations can hardly be thought of as a ‘proper’ wave because they do 
not transport energy or information. (In Cold Plasma Limit). [Nevertheless they do emerge 
from the wave analysis and with less restrictive approxs do have finite vg .] 

Transverse Waves (Bo = 0) 

Dispersion relation: 

ω2 

− k2 + � = 0 (5.52) 
c2 
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or


2 � �k2c
N 2 = � = 1 − ω2 + ω2 /ω2 

pe pi≡ 
ω2 

1 − ω2 (5.53) � pe/ω
2 

Figure 5.2: Unmagnetized plasma transverse wave. 

Figure 5.3: Alternative dispersion plot. 

Alternative expression: 
ω2 ω2 

− k2 + = 0 (5.54) 
2c2 

− 
c

p 
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which implies


ω2 2 2 = ω2 + k c (5.55) p 

2 2ω = ω2 + k c . (5.56) p 

5.2.2 Meaning of Negative N 2: Cut Off 

When N2 < 0 (for ω < ωp) this means N is pure imaginary and hence so is k for real ω. 
Thus the wave we have found goes like 

exp{± k x− iωt (5.57) | | } 

1 

i.e. its space dependence is exponential not oscillatory. Such a wave is said to be ‘Evanescent’ 
or ‘Cut Off’. It does not truly propagate through the medium but just damps exponentially. 

Example: 

2 

Figure 5.4: Wave behaviour at cut­off. 

A wave incident on a plasma with ωp 
2 > ω2 is simply reflected, no energy is transmitted 

through the plasma. 

5.3 Cold Plasma Waves (Magnetized Plasma) 

Objective: calculate �,D,k(ω), using known plasma equations.


Approximation: Ignore thermal motion of particles.


Applicability: Most situations where (1) plasma pressure and (2) absorption are negligible.

Generally requires wave phase velocity � vthermal. 
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5.3.1 Derivation of Dispersion Relation 

Can “derive” the cold plasma approx from fluid plasma equations. Simpler just to say that 
all particles (of a specific species) just move together obeying Newton’s 2nd law: 

∂v 
m = q(E + v ∧B) (5.58) 

∂t 

Take the background plasma to have E0 = 0, B = B0 and zero velocity. Then all motion 
is due to the wave and also the wave’s magnetic field can be ignored provided the particle 
speed stays small. (This is a linearization). 

∂v 
m = q(E + v ∧B0), (5.59) 

∂t 

where v, E ∝ exp i(k.x − ωt) are wave quantities. 

Substitute ∂ → −iω and write out equations. Choose axes such that B0 = B0(0, 0, 1). 
∂t 

− iωmvx = q(Ex + vy B0) 

−iωmvy = q(Ey − vxB0) (5.60) 

−iωmvz = qEz 

Solve for v in terms of E. 

iωEx − ΩEy 

ω2 

q 
vx = 

m 
q 

− Ω2 

ΩEx + iωEy 
(5.61) vy = 

m ω2 − Ω2 

q i

Ez
vz = 

m ω 

where Ω = qB0 is the gyrofrequency but its sign is that of the charge on the particle species 
m 

under consideration.


Since the current is j = qvn = σ.E we can identify the conductivity tensor for the species

(j) as:
 ⎡ ⎤2 2qj nj iω 

mj ω2 −Ω2 mj ω2−Ω2 0 
j 
− 

qj nj Ωj

j 
2 2nj Ωj njqj qj iω 

⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎦ 
σj = (5.62) 0 

mj ω2 −Ω2 mj ω2−Ω2 
j j 

iqj 
2 

nj0 0

m ω 

The total conductivity, due to all species, is the sum of the conductivities for each 

σ = σj (5.63) 
j 

So 
2q1 nj iω 

σxx = σyy = 
j mj ω2 − Ωj 

2 
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� =


� 

� 

� 

� � 

yx =
−

2qj nj Ωj 

j mj ω2 − Ωj 
2 (5.65) σxy = −σ

2qj nj i 
σzz = (5.66) 

mj ωj 

1Susceptibility χ = −iω�o 
σ. ⎤⎡⎤⎡ 

�xx �xy 0 S −iD 0 
S⎢⎣ 

⎥⎦ 
⎢⎣ 

⎥⎦� � 0 iD 0 (5.67) = yx yy 

0 0 �zz 0 0 P 

where 

ω2 
pj 

j ω2 − Ωj 
2

�xx = �yy = S = 1 − (5.68)


Ωj ω2 
pj 

ω ω2 − Ω2 
jj 

i�xy = −i�yx = D = (5.69) 

ω2 
pj�zz = P = 1 − (5.70) 

ω2 
j 

and 

ω2 
pj ≡ 

q2 
j nj 

�omj 
(5.71) 

is the “plasma frequency” for that species. 

S & D stand for “Sum” and “Difference”: 

1 1 
S = 

2 
(R + L) D = 

2 
(R − L) (5.72) 

where R & L stand for “Right­hand” and “Left­hand” and are: 

ω2 ω2 
pj , L = 1 − pj (5.73) R = 1 − 

ω (ω + Ωj ) j ω (ω − Ωj )j 

The R & L terms arise in a derivation based on expressing the field in terms of rotating 
polarizations (right & left) rather than the direct Cartesian approach. 

We now have the dielectric tensor from which to obtain the dispersion relation and solve 
it to get k(ω) and the polarization. Notice, first, that � is indeed independent of k so the 
dispersion relation (for given ω) is a quadratic in N 2 (or k2). 

Choose convenient axes such that ky = Ny = 0. Let θ be angle between k and B0 so that 

Nz = N cos θ , Nx = N sin θ . (5.74) 

Then ⎤⎡ 
−N 2 cos2 θ + S −iD N 2 sin θ cos θ 

+iD −N 2 + S 0 
0 

D =
⎢⎣ 
⎥⎦ (5.75) 

N 2 sin θ cos θ −N 2 sin2 θ + P 
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and

= AN4 −BN2 + C (5.76) � D �

where 

A ≡ S sin2 θ + P cos 2 θ (5.77) 

B ≡ RL sin2 θ + P S(1 + cos 2 θ) (5.78) 

C P RL (5.79) ≡ 

Solutions are 

N2 = 
B ± F

, (5.80) 
2A 

where the discriminant, F , is given by 

F 2 = (RL − P S)2 sin4 θ + 4P 2D2 cos 2 θ (5.81) 

after some algebra. This is often, for historical reasons, written in the equivalent form (called 
the Appleton­Hartree dispersion relation) 

N2 = 1 − 2(A −B + C) 
(5.82) 

2A −B ± F 

The quantity F 2 is generally +ve, so N2 is real ⇒ “propagating” or “evanescent” no wave

absorption for cold plasma.


Solution can also be written


tan 2 θ = 
P (N2 −R) (N2 − L) 

(5.83) −
(SN2 −RL) (N2 − P ) 

This compact form makes it easy to identify the dispersion relation at θ = 0 & π i.e. parallel 
2 

and perpendicular propagation tan θ = 0, ∞. 

Parallel: P = 0 , N2 = R N2 = L 
RL Perp: N2 = 
S N2 = P . 

Example: Right­hand wave 

N2 = R. (Single Ion Species). 

ω2 ω2 
pe pi (5.84) N2 = 1 −

ω (ω − Ωe ) 
−

ω (ω + Ωi )| | | |

This has a wave resonance N2 Ωe|, only. Right­hand wave also has a cutoff at →∞ at ω = |
R = 0, whose solution proves to be ⎡� �2 

⎤1/2 
Ωe|+ Ωi

ω = ωR = 
|Ωe| − |Ωi|

+ ⎣ | | | 
+ ω2 + ω2 ⎦ (5.85) 

2 2 pe pi 
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Since mi � me this can be approximated as: ⎧⎨ ω2 
pe 

1 
2 

⎫⎬|Ωe|
ωR � 1 + 1 + 4 (5.86) ⎩ |Ωe|2 ⎭2


This is always above |Ωe .|

Figure 5.5: The form of the dispersion relation for RH wave. 

One can similarly investigate LH wave and perp propagating waves. The resulting wave 
resonances and cut­offs depend only upon 2 properties (for specified ion mass) (1) Density 

ω2 mi ↔ pe (2) Magnetic Field ↔ Ωe . [Ion values ωpi, are got by 
me 

factors.] | | |Ωi|
2 
pΩeThese resonances and cutoffs are often plotted on a 2­D plane |

ω 
| , 

ω
(∝ B, n) called the 

ω2 

C M A Diagram.


We don’t have time for it here.


5.3.2 Hybrid Resonances Perpendicular Propagation 

RL “Extraordinary” wave N 2 = 
S 

(ω + Ωe) (ω + Ωi) − 
2 
peω

ω (ω + Ωi) − 
2 
piω

ω 

2 
peω

ω
(ω + Ωe) (ω − Ωe) (ω − Ωi) − (ω − Ωi) ... 

N 2 = 
e ) (ω2 − Ωi 

2) − ω2 
pi (ω

2 − Ω2(ω2 − Ω2 
pe (ω

2 − Ωi 
2) − ω2 

e ) 
(5.87) 

Resonance is where denominator = 0. Solve the quadratic in ω2 and one gets 

ω2 + Ω2 + ω2 
ipi + Ω2 

pe e ω2 + Ω2 
pi − Ωi 

2 
pe e − ω2 

�2 

ω2 = 
2 

±
 + ω2 ω2 
pe pi (5.88) 

2 
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ω2 
meNeglecting terms of order 
mi 

(e.g. pi ) one gets solutions 
ω2 

pe 

ω2 
U H = ω2 

pe + Ω2 
e Upper Hybrid Resonance. (5.89) 

ω2 
LH = 

Ω2 
e ω

2 
pi 

Ω2 
e + ω2 

pe 

Lower Hybrid Resonance.. (5.90) 

At very high density, ω2 
pe � Ω2 

e 

ω2 
LH � |Ωe||Ωi| (5.91) 

geometric mean of cyclotron frequencies. 

At very low density, ω2 
pe � Ω2 

e 

ω2 
LH � ω2 

pi (5.92) 

ion plasma frequency 

Usually in tokamaks ω2 
pe ∼ Ω2 

e . Intermediate. 

Summary Graph (Ω > ωp) 

Figure 5.6: Summary of magnetized dispersion relation 

Cut­offs are where N 2 = 0. 

Resonances are where N 2 → ∞. 

Intermediate angles of propagation have refractive indices between the θ = 0, π lines, in the 
2 

shaded areas. 
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5.3.3 Whistlers 

(Ref. R.A. Helliwell, “Whistlers & Related Ionospheric Phenomena,” Stanford UP 1965.) 

For N 2 � 1 the right hand wave can be written 

N 2 −ω2 

, (N = kc/ω) (5.93) � 
ω (ω − 

pe 

Ωe )| |

Group velocity is 
−1 −1

dω dk d N ω 
vg = = = . (5.94) 

dk dω dω c 

Then since 
ωp

N (5.95) = ,11 
ω (|Ωe − ω)| 22 

we have


Thus


⎧⎨ 
⎫⎬11 1 1 ωd d ωpω 2 

1 

2 
2 2(N ω) = ω += p 1 3⎩ ⎭1dω dω ( Ωe − ω)| | 

p/2 
ω (|Ωe − ω)| (|Ωe − ω)|2 2 22 

ω
Ωe − ω) + ω}{(| |=


13 

(|Ωe − ω)|
ω

ω
2 2 

Ωe /2| |
p
(5.96) =


13 

( Ωe − ω) ω
2|
 |
 2 

13 

c 2 (|Ωe − ω)| ω
2 2 

(5.97) vg = 
ω |Ωe|p

Group Delay is 
L 1 1 

(5.98) 
g 
∝


ω

∝
3 1 31v (|Ωe − ω)| ω 

Ωe

ω 
Ωe

2 2 22 1 −
| | | | 

Figure 5.7: Whistler delay plot
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Plot with L as x­axis. 
vg 

Resulting form explains downward whistle.


Lightning strike ∼ δ­function excites all frequencies.


Lower ones arrive later.


Examples of actual whistler sounds can be obtained from http://www­istp.gsfc.nasa.

gov/istp/polar/polar_pwi_sounds.html. 

5.4 Thermal Effects on Plasma Waves 

The cold plasma approx is only good for high frequency, N2 ∼ 1 waves. If ω is low or N2 � 1 
one may have to consider thermal effects. From the fluid viewpoint, this means pressure. 
Write down the momentum equation. (We shall go back to B0 = 0) linearized 

∂v1 
mn = nqE1 −�p1 ; (5.99) 

∂t 

remember these are the perturbations: 

p = p0 + p1 . (5.100) 

Fourier Analyse (drop 1’s) 
mn(−iω)v = nqE − ikp (5.101) 

The key question: how to relate p to v 

Answer: Equation of state + Continuity 

State 
pn−γ = const. ⇒ (p0 + p1) (n0 + n1)

−γ = p0n
−γ 
0 (5.102) 

Use Taylor Expansion � � 

(p0 + p1) (n0 + n1)
−γ � p0n

−γ 
0 1 + 

p1 

p0 
− γ 

n1 

n0 
(5.103) 

Hence 
p1 n1 

= γ (5.104) 
p0 n0 

Continuity 
∂n 

. (nv) = 0 (5.105) 
∂t 

Linearise: 
∂n1 ∂n 

. (n0v1) = 0 .v = 0 (5.106) 
∂t 

⇒ 
∂t 

+ n0�

Fourier Transform 
− iωn1 + n0ik.v1 = 0 (5.107) 
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i.e.

k.v 

n1 = n0 (5.108) 
ω 

Combine State & Continuity 

k.v 

p1 = p0γ 
n1 

n0 
= p0γ 

n0 ω 

no 
= p0γ 

k.v 
ω 

(5.109) 

Hence Momentum becomes 

mn (−iω) v = nqE − 
ikp0γ 

ω 
k.v (5.110) 

Notice Transverse waves have k.v = 0; so they are unaffected by pressure. 

Therefore we need only consider the longitudinal wave. However, for consistency let us

proceed as before to get the dielectric tensor etc.


Choose axes such that k = kˆ
ez then obviously: 

iq iq 
vx = Ex vy = Ey (5.111) 

ωm ωm 

q Ez 
vz = 

m −iω + (ik2γp0/mnω) 
(5.112) 

Hence ⎤⎡ 
1 0 0 

inq2 ⎢⎢⎣ 
⎥⎥⎦ 

0 1 0σ (5.113) = 
ωm
 0 0 

k

1 
2p0γ

1− 
mnω2 

ω2 
p 

⎡ ⎤ 
1 −
 0 0

ω2⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

iσ

�0ω 

ω2 
p 

ω20 1 −
 0� = 1 + (5.114) = 
2wp0 0 1 −


ω2−k2 p0γ 
mn 

(Taking account only of 1 species, electrons, for now.)


We have confirmed the previous comment that the transverse waves (Ex, Ey ) are unaffected.

The longitudinal wave is. Notice that � now depends on k as well as ω. This is called ‘spatial

dispersion’.


For completeness, note that the dielectric tensor can be expressed in general tensor notation

as


ω2 1 
� = p 1 + kk 

k2 p0 γ − 11 − 
ω2 1 − 2ω mn⎞⎛ 
ω2 1p ⎝1 + kk1 − 
ω2 

⎠ (5.115)
= 2w mn 
p0γ − 1

k2 

This form shows isotropy with respect to the medium: there is no preferred direction in 
space for the wave vector k. 
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But once k is chosen, � is not isotropic. The direction of k becomes a special direction. 

Longitudinal Waves: dispersion relation is 

�zz = 0 (as before) (5.116) 

which is 
ω2 

1 −
− 

p

k2p0γ 
= 0 . (5.117) 

ω2 
mn 

or 
ω2 = ω2 + k2 p0γ 

(5.118) p mn 
Recall p0 = n0T = nT ; so this is usually written: 

γT 
ω2 = ω2 + k2 = ω2 + k2γv 2 (5.119) p p t m 

[The appropriate value of γ to take is 1 dimensional adiabatic i.e. γ = 3. This seems plausible 
since the electron motion is 1­d (along k) and may be demonstrated more rigorously by kinetic 
theory.] 

The above dispersion relation is called the Bohm­Gross formula for electron plasma waves. 
Notice the group velocity: 

dω 1 dω2 γkvt 
2 

vg = = = � � 1 = 0. (5.120) 
dk 2ω dk 2 

�
ω2 + γk2vt 

2 

p 

1 
and for kvt > ωp this tends to γ 2 vt. In this limit energy travels at the electron thermal 
speed. 

5.4.1 Refractive Index Plot 

Bohm Gross electron plasma waves: 

2 ω2 
pN2 = 

c
2 1 − 

ω2 
(5.121) 

γevte 

Transverse electromagnetic waves: 

ω2 
pN2 = 1 − 

ω2 
(5.122) 

These have just the same shape except the electron plasma waves have much larger vertical 
scale: 

On the E­M wave scale, the plasma wave curve is nearly vertical. In the cold plasma it was 
exactly vertical. 

We have relaxed the Cold Plasma approximation. 
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Figure 5.8: Refractive Index Plot. Top plot on the scale of the Bohm­Gross Plasma waves. 
Bottom plot, on the scale of the E­M transverse waves 

5.4.2 Including the ion response 

As an example of the different things which can occur when ions are allowed to move include 
longitudinal ion response: 

ω2 ω2 
pi0 = �zz = 1 − pe (5.123) 

mene mini 
ω2 − k

2peγe 
− 

ω2 − k
2piγi 

This is now a quadratic equation for ω2 so there are two solutions possible for a given ω. One 
will be in the vicinity of the electron plasma wave solution and the inclusion of ω2 

pi which is 

pe will give a small correction. 

Second solution will be where the third term is same magnitude as second (both will be 
� 1). This will be at low frequency. So we may write the dispersion relation approximately 
as: 

� ω2 

ω2 ω2 
pi pi = 0 (5.124) −

− k
2peγe 

− 
ω2 

mene mini
− k

2piγi 

i.e. 

k2piγi ω2 

ω2 pi k
2peγe 

= + 
mini ω2 menepe 
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= k2 γipi γepe 1 
+ 

ni ne mi 

= k2 γiTi + γeTe 
(5.125) 

mi 

[In this case the electrons have time to stream through the wave in 1 oscillation so they 
tend to be isothermal: i.e. γe = 1. What to take for γi is less clear, and less important 
because kinetic theory shows that these waves we have just found are strongly damped 
unless Ti � Te.] 

These are ‘ion­acoustic’ or ‘ion­sound’ waves 

ω2 
2 = c (5.126) sk2 

cs is the sound speed 
γiTi + Te Te2 c = (5.127) s mi 

� 
mi 

Approximately non­dispersive waves with phase velocity cs. 

5.5 Electrostatic Approximation for (Plasma) Waves 

The dispersion relation is written generally as 

N ∧ (N ∧ E) + �.E = N(N.E) − N 2E + �.E = 0 (5.128) 

Consider E to be expressible as longitudinal and transverse components E�, Et such that 
N ∧ E� = 0, N.Et = 0. Then the dispersion relation can be written 

N (N.E�) − N 2 (E� + Et) + �. (E� + Et) = −N 2Et + �.Et + �.E� = 0 (5.129) 

or � � 
N 2 − � .Et = �.E� (5.130) 

Now the electric field can always be written as the sum of a curl­free component plus a 
divergenceless component, e.g. conventionally 

E = �� + � �� � (5.131) A � −�φ � ˙

Curl−f ree Divergence−f ree 

Electrostatic Electromagnetic 

and these may be termed electrostatic and electromagnetic parts of the field. 

For a plane wave, these two parts are clearly the same as the longitudinal and transverse 
parts because 

−ikφ is longitudinal (5.132) − �φ = 

˙ ˙ ˙and if �.A = 0 (because �.A = 0 (w.l.o.g.)) then k.A = 0 so A is transverse. 
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‘Electrostatic’ waves are those that are describable by the electrostatic part of the electric 
field, which is the longitudinal part: |E�| � |Et|. 
If we simply say Et = 0 then the dispersion relation becomes �.E� = 0. This is not the most 
general dispersion relation for electrostatic waves. It is too restrictive. In general, there is 
a more significant way in which to get solutions where |E�| � |Et|. It is for N 2 to be very 
large compared to all the components of � : N 2 �� � �. 
If this is the case, then the dispersion relation is approximately 

N 2Et = �.E� ; (5.133) 

Et is small but not zero. 

We can then annihilate the Et term by taking the N component of this equation; leaving 

N.�.E� = (N.�.N) E� = 0 : k.�.k = 0 . (5.134) 

When the medium is isotropic there is no relevant difference between the electrostatic dis­
persion relation: 

N.�.N = 0 (5.135) 

and the purely longitudinal case �.N = 0. If we choose axes such that N is along ẑ, then the 
medium’s isotropy ensures the off­diagonal components of � are zero so N.�.N = 0 requires 
�zz = 0 ⇒ �.N = 0. However if the medium is not isotropic, then even if 

N.�.N = N 2�zz = 0 (5.136) 

there may be off­diagonal terms of � that make 

�.N = 0 (5.137) 

In other words, in an anisotropic medium (for example a magnetized plasma) the electrostatic 
approximation can give waves that have non­zero transverse electric field (of order ||�||/N 2 

times E�) even though the waves are describable in terms of a scalar potential. 

To approach this more directly, from Maxwell’s equations, applied to a dielectric medium 
of dielectric tensor �, the electrostatic part of the electric field is derived from the electric 
displacement 

�.D = �. (�0�.E) = ρ = 0 (no free charges) (5.138) 

So for plane waves 0 = k.D = k.�.E = ik.�.kφ. 

The electric displacement, D, is purely transverse (not zero) but the electric field, E then 
gives rise to an electromagnetic field via � ∧ H = ∂D/∂t. If N 2 �� � � then this magnetic 
(inductive) component can be considered as a benign passive coupling to the electrostatic 
wave. 

In summary, the electrostatic dispersion relation is k.�.k = 0, or in coordinates where k is 
in the z­direction, �zz = 0. 
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5.6 Simple Example of MHD Dynamics: Alfven Waves 

Ignore Pressure & Resistance. 
DV 

ρ 
Dt 

= j ∧ B (5.139) 

E + V ∧ B = 0 (5.140) 

Linearize: 
V = V1, B = B0 + B1 (B0 uniform), j = j1. (5.141) 

∂V 
ρ 

∂t 
= j ∧ B0 (5.142) 

E + V ∧ B0 = 0 (5.143) 

Fourier Transform: 
ρ(−iω)V = j ∧ B0 (5.144) 

E + V ∧ B0 = 0 (5.145) 

Eliminate V by taking 5.144 ∧B0 and substituting from 5.145. 

1 
E + 

−iωρ 
(j ∧ B0) ∧ B0 = 0 (5.146) 

or 
1 B0

2 

E = (5.147) −
−iωρ

{(j.B0) B0 − B0
2j} = 

−iωρ
j⊥ 

So conductivity tensor can be written (z in B direction). ⎤⎡ 
1 0 0 −iωρ ⎢⎣ 

⎥⎦σ =
 0 1 0 (5.148) 
B2 

0 0 0 ∞ 

where ∞ implies that E� = 0 (because of Ohm’s law). Hence Dielectric Tensor ⎤⎡ 
1 0 0
⎢⎣ 

σ ρ ⎥⎦� = 1 + = 1 +
 0 1 0 (5.149) . 
−iω�0 �0B2 

0 0 ∞ 

Dispersion tensor in general is: 

ω2 

NN − N2D = + � (5.150) 
2c

Dispersion Relation taking N = Nx, Ny = 0 ⊥ ⎡ ⎤ρ−N 2 + 1 + 0 N⊥N
�0B2� 

ρ0 −N� 
2 − N2 + 1 + 

�0B2 0⊥ 
⎢⎣ 

⎥⎦ = 0 (5.151)
D
|
 =| 
N⊥N� 0 ∞ 
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Figure 5.9: Compressional Alfven Wave. Works by magnetic pressure (primarily). 

Meaning of ∞ is that the cofactor must be zero i.e. 

ρ ρ −N 2 + 1 + −N 2 + 1 + = 0 (5.152) � �0B2 �0B2 

The 1’s here come from Maxwell displacement current and are usually negligible (N 2 
⊥ � 1). 

So final waves are 

ρ1. N 2 = ⇒ Non­dispersive wave with phase and group velocities 
�0B2 � � 1 � � 1 

2 2c c2�0B
2 B2 

vp = vg = = = (5.153) 
N ρ µ0ρ 

where we call � � 1 
2B2 

the ‘Alfven Speed’ (5.154) 
µ0ρ 

≡ vA 

Polarization: 

E = Ez = 0, Ex = 0. Ey = 0 ⇒ Vy = 0 Vx = 0 (Vz = 0) (5.155) 

Party longitudinal (velocity) wave → Compression “Compressional Alfven Wave”. 

2k2cρ2. N 2 = 
�0B2 = 

ω2 

Any ω has unique k�. Wave has unique velocity in � direction: vA.

Polarization


Ez = Ey = 0 Ex = 0 ⇒ Vx = 0 Vy = 0 (Vz = 0) (5.156) 

Transverse velocity: “Shear Alfven Wave”. 

Works by field line bending (Tension Force) (no compression). 
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Figure 5.10: Shear Alfven Wave 

5.7 Non­Uniform Plasmas and wave propagation 

Practical plasmas are not infinite & homogeneous. So how does all this plane wave analysis 
apply practically?


If the spatial variation of the plasma is slow c.f. the wave length of the wave, then coupling

to other waves will be small (negligible).


Figure 5.11: Comparison of sudden and gradualy refractive index change. 

For a given ω, slowly varying plasma means N/dN � λ or kN/dN � 1. Locally, the plasma 
dx dx 

appears uniform. 

Even if the coupling is small, so that locally the wave propagates as if in an infinite uniform 
plasma, we still need a way of calculating how the solution propagates from one place to 
the other. This is handled by the ‘WKB(J)’ or ‘eikonal’ or ‘ray optic’ or ‘geometric optics’ 
approximation. 

WKBJ solution 

Consider the model 1­d wave equation (for field ω) 

d2E 
dx2 

+ k2E = 0 (5.157) 

with k now a slowly varying function of x. Seek a solution in the form 

E = exp (iφ (x)) (−iωt implied) (5.158) 
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φ is the wave phase (= kx in uniform plasma). 

Differentiate twice � �2
d2E d2φ dφ iφ = e (5.159) 
dx2 

{i
dx2 

− 
dx 

}

Substitute into differential equation to obtain � �2
dφ d2φ 

= k2 + i (5.160) 
dx dx2 

Recognize that in uniform plasma d2φ = 0. So in slightly non­uniform, 1st approx is to 
dx2 

ignore this term. 
dφ 

(5.161) 
dx 
� ±k(x) 

Then obtain a second approximation by substituting 

d2φ dk 
(5.162) 

dx2 
� ± 

dx 

so � �2
dφ dk 

k2 ± i (5.163) 
dx 

� 
dx 

dφ i dk 
using Taylor expansion. (5.164) k ±

dx 
� ± 

2k dx 

Integrate: 
x 1 

2kdx + i ln kφ � ± (5.165) 

Hence E is � � � x1iφE kdx (5.166) ±i= e =
 1 
2 

exp

k 

This is classic WKBJ solution. Originally studied by Green & Liouville (1837), the Green 
of Green’s functions, the Liouville of Sturm Liouville theory.


Basic idea of this approach: (1) solve the local dispersion relation as if in infinite homogeneous

plasma, to get k(x), (2) form approximate solution for all space as above.


Phase of wave varies as integral of kdx.

1In addition, amplitude varies as . This is required to make the total energy flow uniform. 1 
2k 

Two Stream Instability


An example of waves becoming unstable in a non­equilibrium plasma. Analysis is possible

using Cold Plasma techniques.


Consider a plasma with two participating cold species but having different average velocities.
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These are two “streams”. 
Species1 Species2 

. → . 
(5.167) 

M oving. Stationary. 
Speed v 

We can look at them in different inertial frames, e.g. species (stream) 2 stationary or 1 
stationary (or neither). 

We analyse by obtaining the susceptibility for each species and adding together to get total 
dielectric constant (scalar 1­d if unmagnetized). 

In a frame of reference in which it is stationary, a stream j has the (Cold Plasma) suscepti­
bility 

−ω2 

χj = 
ω2 

pj . (5.168) 

If the stream is moving with velocity vj (zero order) then its susceptibility is 

−ω2 

χj = pj . (k & vj in same direction) (5.169) 2(ω − kvj )

Proof from equation of motion: 

qj ∂ ̃v 
E = + v.�˜ v = −i (ω − kvj ) ˜v = (−iω + ik.vj ) ˜ v . (5.170) 

mj ∂t 

Current density 
j = ρj vj + ρj .˜ ρvj . (5.171) v + ˜

Substitute in 

∂ρ �.j + = ik.˜ vρ − iωρ̃ = 0 (5.172) vρj + ik.˜
∂t 

k.ṽ 
ρ̃j = ρj (5.173) 

ω − k.vj 

Hence substituting for ṽ in terms of E: 

k.E − χj �0�.E = ρ̃j = 
ρj qj 

2 , (5.174) 
mj −i (ω − k.vj )

which shows the longitudinal susceptibility is 

pjχj = 
ρj qj 1

= 
−ω2 

(5.175) 2− 
mj �0 (ω2 − kvj ) (ω − kvj )

2 

Proof by transforming frame of reference: 

Consider Galileean transformation to a frame moving with the stream at velocity vj . 

x = x� + vj t ; t� = t (5.176) 
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exp i (k.x − ωt) = exp i (k.x� − (ω − k.vj ) t
�) (5.177) 

So in frame of the stream, ω� = ω − k.vj . 

Substitute in stationary cold plasma expression: 

ω2 ω2 
pj 

2 2 . (5.178) − 
ω�

χj = pj = − 
(ω − kvj )

Thus for n streams we have 

� � ω2 
pj� = 1 + χj = 1 − 

(ω − kvj )
2 . (5.179) 

j j 

Longitudinal wave dispersion relation is 

� = 0. (5.180) 

Two streams 
ω2 ω2 

p1 P 2 (5.181) 20 = � = 1 − 
(ω − kv1)

2 − 
(ω − kv2)

For given real k this is a quartic in ω. It has the form: 

Figure 5.12: Two­stream stability analysis. 

If � crosses zero between the wells, then ∃ 4 real solutions for ω. (Case B).


If not, then 2 of the solutions are complex: ω = ωr ± iωi (Case A).


The time dependence of these complex roots is


exp (−iωt) = exp (−iωr t ± ωit) . (5.182) 
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The +ve sign is growing in time: instability.


It is straightforward to show that Case A occurs if


3 
22 2 

|
k(v2 − v1) < ωp1 + ω| 3 3 
p2 . (5.183) 

Small enough k (long enough wavelength) is always unstable. 

Simple interpretation (ω2 
p1, v1 = 0) a tenuous beam in a plasma sees a negative � ifp2 � ω2 

kv2
< 

p1.| | ∼ ω

Negative � implies charge perturbation causes E that enhances itself: charge (spontaneous) 
bunching. 

5.9 Kinetic Theory of Plasma Waves 

Wave damping is due to wave­particle resonance. To treat this we need to keep track of the 
particle distribution in velocity space → kinetic theory. 

5.9.1 Vlasov Equation 

Treat particles as moving in 6­D phase space x position, v velocity. At any instant a particle 
occupies a unique position in phase space (x, v). 

Consider an elemental volume d3xd3v of phase space [dxdydzdvxdvy dvz ], at (x, v). Write 
down an equation that is conservation of particles for this volume 

∂ � 
− 

∂t 
f d3 xd3 v = [vxf (x + dxx̂, v) − vxf (x, v)] dydzd3 v 

+ same for dy, dz 

+ [axf (x, v + dvx ̂x) − axf (x, v)] d3 xdvy dvz 

+ same for dvy , dvz (5.184) 

Figure 5.13: Difference in flow across x­surfaces (+y + z). 

a is “velocity space motion”, i.e. acceleration. 
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Divide through by d3xd3v and take limit 

∂f ∂ ∂ ∂ ∂ ∂ ∂ 
= (vxf) + (vy f) + (vz f) + (axf) + (ay f) + (az f)− 

∂t ∂x ∂y ∂z ∂vx ∂vy ∂vz 

= . (vf) + �v . (af) (5.185) 

∂[Notation: Use 
∂
∂ 
x ↔ �; 

∂v v ].↔ �
Take this simple continuity equation in phase space and expand: 

∂f 
+ (�.v) f + (v.�) f + (�v .a) f + (a.�v ) f = 0. (5.186) 

∂t 

Recognize that � means here ∂ etc. keeping v constant so that �.v = 0 by definition. So 
∂x 

∂f ∂f ∂f 
+ v. + a. = −f (�v .a) (5.187) 

∂t ∂x ∂v 

Now we want to couple this equation with Maxwell’s equations for the fields, and the Lorentz 
force 

q 
a = (E + v ∧B) (5.188) 

m 
Actually we don’t want to use the E retaining all the local effects of individual particles. We 
want a smoothed out field. Ensemble averaged E. 

Evaluate 

q q 
v .a = v . (E + v ∧B) = v . (v ∧B) (5.189) � �

m m
�

q 
= B. (�v ∧ v) = 0. (5.190) 

m 

So RHS is zero. However in the use of smoothed out E we have ignored local effect of one 
particle on another due to the graininess. That is collisions. 

Boltzmann Equation: � � 
∂f ∂f ∂f ∂f 
∂t 

+ v. 
∂x 

+ a. 
∂v 

= 
∂t 

collisions 

(5.191) 

Vlasov Equation ≡ Boltzman Eq without collisions. For electromagnetic forces: 

∂f 
∂t 

+ v. 
∂f 
∂x 

+ 
q 
m 

(E + v ∧B) 
∂f 
∂v 

= 0. (5.192) 

Interpretation: 

Distribution function is constant along particle orbit in phase space: d 
dt f = 0. 

d ∂f dx ∂f ∂v ∂f 
dt 

f = 
∂t 

+ 
dt 

. 
∂x 

+ 
dt 

. 
∂v 

(5.193) 

Coupled to Vlasov equation for each particle species we have Maxwell’s equations. 
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Vlasov­Maxwell Equations 

∂fj 

∂t 
+ v. 

∂fj 

∂x 
+ 

qj 

mj 
(E + v ∧B) . 

∂fj 

∂vj 
= 0 (5.194) 

�∧ E = 
−∂B 
∂t 

, �∧B = µ0j + 
1 
c2 

∂E 
∂t 

(5.195) 

ρ �.E = 
�0 

, �.B = 0 (5.196) 

Coupling is completed via charge & current densities. 

ρ = qjnj = qj fjd
3 v (5.197) 

j J 

j = qjnjVj = qj fjvd3 v. (5.198) 
j j 

Describe phenomena in which collisions are not important, keeping track of the (statistically

averaged) particle distribution function.


Plasma waves are the most important phenomena covered by the Vlasov­Maxwell equations.


6­dimensional, nonlinear, time­dependent, integral­differential equations!


5.9.2 Linearized Wave Solution of Vlasov Equation 

Unmagnetized Plasma 

Linearize the Vlasov Eq by supposing 

f = f0(v) + f1(v) exp i (k.x − ωt) , f1 small. (5.199) 

also E = E1 exp i (k.x − ωt) B = B1 exp i (k.x − ωt) (5.200) 

∂Zeroth order f0 equation satisfied by ∂ 
∂t , ∂x = 0. First order: 

q ∂f0 − iωf1 + v.ikf1 + (E1 + v ∧B1) . = 0. (5.201) 
m ∂v 

[Note v is not per se of any order, it is an independent variable.] 

Solution: 
1 q ∂f0

f1 = (5.202) 
i (ω − k.v) m 

(E1 + v ∧B1) .
∂v 

∂f0For convenience, assume f0 is isotropic. Then ∂f0 is in direction v so v ∧B1. = 0 
∂v ∂v 

q ∂f0 

f1 = m E1. ∂v (5.203) 
i (ω − k.v) 

We want to calculate the conductivity σ. Do this by simply integrating: � 2 � ∂f0v 
∂v d3j = qf1vd3 v = 

q
v .E1. (5.204) 

im ω − k.v 
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Here the electric field has been taken outside the v­integral but its dot product is with 
∂f0/∂v. Hence we have the tensor conductivity, 

2 � ∂f0q v 
σ = ∂v d3 v (5.205) 

im ω − k.v 

Focus on zz component: 

σzz 
2 � ∂f0 

1 + χzz = �zz = 1 + = 1 + 
q vz ∂vz d3 v (5.206) 

−iω�0 ωm�0 ω − k.v 

Such an expression applies for the conductivity (susceptibility) of each species, if more than 
one needs to be considered. 

It looks as if we are there! Just do the integral! 

Now the problem becomes evident. The integrand has a zero in the denominator. At least 
we can do 2 of 3 integrals by defining the 1­dimensional distribution function 

fz(vz) ≡ f(v)dvxdvy (k = kẑ) (5.207) 

Then 
∂fz2 � q vz ∂vzχ = dvz (5.208) 

ωm�0 ω − kvz 

(drop the z suffix from now on. 1­d problem). 
ωHow do we integrate through the pole at v = 
k ? Contribution of resonant particles. Crucial 

to get right. 

Path of velocity integration 

First, realize that the solution we have found is not complete. In fact a more general solution 
can be constructed by adding any solution of 

∂f1 ∂f1 
+ v = 0 (5.209) 

∂t ∂z 

∂f [We are dealing with 1­d Vlasov equation: 
∂t + v ∂f + qE ∂f = 0.] Solution of this is 

∂z m ∂v 

f1 = g(vt − z, v) (5.210) 

where g is an arbitrary function of its arguments. Hence general solution is 

q E ∂f0


f1 = m ∂v


i (ω − kv) 
exp i (kz − ωt) + g (vt − z, v) (5.211) 

and g must be determined by initial conditions. In general, if we start up the wave suddenly 
there will be a transient that makes g non­zero. 
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So instead we consider a case of complex ω (real k for simplicity) where ω = ωr + iωi and

ωi > 0.


This case corresponds to a growing wave:


exp(−iωt) = exp(−iωr t + ωit) (5.212) 

Then we can take our initial condition to be f1 = 0 at t → −∞. This is satisfied by taking

g = 0.


For ωi > 0 the complementary function, g, is zero.


Physically this can be thought of as treating a case where there is a very gradual, smooth 
start up, so that no transients are generated.


Thus if ωi > 0, the solution is simply the velocity integral, taken along the real axis, with

no additional terms. For


∂f 2 � 
∂v q v 

ωi > 0, χ = dv (5.213) 
ωm�o C ω − kv 

where there is now no difficulty about the integration because ω is complex. 

Figure 5.14: Contour of integration in complex v­plane. 

ωThe pole of the integrand is at v = 
k which is above the real axis. 

The question then arises as to how to do the calculation if ωi ≤ 0. The answer is by “analytic

continuation”, regarding all quantities as complex.


“Analytic Continuation” of χ is accomplished by allowing ω/k to move (e.g. changing the ωi)

but never allowing any poles to cross the integration contour, as things change continuously.


Remember (Fig 5.15)


F dz = residues × 2πi (5.214) 
c 

(Cauchy’s theorem)


Where residues = limz→zk [F (z)/(z −zk )] at the poles, zk , of F (z). We can deform the contour

how we like, provided no poles cross it. Hence contour (Fig 5.16)


127




� �� � � 

� � � � � � 

Figure 5.15: Cauchy’s theorem.


Figure 5.16: Landau Contour 

We conclude that the integration contour for ωi < 0 is not just along the real v axis. It 
includes the pole also.


To express our answer in a universal way we use the notation of “Principal Value” of a

singular integral defined as the average of paths above and below


F 1 F 
℘ dv = + dv (5.215) 

v − v0 2 C1 C2 v − v0 

Figure 5.17: Two halves of principal value contour.


Then 

(5.216) } 
∂f012 1 ω ∂f0v 
∂v χ = 

ωm�o 
{℘ dv − 2πi 

2ω − kv k2 ∂v

v= 

k
ω 

Second term is half the normal residue term; so it is half of the integral round the pole. 
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Figure 5.18: Contour equivalence. 

Our expression is only short­hand for the (Landau) prescription: 
“Integrate below the pole”. (Nautilus). 

Contribution from the pole can be considered to arise from the complementary function 
g(vt− z, v). If g is to be proportional to exp(ikz), then it must be of the form g = exp[ik(z − 
vt)]h(v) where h(v) is an arbitrary function. To get the result previously calculated, the value 
of h(v) must be (for real ω) 

1 ∂f0 

k ∂v

ωq

h(v) = π 
m 

δ v − (5.217) 
k 

k
w 

⎞⎛ 
2ω ∂f0 

k2 ∂v 
q

(so that vgdv = ⎝πi 
q
⎠ 

k
ω 

.) (5.218) 
−iω�o ωm�o 

This Dirac delta function says that the complementary function is limited to particles with 
“exactly” the wave phase speed ω . It is the resonant behaviour of these particles and the 

k 
imaginary term they contribute to χ that is responsible for wave damping.


We shall see in a moment, that the standard case will be ωi < 0, so the opposite of the

prescription ωi > 0 that makes g = 0. Therefore there will generally be a complementary

function, non­zero, describing resonant effects. We don’t have to calculate it explicitly 
because the Landau prescription takes care of it. 

5.9.3 Landau’s original approach. (1946) 

Corrected Vlasov’s assumption that the correct result was just the principal value of the inte­

gral. Landau recognized the importance of initial conditions and so used Laplace Transform

approach to the problem


∞
Ã(p) = e−ptA(t)dt (5.219) 

0 

The Laplace Transform inversion formula is 

s+i∞1 
eptÃ(p)dpA(t) = (5.220) 

s large 
Ã(p) 

2πi s−i∞ 

Ã(p) (i.e. where the path of integration must be chosen to the right of any poles of 
enough). Such a prescription seems reasonable. If we make �(p) large enough then the 
integral will presumably exist. The inversion formula can also be proved rigorously so that 
gives confidence that this is the right approach. 
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Ã iωtA(t)dt, which can be identified as If we identify p → −iω, then the transform is 
the Fourier transform that would give component 

= e

˜
A ∝ e−iωt , the wave we are discussing. 

Making �(p) positive enough to be to the right of all poles is then equivalent to making �(ω) 
positive enough so that the path in ω­space is above all poles, in particular ωi > �(kv). For 
real velocity, v, this is precisely the condition ωi > 0, we adopted before to justify putting 
the complementary function zero. 

Either approach gives the same prescription. It is all bound up with satisfying causality. 

5.9.4 Solution of Dispersion Relation 

We have the dielectric tensor ⎧⎨ 
dv − πi


ω ∂f0 

k2 ∂v


⎫⎬ ⎭ 
k
ω 

, (5.221)

∂f02 vq ∂v � = 1 + χ = 1 + ℘ ⎩ωm�0 ω − kv 

for a general isotropic distribution. We also know that the dispersion relation is
⎤⎡ 
0 0−N 2 + �t �2 

N 2 + �t � = 0 (5.222) ⎢⎣ 
⎥⎦0 0−N 2 + �t = −

0 0 �


Giving transverse waves N 2 = �t and

longitudinal waves � = 0.

Need to do the integral and hence get �.


Presumably, if we have done this right, we ought to be able to get back the cold­plasma

result as an approximation in the appropriate limits, plus some corrections. We previously

argued that cold­plasma is valid if ω

ω
k � vt. So regard kv as a small quantity and expand: ⎡ ⎤�2∂f0 1 ∂f0 kv kv v 
dv ⎣1 + ⎦ dv� dv = v℘ + + ... 

ω kv ω ∂v ω ω1 −
ω ⎡ ⎤�2 

fo 
1 2kv kv − ⎣1 + ⎦ dv+ 3 (by parts) + ...
= 

ω ω ω 

� −1 3nT k2 

n + + ... (5.223) 
ω m ω2 

Here we have assumed we are in the particles’ average rest frame (no bulk velocity) so that 
f0vdv = 0 and also we have used the temperature definition 

nT = mv 2f0dv , (5.224) 

appropriate to one degree of freedom (1­d problem). Ignoring the higher order terms we get: ⎧⎨ 
⎫⎬ ⎭ 

k
ω 

(5.225)

ω2 

p T k2 ω2 1 ∂f0
� = 1 − 1 + 3 + πi 

ω2 ⎩ m ω2 k2 n ∂v 
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2 
pω

This is just what we expected. Cold plasma value was � = 1 − We have two corrections 
ω2 . 

� �2 
vt1. To real part of �, correction 3 T k2 

= 3 
vp 

due to finite temperature. We could have 
m ω2 

got this from a fluid treatment with pressure. 

2. Imaginary part → antihermitian part of � → dissipation. 

Solve the dispersion relation for longitudinal waves � = 0 (again assuming k real ω complex). 
Assume ωi � ωr then 

T k2 ω2 1 ∂f02 
p {1 + 3 ω2 + 2ωr ωii = ω2 

r(ωr + iωi) + πi | }
k
ω 

m ω2 k2 n ∂v 
T k2 ω2 1 ∂fo

ω2 
p {1 + 3 + πi r 

m ω2 k2 nr 

(5.226) |
 }ωr 

∂v
 k 

1 ωr 
2 1 ∂f0 π ωr 1 ∂f0

ω2 
p = ω2 

pHence ω1 πi (5.227) | |ω ωr r 

k2 k2 n ∂v 2ωr i ∂v 2k kn 

For a Maxwellian distribution 

m 
1 
2 

2mv
f0 = exp n (5.228) 

2πT 
− 

2T 

1 
2 

2∂f0 

∂v 
m mv mv

= exp n (5.229) 
2πT 

− 
T 

− 
2T 

ω2 � � 
mr 

1 
2 m
 mω2π 

pωi � −ω2 r exp (5.230) −
2T k2k3 2πT T
2 

The difference between ωr and ωp may not be important in the outside but ought to be 
retained inside the exponential since 

m 
2T 

ω2 
p 

k2 

� 

1 + 3 
T 
m 

k2 

ω2 
p 

� 

= 
mω2 

p 

2T k2 
+ 

3 
2 

(5.231) 

1 
2 ω3 mω2π 1 3 

So ωi � −ωp
p exp (5.232) 

38 k3 vt 
−

2T k
p 
2 
−

2 

Imaginary part of ω is negative ⇒ damping. This is Landau Damping. 

Note that we have been treating a single species (electrons by implication) but if we need 
more than one we simply add to χ. Solution is then more complex. 

5.9.5 Direct Calculation of Collisionless Particle Heating 

(Landau Damping without complex variables!)


We show by a direct calculation that net energy is transferred to electrons.
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Suppose there exists a longitudinal wave 

E = E cos(kz − ωt)ˆ (5.233) z 

Equations of motion of a particle 

dv q 
= E cos(kz − ωt) (5.234) 

dt m 
dz 

= v (5.235) 
dt 

Solve these assuming E is small by a perturbation expansion v = v0 + v1 + ..., z = z0(t) +

z1(t) + ... .


Zeroth order:

dvo 

= 0 ⇒ v0 = const , z0 = zi + v0t (5.236) 
dt 

where zi = const is the initial position. 

First Order 

dv1 q q 
= E cos (kz0 − ωt) = E cos (k (zi + v0t) − ωt) (5.237) 

dt m m

dz1


= v1 (5.238) 
dt 

Integrate: 
qE sin (kzi + kv0 − ωt) 

+ const. (5.239) v1 = 
m kv0 − ω 

take initial conditions to be v1, v2 = 0. Then 

qE sin (kzi + Δωt) − sin (kzi) 
(5.240) v1 = 

m Δω 

where Δω ≡ kv0 − ω, is (­) the frequency at which the particle feels the wave field. 

qE cos kzi − cos (kzi + Δωt) sin kzi 
(5.241) z1 = 

m Δω2 
− t 

Δω 

(using z1(0) = 0).


2nd Order (Needed to get energy right)


dv2 qE 
= 

M 
{cos (kzi + kv0t − ωt + kz1) − cos (kzi + kv0t − ωt)}

dt

qE


= kzi{− sin (kzi + Δωt)} (kz1 � 1) (5.242) 
m 

Now the gain in kinetic energy of the particle is 

1 2 1 2 mv 
1 
mv0

2 = m{(v0 + v1 + v2 + ...)2 − v0 }2 
− 

2 2

1 2
=
2 
{2v0v1 + v1 + 2v0v2 + higher order} (5.243) 
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and the rate of increase of K.E. is 

d 1 2 dv1 dv1 dv2 
mv = m v0 + v1 + v0 (5.244) 

dt 2 dt dt dt 

We need to average this over space, i.e. over zi. This will cancel any component that simply 
oscillates with zi. �� � 

d 1 2 dv1 dv1 dv2 
mv = v0 + v1 + v0 m (5.245) 

dt 2 dt dt dt 

dv1 
v0 = 0 (5.246) 

dt � � � � �� 
dv1 q2E2 sin (kzi + Δωt) − sin kzi 

cos (kzi + Δωt)v1 = 
dt m2 Δω 

q2E2 sin (kzi + Δωt) − sin (kzi + Δωt) cos Δωt + cos (kzi + Δωt) sin Δωt 
= 

m2 Δω 

cos (kzi + Δωt) 

q2E2 � 
sin Δωt 2 = cos (kzi + Δωt) 

m2 Δω

q2E2 1 sin Δωt


= (5.247) 
m2 2 Δω� � �� � � 

dv2 −q2E2 cos kzi − cos (kzi + Δωt) sin kzi 
sin (kzi + Δωt)v0 = kv0

dt m2 Δω2 
− t 

Δω 

sin Δωt cos Δωt 
= 

−q2E2 

kv0 

�� 

Δω2 
− t 

Δω 
sin2 (kzi + Δωt)

2m
q2E2 kv0 

� 
sin Δωt cos Δωt 

= + t (5.248) 
m2 2 

− 
Δω2 Δω 

Hence 

d 1 2 q2E2 � 
sin Δωt sin Δωt cos Δωt 

mv = − kv0 + kv0t (5.249) 
dt 2 2m Δω Δω2 Δω 

ωt 
= 

q2E2 � −ω sin Δωt 
+ cos Δωt + t cos Δωt (5.250) 

2m Δω2 Δω 

This is the space­averaged power into particles of a specific velocity v0. We need to integrate 
over the distribution function. A trick identify helps: 

ωt ∂ ω sin Δωt −ω 
sin Δωt + cos Δωt + t cos Δωt = + sin Δωt (5.251) 

Δω2 Δω ∂Δω Δω 
1 ∂ ω sin Δωt 

= + sin Δωt (5.252) 
k ∂v0 Δω 
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Hence power per unit volume is 

d 1 
P = mv 2 f (v0) dv0

dt 2 

q2E2 � ∂ ω sin Δωt 
= f (v0) + sin Δωt dv0

2mk ∂v0 Δω 
q2E2 � � �

ω sin Δωt ∂f 
= + sin Δωt dv0 (5.253) − 

2mk Δω ∂v0 

As t becomes large, sin Δωt = sin(kv0 − ω)t becomes a rapidly oscillating function of v0. 
Hence second term of integrand contributes negligibly and the first term, 

ω sin Δωt sin Δωt 
= ωt (5.254) ∝ 

Δω Δωt 

becomes a highly localized, delta­function­like quantity. That enables the rest of the inte­
grand to be evaluated just where Δω = 0 (i.e. kv0 − ω = 0). 

Figure 5.19: Localized integrand function. 

So: 
q2E2 ω ∂f � sin x 

P − | dx (5.255) =

k
ω 

2mk k ∂v x 
x = Δωt = (kv0 − ω)t. 
and sin x dz = π so 

x 
πq2ω ∂f0

P = −E 
2mk2 

|

k
ω (5.256) 

∂v 
We have shown that there is a net transfer of energy to particles at the resonant velocity ω 

k 

from the wave. (Positive if ∂f is negative.) 
∂v | 

5.9.6 Physical Picture 

Δω is the frequency in the particles’ (unperturbed) frame of reference, or equivalently it is 
kv� where v� is particle speed in wave frame of reference. The latter is easier to deal with. 0 0 

Δωt = kv0t is the phase the particle travels in time t. We found that the energy gain was of 
the form � sin Δωt 

d (Δωt) . (5.257) 
Δωt 
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Figure 5.20: Phase distance traveled in time t. 

This integrand becomes small (and oscillatory) for Δωt � 1. Physically, this means that 
if particle moves through many wavelengths its energy gain is small. Dominant contribution 
is from Δωt < π. These are particles that move through less than 1 wavelength during the 

2 
period under consideration. These are the resonant particles. 

Figure 5.21: Dominant contribution 

Particles moving slightly faster than wave are slowed down. This is a second­order effect. 

Figure 5.22: Particles moving slightly faster than the wave. 

Some particles of this v0 group are being accelerated (A) some slowed (B). Because A’s are

then going faster, they spend less time in the ‘down’ region. B’s are slowed; they spend more

time in up region. Net effect: tendency for particle to move its speed toward that of wave.


Particles moving slightly slower than wave are speeded up. (Same argument). But this is

only true for particles that have “caught the wave”.


Summary: Resonant particles’ velocity is drawn toward the wave phase velocity.


Is there net energy when we average both slower and faster particles? Depends which type

has most.


Our Complex variables wave treatment and our direct particle energy calculation give con­

sistent answers. To show this we need to show energy conservation. Energy density of
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Figure 5.23: Damping or growth depends on distribution slope 

wave: 
1 1 1 

W = [ + n m ṽ2| ] (5.258) 2� E |0
2� | |

2 2

<sin2> Electrostatic P article Kinetic 

Magnetic wave energy zero (negligible) for a longitudinal wave. We showed in Cold Plasma 
treatment that the velocity due to the wave is ˜ = qE Hencev −iωm 

ω2 

W � 
1 �0E

2 

2 2

1 + p (again electrons only) (5.259) 

ω2 

When the wave is damped, it has imaginary part of ω, ωi and 

dW 1 dE2 

= W = 2ωiW (5.260) 
dt E2 dt 

Conservation of energy requires that this equal minus the particle energy gain rate, P . Hence 

2ωp 

+E2 πq2ω ∂f0 
2mk2−P


= 
π ω 1 ∂f0 2 

k� ω|∂v = ω2 
pωi = (5.261) |ω ×
 2ωp2
k2 n ∂v
�0E22W k

1 + 1 + 
ω2 ω21 

So for waves such that ω ∼ ωp, which is the dispersion relation to lowest order, we get 

ωi = ω2 π ωr 1 ∂f0 
p . (5.262) 
2 k2 n ∂v ωr 

k 

This exactly agrees with the damping calculated from the complex dispersion relation using

the Vlasov equation.


This is the Landau damping calculation for longitudinal waves in a (magnetic) field­free

plasma. Strictly, just for electron plasma waves.


How does this apply to the general magnetized plasma case with multiple species?


Doing a complete evaluation of the dielectric tensor using kinetic theory is feasible but very

heavy algebra. Our direct intuitive calculation gives the correct answer more directly.
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5.9.7 Damping Mechanisms 

Cold plasma dielectric tensor is Hermitian. [Complex conjugate*, transposeT = original 
matrix.] This means no damping (dissipation). 

The proof of this fact is simple but instructive. Rate of doing work on plasma per unit 
volume is P = E.j. However we need to observe notation. 

Notation is that E(k, ω) is amplitude of wave which is really �(E(k, ω) exp i(k.x − ωt)) and 
similarly for j. Whenever products are taken: must take real part first. So 

P = � (E exp i (k.x − ωt)) .� (j exp i (k.x − ωt)) � 1 � �1 � 
= Ee iφ + E∗e−iφ . je iφ + j∗e−iφ (φ = k.x − ωt.)

2 2 
1 � 

.j∗e−2iφ = E.je 2iφ + E.j∗ + E∗.j + E∗ (5.263) 
4 

The terms e2iφ & e−2iφ are rapidly varying. We usually average over at least a period. These 
average to zero. Hence 

1 1 �P � = [E.j∗ + E∗.j] = 
2 
� (E.j∗) (5.264) 

4 
Now recognize that j = σ.E and substitute 

1 
[E.σ∗.E∗ + E∗.σ.E] (5.265) �P � = 

4 

But for arbitrary matrices and vectors: 

A.M.B = B.MT .A; (5.266) 

(in our dyadic notation we don’t explicitly indicate transposes of vectors). So 

E.σ∗.E∗ = E∗.σ∗T .E (5.267) 

hence 
1 � 

�P � = E∗. σ∗T + σ .E (5.268) 
4 

If � = 1 + 1 σ is hermitian �∗T = �, then the conductivity tensor is antihermitian −iω�0 

σ∗T = −σ (if ω is real). In that case, equation 5.268 shows that < P >= 0. No dissipation. 
Any dissipation of wave energy is associated with an antihermitian part of σ and hence �. 
Cold Plasma has none. 

Collisions introduce damping. Can be included in equation of motion 

dv 
m = q (E + v ∧ B) − mv ν (5.269) 

dt 

where ν is the collision frequency. 
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Whole calculation can be followed through replacing m(−iω) with m(ν − iω) everywhere.

This introduces complex quantity in S, D, P .


We shall not bother with this because in fusion plasmas collisional damping is usually neg­

ligible. See this physically by saying that transit time of a wave is


Size 1 meter 
3 × 10+8m/s 

� 3 × 10−9 seconds. (5.270) 
Speed 

∼ 

(Collision frequency)−1 ∼ 10µs → 1ms, depending on Te, ne. 

When is the conductivity tensor Antihermitian? 

Cold Plasma: 
ω2 

pj⎤⎡ 

where


S = 1 − 

D = j 

S −iD 0

S


j ω2−Ω2 
j 

Ωj ωpj⎢⎣ 
⎥⎦iD 0 (5.271) 

ω ω2−Ω2 
j 

ω20 0 P

P = 1 − pj 

j ω2 

This is manifestly Hermitian if ω is real, and then σ is anti­Hermitian.


This observation is sufficient to show that if the plasma is driven with a steady wave, there

is no damping, and k does not acquire a complex part.


Two stream Instability 

�zz = 1 − 
ω2 

pj 

(ω − kvj )j 

(5.272) 2 

In this case, the relevant component is Hermitian (i.e. real) if both ω and k are real.


But that just begs the question: If ω and k are real, then there’s no damping by definition.


So we can’t necessarily detect damping or growth just by inspecting the dieletric tensor form

when it depends on both ω and k.


Electrostatic Waves in general have � = 0 which is Hermitian. So really it is not enough to

deal with � or χ. We need to deal with σ = −iω�oχ, which indeed has a Hermitian component

for the two­stream instability (even though χ is Hermitian) because ω is complex.


5.9.8 Ion Acoustic Waves and Landau Damping 

We previously derived ion acoustic waves based on fluid treatment giving 

ω2 ω2 
pi�zz = 1 − pe (5.273) 

mene mini 
ω2 − k

2peγe 
− 

ω2 − k
2piγi 

γiTi+γeTeLeading to ω2 � k2 . 
mi 
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Kinetic treatment adds the extra ingredient of Landau Damping. Vlasov plasma, unmagne­

tized: 

ω2 
pe 1 ∂foe dv ω2 

pi 1 ∂foi dv 
�zz = 1 − 

k2 C v − ω 
k ∂v
 n 

− 
k2 C v −

(5.274) ω ∂v n
k 

Both electron and ion damping need to be considered as possibly important.


Based on our fluid treatment we know these waves will have small phase velocity relative to

electron thermal speed. Also cs is somewhat larger than the ion thermal speed.


Figure 5.24: Distribution functions of ions and electrons near the sound wave speed. 

So we adopt approximations 
ω ω 

vte � 
k 

, vti < (<) 
k 

(5.275) 

and expand in opposite ways. 

Ions are in the standard limit, so 

ω2 3Ti k
2 ω2 1 ∂foipi 1 + χi � − 

ω2 
+ πi w/k (5.276) |

m ω2 k2 ni ∂v 

Electrons: we regard ω as small and write 
k 

1 ∂foe dv 1 ∂foe dv 
v ∂v
 n 
∂foe 

dv 
∂v2 

℘ ℘ω ∂v v − n

k 

2 
n 
2 

= 

me 
foedv for Maxwellian. −

2Te 
= 

n 
me 

= (5.277) −
Te 

Write F0 = fo/n. 

Contribution from the pole is as usual so ⎤⎡ 
ω2 

pe me ∂Foe⎣ ⎦χe =
−
 + πi (5.278) −
k2 Te ∂v 

ω/k 
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Collecting real and imaginary parts (at real ω) 

ω2 ω2 k2 
pi 3Ti

εr (ωr ) = 1 + pe me 
1 + (5.279) 

k2 � 
Te 
− 

ωr 
2 m ωr 

2 

∂Foi
εi(ωr ) = −π

k

1 
2 

ω2 ∂Foe |ω/k + ω2 
pe ∂v pi ω/k (5.280) 

∂v 
|

The real part is essentially the same as before. The extra Bohm Gross term in ions appeared 
previously in the denominator as 

ω2 ω2 k2 
pi pi 3Ti 

ω2 − k
2piγi 

↔ 
ω2 

1 + 
mi ω2 

(5.281) 
mi 

Since our kinetic form is based on a rather inaccurate Taylor expansion, it is not clear that 
it is a better approx. We are probably better off using 

ω2 1pi 
3Tik2 . (5.282) 

ω2 1 − 
miω2 

Then the solution of εr (ωr ) = 0 is 

ω2 � �
Te + 3Ti 1r = (5.283) 

k2 mi 1 + k2λ2 
De 

as before, but we’ve proved that γe = 1 is the correct choice, and kept the k2λ2 term (1st De 

term of εr ). 

The imaginary part of ε gives damping. 

General way to solve for damping when small 

We want to solve ε(k, ω) = 0 with ω = ωr + iωi , ωi small. 

Taylor expand ε about real ωr : 

dε 
ε(ω) ε(ωr ) + iωi 

dω 
|ωr (5.284) 

∂ 
= ε(ωr ) + iωi ε(ωr ) (5.285) 

∂ωr 

Let ωr be the solution of εr (ωr ) = 0; then 

∂ 
ε(ω) = iεi(ωr ) + iωi ε(ωr ). (5.286) 

∂ωr 

This is equal to zero when 
εi (ωr ) 

. (5.287) ωi = 
∂ε(ωr )

− 
∂ωr 
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If, by presumption, εi � εr , or more precisely (in the vicinity of ε = 0), ∂εi/∂ωr � ∂εr /∂ωr 

then this can be written to lowest order: 

εi (ωr ) 
(5.288) ωi = 

∂εr (ωr )
− 

∂ωr 

Apply to ion acoustic waves: 

∂εr (ωr ) ω2 k2 
pi 4Ti 

= 2 + 4 (5.289) 
∂ωr ωr 

3 mi ωr 
2 

so ⎡ ⎤ � 

ωi = 
π ωr 

3 ⎣ 1 ⎦ ω2 ∂Foe 
pi 

∂Foi 
ω/k (5.290) 

k2 ω2 
pi 2 + 4 4Ti k2 pe ∂v 

|ω/k + ω2 

∂v 
|

mi ω2 
r 

For Maxwellian distributions, using our previous value for ωr , 

1 
∂Foe 

∂v


2me mev 
e− mev2 

2Teωr = 
k
| − 

2πTe Te ωrv= 
k ⎛ ⎞ 

1
1 + 3Ti 

Te 

3 
1 Te + 3Ti 1
2me me2 ⎝ ⎠− √
2π 

−
= exp 
1 + k2λ2 

DTe 2mimi 1 + k2λ2 
D 

1 
21 + 3Ti1 

21 me me Te� , (5.291) = − √
2π mi Te 1 + k2λ2 

De 

where the exponent is of order me/mi here, and so the exponential is 1. And 

⎛ ⎞1 

1 + 3Ti 
Te 

12
1 + 3Ti∂Foi 1 Te ⎝− 

Te Te ⎠ (5.292) 
D 

2mi 
ωr =| 
k 

−√
2π 

exp 
1 + k2λ2∂v Ti Ti1 + k2λ2 

D 
2Ti 

Hence 

⎡ ⎤ � � 
ωi π ω2 ⎣ 1 1 + 3

T
T
e

i 

r = ⎦ � 

1 
2 

− √
2π 

×
k2k2 2 + 4 3Tiωr 1 + k2λ2 

D2 
rωmi ⎡ ⎛ ⎞⎤ 

1
1 + 3Ti1 

Te ⎝− 
Te Te ⎠⎦ (5.293) 

D 

2mi me me mi2 ⎣ +
 exp 
1 + k2λ2Te Ti Ti 2Time mi 

ωi π 1 1 + 3
T
T
e

i 

3 
2 

= − 3Ti 
×

[1 + k2λ2 
De] 

3 
2ωr 2 2 + 4


Te+3Ti⎛ ⎞ 
1 3

1 + 3TiTe ⎝− 
Te Te ⎠ . (5.294) 

De 

2me 2 

+ exp

1 + k2λ2Ti 2Timi 

electron 
ion damping 
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[Note: the coefficient on the first line of equation 5.294 for ωi/ωr reduces to � − π/8 for 
Ti/Te � 1 and kλDe � 1.] 

∼ me 1Electron Landau damping of ion acoustic waves is rather small: ωi .
ωr mi 70

∼ 

Ion Landau damping is large, ∼ 1 unless the term in the exponent is large. That is 

Te
unless 

Ti 
� 1 . (5.295) 

� 
Physics is that large Te 

Ti 
pulls the phase velocity of the wave: � 

Te+3Ti 
mi 

= cs above the ion 
Tithermal velocity vti = 
mi 

. If cs � vti there are few resonant ions to damp the wave. 

[Note. Many texts drop terms of order Ti early in the treatment, but that is not really 
Te 

accurate. We have kept the first order, giving extra coefficient 
3 
23Ti Te + 3Ti � 1 + 

3 Ti 

2 Te 
(5.296)
1 + 

Te Te + 6Ti 

and an extra factor 1 + 3Ti in the exponent. When Ti ∼ Te we ought really to use full 
Te 

solutions based on the Plasma Dispersion Function.] 

5.9.9 Alternative expressions of Dielectric Tensor Elements 

This subsection gives some useful algebraic relationships that enable one to transform to 
different expressions sometimes encountered. 

χzz = 

= 

= 

= 

q2 

ωm�o 

� 

C 

v ∂fo 
∂v 

ω − kv 
dv = 

q2 

ω2m�o 

ω 
k 

� 

C 

� 
ω 

ω − kv 
− 1 

� 

q2 

m�o 

1 
k2 

� 

C 

1 
ω 
k − v 

∂fo 

∂v 
dv 

ω2 
p 

k2 

� 

C 

1 
ω 
k − v 

1 
n 

∂fo 

∂v 
dv 

ω2 
p 

k2 

� 

℘ 
� 1 

ω 
k − v 

∂Fo 

2v 
dv − πi 

∂Fo 

∂v 
|ω 

k 

� 

∂fo 

∂v 
dv (5.297) 

(5.298) 

(5.299) 

(5.300) 

where Fo = fo 
n is the normalized distribution function. Other elements of χ involve integrals 

of the form 

χjl 
ωm�o 

q2 
= 
� vj 

∂fo 
∂vl 

ω − k.v 
d3 v . (5.301) 

When k is in z­direction, k.v = kzvz. (Multi dimensional distribution f0). 
∂foIf (e.g., χxy) l = z and j = l then the integral over vl yields 
∂vl 

dvl = 0. If j = l = z then 

∂fo 
vj 

∂vj 
dvj = − fodvj , (5.302) 
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by parts. So, recalling the definition fz f dvxdvy,≡ 

2 foz 
dvz 

q
χxx = χyy = − 

ωm�o ω − k.v 
ω2 Foz 

= dvz. (5.303) − 
ω 
p 

ω − k.v 

The fourth type of element is 

2 ∂fovxq ∂vz d3χxz = v . (5.304) 
ωm�o ω − kzvz 

This is not zero unless fo is isotropic (= fo(v)). 

If f is isotropic 
∂fo 

∂vz 
= 

dfo 

dv 
∂v 
∂vz 

= 
vz 

v 
dfo 

dv 
(5.305) 

Then 

∂fo vxvz 1 dfo 
d3 v 

vx ∂vz d3 v = 
ω − kzvz ω − kzvz v dv 

vz ∂fo 
d3 v = 0 (5.306) = 

ω − kzvz ∂vx 

(since the vx­integral of ∂fo/∂vx is zero). Hence for isotropic Fo = f0/n, with k in the 
z­direction, ⎤2 

p 
⎡ 

ω Foz dvz 0+0− 
ω C ω−kvz⎢⎢⎢⎣ 

⎥⎥⎥⎦ 

2 
pω Foz 

ω C ω−kvz 
χ = 0+ (5.307) 0 dvz−


2 
pω

k C ω−kvz ∂vz 

1 ∂Foz0 0
 dvz 

(and the terms 0+ are the ones that need isotropy to make them zero). ⎤⎡ 
�t 0 0 ⎢⎣ 0 �t 0 ⎥⎦ (5.308) 
0 0 �l 

where 

ω2 

�t = 1 − p Foz 
dvz (5.309) 

ω C ω − kvz 

ω2 
p 1 ∂Foz

�l = 1 − dvz (5.310) ω ∂vzk2 C v − 
k 

All integrals are along the Landau contour, passing below the pole. 
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5.9.10 Electromagnetic Waves in unmagnetized Vlasov Plasma 

For transverse waves the dispersion relation is 

k2c2 ω2 � 

= N 2 = �t = 1 − p 1 foz dvz 
(5.311) 

ω2 ω n C (ω − kz vz ) 

This has, in principle, a contribution from the pole at ω − kvz = 0. However, for a non­
relativistic plasma, thermal velocity is � c and the EM wave has phase velocity ∼ c. Con­
sequently, for all velocities vz for which foz is non­zero kvz � ω. We have seen with the cold 
plasma treatment that the wave phase velocity is actually greater than c. Therefore a proper 
relativistic distribution function will have no particles at all in resonance with the wave. 

Therefore: 

1. The imaginary part of �t from the pole is negligible. And relativisitically zero. 

2. 

2ω2 1 � ∞ 
� 

kvz k2vp foz 1 + + + ... dvz�t � 1 − 
ω2 n −∞ ω ω2 

z 

ω2 k2 Tp= 1 − 
ω2 

1 + + ... 
ω2 m 

ω2 2k2v� p1 − 
ω2 ω2 

t1 + 

ω2 

� p (5.312) 1 − 
ω2 

2k2vtThermal correction to the refractive index N is small because 
ω2 � 1. 

Electromagnetic waves are hardly affected by Kinetic Theory treatment in unmagnetized 
plasma. Cold Plasma treatment is generally good enough. 
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