Acoustic Surveillance of Physically Unmodified PCs

Michael LeMay
Department of Computer Science
University of Wisconsin-Eau Claire
Eau Claire, WI, U.S.A.

Abstract— Computer equipment produces a wide range
of emanations in the visible, electromagnetic, and acoustic
spectra. It is well known that electromagnetic emanations
can reveal information about the operations being per-
formed by a machine, and it has recently been shown that
acoustic emanations can do the same. Additionally, tech-
niques have been developed to manipulate electromagnetic
emanations so that they surreptitiously transmit data to a
remote receiver. In this paper, we similarly demonstrate
how acoustic emanations can be manipulated to transmit
arbitrary data and show how this technique can be used
to create a practical, software-only acoustic keylogger.
Finally, we recommend countermeasures to prevent such
an attack from being performed.

Keywords: TEMPEST, emanations, keylogger, acoustic,
side channel

1. Introduction

Computer equipment emits a variety of optical, elec-
tromagnetic, and acoustic emanations. Much work has
been done to determine the extent of the information that
can be remotely ascertained by monitoring optical and
electromagnetic emanations, and a variety of attacks with
varying levels of practicality have been devised. As a result
of this research, many modern systems prevent the leakage
of these compromising emanations.

In contrast, much less attention has been devoted to
acoustic side channels, due largely to the assumption that
the clocks governing the operation of modern machines
operate at far too high a frequency to reveal information
through low-frequency acoustic channels. Recent studies
have challenged this assumption, and in this paper we
demonstrate an actual application in which the acoustic
emanations of a physically unmodified personal computer
can be manipulated to surreptitiously transmit arbitrary
data in a repeatable fashion.

2. Related Work

Our work was inspired by the experiments performed
by Shamir and Tromer [1], where they showed that
the motherboard power smoothing capacitors supplying
a Celeron 666MHz processor emit acoustic emanations
when the processor is active. They also observed that these
emanations could be easily collected and analyzed using an
inexpensive microphone and an open-source audio analysis
suite, Baudline [4]. Furthermore, these emanations exhibit

Jack Tan
Department of Computer Science
University of Wisconsin-Eau Claire
Eau Claire, WI, U.S.A.

interesting characteristics that can be correlated to the
type of operation being performed by the processor at the
time. In particular, they were interested in the potential for
discovering information about cryptographic material that
is leaked through these emanations. They include several
demonstrative spectrograms in their analysis, including
some that clearly demarcate between two phases of a
common public-key operation based on the Chinese Re-
mainder Theorem [6]. Their analysis also includes several
experiments which effectively demonstrate that the signals
being analyzed are actually acoustic and not electromag-
netic. The most important aspect that is lacking from their
analysis is any practical application of the emanations they
analyzed.

Kuhn and Anderson [7] showed that electromagnetic
side channels can be manipulated to surreptitiously trans-
mit data. They demonstrated that a variety of prominent
tones could be transmitted to an ordinary AM shortwave
radio by displaying specially constructed patterns on a
standard CRT. A noticeable shortcoming of this technique
is that it caused strange patterns to be displayed on the
CRT, which would of course alert an informed user that
something is not right. Thus, it was best suited for use
after hours. However, Kuhn and Anderson then presented
more advanced techniques to manipulate the dithering on
screens such that the human eye is made to see one
image, while another, attacker-defined image is clearly
transmitted to a standard video TEMPEST receiver. These
techniques could potentially be used even while a human
user is present at the terminal. Finally, Kuhn and Anderson
explored how screen fonts can be subtly modified to elimi-
nate TEMPEST emanations while minimally changing the
font’s on-screen appearance. In our work, we show how
an attacker can surreptitiously transmit data using acoustic
channels, and then provide best practices to minimize the
effectiveness of these channels.

Asonov and Agrawal [2] of IBM Research developed an
effective attack system that analyzes the sounds emitted
by various keys on a single keypad to capture PINs
and passwords from computers, ATMs, and other keypad-
equipped devices. Their attack is entirely non-invasive,
as sounds are collected from a long distance using a
parabolic microphone. The sounds are analyzed using a
neural network that can be trained to distinguish different
key sounds, even if those sounds are indistinguishable to
the human ear.

Through experimentation, they were able to conclude
that the variations in key sounds were caused by the
keys striking different parts of the plate underneath the
keyboard. Basically, the plate was acting as a drum that
resonated differently depending on where it was struck.
In the final analysis, this work was useful in its own
right because it contributes a practical attack technique
that is still as applicable now as it was at the time of its
publication, and it also served as a motivation for further
research into more subtle acoustic emanations generated
by computers.

The government has a long history of research on attacks
against various electronic emanations, but most of it is
classified. In fact, there exist a few known TEMPEST
documents, NACSIM 5103, 5104, and 5105 relating to
acoustic emanations, but they remain classified, according
to the partially declassified NACSIM 5000 [9].

3. Experimental Setup
1. Personal Computer

For all of these experiments, we used a computer that
was constructed from modern components in December
2004. It was powered by an Intel Celeron D 320 (2.40GHz,
Prescott core, no hyperthreading) hosted by a Jetway
PMOMS microATX motherboard and cooled by a prepack-
aged water cooling system. We chose a high frequency
processor to demonstrate that the emanations observed by
Shamir and Tromer are still present at higher operating
frequencies.

We performed a standard installation of Gentoo Linux
on our test machine, and executed all of our experiments on
it. None of the underlying operating system was modified
so as to provide a realistic, multitasking environment. We
also ensured that no intensive tasks were running during
our experiments. In the future, it may be interesting to
determine what effect an intensive background process
such as any of the distributed computation projects would
have on our results. However, most systems sit idle when
not being actively used, so our results should accurately
predict those that would be obtained from a typical system.

2. Microphone #1

To achieve a flat frequency response from our recording
equipment, we selected an omnidirectional measurement
microphone produced by Behringer, the ECM8000, which
is readily available for about $50. This is an electret
condenser microphone that has a linear frequency response
curve from about 15Hz to 20kHz. It has a sensitivity rating
of -60dB.

The microphone was coupled with a Behringer UB802
Eurorack 8-input mixer that is also readily available for
$50. To complete our ensemble, we obtained cables both
to connect the microphone to the mixer and the mixer to
the computer, which brought our total investment to just
under $150. This is well within the reach of any potential
attacker.

CPU
“WATERBLOCK

Fig. 1. Microphone positioning for first set of experiments

3. Microphone #2

We also conducted some experiments using a wireless
spy camera with an integrated microphone. Again, we
wanted to constrain ourselves to a budget accessible to
even the most limited attacker, so we purchased X10
wireless spy cameras. For only $180, we purchased a
“special package” comprising two wireless spy cameras,
an A/V wireless receiver, a USB adapter for converting
the video input, two Pan’n’Tilt robotic camera bases,
remote controls for the same, plus a large number of
other accessories. For another $20, we purchased a AA
battery pack that can be used to power one of the cameras
without plugging it into an AC outlet or robotic base.
What makes this equipment interesting is the fact that the
entire camera can be concealed inside of a standard ATX
mid-tower case, and transmit audio and video to a remote
receiver. Of course, we have no use for the video feed
in this application, which indicates that a more compact
microphone-only unit could be concealed with even greater
ease.

4. Recording Station

To record the audio produced by our microphones, we
enlisted a standard Pentium 4-M laptop. It contains an
integrated 16-bit audio controller with a single microphone
port. Thus, it is hardly a professional recording device, but
would be in any reasonable attacker’s toolkit. We ran Linux
on the laptop during the experiments, and used the same
recording package as Shamir and Tromer, Baudline.

For more advanced spectral analysis, we used the
FAWAVE [5] software package, created and maintained by
James Walker of the University of Wisconsin-Eau Claire.
FAWAVE runs only on Windows, so we used a standard
Windows XP desktop for that portion of our analysis.

4. Initial Experiments

One of the objectives of this project was to replicate
many of the tests performed by Shamir and Tromer on
a different computer, to lend additional support to the
idea that acoustic emanations from computer internals are
common phenomena, not simply a strange characteristic
of their particular machine.

For these initial tests, we used our studio microphone
to record the audio emanating from inside the computer’s
case during the execution of the test program. To capture
the emanations more effectively, we removed the side
panel from the case and positioned the microphone as
shown in Figure 1. The cylindrical objects surrounding
the tip of the microphone are power supply capacitors.
Our observations support the hypothesis that these are the
sources of the dominant acoustic emanations.

The first experiment we performed was inspired by
Shamir and Tromer’s analysis of GnuPG operations, which
led to the appearance of the CRT’s distinct phases in their
acoustic spectrogram. For our experiment we decided to
roughly emulate the operation being run within GnuPG
using parameters that we chose, to allow us to distinguish
the effects of various parameter selections on the acoustic
emanations.

We used GMP (GNU Multiple Precision Arithmetic
Library) [11] to perform the simple computation and
assignment ¢ = z¥(modm). Our hypothesis, suggested
by Shamir and Tromer’s experimentation, is that fixing
the values of = and y but providing different values for m
should noticeably change the acoustic emanations of the
system, since m influences the size of the intermediate
values used during the computation. We fixed = to be
499,999 bits of alternating zeros and ones, and y to be
125,001 ones followed by 374,999 zeros. We selected these
numbers simply because they are large, so that they would
produce easily discernable acoustic emanations. We ran
our experiment with three values for m, and obtained the
results shown in Figure 2.

There is one final, crucial preparation for our experiment
that we must explain. Our Celeron D can adjust its effec-
tive frequency in 300MHz steps, all the way from 300MHz
to its rated 2.40GHz. It doesn’t actually scale its clock,
but instead shuts down for minuscule periods of time. The
user is able to control what fraction of time the processor
operates, and thus adjust its effective frequency. In this
experiment, we used the Celeron’s power management
functions to scale its effective frequency down to 300MHz
from 2.40GHz. As we will discuss more thoroughly later
in this paper, acoustic emanations are most apparent at
lower effective frequencies (duty cycles).

Figure 2 is a condensed screenshot taken of Baudline
after recording the emanations produced during the ex-
periment. We inserted long pauses between computations,
which were removed from the figure to conserve space.
This spectrogram represents frequency along the horizontal
axis, advancing time from top to bottom, and increasing
amplitude as increasing darkness. The computations are
clearly visible as dark horizontal bands of high-amplitude
audio. They are clearly different from each other, both
in terms of the duration of the computations and the
frequency characteristics of each computation. As you
may have already ascertained, the modulus of the first
exponentiation was significantly larger than that of the

Fig. 2. Condensed spectrogram from first experiment with GMP

latter computations. Specifically, the first computation,
which appears at the top of the spectrogram, used an
arbitarily-selected 144-bit exponent, chosen solely for its
size. The latter two computations used 12-bit exponents
that are represented in binary as 100101001010 and
100000000011, respectively. In a cryptographic appli-
cation, we would have to consider the primality of many
of these parameters, but this is simply a demonstration in
which primality does not have any special effect on the
outcome.

With this experiment, we have shown that acoustic
emanations are emitted by modern personal computers,
and that they are not just a strange feature of Shamir and
Tromer’s hand-picked system. In fact, the authors have
detected acoustic emanations from other systems at their
workplace with their unaided ears when the side panels are
removed from the systems, suggesting that a large number
of machines have the potential to emit these sounds.
Additionally, we have shown that acoustic emanations can
be used to determine the duration of intense computations,
and perhaps characterize the parameters controlling those
computations if something is known about the algorithm
being executed.

5. Instruction Sequence Tests

Our second test comprised a sequence of instruction
loops, encoded using inline assembly language in a GCC
C source file. A sample loop copied from our test is
reproduced here:

// cmpxchg8b
u_int64_t ref = 0x1234567812345678ull;
asm ("top_cmpxchg8b:\n"
"cmpxchg8b %0\n"
"loop top_cmpxchg8b\n"
. =" (ref)
"d" (0x12345678u),
"a" (0x12345678u),
"c" (repCnt),
"b" (0x78787878u)

Fig. 3. Acoustic emanations from instruction sequences at 300MHz

HPT_MARK (cmpxchg8b) ;
SLEEP;

This loop is exercising the cmpxchg8b instruction.
This instruction compares EDX:EAX with its memory
operand. If equal, it sets ZF (the zero flag) and replaces
the operand with the contents of ECX: EBX. Otherwise, it
clears ZF and loads the operand into EDX : EAX. In short,
this is a complicated, obscure instruction that is likely to
induce some interesting emanations if anything will. In this
particular loop, the instruction is not performing any useful
work. It is simply changing the value held in the 64-bit
variable re f. The variable repCnt determines how many
times the loop will be executed. It must be set relatively
high if we are to distinguish the acoustic emanations from
different loops.

At the end of the loop, we record the time at which the
loop completed. HPT MARK stands for High-Performance
Timer Mark, and is a simple inline assembly macro we
constructed to read and record the value of the Pentium’s
timestamp counter using the rdtsc instruction. This
instruction returns the number of clock cycles that have
elapsed since the computer was started. Our macro records
this value in a pre-allocated memory location and labels
it with the name of the instruction being measured. The
final line of code, SLEEP, is another macro that simply
releases the processor for a short time using the usleep
UNIX system call.

We sequentially tested a large number of both prefixed
and unprefixed Intel instructions. Unfortunately, we don’t
have the space to explain the purpose of all these instruc-
tions. We selected them to provide a fairly comprehensive
representation of the Intel architecture’s diverse levels of
instruction complexity and many functional units. Specifi-
cally, we execised the FPU and the MMX, SSE, and SSE2
subsystems, as well as the processor’s cache lines. Again,
we executed this test with the processor set to a duty cycle
of 12.5%, or 300MHz, and the resulting spectrogram is
shown in Figure 3.

Fig. 4. Acoustic emanations from instruction sequences at 600MHz

The various instruction loops can be easily distinguished
in the spectrogram. It is very clear that many of the
instructions take much, much longer to execute than others,
since all of the instruction loops had identical iteration
counts. It is also clear that different instructions induce
different audio frequencies. We exploit these differences
later in this paper to allow surreptitious data transmission.

6. Effects of Power Management

Before we present a potential application for the pre-
dictability of these acoustic emanations, we must discuss
the factors that affect them and their probable root cause.

First, we repeated our second experiment at a higher
effective frequency, 600MHz. The resulting spectrogram
is displayed in Figure 4. There is a drastic difference
between the 300MHz and 600MHz spectrograms. The
basic outlines of the instruction sequences are still easily
discernible, but most frequency bands have “smudged” and
shifted, and several have disappeared entirely. Thus, acous-
tic emanations collected at the lower effective frequency
are much more revealing and potentially useful.

We repeated this experiment at all frequency levels
supported by our processor. Acoustic emanations are dis-
cernible at all frequencies except 2.40GHz, when no power
management is being performed. The emanations uni-
formly grow more faint (lower amplitude) as the effective
frequency is increased. We are unable to conclude that
no emanations are being produced at 2.40GHz, but we are
also unable to collect any evidence for their existence with
our modest equipment.

Due to our observations, we are able to hypothesize
about the root cause of these acoustic emanations. As
Shamir and Tromer noted, the power supply capacitors on
a motherboard are the likely sources of acoustic emana-
tions. Since we now know that power management options
have an extremely dramatic effect on acoustic emanations,
we hypothesize that the plates of the power supply smooth-
ing capacitors on the motherboard are serving as acoustic
transducers.

Capacitors are passive electrical devices that store small

Fig. 5. Four frequency modulation levels

amounts of electricity. The power smoothing capacitors on
motherboards are connected in parallel to the power input,
and store enough energy to provide the small surges of
energy required by the processor when computations inten-
sify. These particular capacitors are known as electrolytic
capacitors. They consist of two thin sheets of conductive
foil, each connected to one wire that protrudes from the
bottom of the capacitor. The two foil plates are separated
by a dielectric paste. These plates are tightly wound and
are unable to move very far. However, it is possible that
increasing the voltage difference across the capacitor could
cause a slight physical motion in the plates in response
to the stronger electrical attraction. Likewise, a lessening
of the potential could allow the plates to return to their
original position. In fact, this movement is much more of
a possibility in electrolytic capacitors than in other types
because electrolytic dielectrics are semi-liquid.

Thus, we hypothesize that the rapid variations in power
load caused by various instruction sequences could induce
capacitor plate vibrations at audio frequencies. When the
processor’s duty cycle is decreased, these power fluctua-
tions are accentuated, since the processor is switched off
for a short period and then suddenly switched back on,
causing tiny power surges in the power supply capacitors.

7. Acoustic Data Transmission

We have shown that acoustic side channels may hold
potential for revealing unintended information about the
operation of a computer. However, the acoustic emanations
of a computer can also be manipulated to surreptitiously
transmit arbitrary data.

It is possible to transmit data acoustically by modulating
the frequency of acoustic emanations. Our instruction
sequence experiments at 300MHz show that it is possible
to reliably distinguish between the frequency spectra of at
least four distinct instruction sequences, those of bswap,
cmpxchg8b, bound and bt. Their respective spectra
are displayed in Figure 5.

Almost certainly, more levels than these could be dis-
tinguished, especially with machine assistance such as that

(e P e T L I P . P =
Fig. 6. NRZ-encoded quaternary version of ASCII “Hello World!” on
the left, versus a modified encoding of the same string on the right that
eliminates the clock recovery problem. The spectrogram on the right has

been vertically scaled, and actually takes approximately twice as much
time as the spectrogram on the left.

provided by neural networks, but even these are sufficient
for our experiments. Using these four levels, it is possible
to transmit quaternary data, rather than binary data. This
allows us to double our transmission rate over what it
would have been if we had only two levels at our disposal.

Initially, we wrote a short program to transmit the
ASCII sequence corresponding to “Hello World!” Below,
we show both the binary and quaternary ASCII codings
for the first word, as an example:

=====BASE2===BASE4
H: 0100 1000: 1020
e: 0110 0101: 1211
l: 0110 1110: 1232
l1: 0110 1110: 1232
o: 0110 1111: 1233

Referring back to Figure 7, we assign each of the
instructions’ acoustic outputs to a single quaternary digit:
bswap = 0, cmpxchg8b = 1, bound = 2, and
bt = 3. Each of these instructions has a different com-
plexity and thus they all take different amounts of time
to execute. To compensate for this, we vary the number
of loop iterations for each instruction, to produce approxi-
mately equal execution durations. The quaternary acoustic
encoding of our simple message is shown in Figure 6.

This simple encoding is similar to the binary encod-
ing known as Non-Return to Zero (NRZ) in computer
networking. Thus, it shares NRZ’s biggest weakness, the
clock recovery problem. It is possible (and common) to
have long runs of the same level, which makes it difficult
to determine precisely where one digit ends and another
begins. This problem is apparent in Figure 6.

In networking, a number of alternative codings were
suggested to eliminate this problem. They all introduce

some level of inefficiency, and thus incur a slight band-
width penalty. For our system, we also propose an alter-
native coding that solves the clock recovery problem. It
is likely not be the most efficient encoding possible, but
it only requires twice as many quaternary transmissions
as the NRZ scheme. Unfortunately, we don’t have space
in this paper to include the full definition of the encod-
ing function. Its most important characteristic is that no
quaternary character is ever transmitted more than once
sequentially, completely eliminating the clock recovery
problem. For example, if the character H were originally
to be transmitted as 1020, the expanded sequence 0123
0202 would be transmitted instead. There are no adjacent,
identical digits, nor would there be if more characters were
transmitted. Again, we transmitted “Hello World!” using
this encoding, as is shown in the spectrogram at the right
side of Figure 6.

8. Acoustic Keylogging

Having defined an effective scheme for transmitting
data using the acoustic emanations from our system,
we explored an actual application that may be used by
an attacker, an acoustic keylogger. One of the problems
attackers face with traditional keyloggers is retrieving the
keystrokes after they have been collected and stored, even
if they are able to install the keylogger in the first place. By
harnessing acoustic transmissions and long range acoustic
detection, they may be able to attack more effectively.

We modified a free keylogger for Linux, aptly named
the Linux KeyLogger [8], to transmit keystrokes using
the enhanced encoding scheme developed in the previous
section. Each character takes about two seconds to transmit
using our current scheme, which is far too slow to transmit
typing in realtime. However, the attacker could configure
the keylogger to capture and transmit only critical informa-
tion, such as system usernames and passwords. This would
also be beneficial from the attacker’s viewpoint because it
would reduce the probability that a legitimate user on the
system would notice the keylogger.

The acoustic keylogger is potentially more conspicuous
than a traditional keylogger since it consumes the com-
puter’s processor resources during data transmission, and
because it causes the machine’s internals to emit faint,
structured sounds. Despite these impediments, acoustic
keyloggers may still be advantageous to an attacker since it
is not necessary to retrieve the keylogger or its data files at
any point in the future; it must only be installed and then
monitored until the desired data has been intercepted. It
even allows eavesdropping on machines that are physically
inaccessible and disconnected from the network, as long
as the keylogger has been installed at some point in the
machine’s past.

Most attackers would probably be content with manually
interpreting spectrograms and locating the data pulses pro-
duced by our methods. However, highly motivated attack-
ers may attempt to minimize the keylogger’s “footprint”,
which would involve minimizing both the keylogger’s

= [T el
B R
[Orphiitli B e
s
By || dbep
g 158 [Ha) [W1M

Iame el |

Fig. 7. Screenshot of FAWAVE, showing acoustic waveforms corre-
sponding to an h typed on a system equipped with the acoustic keylogger
and captured via a wireless X10 spy camera

use of aggressive power management and the duration of
data transmissions. Such transmissions would require more
advanced techniques for reliable detection. Thus, serious
attackers may use neural networks to distinguish levels,
just as they were used to distinguish keystrokes in [2].

Attackers may also improve their reception accuracy
by filtering the audio before processing. In fact, this is a
very simple task that can be automated using a Windows
freeware program, FAWAVE [5]. The top window in Figure
7 shows an acoustic waveform that we cut from a larger
file collected during a keylogger run. This waveform cor-
responds to the letter h, encoded as 01320202. As can be
seen from the spectrogram, the signal is very noisy, which
would probably make it difficult to automate detection of
the levels. In particular, the low-frequency noise from the
speakers and hard drive shows up as a thick, dark band
along the bottom of the spectrogram. To eliminate these
spurious elements, we used FAWAVE to perform both
bandpass filtering, to eliminate all frequencies outside a
4kHz band centered on 11kHz, the approximate central
frequency of our levels, and all signals whose amplitude
was beneath a threshold value. After this processing, the
levels are much more clearly defined, as can be seen in
the lower window in Figure 7.

In the experiment just described, the signal was col-
lected using an X10 wireless camera placed inside the
computer’s case. This demonstrates that even an inexpen-
sive, easily-concealed microphone can record signals with
sufficient fidelity to enable effective eavesdropping.

9. Recommendations

We have demonstrated that acoustic emanations from
computers can both reveal information about general com-
putations being performed on a machine, and can be

manipulated to provide a fairly reliable, surreptitious data
channel. Thus, sensitive systems should be configured to
minimize acoustic output. As we have shown, more aggres-
sive power management amplifies acoustic emanations,
and should thus be disabled on sensitive systems. It may
also be necessary to acoustically isolate sensitive systems
by sweeping their interiors for hidden microphones and
wrapping their exteriors in sound-absorbing foam.

10. Future Work

Our study should motivate future work on minimizing
the usefulness of acoustic emanations from computer com-
ponents. It may be possible to develop new compiler tech-
niques that minimize the usefulness of acoustic emanations
by carefully arranging instruction sequences. Operating
systems should also be designed to carefully control access
to power management functions.

We explored only a single attack application that could
make use of data transmission via acoustic emanations.
Any application that wishes to surreptitiously transmit
narrow-bandwidth data from a physically unmodified com-
puter could benefit from the techniques presented in this
paper. More work should be done to identify those appli-
cations and evaluate the additional risks that the existence
this side channel could introduce.

There are many methods to detect acoustic emanations.
We would be interested in exploring the feasibility of
detecting emanations from a long distance, using a laser
interferometer [10] or some other such device.

Multicore systems almost certainly have very different
power consumption characteristics than their single-core
counterparts, which could change the results of our exper-
iments significantly. However, it will take some time for
software developers to fully exploit the parallelism offered
by these new processors, so they will likely continue to
behave somewhat like single core systems for some time.
Also, it may be possible for a resourceful attacker to
synchronize the actions of a majority of cores and thus
cause predictable variations in power consumption similar
to those observed in this paper.

Virtualization is another influential technology that
could affect our results. Virtual machines are often used
to contain system vulnerabilities. Thus, they provide a
barrier between the virtual machine (VM) and the actual
system hardware that can be nearly impossible to breach
if the VM monitor is properly configured. However, most
virtualization products place a premium on performance
and many even provide a way for virtualized instructions
to execute unmodified on the system hardware. In these
systems, our attacks would undoubtedly apply unchanged
if no sensitive or privileged instructions were used, but it is
not clear how effective they would be in a more thoroughly
emulated virtual machine.

Finally, it would be interesting to push beyond acous-
tic emanations and explore ultrasonic emanations. Since
even acoustic emanations from computers are concentrated

around relatively high frequencies, there are almost cer-
tainly interesting emanations in the ultrasonic spectrum
that could be analyzed using techniques similar to those
in this paper.

11. Conclusion

In this project, we have shown that the acoustic emana-
tions observed by Shamir and Tromer on a single system
are in fact produced by other, more modern systems, and
that they do reveal information about the computations
being performed within a machine. We have also attempted
to explain the origins of these emanations, using the
additional observations we obtained from our system with
aggressive power management features. We then designed
and performed experiments to explore the full range of
emanations that can be produced by a computer, and
showed how they can be manipulated to surreptitiously
transmit data. We also applied these techniques to a pop-
ular application that could compromise system security,
a keylogger for Linux. That discussion was accompanied
by suggestions for filtering acoustic data to accentuate
the compromising emanations, and a general discussion
of techniques that could be used to automate and enhance
data reception. Finally, we recommended ways to mini-
mize the risk of compromise from acoustic emanations.

ACKNOWLEDGMENTS

Michael LeMay was initially funded by the UWEC
Center of Excellence for Faculty/Student Research Col-
laboration, and then supported by the Air Force Office of
Scientific Research during the composition of this paper.
Additionally, the UWEC physics department graciously
provided their lab space and assistance during our initial
interferometry experiments.

REFERENCES
[1]1 A. Shamir and E. Tromer, Acoustic crypt-
analysis, On nosy people and noisy machines,

http://www.wisdom.weizmann.ac.il/ tromer/acoustic/

[2] D. Asonov and R. Agrawal, Keyboard Acoustic Emanations, In
Proceedings of 25th IEEE Symposium on Security and Privacy, May
2004, pages 3-11

[3] D.X. Song, D. Wagner and X. Tian, Timing analysis of keystrokes
and SSH timing attacks, In Proceedings of 10th USENIX Security
Symposium, Wahington DC, USA, Aug 2001

[4] Baudline signal analyzer, http://www.baudline.com/contact.html

[5] J. Walker, FAWAVE, http://www.uwec.edu/walkerjs/EAWAVE/index.htm

[6] S. Wolfram, Chinese Remainder Theorem,
http://mathworld.wolfram.com/ChineseRemainderTheorem.html

[7] M.G. Kuhn, R.J. Anderson, Soft Tempest: Hidden Data Transmission
Using Electromagnetic Emanations, Lecture Notes in Computer
Science, Volume 1525, Jan 1998, Page 124

[8] C. Comin, LKL Linux KeyLogger, http://sourceforge.net/projects/lkl

[91 NACSIM 5000 Tempest Fundamentals, http://cryptome.org/nacsim-
5000.htm

[10] LASER Microphone, Williamson Labs, http://www.williamson-
labs.com/laser-mic.htm

[11] The GNU MP Bignum Library, http://swox.com/gmp/

	Introduction
	Related Work
	Experimental Setup
	Personal Computer
	Microphone #1
	Microphone #2
	Recording Station

	Initial Experiments
	Instruction Sequence Tests
	Effects of Power Management
	Acoustic Data Transmission
	Acoustic Keylogging
	Recommendations
	Future Work
	Conclusion
	References

