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Abstract—In homeland security and law enforcement situations, it is
often required to remotely detect human targets obscured by walls and
barriers. In particular, we are specifically interested in scenarios that
involve a human whose torso is stationary. We propose a technique to
detect and characterize activity associated with a stationary human in
through-the-wall scenarios using a Doppler radar system. The presence
of stationary humans is identified by detecting Doppler signatures
resulting from breathing, and movement of the human arm and wrist.
The irregular, transient, non-uniform, and non-stationary nature of
human activity presents a number of challenges in extracting and
classifying Doppler signatures from the signal. These are addressed
using bio-mechanical human arm movement models and the empirical
mode decomposition (EMD) algorithm for Doppler feature extraction.
Experimental results demonstrate the effectiveness of our approach to
extract Doppler signatures corresponding to human activity through
walls using a 750-MHz Doppler radar system.

1. INTRODUCTION

In recent years, there has been a great deal of research directed towards
the use of Doppler-radar systems for monitoring human activity.
Doppler-radar was first demonstrated for remotely monitoring human
activity in [1, 2]. SAR imaging and range detection [3–6] do not
work well to distinguish human targets from cluttered background.
In general, humans seldom stay still and their activities involve
considerable movement of their limbs. These movements are not always
captured by ranging systems. To recognize the presence of a human in a
target scene, it is desirable to look at the Doppler modulations of the
reflected waveforms, as these contain information about movements

Corresponding author: R. M. Narayanan (ram@engr.psu.edu).



148 Narayanan et al.

that are characteristic of human activity [7, 8]. Doppler detection
systems have the added advantages of simple design, low sampling
rates, and easy deployment. Indoor environments have minimal
Doppler clutter, which is highly desirable for effective detection.

Simple systems proposed in [2, 7, 9] for the detection of human
Doppler utilize time domain, frequency domain [9], and spectrogram
based approaches [7, 10]. The S-method is proposed in [11] for micro-
Doppler based characterization. Reassigned joint time-frequency
transforms are proposed in [12] for analysis. Existing systems for
human Doppler detection mostly deal with gross movement of the
human torso. In this paper, we consider detection and characterization
of Doppler from stationary humans, i.e., wherein the human torso
is not moving. In such scenarios, it is essential to extract Doppler
from breathing and transient movements of the arm. In this respect,
existing approaches to human Doppler analysis are limited by the time-
frequency ambiguity, and the a priori choice of time-frequency bases,
which are characteristic of traditional time-frequency distributions.

The EMD-Hilbert spectrum (referred to hereafter as EMD-HS)
algorithm is a recent development in the field of time-frequency
analysis [13]. It involves adaptive decomposition of a signal into
constituent time-frequency components called intrinsic mode functions
(IMFs). Preliminary work on using the EMD-HS approach towards
human Doppler analysis was presented in [14]. We review the EMD-
HS algorithm in Section 2 and define the instantaneous frequency
of a signal. The detection of transient activities is often crucial
to the detection of stationary human targets in the environment.
The Doppler frequencies associated with human movement can be
considered to result from the movement of the torso, movement of
the limbs, swinging of the limbs, expansion and contraction of the
chest cavity, and the changes in the position of the limbs. Human
activity can be considered as a combination of one or many of these
movements, and each activity occurs over a different time scale. In
the most general case, significant challenges to Doppler detection arise
because there is no way of knowing about the specifics of the human
activity a priori. In Section 3, we propose a model for human activity,
and consider issues involving time-frequency analysis. Based on the
reasoning presented in Section 3, the criteria we choose to decide on
the time-frequency technique are — frequency resolution, ability to
resolve time-frequency components of low amplitude, non-linearity of
transformation and adaptive selection of time-scales. These properties
are satisfied by the EMD algorithm. In Section 4, we present the results
of experiments involving human Doppler.

There has been considerable work in the past in the field of remote
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detection of respiration in human beings. The focus in earlier work
was on cooperative human targets, with the radar operating with
exact knowledge about the position of the target. These systems were
designed specifically for health monitoring.

In our system, we consider the problem of detecting human arm
movements for security applications, where the radar operator does
not have the cooperation of the target. The novel contribution of
the present paper is the detection and characterization of Doppler
from stationary humans, i.e., wherein the human torso is not moving.
We believe this is the first paper to apply bio-mechanical models
of human movement to study transient Doppler modulations due to
a stationary human. In Section 4, we show that our model for
human arm movement can predict Doppler signatures reasonably well
using the EMD algorithm. We present experimental results that
demonstrate distinct Doppler modulations that result from different
types of transient, non-repetitive human activity.

2. EMPIRICAL MODE DECOMPOSITION

2.1. Introduction to EMD-HS

The EMD-HS algorithm (also called the Hilbert Huang Transform
(HHT)) was proposed in [13] for analyzing non-stationary signals
originating from non-linear processes. EMD extracts intrinsic
oscillatory modes defined by the time scales of oscillation, called IMFs.
Such functions permit the application of the Hilbert transform and
the corresponding definition of instantaneous frequency in [13]. The
Hilbert transform yields the analytic version of the signal, from which,
the instantaneous frequency is extracted as shown in Equations (1)–
(3).

z(t) = x(t) + jH{x(t)} (1a)
= x(t) + jy(t) (1b)

= s(t)ej
∫

ω(t)dt, (1c)

where

s(t) =
√

(x(t))2 + (y(t))2, (2)

ω(t) =
d arctan {y(t)/x(t)}

dt
. (3)

In Equation (1), H{} denotes the Hilbert transform. The functions s(t)
and ω(t) are the instantaneous amplitude and instantaneous frequency
of the signal, respectively.
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2.2. Sifting Process

The basic step of the EMD algorithm is the sifting process which
essentially extracts scales of the signal. Consider a signal with
P maxima and Q minima. The sifting process starts with
identifying the extrema of the signal, x(t), given by the set
S1

max = xmax(t1), xmax(t2), . . . , xmax(tj), . . . , xmax(tP ) and S1
min =

xmin(t1), xmin(t2), . . . , xmin(ti), . . . , xmin(tQ). The points of set S1
max

are interpolated to form the upper envelope of the signal, x̂max.
Similarly, the points of the set S1

min are interpolated to form the
minimum envelope, x̂min. The average envelope, (x̂max + x̂min)/2 is
subtracted from the original signal x(t) resulting in the first iteration
of the sifting process, which is expressed as xk

j (t) where k denotes the
iteration (k = 1 for the first iteration). The iteration on k is continued
until the time-average 〈xk1

j (t)〉 = 0 and the number of extrema of
xk1

j is no more than one less than the number of zero-crossings. For
simplicity, we will drop the term k1 and write the resulting function
as xj . The first sifting process produces the first IMF, with j = 1.
Following this, the function xr

1 = x(t) − x1(t) is created, and the
sifting process is repeated, resulting in x2(t), the second IMF. The
IMFs are generated until the residue xr

j = x(t) − ∑n=j
n=1 xj(t). The

functions xj(t), j = 1, 2, . . . , N , exhaust x(t) and are nearly orthogonal
to one another. Since each IMF has only one extrema between any two
successive zero crossings, the frequency of the signal can be directly
inferred by measuring the temporal distribution of the zero crossings
of the signal. Further, the IMFs have symmetric envelopes, with the
difference between the number of extrema and the number of zero
crossings being no more than one. Owing to these characteristics, the
IMFs are referred to as being mono-component.

Since the residue is computed by successively subtracting the
sifted functions from the original signal, the EMD algorithm is data
driven and adaptive. Furthermore, the performance of the EMD
algorithm is sensitive to the interpolation procedure which results in
an inexact estimation of the envelope. The sifting process is defined for
continuous signals which means that the performance of EMD depends
on the sampling rate [15]. The dependence of the EMD algorithm
on these factors precludes a general, unique theoretical framework for
EMD. Defining a function space for the EMD algorithm is an ill-posed
problem, making it difficult to construct an analytical description of
EMD. However, empirically, the EMD has been shown to be effective in
extracting relevant components in a variety of applications involving
non-stationary signals. Its effectiveness has been demonstrated for
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processing audio signals [16], global position systems [17], gravitational
waves [18], seismic signals [19], etc. While wavelet decomposition
decomposes a signal into components using predefined filter banks,
the EMD algorithm decomposes it into components whose modes of
oscillations are adaptively decided by the nature of the signal.

In the absence of an analytical formulation, the performance of
the EMD algorithm is inferred from empirical observations. One of the
important properties of EMD is that it behaves like a dyadic filter for
a white noise input signal. The frequency of the IMFs resulting from
the decomposition of a white noise signal follows an exponential trend.
The first IMF represents the fastest modes of oscillation in the signal,
and with subsequent IMFs, the frequency, as measured by the number
of zero crossings decays exponentially as the index of the IMF. The
final IMF, always has just one zero crossing. From simulations, it was
found that the number of zero crossings in an intrinsic mode function is
proportional to e−0.6n, where n is the index of the IMF. Similarly, the
energy of the IMFs also reduces according to an exponential rule [20].

2.3. Hilbert Spectrum

Traditional time-frequency distributions define the frequency of a
signal based on the Fourier transform. This definition has the inherent
property of time-frequency uncertainty, as expressed by the lower
bound on the time-bandwidth product, ∆t∆f ≥ 1/2. The analytic
signal corresponding to each IMF is constructed using the Hilbert
transform. The instantaneous frequency of this analytic signal is
defined as the derivative of the instantaneous phase defined in [13].
The different IMFs resulting from the EMD algorithm are orthogonal
to each other. The IMFs thus represent different time-scales of
oscillations, which form a set of basis functions. This implies that
there is no redundancy in the information contained in the different
IMFs. Using this property, a distribution is constructed from the
instantaneous frequencies of each of the IMFs. This distribution is
called the Hilbert spectrum (HS). Since the instantaneous frequency of
the EMD-HS approach is not defined based on the Fourier transform,
the time-frequency resolution is not limited by uncertainty. In our
implementation, we used a modified version of the code provided
in [21].
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3. MODELING DOPPLER SIGNATURES DUE TO
HUMAN ACTIVITY

The Doppler modulations due to human activity vary in time according
to the dynamics of human movement. Non-stationary models for
Doppler due to walking human targets were proposed in [8, 14].
However, walking induces high Doppler shifts in the waveform that
can be observed over short time durations. The Doppler shifts due to
walking also display regular repetitive frequency modulations [14], by
virtue of the regularity of human gait. The finite non-zero dimensions
of the human arm and other parts of the body result in a Doppler
return that consists of multiple frequency components at each time
instant [14]. In this paper, we are interested in modeling Doppler
signatures due to movements that are characteristic of stationary
humans. We conjecture that a human whose torso is not moving can be
identified from the Doppler signatures due to activity such as breathing
and movements of the arm.

3.1. Modeling Human Arm Motion

A characteristic Doppler event associated with stationary human
targets is the movement of the arm. Details of the motion of the arm
contains information regarding the intent of humans behind the wall. It
is desirable to detect and characterize Doppler signatures of human arm
motion for through-the-wall monitoring applications. In this section,
we present a model for Doppler due to human arm movements.

Human arm motion is composed of three components, defined by
the joints driving its motion. The total movement of the arm can be
described by the variable movement of the wrist, the fore-arm, and
motion driven by the shoulder joint. Each of these components can be
considered to be a scatterer with a one dimensional geometry moving
in a plane.

3.2. A General Model for Human Arm Motion

The three components of the arm, as represented by the wrist, fore-
arm and arm can each be modeled as a solid shaft exhibiting rotational
motion around the corresponding joint- wrist joint, elbow joint or
shoulder joint. Consider that a single tone continuous transmit
waveform, x(t) is incident on the human arm, given by

x(t) = A exp(jω(t)) (4)

With reference to Figure 1(a), the line segment OA of length l1
represents the part of the arm between the shoulder joint and the
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dl, length element 
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Figure 1. A schematic diagram representing the components of a
human arm (a), and the Doppler due to one such component (b), that
is rotating around a joint.

elbow. The line segment AB of length l2 represents the forearm, with
the point B representing the wrist joint. The line segment BC of length
l3 represents the wrist.

In such a model, the movement of the human arm is defined by the
three components: ω1, ω2, and ω3, representing the angular velocities
of the three segments OA, AB and BC, around the points defined by
O, A and B, respectively. For deriving the Doppler shift resulting from
this motion, we consider an infinitesimal element on each of the line
segments OA, AB and BC. This element represents a point scatterer.
We consider special movements, where only the ith joint flexes, while
the others are fixed (ωi 6= 0, ωk = 0, i 6= k). Let dl represent such
an element on the rotating component, at a distance l from the joint
around which the rotation happens. The corresponding linear velocity
along the line of sight (represented by the dotted line in Figure 1(b))
due to any of the three components is given by,

vi(t) = ωi(t)l. (5)

The Doppler shift is then 2vi(t)ω0/c = 2ωi(t)lω0/c. The modulated
signal resulting from the velocity of these components, can be
represented as in Equation (6). The phase delay that results from
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the distance to the target is φ.

si(t) =
∫ li

0
A exp{j(ω0 ± 2((ωi(t)ω0l/c) cos (θi(t)t))t− φ)}dl (6a)

=
[
A exp{j(ω0 ± 2ωi(t)(ω0/c)tli cos (θi(t)t)− φ)}

−A exp{j(ω0t− φ)}
] 1
±j2ωi(t)(ω0/c)t cos (θi(t)t)

.
(6b)

Thus, the return signal is a superposition of time-frequency
modulations with the variation along the time axis resulting from the
time-varying angular velocity. The characteristic signatures along the
frequency axis, or the frequency ‘spread’ are caused due to the human
arm being a continuously distributed scatterer. From Equation (6), it
is clear that the length of the moving component controls this ‘spread’
in the frequency implying that a scatterer of larger dimensions results
in a higher frequency-spread.

3.3. Velocity of the Human Arm

The goal of our work is to identify Doppler characteristics that
distinguish human activities. This information has to be extracted
from the time-dependency of the frequency, and the spread of the
frequency. To that end, it is important to accurately model the time-
varying velocity of a human arm. For the characteristics of the velocity
of a human arm, we turn to literature in biomechanics.

3.3.1. Doppler Modeling Based on the Biomechanics of Human
Movement

Doppler-radar models for human walking based on well known models
of human locomotion used in computer animation are presented
in [8, 22]. The effectiveness of these techniques have been demonstrated
for simulating and measuring Doppler returns due to gross movement
of the human body, such as walking. However, to study Doppler
returns due to stationary humans, it is necessary to develop models
for transient (as opposed to periodic movements such as walking)
movements such as movement of a vertical, unrestrained arm in
response to a stimulus. In this section, we propose a model for the
motion of the human arm, primarily based on [23].

Motion of the human arm has been extensively studied. The
velocity profiles for the movement of the human arm in response to
different types of stimuli are presented in [24]. The objective of the
paper was to understand the trajectory that the human brain plans
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when responding to stimulus. The trajectory of vertical, unrestrained,
human arm movement is discussed in [23]. This kind of motion is
typical of stationary humans handling a large object. In such a
situation, it is of interest to infer the velocity profile and trajectory
that the human arm will follow in its action. The velocity of the
target results in characteristic Doppler modulations of the incident
waveform that are activity-specific. Consistency, in the sense that the
velocity profile remaining unchanged over different subjects and trials,
is important for using the features for classifying human activity.

The results in [23] and [24] suggest that a human arm moving in
response to a stimulus follows a similar velocity profile across different
human subjects and trials. The trajectory is defined by the joints
involved in the motion. In our model, we assume the simple case of
a single joint driving the human arm. In [23], the authors monitored
the velocity of the human arm using a set of light emitting diodes
placed on the human arm. The movement is around the shoulders
with the other joints rigid. The angular velocity of the arm was found
to be a unimodal function. In a single duration of arm movement,
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Figure 2. The velocity profile and the modeled return signal.



156 Narayanan et al.

the velocity is continuous. The arm starts slow, the speed increases
monotonically, reaches a peak at about the middle of the cycle, and
reduces monotonically as it completes the task. The velocity profile
is symmetric about the point of highest velocity over the duration of
the response. Figure 2 shows the idealized velocity profile of human
arm movement considered in [23]. The measured trajectory is given
in [23]. The angular velocity, and hence the tangential velocity, can
be modeled as a Gaussian function [23] of time. We can represent the
velocity as:

ω(t) = k1e
−k2(t−τ)2 (7)

vt(t) = lk1e
−k2(t−τ)2 (8)

where, k1, k2, and τ are arbitrary constants that vary across different
subjects and trials. Since a Gaussian velocity profile is unique to the
motion of the human arm, we conjecture that it is possible to use the
shape of the velocity profile would indicate with a high level of certainty
the presence of a human target.

We now consider the problem of modeling the reflected signal for
a single tone incident waveform, using the velocity model described
above. Let the human arm be located at a distance from the receiver
of a few meters. We assume it to be a one-dimensional solid scatterer
with a continuous spatial distribution. We then apply the procedure
of integrating the Doppler shift across the dimension of the arm. The
Doppler shift due to a single element of the human arm is integrated
over the entire length. We drop the subscript i from Equation (6) for
convenience. We set θ(t) = 0, since the variation of the angle θ(t) that
the arm subtends with the vertical axis is negligible over the duration
of motion. Equation (6b) then reduces to,

s(t) =
A exp{j((ω0 ± 2ω(t)l/c)t− φ)} −A exp{j(ω0t− φ)}

±j2ω(t)(ω0/c)t
(9)

with the constraint that when |t| is sufficiently large, ω(t) is small.
The simulation results using this model are presented in Figure 2. The
unimodal velocity profile over the duration of motion is seen to result
in a return signal with four distinct maxima and a region of stationary
points close to the time instant of maximum velocity.

3.4. Intermittent Human Activity

In the previous section, we considered a single cycle of human arm
movement. Over a longer time-period of observation of time T , a
human may exhibit different types of motion over different time-
intervals. The return signal can then be represented as a linear
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combination of different waveforms, each of which is non-zero over
a different time interval and with each waveform corresponding to
the Doppler modulation due to the human activity. Let x(t) be
the transmitted signal, and let T be the time duration over which
the human target is observed. We can mark out time instances
t0, t1, t2 . . . , tn, over the duration T , each time instant signifying a
change in the movement of the human. T is then divided into
time bins of length t1 − t0, t2 − t1, . . . , tn − tn−1, which are not
necessarily equal. Over each time interval, a different type of human
motion results in a different Doppler modulation of the transmit signal
which is represented as a non-stationary signal ai(t). Since we are
considering the case of a stationary human, the functions ai(t), denote
the modulation of a sinusoid due to the different moving components
of the target scene. Then, one can write the complete return signal as

y(t) =
n−1∑

i=1

ai(t)(u(t− ti+1)− u(t− ti)). (10)

The detection of human presence in a target scene can be formulated
as the detection of the presence of Doppler in any of these time bins.
Due to the unpredictable and irregular nature of human movement,
these time-intervals are assumed to be unknown to the radar operator.
Without a knowledge of ti, it is not possible to pre-define optimum
time and frequency resolutions for computing the joint time frequency
distributions. The spectrogram of y(t) is described as,

Y (t, ω) =
∫ ∞

−∞
y(t)w(t− τ)e−jωtdt (11a)

=
∫ ∞

−∞

(
n−1∑

i=1

ai(t)(u(t− ti+1)− u(t− ti))

)
w(t− τ)e−jωtdt.

(11b)

The drawback of using traditional time-frequency techniques for such
scenarios arises from the choice of the window function w(t), that
needs to be optimally chosen a priori. If for some ai(t), the events
are non-stationary within the width of the window function w(t),
then the spectrogram will fail to capture the complete time-frequency
distribution of ai(t). In effect, the spectrogram will miss Doppler
signatures due to the corresponding event. This is undesirable as it
affects the reliability of the detection algorithm.

The effectiveness of the EMD algorithm is demonstrated by
considering the example of radar returns from a human hand that
moves intermittently for a short period of time at different instances
during a 20 s interval. Two of these events occur with less than 2 s of
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(a) Choi-Williams transform (b) Hilbert spectrum

Figure 3. Comparison of conventional time-frequency representation
with the Hilbert spectrum for the detection of intermittent human
activity.

spacing at 13.53 s and 14.88 s. Time-frequency components occurring
at arbitrarily close time instants are not resolved by traditional
time-frequency transforms with basis functions that are defined a
priori. An example of such a representation is the Choi-Williams
transform [25]. The inherent time-frequency uncertainty and the
presence of cross-terms [25] in the Choi-Williams representation distort
the time-frequency spectrum. The EMD-HS algorithm, on the other
hand, preserves local information due to the absence of an integrating
operation in computing the frequency spectrum, as compared in
Figures 3(a) and 3(b).

4. EXPERIMENTAL RESULTS

A human target located behind a brick wall of about 16 cm thickness
was imaged using a radar system operating in the ultrahigh frequency
(UHF) band. In this frequency band, the attenuation offered by the
wall can be neglected. The probing waveform used for the Doppler
measurements was a 750-MHz single tone waveform. The transmitted
power was −5 dBm and the antenna gain was 5 dB. The Doppler
detection system developed by us [26] is able to extract Doppler
features from a human target in near-real time, with a latency of about
2–3 seconds for computation of the IMFs. The signal reflected from
the target is down-converted to baseband by mixing with a copy of
the transmit waveform. The signal is passed through a low pass filter
and sampled at 50 kHz for acquisition. This sampling rate is sufficiently
larger than the Nyquist rate as the bandwidth of the Doppler signatures
is of the order of a few Hz. The antenna stand off from the wall was
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about 1m and the human was situated between 1 m to 2 m from the
wall.

The experiment involved a human performing various controlled
activities. For each activity, the Doppler return data were recorded
for a time duration of 10 seconds. Significant activities relating to
a stationary human involve movements of the arm and the chest
cavity (due to breathing) which result in non-stationary return signals.
However, the first problem to solve in the detection of the presence
of humans based on Doppler signatures is to distinguish between
reflected signal in the absence of a human from the case where the
target scene contains an active human. The application of the EMD
algorithm to characterize random noise has been discussed in [20]. In
the absence of human activity, the waveform resulting from mixing
the reflected signal with the transmitted signal will not consist of any
Doppler components. We use the EMD to characterize the absence
of a human target by noting the energy distribution across the IMFs.
An exponential decay in the energy from the higher frequency IMF
down to the lower frequency IMF indicates that that the signal does
not contain any Doppler features. This result is shown in the first row
of Table 1.

Table 1. Summary of the Doppler signatures generally associated
with transient and irregular activity. The signatures show the different
time-scales over which the events occur.
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The 750-MHz radar system was used to extract Doppler signatures
associated with different activity associated with a stationary human.
The general approach was to observe the energy content of each scale
of oscillations of the IMFs. This is plotted as the energy of the IMFs
against the index of the IMF in Table 1. The IMFs are indexed
inversely as the scales of oscillations. The highest oscillation scale
is associated with the first IMF and so on. For each signal, the six
highest energy IMFs are added to extract the Doppler modulations.

It is to be observed that for each of the activity described
in Table 1, the approximate center frequency (proportional to the
transmit frequency of 750 MHz) of the Doppler features is of the order
of 1–2 Hz. Such low frequencies imply that there are too few cycles to
integrate for accurate representation with time-frequency transforms.
For instance, the Doppler oscillation caused by a person shuffling from
a stationary position for about 2 s produces features of about 1.5 Hz
that last over a short time duration of 2 s. Of special interest to
applications in homeland security and earthquake survivor detection
is the detection of breathing. In our experiments, we found that slow
and consistently periodic oscillations, of a period of about 3 seconds
are characteristic of human breathing. This center frequency of the
Doppler features, of about 0.3 Hz corresponds to a velocity of a few
cm/s, which is the approximate velocity of a chest cavity in a person
who is breathing heavily. The scales of oscillations can possibly be
used to assess the intent of the human target being imaged. Doppler
signatures of a human striking a victim or reaching down to lift an
object off the ground are shown in Table 1. These are seen to be
different from the deterministic features resulting from the motion of
a human arm reaching for an object in a vertical motion around the
shoulder that are described in subsequent sections. Similarly, Table 1
shows how Doppler features due to a breathing human are significantly
different from a human shuffling in a seated position.

4.1. Signatures of Different Types of Arm Movement

We now consider the special case of the motion of different components
of a human arm. The human arm model was earlier described as
consisting of three components, centered at the shoulder, the elbow
and the wrist joints. Figure 4 illustrates Doppler features extracted
from the two experiments. In the first experiment, the human target
repeatedly moved the wrist around the wrist joint for a duration of
10 seconds, while keeping the rest of the arm stationary. The energy
distribution across the IMFs is considerably flat, and demonstrates
that the energy is concentrated within a small number of IMFs. The
second experiment involved the human moving the whole arm around



162 Narayanan et al.

1 2 3 4 5 6 7 8 9 10
-4

-2

0

2

4
x 10

-3

Time (s)

A
m

p
li

tu
d
e

1 2 3 4 5 6 7 8 9 10
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Time (s)

A
m

p
li

tu
d
e

Shoulder joint

arm

wrist

O

B

C

Figure 4. A comparison of the Doppler signatures resulting from
movement of the wrist (bottom) and movement of the whole arm (top).

the shoulders, without any motion around the elbow and the wrist
joints. The number of non-stationary oscillatory components in the
former is higher than in the latter. This observation conforms to the
model described in Section 3, showing the dependence of the number
of significant oscillatory modes on the length of the moving scatterer.

4.2. Experimental Verification of the Kinematic Model

In this section, we present the experimental results of human arm
movement. A human situated about 1.5 m from the antenna was
moving one arm as if in response to a stimulus. The return waveform
was processed as described earlier. The signal was decomposed using
EMD and the most significant IMFs were added to reconstruct the
Doppler signal. The resulting plots for three different trials with
different subjects are shown in Figure 5.

The Doppler signatures acquired in the experiments of Figure 5
are seen to be just as predicted by the model described in Section 3,
and Figure 2. The dashed line in Figure 5 represents the modeled
waveform, and the solid line, the experimental result. The shape of
the curve consistently remains the same across different trials, and
corresponds closely to the model each time. This demonstrates the
viability of characterizing activities associated with a stationary human
using a model based approach. The experimental results validated the
theoretical results as given by the Gaussian velocity profile model even
when different individuals were used as targets. This invariance means
that the human arm movement model described in this paper is a
good candidate as a pattern to indicate the presence of human targets
behind barriers. The velocity profile also provides the radar operator
with valuable information about the nature of human activity in the
absence of regular gross movement such as walking.
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Figure 5. Plot of the return signal from a moving human arm for a
number of trials. The solid line shows the experimental results and the
dashed line is the modeled result.

5. CONCLUSION

We have developed a system for through-the-wall detection of a
stationary human, based on the empirical mode decomposition-Hilbert
spectrum algorithm. The Doppler detection system was validated by
testing the algorithm on real data. The EMD algorithm was applied
to extract Doppler characteristics resulting from various activities
associated with a human whose torso is nearly stationary. A bio-
mechanical model was developed to model a moving human arm as
a radar target. The modeled waveform compared favorably with
experimental results. A model based approach for classifying human
activity was thus shown to be feasible.
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Doppler modulations due to different types of human activity
were shown to occur over different scales. As a result, we believe
that it is possible to use statistical measures to classify these signals
as arising from different activities. With a sufficiently large number
of realizations of these experiments, it is possible to train statistical
models to automatically classify Doppler signatures from transient,
arbitrary human activity. Such a system for the automatic recognition
of human activity associated with a stationary human is a topic of
current research.
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