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Abstract— This paper presents a new method for imaging,
localizing, and tracking motion behind walls in real-time. The
method takes advantage of the motion-induced variance of
received signal strength measurements made in a wireless peer-
to-peer network. Using a multipath channel model, we show that
the signal strength on a wireless link is largely dependent on the
power contained in multipath components that travel through
space containing moving objects. A statistical model relating
variance to spatial locations of movement is presented and used
as a framework for the estimation of a motion image. From the
motion image, the Kalman filter is applied to recursively track
the coordinates of a moving target. Experimental results for a
34-node through-wall imaging and tracking system over a 780
square foot area are presented.

I. INTRODUCTION

This paper explores a method for tracking the location of
people and objects moving behind walls, without the need
for an electronic device to be carried by or attached to the
target. The technology is an extension of “radio tomographic
imaging” [1], which is so-called because of its analogy to
medical tomographic imaging methods. We call this extension
variance-based radio tomographic imaging (VRTI), since it
uses the signal strength variance caused by moving objects
within a wireless network. The general field of locating
people or objects when they don’t carry a device is also
called “device-free passive localization” [2] in contrast to
technologies like active radio frequency identification (RFID)
which only locate objects that carry a radio transmitter.

In a mission-critical application, we envision a building
imaging scenario similar to the following. Emergency respon-
ders, miltary forces, or police arrive at a scene where entry into
a building is potentially dangerous. They deploy radio sensors
around (and potentially on top of) the building area, either by
throwing or launching them, or dropping them while moving
around the building. The nodes immediately form a network
and self-localize, perhaps using information about the size and
shape of the building from a database (e.g., Google maps)
and some known-location coordinates (e.g., using GPS). Then,
nodes begin to transmit, making signal strength measurements
on links which cross the building or area of interest. The
RSS measurements of each link are transmitted back to a base
station and used to estimate the positions of moving people
and objects within the building.

Radio tomography provides life-saving benefits for emer-
gency responders, police, and military personnel arriving at

potentially dangerous situations. Many correctional and law
enforcement officers are injured each year because they lack
the ability to detect and track offenders through building walls
[3]. By showing the locations of people within a building
during hostage situations, building fires, or other emergencies,
radio tomography can help law enforcement and emergency
responders to know where they should focus their attention.

This paper explores the use of radio tomography in highly
obstructed areas for the purpose of tracking moving objects
through walls. First, a review of previous work and related
research is summarized in Section[[l] In Section[[ll] we address
a fundamentally different method for the use of RSS mea-
surements which we call variance-based radio tomography
(VRTI). As the name implies, rather than use measurements
of the change in mean of a link’s RSS, measurements of the
variance of the link’s RSS values are used. When a moving
object affects the amplitude or phase of one or more multipath
components over time, the phasor sum of all multipath at
the receiver experiences changes, and higher RSS variance is
observed. The amount of RSS variance relates to the physical
location of motion, and an image representing motion is
estimated using measurements from many links in the wireless
network.

We briefly review the Kalman filter and apply it in Section
to track the location of a moving object or person. In
Section experimental results demonstrate the use of RSS
variance to locate a moving object on the inside of a building.
This section also quantifies the accuracy of localization by
comparing known movement paths with those estimated by
the VRTI tracking system. We show that the VRTI system
can track the location of an experimenter behind walls with
approximately three feet average error for this experiment.

Finally, Section discusses some possibilities for future
research. Advances in wireless protocols, antenna design, and
physical layer modeling will bring improvements to VRTI
through-wall tracking.

II. RELATED RESEARCH

Previous work shows that changes in link path losses can be
used to accurately estimate an image of the attenuation field,
that is, a spatial plot of attenuation per unit area [1]. Experi-
mental tests show that in an unobstructed area surrounded by a
network of nodes, the estimated image displayed the positions
of people in the area.



Indoor radio channel characterization research demonstrates
that objects moving near wireless communication links cause
variance in RSS measurements [4]. This knowledge has been
applied to detect and characterize motion of network nodes and
moving objects in the network environment [5]. Polarization
techniques have also been used to detect motion [6]. These
studies focus mostly on detection and velocity characterization
of movement, but do not attempt to localize the movement as
the work presented in this paper does.

Youssef, Mah, and Agrawala [2] demonstrated that variance
of RSS on a number of WiFi links in an indoor WLAN
can be used to (1) detect if motion is occuring within a
wireless network, and (2) localize the moving object based
on a manually trained lookup. In most emergency situations,
however, manual training is not possible since it can take a
significant amount of time and access to the area being tracked
is restricted.

Real-time location systems (RTLS) are based on a tech-
nology that uses electronic tags for locating objects. For
logistics purposes in large facilities, commercial real-time
location systems are deployed by installing infrastructure in
the building and attaching active radio frequency identificaiton
(RFID) tags to each object to be tracked. RTLS systems
are not useful in most emergency operations, however, since
they require setup inside of a building prior to system use.
Further, RTLS systems cannot locate people or objects which
do not have an RFID tag. In emergencies, an operation cannot
rely on an adversary wearing a tag to be located. Thus, tag-
based localization methods are insufficient for most emergency
operations.

An alternate tag-free localization technology is ultra-
wideband (UWB) through-wall imaging (TWI) (also called
through-the-wall surveillance). In radar-based TWI, a wide-
band phased array steers a beam across space and measures
the delay of the reflection response, estimating a bearing and
distance to each target. Through-wall radar imaging has gar-
nered significant interest in recent years [7], [8], [9], [10], [11],
for both static imaging and motion detection. Commercial
products include Cambridge Consultants’ Prism 200 [12] and
Camero Tech’s Xaver800 [13], and are prohibitively expensive
for most applications, on the order of US $100,000 per unit.
These products are accurate close to the device, but inherently
suffer from accuracy and noise issues at long range due to
monostatic radar losses. In free space at distance d, radar
systems measure power proportional to 1/d*, in comparison
to 1/d? for radio transmission systems.

Radio tomography takes a fundamentally different approach
from traditional TWI systems by using large networks of
sensors. While initial attempts [14] have allowed 2-4 high-
complexity devices to collaborate in TWI, this research relies
on tens or hundreds of collaborating nodes to simultaneously
image a larger area than possible with a single through-wall
radar. RTI’s imaging capability increases as O (N 2) for N
sensors, thus large networks, rather than highly capable nodes,
lead to improved imaging and tracking capabilities.

Multistatic radar research has also developed technologies
called multiple-input multiple-output (MIMO) radar. These
technologies also use distributed devices, perhaps without

phase-synchronization, in order to measure radar scattering
[15]. The use of many distributed antennas is a type of spatial
diversity for a radar system which can then avoid nulls in the
radar cross-section (RCS) of a scattering object as a function
of scattering angle [16].

MIMO radar is a complementary technology to radio to-
mography. While MIMO radar measures scattering of the
transmitted signal by the object of interest, radio tomography
methods are based on measurements of transmission through a
medium. Integration of the two modalities is beyond the scope
of this paper, but is perhaps a promising direction for future
research.

III. VARIANCE-BASED RADIO TOMOGRAPHIC IMAGING
A. Overview

In a multipath environment, a wireless signal travels along
many paths from transmitter to receiver. Each multipath has
associated with it an amplitude and phase, and the received
signal is a summation of each incoming multipath component.
The complex baseband voltage for a continuous-wave (CW)
signal measured at a receiver can be expressed as [17],

L

V=v+) Viexp(j®;), (1)
i=1

where v is a noise component, V; is the magnitude and ®; is

the phase of the ith multipath component (wave) impinging

on the receiver antenna. Note that what we call the “received

signal strength” (RSS) is actually the measurement of the

received power in decibel terms Ryp = 101og;, ||V |2

When motion occurs near a wireless link, some of the mul-
tipath components may be affected. We quantify the intuition
that motion in spatial areas where many multipath exist causes
more variance of the RSS. For example, objects moving near
a node will usually cause larger fluctuations in RSS on a link
than the same objects moving at positions far away from either
node [4]. By combining RSS variance information for many
links in a wireless network, motion can not only be detected,
it can be localized.

In this section we describe how each link’s RSS variance
is dependent upon the power contained in multipath compo-
nents that are affected by moving objects. We quantify this
relationship for Ricean fading environments, then provide a
linear model relating observed variance to the spatial location
of movement. Finally, a formulation for estimating an image
of object motion in space is presented.

B. Log-Ricean RSS During Movement

Assume that multipath component ¢ travels through a subset
of space S;. This subset S; might be some narrow volume
around the line tracing its path from the transmitter to receiver.
We assume that if object motion occurs at a position z € S;,
the phase ®; changes randomly. For example, if an object
moves into and occupies part of S;, its presence in the path
causes a change due to the scattering from, transmission
through, or diffraction around the object.

In particular, we assume that when z € §;, the distri-
bution of ®; becomes uniform on [0,27). Because sizes of



moving objects are typically on the order of or larger than
a wavelength, and wave phase is a very sensitive function
of the electromagnetic properties of objects in its path, it is
reasonable to assume that the phase changes unpredictably and
randomly.

Now, consider the case when there is motion of objects at
several positions Z, a set of coordinates in space. We group
the multipath into:

o Changing multipath: Multipath components ¢ which are
impacted by the motion, i.e., z € S; for some z € Z.

o Static multipath: Multipath components ¢ which are not
impacted by motion, i.e., z ¢ S; for all z € Z.

Rearranging (),

V=v+> Viexp(j®:) + > Viexp (j®;)
icT i¢T
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where T = {i : z ¢ S;Vz € Z} is the set of static multipath.
The first summation is of the static multipath, while the second
sum is of the changing multipath. Since the first summation
is non-random and does not change, we can write it simply
as one voltage and phase,

f/:u—l—f/exp (ji))—l—zviexp(jq)i) 3)

i¢T
where V = |>ier Viexp (j®;)| and @ =
LY ier Viexp (j®;). Assuming that the multipath

components outside 7 are several, we apply the central
limit theorem and assume that the real and imaginary parts of
the changing multipath sum are independent and identically
distributed (i.i.d.) zero-mean Gaussian random variables V,, 1
and V5.0 [17],

V =v+ Vexp () + Vos,r + Vs, 4

The variances of V.5 1 and V,,; o plus the variance of noise
o2 is denoted o2 and is the sum of the powers of the changing
multipath components,

o?=op+ Y |Vil* )
i¢T
The envelope of V, i.e., R = |V], is a Ricean random
variable R with pdf,
r r? 4+ V2 rV
fr(r) = 52 exp <_%r2> Io <02> (6)

where I(+) is the zero-order Bessel function of the first kind.
For received power R? measured in dB units, i.e., Ryg =
201log,( R, we can use the Jacobian method to show that R;p
has the log-Ricean pdf,

frys(r) = fr(exp(er))cexp(er)
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C. RSS Variance

Variance of R;p is defined as

Var (Rag] = [ (r = s ) fign (1)
HR4p /rfRdB (T)dr' (8)
The K value of a Ricean pdf is defined as [17]
V2
= — 9

In dB terms, and applying (5),
Kap = 10log,g K = =3+ 10log,, V> — 10log,o > [V;?

i¢T

(10)
Using the theoretical model in (7)), the variance of RSS (8) is
calculated using numerical integration, and is plotted in Figure
[[ as a function of K,p. Note that the RSS variance (8 is
purely a function of K — for constant K, the scale of o and
V2 do not change the variance.
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Fig. 1. The variance of a log-Ricean random variable vs. K4p.

We conclude from and Fig. [1] that the RSS variance
due to motion in a network is largely a function of the power
contained in the non-static multipath components. When no
motion occurs, the K-factor is very high, since no power
is contained in the changing multipath components. When
motion occurs, certain multipath components are affected, the
K-factor becomes much lower, and the RSS variance increases.

D. Linearity of RSS Variance to K4p

As seen in Fig. [T] the log-Ricean random variable has a
region of K;p where its variance is approximately linear
with Kgp. This linear region is between -2 dB and +10
dB, and corresponds to the static multipath power being
between 37% less than, to 10 times greater than, the changing
multipath power. The non-linearity for high and low K are not
of primary concern to variance-based RTI for the following
reasons:



e Kip < —2 dB: When K is low, the changing multipath
are stronger in power than the static multipath sum
power. In these cases, the moving objects are also likely
to cause a noticeable reduction in the mean received
power, because they typically cause some shadowing of
the changing multipath. As a result, mean-based RTI
can be used instead of (or in some combination with)
variance-based RTI. Note that with low K, we do see
high variance, so motion can be detected using variance-
based RTI, but the non-linearities make the linear model,
and thus the image estimator, less accurate.

e K4p > 10 dB: This corresponds to the case that the
static multipath are more than ten times stronger in power
than the changing multipath. That is, the motion of the
moving objects causes changes only in a few, low-power
multipath on the link. In this case, it is difficult to
distinguish the changes caused by motion from noise.
The variance of 1 dB? due to motion at a level of
Kip = 16 may be difficult to distinguish from noise
effects (quantization, thermal noise, etc.) on standard
radio hardware. At these high K levels, it seems unlikely
that variance-based RTI will be successful.

In short, the linear region of RSS variance measurements is
the most important region for purposes of variance-based RTI.

E. Linear Image Model

The goal of a variance-based RTI system is to use RSS
variance measurements on M links in a wireless network to
determine an image vector x that describes the presence of
motion occuring within N voxels of a physical space. Since
voxels locations are known, VRTI allows one to know where
the moving objects are most likely located.

The image vector X is a representation of motion occurring
within each spatial voxel of the network area, described
mathematically by

1
SCj: 0

The variance on each link caused by moving objects can
be approximated as a linear combination of the movement
occuring in each voxel, weighted by the amount of variance
that motion in that particular pixel causes on the link’s RSS.

if motion occurs in voxel j
otherwise

(11

Var(Rap) = Y _wja; +n, (12)
J

where n is measurement noise and modeling error, and w;
is the variance caused by movement in voxel j. If all links
are taken into account, the system can be expressed in matrix
form as:

s=Wx+n (13)
where s is an M x 1 vector of the variance for each link, W
is an N x M matrix representing the variance weighting for
each pixel and link, n is a M X 1 noise vector, and X is the
N x 1 motion image to be estimated.

F. Elliptical Weight Model

If knowledge of an environment were available, one could
estimate the variance weights w; for each link. Perhaps
calibration measurements or ray tracing techniques could aid
in estimation of the linear transformation W. For time-critical
emergency operations, one cannot expect to obtain floor plans
and interior arrangements of the building. With no site-specific
information, we require a statistical model that describes the
contribution of motion in each pixel to a link’s variance.

One such statistical model has been described for link
shadowing is the normalized elliptical model [18]. Consider
an ellipsoid with foci at the transmitter and receiver locations.
The excess path length of multipath contained within this
ellipsoid must be less than or equal to a constant. Excess path
length is defined as the path length of the multipath minus the
path length of the line-of-sight component. As described in
previous sections, the variance of a link’s RSS is highly related
to the power contained in the mulipath components affected
by motion. With this reasoning, we make the assumption that
motion occuring on voxels within an ellipsoid will contribute
significantly to a link’s RSS variance, while motion in voxels
outside will not. This is a binary quantization, but provides a
simple, single-parameter spatial model.

The variance weight for each voxel decreases as the distance
between two nodes increases. As the link gets longer, the
amount of power in the changing multipath components is
decreased along with the link’s RSS variance. The relationship
of link distance to voxel variance weighting is a topic of future
research, but emprical tests have indicated that dividing the
variance weighting by the root of the link distance generates
images of higher quality than other functions tested. The
weighting is described mathematically as

if dl](].) + dlj(2) <d;+ \

otherwise (14)

Wl =4 b
vai L 0
where d; is the distance between the two nodes, d;;(1) and
d;j(2) are the distances from the center of voxel j to the
two respective node locations on link [, 3 is a constant
scaling factor used to normalize the image, and A is a tunable
parameter describing the excess path length included in the
ellipsoid.

The normalized ellipse weight model is certainly an approx-
imation, but experimental data has shown its effectiveness for
VRTI, as will be shown in a later section. Future work will use
theoretical arguments and extensive measurements to develop
a statistical model of RSS variance as a function of location.

G. Process Sampling, Buffering, and Variance Estimation

In this paper, it is assumed that the link signal strength
process is sampled at a constant time period T, resulting in
the discrete-time signal for link [:

Ry[k] = Rup, (kT).

where Rgp, (kT;) is the RSS measurement in dB at time kT
for link [. It is also assumed that the process remains wide-
sense stationary for a short period of time. These assumptions
allow the recent variance of the process to be estimated from

5)



a history buffer of the previous Np samples for each link.
The short-term unbiased sample variance §; for each link [ is
computed by

1 Np—1 -
S =1 Z (Rilk—p] - Ri[K)*  (16)
where
_ 1 Mgt
Ri[k] = o ,; Rylk — p] 17

is the mean of the signal strength buffer. The sample variance
vector for all links in the wireless network is

~ 1T
ySM ]

§ = [41, 80, ... (18)

H. Regularization and Image Estimation

The linear model (I3) provides a mathematical framework
relating movement in space to a link’s RSS variance. The
model is an ill-posed inverse problem that is highly sensitive
to measurement and modeling noise. No unique solution to
the least-squares formulation exists, and regularization must
be applied to obtain a solution. In this paper, Tikhonov regu-
larization is used, but other common forms of regularization
as they apply to RTI are discussed and evaluated in [19].

In Tikhonov least-squares regularization, the optimization
for image estimation is formulated as

G U ,

Tik —argrrgn2\|Wx 8| + «]|Qx|| (19)

where Q is the Tikhonov matrix that enforces a solution with

certain desired properties, and « is a tunable regularization

parameter. Taking the derivative of (I9) and setting to zero
results in the solution:

xrir = (W'W+aQ Q) 'W's. (20)

Tikhonov regularization provides a simple framework for
incorporating desired characteristics into the VRTI reconstruc-
tion. If smooth images are desired, a difference matrix approxi-
mating the derivative of the image can be used as the Tikhonov
matrix. If the image is two dimensional, the regularization
should include the difference operations in both the vertical
and horizontal directions. Let D, be the difference operator
for the horizontal direction, and D,, be the difference operator
for the verticle direction. Then the Tikhonov regularized least-
squares solution is

IIS.
(W'W + o(D]D, + D)D) 'W"

XTil, = (21

II =

In summary, the variance of each link is estimated from
a recent history of RSS samples and stored in vector §. The
regularized image solution is simply a linear transformation II
of this vector S.

I'V. KALMAN FILTER TRACKING

A radio tomography image in itself does not provide the
location coordinates of moving objects. The Kalman filter
provides a framework to track such coordinate estimates [20],
[21]. The Kalman filter is used extensively to estimate the
hidden state of a linear system when measurements of that
state have been corrupted by noise. It takes into account
the current and previous measurements to generate a more
accurate estimate of the system’s state than a single instanta-
neous measurement can. A Kalman filter also has the desirable
characteristic that the estimate can be updated with each new
measurement, without the need to perform batch measurement
collection and processing.

In a location tracking system, such as the one described
in this paper, the state to be estimated is made up of the
physical coordinates of the object being tracked. The Kalman
filter exploits the fact that an object moves through space at a
limited speed, smoothing the effects of noise and preventing
the tracking from “jumping.” In this sense, the filter can be
viewed as a form of regularization.

To summarize, the Kalman filter algorithm follows a few
important steps:

1) Predict the next state based on known state transition

statistics.

2) Take noisy measurement.

3) Compare prediction and measurement to generate an

optimal Kalman gain.

4) Combine predicted and measured state estimates to get

improved results.

5) Repeat.

In this work, the objects being tracked are assumed to move
as a Brownian process, and measurement noise is assumed to
be Gaussian. These assumptions are approximations, but the
Kalman filter still provides a useful framework for tracking
in an RTI system. The following variables are used in the

tracking filter.

e v2: the variance of the object’s motion process, indi-

cating how fast the object is capable of moving. Larger
values enable the filter to track faster moving objects, but
also make the estimate noisier.

o v2: the variance of the measurement noise. Larger values
will cause the filter to “trust” the statistical predictions
over the instantaneous measurements.

e C: a two-element vector containing the Kalman estimate
for both x and y coordinates.

e 7: a two-element vector containing the instantaneous
measurement of the target being tracked.

o P: the a priori error covariance matrix.

o P: the a posteriori error covariance matrix.

e G: the Kalman gain.

With these assumptions and variables, the Kalman filter
algorithm for tracking movements in an RTI system can be
described by the following steps.

1) Initialize ¢ = (0,0) and P = I, where I is the 2x2

identity matrix.

2) Set P =P+ v2 I,.

3) Set G =P(P + v2ly)~t



4) Take measurement z equal to the coordinates of the

maximum of the VRTI image.

5) Sete=c+G(z—c).

6) Set P = (I, — G)P.

7) Jump back to step 2 and repeat.

Although this algorithm is designed to track only one object,
it could be extended for multiple target tracking. This would
entail changing the maximum image coordinate step to detect
the instantaneous location of multiple objects within the RTI
result. Multiple target tracking with VRTI is a topic for future
research.

V. EXPERIMENT
A. Description and Layout

This section presents the results of a through-wall tracking
experiment utilizing variance-based RTI. A 34-node peer-to-
peer network was deployed in an area around a four-wall
portion of a typical home. Three of the walls are external,
and one is located on the interior of the home. Since this area
is an addition to the home, however, the interior wall is made
of brick and was an external wall prior to remodeling of the
home. Objects like furniture, appliances, and window screens
were not removed from the home to ensure that the tracking
was functional in a natural environment.
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Fig. 2. The layout of a 34-node variance-based RTI through-wall tracking
experiment.

The nodes were placed in a rectangular perimeter, as de-
picted in Fig. 2] It was neither possible, nor necessary, to place
the nodes in a uniform spacing due to building and property
obstacles. Eight of the nodes were placed on the inside of
the building, but on the other side of the brick interior wall.
Each radio was placed on a stand to keep them on the same
two-dimensional plane at approximately human torso level.

The nodes utilize the IEEE 802.15.4 protocol, and transmit
in the 2.4GHz frequency band. To avoid network transmission
collisions, a simple token passing protocol is used. Each node
is assigned an ID number and programmed with a known
order of transmission. When a node transmits, each node that
receives the transmission examines the sender identification

number. The receiving nodes check to see if it is their turn to
transmit, and if not, they wait for the next node to transmit. If
the next node does not transmit, or the packet is corrupted, a
timeout causes each receiver to move to the next node in the
schedule so that the cycle is not halted. A base-station node
that receives all broadcasts is used to gather signal strength
information and save it to a laptop computer for real-time
processing.

In all the experimental results in this section, the same set
of image reconstruction parameters is used, as shown in Table

m

Parameter | Value Description

Ap 1.5 Pixel width (ft)

A 1 Width parameter of weighting ellipse (ft)
dc 5 Pixel correlation (ft)

a2 5 Pixel variance (dB)?

«a 10 Regularization parameter

) 60 Variance weighting scale (dB)?
Np 136 Length of RSS buffer

TABLE 1
VRTI IMAGE RECONSTRUCTION PARAMETERS

Mean-based RTI [1] uses the difference in average signal
strength to image the attenuation caused by objects in a
wireless network. In through-wall imaging, however, the effect
of dense walls prevent many of the links from experiencing
significant path loss due to a single human obstructing the link.
In many cases, multipath fading can cause the mean signal
strength to increase when a human obstructs a link.

Variance can be used as an indicator of motion, regardless
of the average path loss that occurs due to dense walls and
stationary objects within the network. An example of how
through-wall links are affected by obstruction is provided in
Fig.[3] When a stationary object obstructs the link in a through-
wall environment, the change in mean RSS is unpredictable.
For example, in Fig. 3] one link appears unaffected by the
obstruction, while another link’s RSS average is raised by
approximately 4dB. When an object moves, the variance of
the obstructed link’s RSS provides a more reliable metric, as
seen in the figure.

B. Image Results

To demonstrate the advantage of using VRTI over mean-
based RTI for through-wall motion imaging, two images are
presented in Fig. [4] In both images, a human moves randomly,
taking small steps around and through the space directly
above the coordinate. This is necessary since VRTI images
movement, not static changes in attenuation.

Inspection of Fig. ] shows that VRTI is capable of imaging
areas of motion behind walls, while conventional RTI fails to
image the change in attenuation. These results are typical of
other location coordinates tested during the experiment.

C. Path Tracking

In this section, we test Kalman tracking with experimental
data. An experimenter moves at a typical walking pace on
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Fig. 3. RSS measurements for two links in a through-wall wireless network.
Comparison of these signals illustrates the advantage of using variance over
mean for through-wall imaging human motion.

a pre-defined path at a constant speed. A metronome and
uniformly placed markings on the floor help the experimenter
to take constant-sized steps at a regular time interval. The
experimenter’s actual location is interpolated using the start
and stop time, and the known marker positions.

The location of the experimenter is estimated using the
Kalman filter described in Section [[V|with tracking parameters
presented in Table [l Figure [5] plots both the known and
estimated location coordinates over time when using two
different mobility parameters.

The affect of the Kalman tracking parameters is visually
evident in Fig.[5] When the mobility parameter is set high, the
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(b) Variance-based RTI

Comparison of mean and variance-based RTI results for through-wall imaging. The experimenter is moving at point (17.6,21.3) in both of these

filter is able to track the human with less lag, but the variance
of the estimate also increases. When the mobility parameter
is set low, the tracking coordinate severely lags behind the
moving object, but estimates a smoother path of motion.

To quantify the accuracy of the location coordinate estima-
tion, the average error is defined as

€= % Z \/(Zm[k] — pa[k])2 + (2,[k] — py[K])2  (22)
k=1

where L is the total number of samples, z,[k] and z,[k] are the
estimated x and y coordinates at sample time k, and p,[k] and
pylk] are the actual known coordinates. The average tracking
error for v2, = .01 and v2 = 5 is 3.37 feet. Other parameters
were tested, but none produced more accurate tracking results
than these.

It should be noted that a Kalman filter can be designed
to estimate the target’s velocity, as well as position. This
would enable the filter to follow a non-accelerating moving
object without a lag. However, when a target changes direction
or speed, some transient error would occur while the filter
converges to the new speed and direction.

D. Spot Movement

When estimating the location of a moving object, some
amount of tracking lag must occur due to the time it takes
to collect measurements from the network and the processing
delays. The lag is also dependent on the mobility parameter
U, used for tracking.

To study the tracking sytem without the effects of time
delay, the estimated and known location of a moving human
are compared at 20 different coordinates. At each location, the
experimenter moves randomly, taking small steps around and
through the space directly above the known coordinate. The
VRTI tracking system estimates the location of movement and
we average the estimates over a duration of ten seconds for
each coordinate. The average estimated coordinate is plotted
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The location of human movement moving along a known rectangular path is estimated using varying v, and constant v2 = 5. In (a) and (c) the

mobility is set empirically to track objects moving at a few feet per second. In (b) and (d), the mobility is set too low, causing the tracking filter to lag

excessively.

with the known location to generate the results presented in
Fig. [6]

To quantify the accuracy in this test, the error for each of
the 20 known coordinates is averaged.

20

1
C:%ZGp

p=1

(23)

where ¢, is the average error defined by (22) for each position
p. The error for this test for v2, = .01 and v2 = 5 is 1.46
feet.

VI. FUTURE RESEARCH

Many areas of future research are possible to improve VRTI
through-wall tracking technology. First, large and scalable
VRTI networks capable of tracking entire homes and buildings
need to be explored. This will require advanced wireless
networking protocols that can measure the RSS of each link
quickly when the number of nodes is high. Perhaps frequency
hopping and grouping of nodes will allow a VRTI system to
measure each link’s RSS while maintaining a low delay in
delivering the measurements to a base station.
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Fig. 6. The ten-second average locations of human movement over 20 known
positions is estimated using VRTI and Kalman filter tracking with parameters
v2 = .01 and v2 = 5. The average error for this experiment ¢ = 1.46 feet.



Advancements on the physical layer modeling will allow
VRTI systems to track movement more accurately, and with
less nodes. In this paper, an ellipsoid model is used to relate
RSS variance on a link to the locations of movements. This
is certainly an approximation, and future work will require
the refinement of the variance weighting model, thus leading
to more accurate motion images and coordinate tracking.
Other regularization and image estimation techniques may also
improve through-wall tracking.

Radio devices could be designed specifically for VRTI
tracking applications. The affect of overall node transmission
power on imaging performance is an important area to be
investigated. Directional and dual-polarized antenna designs
would most likely improve images in a through-wall VRTI
system. Radio devices capable of sticking to an exterior wall
and directively transmitting power into the structure would
be extremely useful in emergency deployment and multi-story
VRTL

Finally, localization of nodes plays a significant role in
tracking of motion with VRTI networks. In an emergency,
rescue or enforcement teams will not have time to survey a
location. With automatic node self-localization techniques, the
nodes could be thrown or randomly placed around an area and
locate themselves without human moderation, saving valuable
time.

VII. CONCLUSION

Locating interior movement from outside of a building is
extremely valuable in emergency situations, enabling police,
military forces, and rescue teams to safely locate people prior
to entering. Variance-based radio tomography is a powerful
new method for through-wall imaging that can be used to track
the coordinates of moving objects. The cost of VRTI hardware
is very low in comparison to existing through-wall imaging
systems, and a single network is capable of tracking large
areas. These features may enable many new applications that
are otherwise impractical.

This paper discusses how RSS variance relates to the
power contained in multipath components affected by moving
objects. The variance of RSS is related to the location of
movement relative to node locations, and this paper provides
a formulation to estimate a motion image based on variance
measurements. The Kalman filter is applied as a mechanism
for tracking movement coordinates from image data. A 34-
node VRTI experiment is shown to be capable of tracking a
moving object through typical home exterior walls with an
approximately 3ft average error. An object moving in place
can be located with approximately 1.5ft average error.

The experiments presented in this paper demonstrate the
theoretical and practical capabilities of VRTI for tracking
motion behind walls. Many avenues for future research are pre-
sented which may improve image accuracy and enable larger
and faster VRTI networks. These future research areas include
wireless protocols, antenna design, radio channel modeling,
localization, and image reconstruction.
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