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N IVIEIRSI Y Motivation
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 Sophomore-year Summer Research Internship

 Ten weeks allotted project time

» High-resolution imagery at close distances with FMCW radar
has been shown to be achievable for a modest investment[4]

* This L-band radar system was intended for use with the SAR
rail and associated data acquisition equipment used by G.
Charvat for his thesis work.
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« Digitizer and hardware construction issues will be discussed

» A brief synopsis of FMCW radar relevance and utility for
high-resolution imaging will be presented
(hint: simpler hardware, much lower digitizer sampling rates)

* This project led the author to work for the Naval Research
Laboratory this summer in phased array angular accuracy
analysis, as well as contributing to a senior-level EM lab
course.
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Radar Hardware
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B o

Front-end unit: RX modules Front-end unit: power divider
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UNIVERSITY Radar Hardware
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Machining issues:

_-Designed dimensions[11]: m(”}[ 1 X'“(D
in parentheses grﬂ:sr2+1+ e,z—lx 2 GHN. (following [6])
actual dimensions: top '”(;j
*Had to design non-curved along with
traces L NG YT O [N A SN
20_2” z +1 [In(w]“La(zh) 2 g,+1['n(2]+g, 'n(ﬂm
2

(dB) _ag i

25+ T T T T T T T T T
15 1.55 16 165 1.7 175 18 1.85 1.9 185 2

Frequency (GHz)

Sonnet geometry S11(blue), S12 & S13(red) Actual construction
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*Open-ended circular waveguide are an experimental option for
low-cost antennas where performance is not critical

*The thin cylindrical probe limited 2:1 VSWR bandwidth to
approximately 300MHz

*Southworth’s[13] data suggests
maximum gain of 7dBi at 1.75GHz for
0.127m diameter open-ended waveguide
*Southworth presents measured data from
which we reason this antenna’s 3dB
beamwidth may be less than 50 degrees

Antenna in final configuration
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UNIVERSITY Antennas
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*The zeros[1] of the relevant Bessel functions[13] determine cutoff
frequencies for modes supported by a given waveguide diameter.

Multiple families of modes exist[13], with cutoff frequencies:

TE, :whereJ (r)=0 TM  :whereJ (r,)=0

21ma R r.c TE,, : J/(r,)=0 for r, =1.84118,
=l Jewor =5 ;o lsaise
el Teu 2% 0.0635

=1 30061 17

TM, : Jo(r,)=0 for r, =2.40482,
7 _ 2.40482¢
cuell ™o 9 7« 0.0635

TE,,: J,(r,)=0 for r, =3.05424,

P _ 3.05424c
cutoff , TE; 272' X 00635

The relevant cutoff frequencies for

a = radius = 0.0635m are shown on
the right:

=18t 7

=2 3517
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1 1
TART | 200.0P00 POR M3

Measured VSWR of open-ended Thin cylindrical probe
waveguide antenna

The antennas were deemed adequate for initial experimentation
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UNIVERSITY Antennas
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*The S12 was tested as an informal check to show that energy
was being coupled, by holding the cans face-to-face

Another S12 test measured the isolation of the antennas when
mounted on the Plexiglas
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Coupling: antennas held face-to-face Coupling: antennas on Plexiglas
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Corner Reflectors
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Corner reflectors were constructed to
test the radar

Square corner reflector [2]:

127"
2

Oy =10% IoglO(T] [dBsm]

17dBsm corner reflector 0dBsm and 7.8dBsm
0.45m per side: 0.17m per side:
O, =17dBSM O ey = 0dBSM

0.26m per side:
O = [-80Bsm
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UNIVERSITY Digitizer
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*The author relocated to Washington,
DC for work at the Naval Research
Laboratory Radar Division: AEGIS
Coordinator 6024E 100Hz triangle wave output

T W T T——

A fourth-order Sallen-Key
Butterworth[9] low-pass filter with
/.=60kHz was designed for use with a
DAQCard-6024E digitizer (200ks/s)

*The 6024E has caused difficulties
—Insufficient output sampling rate

—Insufficient data processing
capability

Video amp output and FFT with 6024E
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UNIVERSITY Digitizer

Electromagnetics Research Group

Digitization with NRL equipment
Function Generator: 12 bit DAC

Digitizer: 8 bit, 250ks/s

700Hz output to modulator
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The power at the receive antenna terminals from a scatterer in free
space may be expressed as [2] [3]:

_ PGG.Xo .
R = (Z? [Watts] where the terms are as commonly defined.

1
We recoghize Sx r *pa as a significant relationship.

Of course, coupling and other noise sources also contribute.

Here, for a 0dBsm scatterer at 5m and 10m with 500uW TX power
and 7dB antenna gain:

7 7 7 7
5E-4x10%10 x1010 X(li%%j x1 5E-4x 1010 x1010 X(li%%j
=-65.5dBm S, =

S =
! (47)° x5 (47)° x10*

=-77.6dBm
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It may be observed|[8] that:

2 w o f. 2
where: ¢, =up or down ramp time of W
W = radar transmitter's swept frequency bandwidth
f» =range frequency of scatterer
t, = roundtrip time of radar energy

R = physical range to scatterer

f. = % =Wf = tK the frequency sweep rate of the radar

m

Note: for FMCW radar, we derive t, in a different manner than pulse
radar, but apply t; similarly.
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FMCW Radar Fundamentals

FMCW f, are due to:

frequency

]\.[R:fR

'

time
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FMCW Range:R:%, fo= it =We 5

dt

r

The f,term is the result of the change with time in N standing
waves[8] between radar and scatterer caused by the frequency
change of the radar transmitter along with the roundtrip time delay.

N, presents an ensemble of range frequencies £, at the homodyne
receiver’'s mixer output due to the scatterers’ ranges.

Coupling from the transmitter to receiver will appear with largest
amplitude as the lowest range frequencies observed.

. 2R . .
Finally, N, = N gives the number of standing waves|8].
0
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UNIVERSITY FMCW Ranging
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FMCW Range:R:% fo= it =We 5

- dt

r

We determine range with FMCW through the range frequencies.

It is generally understood that FMCW radar has less hardware
demands than a pulse radar of similar range resolution.

However, difficulties[12] ensue with high power monostatic FMCW
radar.

Thus, FMCW radar is useful for short-range imaging systems, but
pulsed radar may be more useful for long-range use.

(dueto s, oc%)
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Meeting - URSI 2007
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Scatterers with spacing AR will have range frequency difference:

_aakj
C

A

Example: a Hamming filter was used with frequency bin size
650Hz and ﬁ seconds up or down slope time. The difference in
range frequencies between two scatterers with 0.5 meter spacing
for the given parameters is shown to be:

~ 2x0.5x4.2e11

C

=1400Hz, a difference we can detect.

A

Note: the minimum scatterer spacing is limited as described on the
following page. (f. = Wf, =300e6x1400 = 4.2¢11 [52])
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UNIVERSITY FMCW Ranging
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Range resolution is determined in part by the minimum resolvable
frequency difference:

OR = co(AN) , Where 6(AN) = unity, for a typical case[8]

(N is the number of standing waves between radar and scatterer).

Here, we use 300MHz bandwidth, yielding:

OR = cx1 =0.5m
2 x300e6

0.5m is shown to be a lower bound for resolvable range difference
with the given bandwidth.
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UNIVERSITY FMCW Ranging
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Maximum range frequency is another limit, since the radar’s
digitizer does not properly process range frequencies above this
limit.

B CfR,max

Rmax o
filter 2 f

Here, maximum range frequency is assumed to be about 60kHz,
based on the four-pole Sallen-Key Butterworth filter currently used.

~ ¢x60000

e = 21.4m
max, filter 2% 4.2611

This concern may be addressed by use of a higher-bitrate digitizer.
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UNIVERSITY FMCW Ranging
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We may note the following:

R oC fR’ S0 Rmax oC fR,max

W :

5ROCi fR X — = fr
w L

sIncreasing sweep time ¢,, decreases f, ;, approaching the digitizer’s
frequency bin size (while increasing maximum range within R, ..,)

sIncreasing radar bandwidth W increases f,, approaching the low-
pass video filter cutoff (useful for higher resolution within f; ....)

Thus, for a given digitizer and video filter bandwidth, we find tension
between maximum range and range resolution
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This relationship between range resolution and radar

SR oc - bandwidth reveals the utility of the FMCW method.
High resolution is achievable at lower digitizer sampling
rates with FMCW vs. pulsed radar.

_ CIp,; The range to a scatterer is related to the radar energy’s
i~ o round trip time[12].

For a simple pulse radar, the following relationships exist[3]:

1 1 : :
AR o At ,, OR oc 7 ,W_oc —, 0R o« — ,where 7, is radar pulse duration
T

r T

This implies that if a simple rectangular pulse is used, a much

higher sampling rate (small z. is desired) will be needed for a given
range resolution for pulse vs. FMCW
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Meeting - URSI 2007



MICHIGAN STATE
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Digitization and measurements were made using NRL equipment

amplitude

time

While improved processing is in work, an improvised method is used to
detect scatterers in the high clutter environment:
1. Capture background with no scatterers and store as reference
2. Create another trace as: abS(FFTg.egrounarer — FF Treattime)
3. This allows a basic test of radar functionality
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UNIVERSITY Digitizer
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Digitization and measurements were made using NRL equipment

amplitude
amplitude

range range range

Through-wall: -2.5dBm (560 microwatts) Through-wall: -2.5dBm (560 microwatts) NOT through-wall: 4.2dBm (3 milliwatts)
No scatterers 0dBsm scatterers at 0.56m and 1.8m 0dBsm scatterers at 2m and 4m
6dB per division 6dB per division 5dB per division

Through-wall detection of 0dBsm scatterers at microwatt power
output levels is easily achieved.
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*With sponsorship of a suitable digitizer, further
hardware/software development would be worthwhile

eHardware improvements
—Shielded modules to reduce internal coupling

eImaging algorithms
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*A useful L-band FMCW radar can be built at modest cost with off-
the-shelf parts

—An adequate digitizer is a must

*The understanding of radar systems and microstrip circuit design
obtained through this project led to further work including:

— Harmonic radar system hardware
— Multi-band planar antenna miniaturization
— Phased array angle accuracy analysis (NRL)

Special thanks to R. Duncan and
G. Linde of the Naval Research
Laboratory for their insights
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