Low-Sensitivity, Highpass
Filter Design with Parasitic

Compensation
Introduction

This Application Note covers the design of a Sallen-Key
highpass biquad. This design gives low component and op
amp sensitivities. It also shows how to compensate for the
op amp’s bandwidth (pre-distortion) and parasitic capaci-
tances. A design example illustrates this method. These
biquads are also called KRC or VCVS [voltage-controlled,
voltage-source].

Changes in component values over process, environment
and time affect the performance of a filter. To achieve a
greater production yield, the filter needs to be insensitive to
these changes. This Application Note presents a design
algorithm that results in low sensitivity to component varia-
tion. See [6] for information on evaluating the sensitivity
performance of your filter.

To achieve the best production yield, the nominal filter de-
sign must also compensate for component and board para-
sitics. The components are pre-distorted [5] to compensate
for the op amp bandwidth. This Application Note expands the
pre-distortion method in [5] to include compensation for
parasitic capacitances. This method is valid for either
voltage-feedback or current-feedback op amps.

Parasitic Compensation
To pre-distort your filter components and compensate for
parasitic capacitances:

1. Use the method in [5] to include the op amp’s effect on
the filter response. The result is a transfer function of the
same order whose coefficients include the op amp group
delay (t,,) evaluated at the passband edge frequency

(fo)-

2. For all parasitic capacitances in parallel with capacitors:
— Add the capacitors together
— Simplify the resulting coefficients

— Use the sum of time constants form for the coeffi-
cients when possible

3. For all parasitic capacitances in parallel with resistors:

— Replace the resistor R, in the filter transfer function
with the parallel equivalent of R, and C,,.

Ry <R .
—X——X_ s=jn
(1 + RXCps)
— Alter this impedance to a convenient form and sim-
plify:
— Do not create new terms (a coefficient times a new
power of s) in the transfer function after simplifying
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— The most useful approximations are:
Ry

—*—=R,(1-R,C,s

(1+RyCps) «(1-RuCps)

-R,C,s
=~Rye 7P

These approximations are valid when:

w<<1
(RxCp)

— Convert (1 + R,Cs) to the exponential form (a pure
time delay) when it multiplies, or divides, the entire
transfer function

— Do not change the gain at ® = w, in allpass sections

— When simplifying, discard any terms that are products
of the error terms (kt,, and R,C,); they are negligible

— Use the sum of time constants form for the coeffi-
cients when possible

Use an op amp with adequate bandwidth (f54g) and slew

rate (SR):

fags = 10f,
SR > 5fVpea
where f is the highest frequency in the passband of the
filter, and V.. is the largest peak voltage. This increases
the accuracy of the pre-distortion algorithm. It also reduces
the filter’s sensitivity to op amp performance changes over
temperature and process. Make sure the op amp is stable at
a gain of Ay = K.

KRC Highpass Biquad Design

The biquad shown in Figure 1is a Sallen-Key highpass bi-
quad. Vj,needs to be a voltage source with low output im-
pedance.

The transfer function is:

Vo

Vin
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KRC Highpass Biquad Design

(Continued)
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FIGURE 1. Highpass Biquad

To achieve low sensitivities, use this design algorithm:

1.

Partition the gain for good Q sensitivity and dynamic
range performance:

— Use a low noise amplifier before this biquad if you
need a large gain

— Select K with this empirical formula:

1,0.1<Q, <1.1
K={22Q,-0.9

,1.1<Q <5
Qp +0.2 P

These values also reduce the op amp bandwidth’s
impact on the filter response. This biquad’s sensitivi-
ties are too high when Q;, > 5
Select an op amp with adequate bandwidth (fzy4g) and
slew rate (SR):
faas = fiy
fags = 10f;
SR > 5fyVpea
where fy is the highest signal frequency, f; is the
corner frequency of the filter, and Ve, is the largest
peak voltage. Make sure the op amp is stable at a gain
of A, = K.

7.

For current-feedback op amps, use the recommended
value of R; for a gain of A,, = K. For voltage-feedback op
amps, select R; for noise and distortion performance.
Then set Ry for the correct gain:

R
Rg=-"
S K-

Initialize the resistance level (Rfﬂ) .
. . - 415
Increasing R will:

— Increase the output noise

— Reduce the distortion

— Improve the isolation between the op amp outputs
and C; and C4

— Make the parasitic capacitances a larger fraction of
C, and Cg

Initialize the capacitance level sH- , and the component

ratios '

1 R4
oo 1
(opR)
c?=0.10

1+vq116§@+c2ﬂK—4f

2~Qp~(1+02)/c

r2 = max 0.10,

)

Recalculate C? and initialize the capacitors:

2
2o 2:1-Qp
141+ 4Q3 (K- 1-r2)
c
Ci==
! Cc
(:3 =cC

Set C; and C; to the nearest standard values.
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KRC Highpass Biquad Design

(Continued)

8. Recalculate C, C? R and r%:

C=./CCs
Cy
1
R=
(‘%C)

2
, 1+\/1+4Qg(1+02)(K—1)

r 2-Qp-(1+02)/c

9. Calculate the resistors:

Rs :rR

The component sensitivity formulas are in the table below.
The sensitivities formulas are in the table below. The sensi-
tivities to o, = K are a measure of this biquad’s sensitivity to
the op amp group delay [5]. To evaluate this biquad is
sensitivity performance, use the method in [6].

o si- | sw S

ol o | 3| s
Cs 0 —% (Qp%—%]
R, 0 —% [(K—1)-Qp-%+%)
Rs 0 —% —((K—1)~op-$+%]
Ry % 0 ((K—1)~Qp %)
Ry —% 0 —((K—1).Qp-°)
K 1 0 (K-Qp-%)

KRC Highpass Biquad Parasitic
Compensation

To pre-distort this biquad, and compensate for the [parasitic]
non-inverting input capacitance of the op amp (C,;;), do the

following (see Appendix A for the derivation of the formulas):
1. Start the iterations by ignoring the parasitics:

©?=0

2,=0

Estimate the pre-distorted values of w, and Q, (Wppq)
and Qpq) that will compensate for 1., and C;:

Dp(pd) = Dp(nom)
wﬂ - Tin(nom)
Qp(pd) = A(nom)

Dp(pd)
(O]

- Qp(nom)fz‘”p(pd)j

p(nom)

Where 0pnom) @and Qpnomy are the nominal values of
o, and Q,
Recalculate the resistors and capacitors using wppq)
and Qppqy:

1
2
Op(pd)

1

T = RSC1 + R5C3 - R4CS (K - 1)
(“’p(pd)op(pd))

The Design Example accomplishes this by recalculating
R and r?, then R, and Rg:

1

("’p(pd)C)

» 1+\/1+4Q§(pd)(1+c2)(K—1)
- 2~Qp(pd)~(1+02)/c

R=

2

r

R
Ry=—
4 r

R5:rR

Calculate the resulting parasitic correction factors:
7 = R,Cyy
124 = KteaR4Cs + R4Rs5(Cy + C3)Cyy
Calculate the resulting filter response parameters w,
and Q,

®p = Op(pd)

2 2
1+ T40)p(pd)

Qp(pd)

p(pd) T2®p
Op(pd)

Qp =

Repeat steps 2-5 until:

Wp = Op(nom)
Q, = Qy(nom)
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KRC Highpass Biquad Parasitic
Compensation (continued)

7. Estimate the high frequency gain:

H. ~K

2 2
(1 + T4wp(pd))
If this reduces the gain too much, then repartition the gain

Design Example

The circuit shown in Figure 2 is a 3rd-order Butterworth
highpass filter. Section A is a buffered single pole section,
and Section B is a highpass biquad. Use a voltage source
with low output impedance, such as the CLC111 buffer, for
Vi

The nominal filter specifications are:

f. = B0MHz (passband edge frequency)

f¢ = 10MHz  (stopband edge frequency)

fy = 200MHz (highest signal frequency)

A, =3.0dB (maximum passband ripple)

A, =40dB  (minimum stopband attenuation)

H.. = 0dB (passband voltage gain)

01279618

FIGURE 2. Highpass Filter

The 3rd-order Butterworth filter [1-4] meets our specifica-
tions. The pole frequencies and quality factors are:

Section A B
wy/2n [MHz] 50.00 50.00
Q] - 1.000

Overall Design
1. Restrict the resistor and capacitor ratios to:
2.
0.1<c?rP<10

3. Use 1% resistors (chip metal film, 1206 SMD)
4. Use 5% capacitors (ceramic chip, 1206 SMD)
5. Use standard resistor and capacitor values
Section A Design and Pre-distortion:
1. Use the CLC111. This is a close-loop buffer.

— fags = 800MHz > f,; = 200MHz

— f3qg= 800MHz > 10f,.= 500MHz

— SR = 3500V/ps, while a 200MHz, 2V, sinusoid re-
quires more than 100V/ps

— Toa = 0.28ns at 10MHz
— Chi111) = 1.3pF (input capacitance)

2. Select R,, for noise, distortion and to properly isolate
the CLC111’s output and C, 5. The pre-distorted value of
R4, that also compensates for Cy111), is [5]:

[ 1 ]
Oy —T
p oa
Roa =
(C1A + Cni(111))
The results are in the table below:
— The Initial Value column shows ideal values that ig-
nore any parasitic effect
— The Adjusted Value column shows the component
values that compensate for C;444y and CLC111 is
group delay (t,,)
— The Standard Value column shows the nearest stan-
dard 1% resistors and 5% capacitors
Component Initial Value Standard
Adjusted
Cia 30pF 30pF 30pF
Roa 106Q2 92.8Q 93.1Q
Cric111) - 1.3pF 1.3pF

Section B Design:

1.
2.

Since Q,, = 1.000, set Kg to 1.00
Use the CLC446. This is a current-feedback op amp
— fagg = 400MHz > f,; = 200MHz

— fagg < 10f, = 500MHz; the design will be sensitive to
the op amp group delay

— SR = 2000V/us > 1000V/ps (see ltem #1 in 'Section
A Design’)

— Toa = 0.56ns at 10MHz

— Chi(aasy = 1.0pF (input capacitance)

Use the CLC446’s recommended R; at A, = 1.0:
Rz = 453Q

Then leave Ryg open so that Kg = 1.00

Initialize the resistor level:
R = 100Q

Initialize the capacitor level, and the component ratios:
C= ! = 31.83pF
27(50.00MHz) - (10092) '

c? = 0.1000
r? ~ max{0.10,0.0826} = 0.1000

Recalculate C? and initialize the capacitors:
C2=0.127 Cy;g=89.3pF Cgg= 11.3pF
Set the capacitors to the nearest standard values:
Cig =91pF Cgz = 11pF
Recalculate the capacitor level and ratio, and the resis-
tor level and ratio:
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Design Example (continued)

9. Calculate the resistors:
Rig = 324Q Rgp = 31.2Q
10. The sensitivities for this design are:

C=./(91pF)-(11pF) = 31.64pF

2= U1PF) _ 4 1209
(91pF)

—
~

R 1
21 (50.00MHz)-(31.64pF)

=100.6Q
r° = 0.1056
o
H o Q
w p P
S(xi Sai Sai
Cis 0.00 -0.50 -0.39
Can 0.00 ~0.50 0.39
Rus 0.00 -0.50 0.50
Res 0.00 -0.50 -0.50
R 0.00 0.00 0.00
Rgs 0.00 0.00 0.00
K 1.00 0.00 1.12

Section B Pre-distortion:
1. The design gives these values:
Op(nom) = 211(50.00MHz)
Qp(nomy = 1.000
Kg = 1.00
Cig = 91pF
Cgg = 11pF
2. lteration 1 shows the initial design results. lterations 2-4

pre-distort R,g and Rsg to compensate for the CLC446'’s
group delay, and for C, 46

Iteration # 1 2 3 4
[MHz]| 50.00 59.73 56.81 57.54
Op(pd)
2n
Qppay [1] 1.000 | 0.9320 | 0.9561 | 0.9505
R [Q] 10.6 84.22 88.54 87.42
r2 [@]| 0.0962 | 0.1108 | 0.1053 |0.1065
R.s [Q]| 3243 | 253.0 | 2729 | 267.9
Rss Q1] 31.21 28.03 28.73 28.53
T [ns]| 0.324 0.253 0.273 0.268
Ty [ns]| 1.741 1.511 1.575 1.559

Iteration # 1 2 3 4
o [MHz]| 43.87 51.96 49.52 50.13
_P
2n
Q, [] 1.034 0.984 1.003 0.999

The midband gain estimate is:

H.. = 0.770[/V/V]. lteration 1
= 0.759 [V/V]. lteration 4
The simulations gave a lower value for H... Increasing K
could help overcome this loss, but would also increase
the sensitivities.

3. The resulting components are:

Component Initial Value Standard
Adjusted

Cis 91pF 91pF 91pF
Cas 11pF 11pF 11pF

Cricaso) - 1.0pF 1.0pF
R.s 3240 2680 267Q
Rss 31.2Q 28.5Q 28.7Q
R¢g 453Q 453Q 453Q
Rgs o = o

Figure 3 and Figure 4 show simulated gains. The curve
numbers are:

1. ldeal (Initial Design Values, 1., = 0, C,,; = 0)

2. Without pre-distortion (Initial Design Values, 1., # 0, C;
=0)

3. With pre-distortion (Pre-distorted Values, 1., # 0, C,,; =
0)

/|
2 3//

-5 / /
-6

35 40 45 50 55 60
Frequency (MHz)

Normalized Gain (dB)
[N

-
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FIGURE 3. Simulated Filter Magnitude Response
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Design Example (continued)
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FIGURE 4. Simulated Filter Magnitude Response

SPICE Models

SPICE Models are available for most of Comlinear’s ampli-
fiers. These models support nominal DC, AC, AC noise and
transient simulations at room temperature.

We recommend simulating with Comlinear’s SPICE model
to:

* Predict the op amp’s influence on filter response
e Support quicker design cycles

Include board and component parasitic models to obtain a
more accurate prediction of the filter’s response.

To verify your simulations, we recommend bread-boarding
your circuit.

Summary

This application Note contains an easy to use design algo-

rithm for a low sensitivities Sallen-Key highpass biquad.

Designing for low w, and Q, sensitivities gives:

* Reduced filter variation over process, temperature and
time

e High manufacturing yield

e Lower component cost

A low sensitivity design is not enough to produce high manu-

facturing yields. This Application Note shows how to com-
pensate for the op amp bandwidth, and for the [parasitic]

input capacitance of the op amp. This method also applies to
any other component or board parasitics. The components
must also have low enough tolerance and temperature co-
efficients.

Appendix A — Derivation of
Pre-distortion and Parasitic
Capacitance Compensation
Formulas

To pre-distort this filter, and compensate for the [parasitic]
input capacitance of the op amp C,,):

1. Use the method in [5] to include the op amp’s effect on
the filter response. The result is:

Hw[g]sz

Vo ~ “p e S

V.

" 1+ 1 s+[12]32
((DPQP) @p

where the op amp group delay (1,,) is evaluated at the
passband edge frequency (f;), and:

1
(0pQp)
1
0%
_ 1+R;
"R,
H. =K

= RsC1 + RsCs - R4C3 (K - 1)
= R4R5C1CS + K106R4C3

K
g
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Appendix A — Derivation of
Pre-distortion and Parasitic
Capacitance Compensation

Formulas
2.

(Continued)

Since C,; is in parallel with R,, replace R, with the
parallel equivalent of R, and C,;:

R4 — R4
(1+R4Cnis)
Hw(R403 (RsCq + Kroa)] s2. g TeaS
& B 1+ R4Cni3
Vi R4C3(1-K
R M+R5(C1+C3) s
1+ R4CniS
N R4C5(RsC1 +Ktoa) I
1+R,4Cpys

After simplifying, we obtain:

=t1+t2

T = R501 +R5C3 - R4Ca (K - 1)
T = RyCy

1 2, .2
? = TS + T4

p

12 = R4R5sCCy

2
T4 = KT03R4CS +R4R5 (C1 + CS)Cni

1R
Rg
_ K[
)
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Note: The circuits included in this application note have
been tested with National Semiconductor parts that may
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ucts. Please refer to the CLC to LMH conversion table to
find the appropriate replacement part for the obsolete
device.
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