*Motion Imagery Standards Board* Engineering Guideline:

#### MISB EG 0104.5 14 December 2006

# Predator UAV Basic Universal Metadata Set

# 1 Scope

This Engineering Guideline (EG) documents the basic Predator UAV (Unmanned Aerial Vehicle) metadata to be encoded into a standard SMPTE KLV Universal Metadata Set. This EG provides direction on the creation of a standard metadata set for reliable exchange of Predator closed caption (CC) data among digital motion imagery systems.

The scope of this EG was originally intended for metadata that originated as closed caption metadata in analog video from the Predator UAV. After several years the use of this standard has grown beyond its original purpose; some systems are using this standard to directly create universal sets. To address this issue the MISB is working on a future standard which will encompass a large list of possible metadata, provide more flexibility and aid in better motion imagery analysis. Analog video and closed caption metadata are legacy systems that may continue to be used during the transition to all-digital sensors and information infrastructures. This EG facilitates that transition only and is not intended to constitute an approved end-system implementation.

# 2 References

SMPTE 336M-2001, Data Encoding Protocol Using Key-Length-Value

SMPTE 335M-2001, Metadata Dictionary Structure

SMPTE RP210.8-2004, Metadata Dictionary

SMPTE RP210.7-2003, Metadata Dictionary

SMPTE RP210.3-2001, Metadata Dictionary (DRAFT)

Core Video Metadata Profile, Version 1.0, Video Working Group, 14 March 1997

"Predator Closed Caption ESD System", NIMA-MIPO Memorandum for Record U-001-01/ATTM, 25 February 2001 (Attached as Annex B)

MISB RP 0102.2, Security Metadata Sets for Digital Motion Imagery, 20 November 2003

MISB RP 0103.1, *Timing Reconciliation Metadata Set for Digital Motion Imagery*, 11 October 2001

MISB RP 0107, Bit and Byte Order for Metadata in Motion Imagery Files and Streams, 11 October, 2001

# 3 Introduction

As motion imagery systems begin to migrate to all-digital architectures there are still some systems that will be in transition and require the consistent preservation of some analog system characteristics. One such element in transition is analog closed caption metadata from the Predator UAV. Analog closed caption has been successful as a means of carrying important UAV geospatial and mission metadata with video imagery. During the transition from this low data rate method of metadata carriage to more reliable and higher capacity embedded digital

metadata it is important to preserve the general contents of the original Core Video Metadata Profile upon which the Predator UAV closed caption system was based. This metadata consists of the "raw" unprocessed metadata obtained directly from the Predator UAV platform or ground station before the signal has entered the processing and exploitation chain.

This EG identifies a way to encode, as a minimum, the original, source-derived, analog closed caption metadata from the Predator UAV and some computed information into a standard KLV digital metadata set. This standardized method of capturing the minimum Predator UAV metadata will help interoperability during motion imagery systems transition. All metadata shall be represented using big-endian (most significant byte – MSB - first) encoding. Bytes shall be big-endian bit encoding (most significant bit – msb - first).

# 4 Predator UAV Basic Universal Metadata Set

• This section defines a metadata set that originates from or uses information from Predator analog closed caption metadata. The Predator UAV Basic Universal Metadata Set is the KLV metadata form of the original analog closed caption metadata.

All Predator UAV Basic Universal Metadata Sets shall be SMPTE 336M KLV compliant Universal Sets as determined by the metadata originator. (While it is possible that Predator metadata could be expressed as a Global Set, a Pack or even as a Label, the decision was made to use the Universal Set to reduce ambiguity or chances for misinterpretation.)

It is the responsibility of implementers to evaluate the format of the Predator CC metadata to determine if format changes or recalculations are needed before mapping to KLV fields. <u>NOTE:</u> <u>A direct entry-for-entry mapping from CC to KLV cannot be assumed and all CC source fields</u> shown may not be present.

#### 4.1 Predator UAV Basic Universal Metadata Set

The Predator UAV Basic Universal Metadata Set shall conform to the syntax and format of the Universal Metadata Set specified in SMPTE 336M-2001.

The Predator UAV Basic Universal Metadata Set shall consist of the metadata elements listed in Table 1 and shall have the 16-byte designator of 06 0E 2B 34 02 01 01 01 0E 01 01 02 01 01 00 00. Table 2 contains normative information on the mapping and calculations that are required to create a KLV metadata element from the Predator ESD data set.

Each Predator UAV Basic Universal Metadata Set shall contain, as a minimum, the "User Defined Timestamp" (reference Table 2) obtained either from the Predator closed caption input or defined by the originator of the metadata set at the time of encoding. The originator-defined timestamp shall come from a monotonically increasing reference source to allow users to determine accurate time intervals.

### 4.2 Predator Image Geoposition Corner Metadata

The Predator Corner Latitude/Longitude metadata shall consist of the elements shown in Table 1 which are mapped or calculated from original Predator analog closed caption metadata.

Corner coordinates are numbered as follows to conform to NITF numbering convention for single image frame corner coordinates:

Point 1 – upper left corner, Point 2 – upper right corner, Point 3 – lower right corner, Point 4 – lower left corner.

MISB EG 0104 - Predator UAV Metadata Set

Corners not corresponding to geographic locations, i.e., above the horizon, shall not be included..

#### 4.3 Security Metadata Set

The Security Metadata Set is defined in MISB RP 0102.2, *Security Metadata Sets for Digital Motion Imagery*. Presence of a Security Metadata Set is mandatory in the Motion Imagery Stream or file. The EG102 Universal Data Set can be included within the Predator UAV Basic Metadata Universal Set or within the same metadata stream (e.g. private data stream (PDS) for MPEG2 transport streams or metadata included in VANC line). Even if the metadata in the Predator UAV Basic Universal Metadata Set is Unclassified an associated Security Metadata Set must be present.

### 4.4 Obliquity Angle Notes

The Obliquity Angle metadata item is computed from the ESD Sensor Elevation Angle – they are NOT the same value. The definition, derived from the SMPTE KLV dictionary, states "*Obliquity angle of image expressed in degrees. The inverse of sensor depression angle.*".

When EG104.1 was written the "Sensor Depression Angle" was equated to the "ESD Sensor Elevation Angle" and the angular inverse was computed for the KLV version. To compute the inverse, the ESD sensor elevation angle is subtracted from 180 degrees and is explicitly written as follows:

Obliquity Angle = 180 - ESD Sensor Elevation Angle

To compute the ESD Sensor Elevation Angle from the Obliquity Angle, subtract the Obliquity Angle from 180 degrees:

```
ESD Sensor Elevation Angle = 180 - Obliquity Angle
```

The Obliquity Angle represented in prior versions of EG0104 (i.e.: EG0104 to EG0104.4) is unclear and has caused confusion. Because there currently is a large amount of data already created using the unclear definition, as well as several systems that employ this method, this standard is not changing the meaning of Obliquity Angle.

The following illustration shows the relationship of the two angles, Obliquity Angle and Sensor Elevation Angle.



| 16-byte Metadata Label<br>or 16-byte Set Designator | Metadata Element<br>or Set Name                                          | Core Video Metadata<br>Profile Name                             | Name in<br>NIMA-MIPO Memo                       |
|-----------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------|
| 06 0E 2B 34 01 01 01 01 07 01 02 01 03 02 00 00     | Frame Center Latitude                                                    | FRAME CENTER<br>LATITUDE                                        | Target Latitude                                 |
| 06 0E 2B 34 01 01 01 01 07 01 02 01 03 04 00 00     | Frame Center Longitude                                                   | FRAME CENTER<br>LONGITUDE                                       | Target Longitude                                |
| 06 0E 2B 34 01 01 01 0A 07 01 02 01 03 16 00 00     | Frame Center Elevation                                                   | (not defined)                                                   | (not defined)                                   |
| 06 0E 2B 34 01 01 01 01 07 01 01 01 00 00 00 00     | Image Coordinate System                                                  | IMAGE COORDINATE<br>SYSTEM                                      | Image Coordinate System                         |
| 06 0E 2B 34 01 01 01 01 07 01 09 02 01 00 00 00     | Target Width                                                             | (not defined)                                                   | Target Width                                    |
| 06 0E 2B 34 01 01 01 01 07 02 01 02 01 01 00 00     | Start Date Time - UTC                                                    | VIDEO TIME STAMP                                                | Date of Collection/<br>Time of Collection       |
| 06 0E 2B 34 01 01 01 01 07 02 01 02 07 01 00 00     | Event Start Date Time - UTC                                              | MISSION START TIME                                              | Date of Mission Start/<br>Time of Mission Start |
| 06 0E 2B 34 01 01 01 03 07 02 01 01 01 05 00 00     | User Defined Time Stamp<br>(microseconds since 1970) (msb)               | (not defined)                                                   | (not defined)                                   |
| 06 0E 2B 34 01 01 01 03 07 01 02 01 03 07 01 00     | Corner Latitude Point 1<br>(Decimal Degrees)                             | (not defined)                                                   | (not defined)                                   |
| 06 0E 2B 34 01 01 01 03 07 01 02 01 03 08 01 00     | Corner Latitude Point 2<br>(Decimal Degrees)                             | (not defined)                                                   | (not defined)                                   |
| 06 0E 2B 34 01 01 01 03 07 01 02 01 03 09 01 00     | Corner Latitude Point 3<br>(Decimal Degrees)                             | (not defined)                                                   | (not defined)                                   |
| 06 0E 2B 34 01 01 01 03 07 01 02 01 03 0A 01 00     | Corner Latitude Point 4<br>(Decimal Degrees)                             | (not defined)                                                   | (not defined)                                   |
| 06 0E 2B 34 01 01 01 03 07 01 02 01 03 0B 01 00     | Corner Longitude Point 1<br>(Decimal Degrees)                            | (not defined)                                                   | (not defined)                                   |
| 06 0E 2B 34 01 01 01 03 07 01 02 01 03 0C 01 00     | Corner Longitude Point 2<br>(Decimal Degrees)                            | (not defined)                                                   | (not defined)                                   |
| 06 0E 2B 34 01 01 01 03 07 01 02 01 03 0D 01 00     | Corner Longitude Point 3<br>(Decimal Degrees)                            | (not defined)                                                   | (not defined)                                   |
| 06 0E 2B 34 01 01 01 03 07 01 02 01 03 0E 0100      | Corner Longitude Point 4<br>(Decimal Degrees)                            | (not defined)                                                   | (not defined)                                   |
| 06 0E 2B 34 01 01 01 01 07 01 08 01 01 00 00 00     | Slant Range                                                              | SLANT RANGE                                                     | Slant Range                                     |
| 06 0E 2B 34 01 01 01 01 07 01 10 01 01 00 00 00     | Sensor Roll Angle                                                        | (not defined)                                                   | Sensor roll angle*                              |
| 06 0E 2B 34 01 01 01 01 07 01 10 01 02 00 00 00     | Angle to North                                                           | ANGLE TO NORTH                                                  | Sensor Pointing Azimuth                         |
| 06 0E 2B 34 01 01 01 01 07 01 10 01 03 00 00 00     | Obliquity Angle ( <b>IMPORTANT</b> – see section "Obliquity Angle Notes" | OBLIQUITY ANGLE<br>(IMPORTANT – see<br>section "Obliquity Angle | Sensor Elevation Angle<br>(IMPORTANT – see      |
|                                                     | above)                                                                   | Notes" above)                                                   | section "Obliquity Angle<br>Notes" above)       |
| 06 0E 2B 34 01 01 01 07 07 01 10 01 04 00 00 00     | Platform Roll Angle                                                      | (not defined)                                                   | Aircraft roll angle                             |
| 06 0E 2B 34 01 01 01 07 07 01 10 01 05 00 00 00     | Platform Pitch Angle                                                     | (not defined)                                                   | Aircraft pitch angle                            |
| 06 0E 2B 34 01 01 01 07 07 01 10 01 06 00 00 00     | Platform Heading Angle                                                   | (not defined)                                                   | Aircraft heading angle                          |
| 06 0E 2B 34 01 01 01 02 04 20 02 01 01 08 00 00     | Field of View (Horizontal)                                               | FIELD OF VIEW                                                   | Field of View                                   |
| 06 0E 2B 34 01 01 01 07 04 20 02 01 01 0A 01 00     | Field of View (Vertical)                                                 | (not defined)                                                   | (not defined)                                   |

MISB EG 0104 – Predator UAV Metadata Set

| 16-byte Metadata Label<br>or 16-byte Set Designator | Metadata Element<br>or Set Name | Core Video Metadata<br>Profile Name | Name in<br>NIMA-MIPO Memo |
|-----------------------------------------------------|---------------------------------|-------------------------------------|---------------------------|
| 06 0E 2B 34 01 01 01 01 07 01 02 01 02 02 00 00     | Device Altitude                 | SENSOR ALTITUDE                     | Sensor Altitude           |
| 06 0E 2B 34 01 01 01 03 07 01 02 01 02 04 02 00     | Device Latitude                 | SENSOR LATITUDE                     | Sensor Latitude           |
| 06 0E 2B 34 01 01 01 03 07 01 02 01 02 06 02 00     | Device Longitude                | SENSOR LONGITUDE                    | Sensor Longitude          |
| 06 0E 2B 34 01 01 01 01 04 20 01 02 01 01 00 00     | Image Source Device             | SENSOR NAME                         | Sensor Name               |
| 06 0E 2B 34 01 01 01 01 01 05 05 00 00 00 00 00     | Episode Number                  | MISSION NUMBER                      | Mission Number            |
| 06 0E 2B 34 01 01 01 01 01 01 20 01 00 00 00 00     | Device Designation              | PROJECT ID CODE                     | Project ID Code           |

#### Table 1 – Predator UAV Universal Basic Metadata Set Contents

\* Planned addition to Predator analog closed caption metadata.

| <b>TO</b> ( <b>Y</b> )     | Method of Translation                                                    | FROM (X)                 |
|----------------------------|--------------------------------------------------------------------------|--------------------------|
| Metadata Element           |                                                                          | Name in                  |
| or Set Name                |                                                                          | NIMA-MIPO Memo           |
| Frame Center Latitude      | No changes needed. (Y=X)                                                 | Target Latitude          |
| Frame Center Longitude     | No changes needed. (Y=X)                                                 | Target Longitude         |
| Image Coordinate System    | 0: Geodetic WGS84; 1: Geocentric WGS84; 2: None<br>(Truncate as needed.) | Image Coordinate System  |
| Target Width               | (Convert from Feet to Meters)<br>Y=X*0.304801                            | Target Width             |
| Start Date Time - UTC      | Convert to ISO8601:2000 date and time format as follows:                 | Date of Collection/      |
|                            | "YYYYMMDDThhmmss" where                                                  | Time of Collection       |
|                            | YYYY – Year                                                              |                          |
|                            | MM – Month                                                               |                          |
|                            | DD – Day                                                                 |                          |
|                            | hh – Hours                                                               |                          |
|                            | mm – Minutes                                                             |                          |
|                            | ss – seconds                                                             |                          |
|                            | Z - Zulu time is assumed, so it is not added to the string               |                          |
| Event Start Date Time -    | Convert to ISO8601:2000 date and time format as follows:                 | Date of Mission Start/   |
| UTC                        |                                                                          | Time of Mission Start    |
|                            | "YYYYMMDDThhmmss" where                                                  |                          |
|                            | YYYY – Year                                                              |                          |
|                            | MM – Month                                                               |                          |
|                            | DD – Day                                                                 |                          |
|                            | hh – Hours                                                               |                          |
|                            | mm – Minutes                                                             |                          |
|                            | ss – seconds                                                             |                          |
|                            | Z - Zulu time is assumed, so it is not added to the string               |                          |
| User Defined Time Stamp    | Time at which ESD is received. May be synchronized with                  | (not defined)            |
| (microseconds since 1970)  | Date/Time of Collection.                                                 |                          |
| Corner Latitude Point 1    | Computed from other metadata.                                            | (not defined)            |
| Corner Latitude Point 2    | Computed from other metadata.                                            | (not defined)            |
| Corner Latitude Point 3    | Computed from other metadata.                                            | (not defined)            |
| Corner Latitude Point 4    | Computed from other metadata.                                            | (not defined)            |
| Corner Longitude Point 1   | Computed from other metadata.                                            | (not defined)            |
| Corner Longitude Point 2   | Computed from other metadata.                                            | (not defined)            |
| Corner Longitude Point 3   | Computed from other metadata.                                            | (not defined)            |
| Corner Longitude Point 4   | Computed from other metadata.                                            | (not defined)            |
| Slant Range                | (Convert from Nautical Miles to Meters)<br>Y=X*1852                      | Slant Range              |
| Sensor Roll Angle          | No changes needed. (Y=X)                                                 | Sensor roll angle *      |
| Angle to North             | (Convert from "angle relative to sensor boresight vector"                | Sensor Pointing Azimuth  |
| 3                          | to "first row of image" – Assuming borsight vector is                    |                          |
|                            | perpendicular to top row of image)                                       |                          |
|                            | Y=X+90 (subtract 360 if needed)                                          |                          |
| Obliquity Angle            | (Compute the "inverse of the Sensor Elevation Angle")                    | Sensor Elevation Angle   |
| · · ·                      | Y=180-X                                                                  | (IMPORTANT – see         |
|                            | ( <b>IMPORTANT</b> – see section "Obliquity Angle Notes"                 | section "Obliquity Angle |
|                            | above)                                                                   | Notes" above)            |
| Platform Roll Angle        | No changes needed. (Y=X)                                                 | Aircraft roll angle      |
| Platform Pitch Angle       | No changes needed. (Y=X)                                                 | Aircraft pitch angle     |
| Platform Heading Angle     | No changes needed. (Y=X)                                                 | Aircraft heading angle   |
| Field of View (Horizontal) | No changes needed. (Y=X)                                                 | Field of View            |

| Device Altitude     | (Convert from Feet to Meters)<br>Y=X*0.304801 | Sensor Altitude  |
|---------------------|-----------------------------------------------|------------------|
| Device Latitude     | No changes needed. (Y=X)                      | Sensor Latitude  |
| Device Longitude    | No changes needed. (Y=X)                      | Sensor Longitude |
| Image Source Device | (Convert from Integer to String)              | Sensor Name      |
|                     | 0=EO Nose, 1=EO Zoom, 2=EO Spotter            |                  |
|                     | 3=IR Mitsubishi PtSi Model 500                |                  |
|                     | 4=IR Mitsubishi PtSi Model 600                |                  |
|                     | 5=IR InSb Amber Model TBD                     |                  |
| Episode Number      | No changes needed. (Y=X)                      | Mission Number   |
| Device Designation  | No changes needed. (Y=X)                      | Project ID Code  |

# Table 2 – Conversion from Predator Closed Caption to Predator UAV Universal Basic Metadata Set

\* Planned addition to Predator analog closed caption metadata.

# Annex A (Informative) – Examples of Predator UAV Universal Basic Metadata Set

To be added later

#### Annex B (Normative) – Predator Closed Caption ESD System

[NOTE: The original document contained herein contains errors. Corrections contained in brackets have been inserted.]

U-001-01/ATTM

25 February 2001

MEMORANDUM FOR RECORD

SUBJECT:

Predator Closed Caption ESD System

1. The Motion Imagery Program Office requires for interoperability that systems, which receive Predator closed caption Exploitation Support Data, conform to the attached memorandum.

STEPHEN W. LONG

Program Manager, MIPO

Enclosure

Memo from Pete Wiedemann, Subject: Checkout Reference Data for the Predator ESD System

Memo

| To:      | Executive Office for Cruise Missiles and UAVs, JPO for MAE-UAV |
|----------|----------------------------------------------------------------|
| Subject: | Checkout Reference Data for the Predator ESD System            |
| From:    | Pete Wiedemann                                                 |
| Date:    | 10 March 1998                                                  |

#### 4.4.1.1 Predator ESD System, Block Diagram



Viewable ESD, Screen Location Layout

| V   | eh                                     | ic       | е | La  | tit      | uc   | le      |     |    |      |          |   |    |          | S        | en       | so  | or l | D        |    |    |   |   |   |   |  |  |           |   | _ |
|-----|----------------------------------------|----------|---|-----|----------|------|---------|-----|----|------|----------|---|----|----------|----------|----------|-----|------|----------|----|----|---|---|---|---|--|--|-----------|---|---|
| V   | Vehicle Longitude Sensor Elevation Ang |          |   |     |          |      |         |     |    |      |          |   | gl | е        |          |          |     |      |          |    |    |   |   |   |   |  |  |           |   |   |
|     |                                        |          |   |     |          |      |         |     |    |      |          |   |    |          |          |          |     |      |          |    |    |   |   |   |   |  |  |           |   |   |
|     |                                        |          |   |     |          |      |         |     |    |      |          |   |    |          |          |          |     |      |          |    |    |   |   |   |   |  |  |           |   |   |
|     |                                        |          |   |     |          |      |         |     |    |      |          |   |    |          |          |          |     |      |          |    |    |   |   |   |   |  |  |           |   |   |
|     |                                        |          |   |     |          |      |         |     |    |      |          |   |    |          |          |          |     |      |          |    |    |   |   |   |   |  |  |           |   |   |
|     |                                        |          |   |     |          |      |         |     |    |      |          |   |    |          |          |          |     |      |          |    |    |   |   |   |   |  |  |           |   | _ |
|     |                                        |          |   |     |          |      |         |     |    |      |          |   |    | $\vdash$ |          |          |     |      |          |    |    |   |   |   |   |  |  |           |   | - |
|     | +                                      | 1        | 1 |     |          |      |         |     |    |      | $\vdash$ |   |    | $\vdash$ | $\vdash$ |          |     |      |          |    |    |   |   |   |   |  |  | $\square$ |   | - |
| -   |                                        |          |   |     |          |      |         |     |    |      |          |   |    |          |          |          |     |      |          |    |    |   |   |   |   |  |  |           |   |   |
|     | +                                      | +        | + |     |          |      |         |     |    | -    | +        |   |    | $\vdash$ | $\vdash$ | -        |     |      |          |    |    |   |   |   |   |  |  | $\vdash$  | - | _ |
|     | -                                      | -        | - |     |          |      |         |     |    |      | -        |   |    | -        | -        | -        |     |      |          |    |    |   |   |   |   |  |  | $\vdash$  | - | _ |
|     | -                                      |          |   |     |          |      |         |     |    | -    | -        |   |    |          | -        | -        |     |      |          |    |    |   |   |   |   |  |  | $\vdash$  | - |   |
| l n | l<br>na                                |          |   | `or | l<br>hte | ur I | <br>  2 | tit | ud | <br> | T        | m |    | ⊥<br>Da  | l<br>to  | <br>(A   | lte | hrn  | <br>  at | in | u) |   |   |   |   |  |  | $\vdash$  | - |   |
| _   |                                        | ge<br>ge |   |     |          |      |         |     |    |      | _        |   |    |          |          | <u> </u> | _   | _    | or a     | _  |    | _ | h | - | - |  |  | $\vdash$  | - | _ |
|     |                                        | ye       |   |     | 110      |      |         | пų  |    | l    |          |   | -  | -        |          | 3        | 511 | 30   |          |    |    |   |   |   |   |  |  |           | - |   |
|     |                                        |          |   |     |          |      |         |     |    |      |          |   |    |          |          |          |     |      |          |    |    |   |   |   |   |  |  |           |   |   |

Viewable ESD, Data Format Layout, showing Time of Day

| - | 8 | 9 | ٥ | 5 | 9 | ' | 5 | 9 | 3 | 88 |  |   | D | L | Т | V |   |   |   | 1 | 4 | , | 5 | 0 | 0 | Μ | S |
|---|---|---|---|---|---|---|---|---|---|----|--|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 7 | 9 | ۰ | 5 | 9 | 1 | 5 | 9 | 5 |    |  | - | 6 | 3 |   | 0 | 8 | ۰ |   |   |   |   | 1 | 9 |   | 7 | 8 |
|   |   |   |   |   |   |   |   |   |   |    |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |    |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |    |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |    |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |    |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |    |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |    |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |    |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |    |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |    |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |    |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
| - | 8 | 9 | • | 5 | 9 | • | 5 | 9 | 2 |    |  | 2 | 3 | : | 4 | 2 | : | 0 | 5 |   |   | 0 | 7 | , | 8 | 0 | 0 |
| 1 | 7 | 9 | • | 5 | 9 | • | 5 | 9 | 7 |    |  |   | 3 | 5 | 9 | _ | 2 | 6 | • |   |   | 0 | 0 |   | 3 | 0 | 0 |

#### Viewable ESD, Data Format Layout, showing Date

| - | 8 | 9 | ٥ | 5 | 9 | ' | 5 | 9 |   | 3 |    |  |   | D | L | Т | V |   |   |   | 1 | 4 | , | 5 | 0 | 0 | М | S |
|---|---|---|---|---|---|---|---|---|---|---|----|--|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 7 | 9 | ۰ | 5 | 9 | ' | 5 | 9 | - | 5 | •• |  | - | 6 | 3 |   | 0 | 8 | • |   |   |   |   | 1 | 9 |   | 7 | 8 |
|   |   |   |   |   |   |   |   |   |   |   |    |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |    |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |    |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |    |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |    |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |    |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | _ |
|   |   |   |   |   |   |   |   |   |   |   |    |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |    |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   | - | - | - | - | - |   |   |    |  |   | - | - |   | - |   |   |   |   |   |   | - |   |   |   | _ |
|   |   |   |   | - |   |   | - |   |   |   |    |  |   | - |   |   | - |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |    |  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   | 0 | _ |   |   | - |   |   |   |    |  |   |   |   |   |   |   | - | - |   |   |   | - |   |   |   |   |
| - | 8 | 9 | Ů | 5 | 9 | Ľ | 5 | 9 | - | 2 |    |  | 1 | 2 | 1 | 3 | 1 | 1 | 9 | 8 |   |   | 0 | 7 | , | 8 | 0 | ( |
| 1 | 7 | 9 | • | 5 | 9 | • | 5 | 9 |   | 7 |    |  |   | 3 | 5 | 9 |   | 2 | 6 | ۰ |   |   | 0 | 0 |   | 3 | 0 | ( |

4.4.2

Table of Viewable and Parsable ESD (starts on next page)

**Note:** There are two parsable items in the list below (Classification – Cl and Mission Number - Mn) that could be string values. These values will have some form of indicator (i.e. <esc> character) that allows parsers to recognize that the value is a string value and not a datagram (DG) character. There are two possibilities for the indicator character – either an escape character <esc> (ASCII character 27 – hex 0x1B) or a backslash character "V". The indicator character will precede each character in the value portion – for example if the Mn tag had 4 characters with the value of "ABC1" and the indicator character is a backslash "V", the stream would contain:

#### Mn\A\B\C1

Parsers may have to support both types of indicator characters and it is unclear if the valid lengths include the indicator characters.

| DATA ITEM                               | DG | UNITS                  | RANGE        | FORMAT                                                                                                 | EXAMPLES                                                                                                              |
|-----------------------------------------|----|------------------------|--------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Target Latitude <sup>1</sup>            | Та | Deg/Min/Sec/<br>Tenths | +/- 0-90.0   | PDDMMSST<br>P: Sign (+ or -)<br>D: Degrees digit<br>M: Minutes digit<br>S: Seconds digit<br>T: Tenths  | $+89^{\circ}59'59.9" \implies Ta+8959599$<br>$-34^{\circ}26''37.5'' \implies Ta-3426375$                              |
| Target Longitude <sup>2</sup>           | То | Deg/Min/Sec/<br>Tenths | +/- 0-180.0  | PDDDMMSST<br>P: Sign (+ or -)<br>D: Degrees digit<br>M: Minutes digit<br>S: Seconds digit<br>T: Tenths | $+179^{\circ}59'59.9" => To+17959599$<br>$-117^{\circ}00'00.0" => To-11700000$<br>$-5^{\circ}05'17.0" => To-00505170$ |
| Target Width <sup>3</sup>               | Tw | Meters                 | 0-99,999     | N<br>N: from 1 to 5 digits                                                                             | 8,123 m => Tw8123<br>523 m => Tw523                                                                                   |
| Slant Range                             | Sr | Meters                 | 0-99,999     | N<br>N: from 1 to 5 digits                                                                             | 99,999 m => Sr99999<br>523 m => Sr523                                                                                 |
| Sensor Pointing<br>Azimuth <sup>4</sup> | Sp | Degrees                | 0-359.00     | DDD.HH<br>D: Degrees digit<br>H: Hundredths digit                                                      | $359.58^{\circ} => Sp359.58$<br>$23.00^{\circ} => Sp23.00$                                                            |
| Sensor Elevation<br>Angle <sup>5</sup>  | Se | Degrees                | +/- 0-180.00 | PDDD.HH<br>P: Sign (+ or -)<br>D: Degrees digit<br>H: Hundredths digit                                 | $+179.33^{\circ} => Se+179.33$<br>- 5.10° => Se-5.10                                                                  |
| Field of View <sup>6</sup>              | Fv | Degrees                | 0-180.00     | DDD.HH<br>D: Degrees digit<br>H: Hundredths digit                                                      | $179.33^{\circ} => Fv179.33$<br>$0.41^{\circ} => Fv0.41$                                                              |
| Sensor Altitude                         | S1 | Feet MSL               | +/- 0-99,999 | PN<br>P: Sign (+ or -)<br>N: from 1 to 5 digits                                                        | +24,999 MSL => Sl+24999<br>- 1,023 MSL => Sl-1023                                                                     |

| Sensor Latitude <sup>1</sup>  | Sa | Deg/Min/Sec/<br>Tenths<br>Deg/Min/Sec/ | +/- 0-90.0  | PDDMMSST<br>P: Sign (+ or -)<br>D: Degrees digit<br>M: Minutes digit<br>S: Seconds digit<br>T: Tenths digit<br>PDDDMMSST                                      | +85°59'59.7" => Sa+8959597<br>- 5°00'00.0" => Sa-0500000                      |
|-------------------------------|----|----------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Sensor Longitude <sup>2</sup> | So | Tenths                                 | +/- 0-180.0 | PDDDMMSST<br>P: Sign (+ or -)<br>D: Degrees digit<br>M: Minutes digit<br>S: Seconds digit<br>T: Tenths digit                                                  | $+179^{\circ}59'59.7" => So+17959597$<br>- $5^{\circ}00'00.0" => So-00500000$ |
| Sensor Name                   | Sn | Name Code                              | 0-5         | 0: EO Nose<br>1: EO Zoom (DLTV)<br>2: EO Spotter<br>3: IR Mitsubishi PtSi<br>Model 500<br>4: IR Mitsubishi PtSi<br>Model 600<br>5: IR InSb Amber<br>Model TBD | DLTV => Sn1                                                                   |
| Image Coordinate<br>System    | Ic | Coordinate<br>Code                     | 0-2         | 0: Geodetic WGS 84<br>1: Geocentric WGS 84<br>2: None                                                                                                         | (not viewable) => Ic1                                                         |
| Date of Collection            | Cd | Date                                   |             | CCYYMMDD<br>CC=Century<br>YY=Year<br>MM=Month<br>DD=Day                                                                                                       | 05/23/98 => Cd19970523                                                        |
| Time of Collection            | Ct | Time                                   | 0-235959    | HHMMSS<br>HH=Hour<br>MM=Minute<br>SS=Seconds                                                                                                                  | 17:23:06 => Ct172306<br>03:06:27 => Ct030627                                  |
| Mission Number                | Mn | Number                                 | 1-9999999   | N<br>N: from 1 to 7 digits                                                                                                                                    | (not viewable) => Mn3324<br>See Note above this table.                        |

| Mission Start Date           | Md | Date                   |           | CCYYMMDD<br>CC=Century<br>YY=Year<br>MM=Month,<br>DD=Day                                                | ( not viewable) => Md19970423                                                                                                                                                                                              |
|------------------------------|----|------------------------|-----------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mission Start Time           | Mt | Time                   | 0-235959  | HHMMSS<br>HH=Hour<br>MM=Minute<br>SS=Seconds                                                            | (not viewable) => Mt212456<br>(not viewable) => Mt050802                                                                                                                                                                   |
| Security Classification      | Cl | Classification<br>Code | U/R/C/S/T | U: Unclassified<br>O: Sensitive (FOUO)<br>R: Restricted<br>C: Confidential<br>S: Secret<br>T: TopSecret | <pre>(not viewable) =&gt; Cl<esc>C<br/>(not viewable) =&gt; Cl<esc>S<br/>[Correction: Some software versions<br/>report '0' for Unclassified and '1' for<br/>Restricted.]<br/>See Note above this table.</esc></esc></pre> |
| Project ID Code <sup>7</sup> | Pc | Number                 | 0-99      | N<br>N: from 1 to 2 digits                                                                              | (not viewable) => Pc25                                                                                                                                                                                                     |
| ESD ICD Version              | Iv | Count                  | 0-999     | N<br>N: from 1 to 3 digits                                                                              | (not viewable) => Iv5                                                                                                                                                                                                      |

Notes:

1) A plus sign (+) indicates North Latitude. All Latitude coordinates use WGS84.

2) A minus sign (-) indicates East Longitude. [Correction: A minus sign (-) indicates West Longitude.] All Longitude coordinates use WGS84.

3) At center of image.

4) Relative to true North.

5) Relative to Planetary Tangent at Nadir. 0 is Horizon, -90 is Straight down (nadir).

6) Horizontal, across baseline of image, projected onto the terrain (flat terrain model at DTED or other best available elevation data). [Correction: *Software versions prior to 1.6 report Vertical Field of View.*]

7) The Project ID of the Collection Platform (e.g., Predator, Outrider, Pioneer, etc.).