
Afew years ago, my wife and I accidentally
won third place in a holiday light contest in
our development. In an attempt to win the

rarely coveted first prize, I decided to do a micro-
controller-based project. In the years since I first
got into electronics (when we — to paraphrase
Douglass Adams — thought that digital watches
were a neat idea), the amount of equipment need-
ed to do microcontroller work has decreased by
quite a bit, so it was a good fit with my first pro-
ject, an animated Santa, sleigh, and reindeer. In this
context,“animated” means lights that are
sequenced, not moving parts.At least for this year.

The project discussed in this article is the out-
growth of that first project, and it supports dim-
ming of lights in addition to sequencing them.With
two animations in the yard, the general illumination
of the house in white lights had become a bit bor-
ing, so a change was in order. Rather than use a
single string to outline the house, I’ll use four (in
red, green, blue, and white) and use my dimmer to
slowly dim between them.The idea came from
somebody who used X-10 dimmers and a comput-
er to do this, but my implementation will be a bit
cheaper and will operate stand-alone. It can also
do chaser lights and fine (per cycle) control, which
I’ve implemented, but which may not meet aesthet-
ic standards.

This project involves potentially lethal AC volt-
ages. It’s not particularly dangerous, but please
keep that in mind when you’re working with the
AC circuitry. If you use this project outside, you’ll
need to protect it from the weather.

Switching and Dimming AC Lights

There are two ways to dim AC lights.The most
obvious one is to simply reduce the voltage,

which can be done either with a resistor divider,

or an autotransformer
(also known as a variac).
Neither of these are good
solutions in this case,
because they aren’t easy
to control electronically.

Though incandescent
light bulbs have very thin
filaments, there is still
some thermal mass in the
filament, as evidenced by
the fact that you don’t see
a 60Hz flash from them.
Even though the current is
switching on and off 120
times a second, the fila-
ment maintains a constant
brightness.We can take
advantage of this for dim-
ming by controlling the
duty cycle of the waveform
rather than the voltage of the
waveform.To do so requires
that we delay our turn-on
from the zero-crossing of the
waveform.

As you can see in Figure
1, we can get the effect of
three-quarters of the voltage
by only turning the power on
for the appropriate part of
the cycle.To get other dim
levels, we simply vary the time
at which we turn on the
power. Since the light output
of the bulb depends upon the
amount of power we send to
it, we need to choose our
intervals so that they repre-
sent intervals of equal power.
The power is represented by the area under the
waveform, which is why the line isn’t at the quarter
point.

It’s easy enough to calculate this for as many

dim levels as you want; the important point is that
the intervals are not equally spaced. See Figure 2.
This approach is fairly common in the DC world,
as well; a heater can be nicely “dimmed” by varying

Preprinted from December 2000 Nuts & Volts Magazine. All rights reserved. No duplication permitted without permission from T & L Publications, Inc. 1

Sequencing and
Dimming —
Add Some
Pizazz to Your
Holiday Lights

by Eric Gunnerson

Holiday Project

Figure 1

Figure 2

its duty cycle.

Doing the Switching

Now that we know how to do the dimming, we
need to figure out how to actually switch the

AC circuit.A triac is by far the most popular
choice for controlling AC circuits.They are simple
to use and interface, but they do have one inter-
esting feature; once you turn a triac on, it doesn’t
turn off until the voltage across the load goes to
zero.This makes them nicely suited to AC control,
because the voltage goes to zero each half-cycle.

In most applications, it’s easier to use a solid-
state relay rather than a triac.A solid-state relay
contains a triac, and can be thought of as an AC-
switching black box; it isolates the AC world from
the DC world (very important for safety), and
switches with logic-level inputs. Most are also
zero-crossing devices, which means they only
switch as the waveform crosses zero, when voltage
and current are low.This is nicer on the load (no
sudden transients), and generates much less RF
noise than switching at a random time.

For dimming, however, we have to be able to
switch anywhere in the cycle, so zero-crossing

doesn’t work. I’ve chosen
to use a solid-state relay
without zero-crossing cir-
cuitry, though they are less
common, and doing this
has limited the amount of
current I can switch.You
can build your own solid-
state relays if you wish to
control larger amounts of
current; see the references
for a good starting point.

Hardware and
Circuitry

Now that we under-
stand how to do dim-

ming, we need to choose
the hardware we’ll use to

do it. I broke the circuitry into three modules: the
zero-crossing circuit/power supply, the microcon-
troller, and the AC box.All of this will be contained
in something sufficiently waterproof; I’ve found
plastic toolboxes a good choice.

Zero-crossing Circuit/Power Supply

The zero-crossing circuit/power supply is quite
simple. It starts as a standard 5V power supply

using a 7805 regulator and a 9VAC transformer.
This will provide power for the microcontroller
and the solid-state relays. See Figure 3.

To generate the zero-crossing signal, we need
to tap into the power supply after the bridge recti-
fier, so we get the pulsating DC at this point.The
initial filter capacitor’s job is to get rid of this sig-
nal, so we need to insert a diode in between the
bridge rectifier and the capacitor.

Now that we have this signal, we want to gen-
erate a pulse when the signal is zero.We add a
transistor with pull-up resistor and a voltage
divider to the circuit. See Figure 4.

Figure 5 shows the pulsating DC and zero-
crossing signals.

As long as the base voltage is greater than the

turn-on voltage of the transistor, the transistor will
pull the output to ground.When the voltage drops
below the turn-on voltage, the transistor will turn
off, and the output will be pulled high by the resis-
tor. Since the pull-up is to the 5V supply, we get a
nice pulse that is nearly symmetrical around the
zero cross point.This signal is connected to an
input pin on the microcontroller.

The width of the pulse is determined by the
input voltage, the resistors used in the voltage
divider, the diode drops in the rectifier, and the
voltage at which the transistor turns on. Rather
than try to measure this, I put the signal on the
scope, zoomed in, and made a reasonable estimate
to the width of the signal.This value is used later.

Microcontroller

For this project, I chose a Motorola 68HC11
controller (a 68HC811E2, to be precise). In my

earlier projects, I chose this controller because it
was fairly inexpensive, easy to deal with, and I had
a local resource who had used them, and could
provide technical support. It stores its program in
EEPROM, and can be programmed over a serial
link. It also lets me keep my assembly skills tuned
up. For this project, the HC11 is especially nice,
because of a feature known as output compare.
More about that in the algorithms section.

The HC11 is built using Marvin Green’s excel-
lent BotBoard (see references).Though this board
was targeted towards robotics, it’s perfect for this
project because it has a small prototype area for
additional circuitry. Construction is very simple as
long as you have a fine soldering tip and a magnifi-
er (or young eyes).

AC Box

Putting all the AC components in a separate box
makes life a lot easier; you can’t shock yourself

when working on the BotBoard. I use a standard
dual-gang blue plastic box for my AC control. In it
live two duplex outlets, giving me four circuits, and
the solid-state relays glued to the backs of the out-
lets. Control signals are carried to the AC box via

Holiday Project

Figure 5

Figure 3

Figure 4

Preprinted from December 2000 Nuts & Volts Magazine. All rights reserved. No duplication permitted without permission from T & L Publications, Inc. 2

ribbon cable.A 3’ grounded extension cord is cut
in half; the plug end supplies power to the outlets,
and the socket end brings AC power back out, so
you have someplace to plug in the transformer.

Algorithms and Encoding

The HC11 has a sophisticated timer section that
is perfect for this application.The timer section

has a 16-bit timer that counts at 2 MHz, and a set
of four output compare registers that correspond
to four output pins.To make an output go high at a
point in the future, merely take the current timer
count, add in the delay offset, and store it in the
appropriate output compare register.The HC11 will
then set that output high when the counts match,
without any program intervention.This simplifies
the code immensely; the code merely has to set up
the appropriate offsets for all four channels, store
them to the output compare registers, and then
have the rest of the half-cycle for housekeeping.

At the default count rate, the timer overflows
every 32 (ish) mS, but a half-cycle is only about 8
mS, so there’s no chance of overflow in this appli-
cation

My current implementation supports 64 dim
levels.These dim levels are stored in a table which
encodes the offset needed for each dim level. Each
count is 0.5µS, so to dim halfway, the count for
4.16mS (half of a half cycle, or 1/240th of a sec-
ond) would be 8,333.

The Main Loop

Wait until the zero-crossing signal is received.
This is done by polling the input that the

zero-crossing signal is connected to. Store the cur-
rent timer count.

Force all the outputs to low.This insures that
when we get to the zero-crossing point, the relays
will turn off.

Take the stored time count and add the offset

that will get us to the true zero-cross.
For each channel, add in the offset for the cur-

rent dim level, and store it to the proper output
compare channel

Figure out the next offset for each channel
Go to step 1.

Because we want to be able to have an offset
of zero (no wait to turn-on), this code has to finish
executing before we hit the true zero-cross.The
current implementation is fast enough to do this,
but if it wasn’t, I’d simply skip dim level 0 (zero off-
set), and only let dim level 1 be the brightest one.
With 64 dim levels, the difference isn’t noticeable.

The HC11 handles everything for us once
we’ve finished step 4, so step 5 has until the next
zero-crossing signal to get set up for the next half-
cycle.This is something on the order of 16,000
clocks, which is a lot of code.

If you were doing this with a microcontroller
without output compare – or you wanted to do
more than four channels with an HC11 – it would
become more complicated.You could use the first
period to generate the information for the next
cycle (assuming you can get it done in 1,300
clocks; the width of the first period at 64 levels). If
that wasn’t enough, you could do it piecemeal
(yuck), or, if your microcontroller supports timer
interrupts, set up a timer interrupt for the first
period, and then have the interrupt service routine
turn on any channels that needed to be turned on,
and set up the next interrupt.This would allow the
code for the next channel to run during the non-
interrupt times, but would make the code quite a
bit more complex.

Running at the same time are some timekeep-
ing functions that handle starting the animation
when it gets dark (about 4:30 in the Seattle area),
running 4.5 hours, and then turning off until the
next day.

All the code is written directly in HC11
assembler.There is an SBASIC compiler available,
which you might want to use. I found I could write
the assembly code fairly quickly once I got into the

HC11 mindset.

Encoding

One of the real challenges of this project is
coming up with a minimal encoding for the

animations. For this project, each step is encoded
in seven bytes:

Byte Description
1 Type of animation

(dim or chaser)
2 # of loops for this step
3 Cycles to wait between loops
4-7 Channel information

For a dim animation, a typical encoding would be:

1 3F 14 01 00 FF 00

This means we should do this step for 3F
loops, and that each loop should happen after 14
cycles (1/6th of a second).At each loop, we should
add 1 to the channel 1 dim level, and add FF to
channel 3, which is the same as subtracting 1 from
it. So, this encoding will ramp channel 1 from its
current dim level (which had better be 0, or we
have problems) up to 3F, and channel 3 from 3F
down to zero.This will take 3F * 1/6th = 10.5 sec-
onds.

Generating Tables and Encodings

Generating the offset table for the dim levels
and the animation encodings isn’t something

you’d want to do by hand. I’ve therefore written
some Perl scripts that generate both the dimming
table and the animation encodings, which are then
combined with the code and assembled using
asm11.

After the code is assembled, it is downloaded
to the HC11 with a utility called DL11.The inter-
face needed to connect the HC11 to a standard
serial port is detailed in the BotBoard documenta-
tion.

Construction

The BotBoard is built following the instructions.
I usually populate the board fully even though I

Holiday Project

Figure 6

Figure 7

Botboard http://www.rdrop.com/users/marvin/botboard/botboard.htm
68HC11 http://www.nwlink.com/~kevinro/products.html
HC11 Reference Manual (68HC11RM/AD) http://www.motorola.com
Solid-State Relays http://www.hut.fi/Misc/Electronics/circuits/semiconductor_relays.html

References

Preprinted from December 2000 Nuts & Volts Magazine. All rights reserved. No duplication permitted without permission from T & L Publications, Inc. 3

Preprinted from December 2000 Nuts & Volts Magazine. All rights reserved. No duplication permitted without permission from T & L Publications, Inc. 4

might not be using all the output pins at this time;
it’s easier to do now than later, and the extra
headers are cheap.

In the prototype area next to the BotBoard,
the power supply and zero-crossing circuits are
built. I didn’t breadboard the circuit first, which
shows from my layout. It’s not pretty, but luckily
layout isn’t critical for these circuits.The trans-
former connects to a three-pin header so it can be
easily unplugged. See Figure 6.

The AC box holds the
duplex outlets, with the
bonding tab on the hot side
broken off.The neutral wire
for both outlets is hooked
up, as are the grounds.A
ribbon cable is hooked to
the solid state relays, and
then the whole business is
placed in the box.

The appropriate con-
nectors are then added to
the ribbon cable.The
BotBoard is designed to
drive servos through these
outputs, so the header loca-
tions aren’t terribly conve-
nient for this application.
This required me to attach
four individual three-pin
connectors to the ribbon
cable, and then use hot glue

to create a single connector. See Figure 7. Figure 8
shows a picture of the whole project. I have night-
light bulbs plugged into the outlets for debugging.

Debugging

Debugging an HC11 is interesting. I built a small
status indicator out of a spare LED bar graph

display I had lying around, and hooked it to a cou-
ple of four-pin headers.This can easily be slipped

over the pins for the B port, so that debugging
information can be written there. It’s sometimes
challenging to do debugging this way, but that’s part
of the fun.

It’s also useful to generate your own signals; I
used this to determine closely when the zero-
cross pulse starts.A simple loop finds the pulse,
and then it’s easy to wait for a given number of
clocks, and then turn on the B port, and turn it off
a short time after.With this signal on the scope
along with the DC signal, it was easy to determine
the interval to within a few clocks (a couple of
microseconds).

Conclusion

Once you have the project built, you’ll need to
write the controller code or use mine (avail-

able on the Nuts & Volts website).Then you’ll have
to deal with the lights, which usually takes me
more time than the controller.

Going Further

I’ve had a few ideas on where to go from here.A
four-channel X-10 dimmer seems fairly straight-

forward, and if you can do that, you could add X-
10 relay control easily. I’m also interested in using
the A/D capability of the HC11 to do something
that responds to people or cars. Perhaps a Santa
who turns his head to follow you when you go by
… NV

Holiday Project

Figure 8

