User's Manual
SBasic68k Compiler Version 3.4

by
Karl E. Lunt

Copyright (c) 1996, 1998, 1999, 2000, 2001, 2007 Bothell, WA
All rights reserved

4 March 2007

10.

11.

12.

13.

14.

15.

16.

17.

18.

18.1.

18.2.

Table of Contents

D TS o0 = 1] 4T 5
INErodUCtioN ... —————————————— 6
History of SBasiCOB8Kccciiiemmiiiiiiiiiirrcceecse s s e s s e s s e s s s s s e s e nnnn s s s e e e e e e nmnnnnns 7
INVOCAtION ... ————————————— 8
[0 4 014 F= T Lo [0 110 L= 1o o 4 Lo o 1= 000 9
Environment variables......... . e 12
] o = 1V 1 =P 13
== D] == 14
=T 1 1T T € 17
Include files and the INCLUDE statement...........cccccciiniiiinmmmnec e 18
= 1 1= L 19
NUMErIC CONSIANTS.......ceeeieiieiiiiie s nnnnnns 20
Variables, arrays, and named constants..........cccccccoiimreci i isse s 21
Data tables..... ... 23
COPY statement..........ccoooimimiii s —————— 25
L0 o T2 - 1 oY - PP 26
L0 4 0] o F= T 1= oY 1 TP 28
Control StruCtUres.........cccceeiriee e ———————— 29
WHILE-WEND 29
DO-LOOP 30

18.3.
18.4.
18.5.

18.6.

19.

19.1.
19.2.
19.3.
19.4.
19.5.
19.6.
19.7.
19.8.

19.9.

19.10.

19.11.

19.12.

19.13.

19.14.

19.15.

19.16.

19.17.

19.18.

20.1.

FOR-NEXT 30
SELECT-CASE 32
EXIT 33
IF-ELSE-ELSEIF-ENDIF 33
Functions and statements..............eue - 35
SWAPW() 35
RSHFT() and LSHFT() 35
RSHFTB() and LSHFTB() 35
RROLL() and LROLLY() 36
RROLLB() and LROLLB() 36
PEEK() 36
PEEKW() 37
PEEKB() 37
POKE statement 37
POKEW statement 38
POKEB statement 38
WAITWHILE and WAITUNTIL statements 39
ADDR() 40
PRINT, PRINTU, and PRINTX statements 40
INKEY() 41
OUTCH statement 42
MIN() and MAX() 43
MINU() and MAXU() 43
20. Subroutines, GOSUB, and USR().........cuurrrnmmmmmmrimminisssssss s ssssssssssssssss s sssssssanns 44
GOSUB statement 44
USR() 45

20.2.

21.

22.

221.

22.2.

23.

24,

25.

251.

25.2

25.3.

254,

25.5.

25.6.

26.

27.

28.

29.

RETURN Stat@meENt.......ceeieieieie i ceeisrerere i sassassssessassnsssrnssassasnrassassnssnssnrnnsnssnnnns 46
L =Y T o) 47
INTERRUPT statement 47
END and RETURN statements 47
INTERRUPTS Statementoeuieieeiiecieieeciereieecreassmsssassnssmsssnssmssnnssnssmssanssnssanssnnsen 49
(@ T3 =1 (=] 1 4 1= o | 50
B I =3 = T3 = Lo 52
PUSH statement 52
POP() and PULL() 52
PICK() 53
PLACE statement 53
DROP statement 53
SWAP statement 54
ASM and ENDASM StatemeEntscoueeuiimiieieeiimresrmrsrsassesrenssnsssnssnssnssenssnssenssnsss 55
ASMFEUNC Stat@meENntcc.oeeiieieieeieicreiemcrereassmrsassassssssassnssenssmssanssnssnssenssnssnnssnnsn 57
ASMFUNC, INKEY, and OUTCH.........coooiicccireerrrrrsmmsss s s s s e s e e e s mmmns s s s e e e ennns 60
Character /0 on the 68000...........coeieuiimimieerrmreerrnrnreasrmsrenssassnsssnssnssanssnssnssanssnns 61

1. Disclaimer

I am releasing the executable for the SBasic68k (SB68k) compiler, all supporting library and
include files, assorted test cases, and this document as freeware. Feel free to use SBasic68k for
whatever non-commercial application seems appropriate.

The SBasic68k compiler, with or without its attendant support files, is freeware and in the public
domain. You may not charge for the sale or distribution of SBasic68k or its distribution files. If
you distribute SBasic68k to others, please include this manual in its present form, complete with
this disclaimer.

I make no warranty, representation, or guarantee regarding the suitability of SBasic68k for any
particular purpose, nor do I assume any liability arising out of the application or use of SBasic68k,
and I disclaim any and all liability, including without limitation consequential or incidental
damages.

You, as the user, take all responsibility for direct and/or consequential damages of any kind that
might arise from using SBasic68k in any fashion.

I do not warrant that SBasic68k is free of bugs. If you find what you think is a bug, kindly let me
know what it is IN DETAIL, and I'll certainly consider fixing it in a later release, if there ever is
such.

I developed SBasic68k as a tool for working with the Motorola 68xxx family of MCUs. If you use
SBasic68k for developing robotics (or other) application code and find it useful, fine. If you don't
find it suitable in some fashion, then don't use it.

(4 Mar 2007) Ireleased the first version of this manual in April of 2001. In January 2007, Mike
Lozano (mlozano71@satx.rr.com) was kind enough to convert my original DOS text file to Word
format and send me the results of his effort. I added further editing and formatting to create what

you are reading now. Thanks, Mike, for your work in the conversion and for helping me get back
to SB.

Karl Lunt
116 173rd St., SW
Bothell, WA 98012

2. Introduction

This manual describes the use of the SBasic68k (SB68k) compiler. SB68k is a PC-based cross-
compiler for a subset of the Basic language. Source files containing SB68k statements are
compiled into a source file of assembly language for the target machine. Subsequent assembly of
that file yields an executable file for the target machine.

SB68k creates code for a 68xxx target. The compiler's output is compatible with the Motorola as32
assembler, available on the Motorola web site or from my own web site at:
http://www.seanet.com/~karllunt.

The SBasic68k compiler was written in Borland C (version 4.52), and is compiled as a 32-bit DOS
standard app. My SB68k design is loosely based on a small Basic interpreter developed by Herbert
Schildt and presented in his excellent book, "The Art of C." (Osborne McGraw-Hill, Berkeley, CA
94710; ISBN 0-07-881691-2)

3. History of SBasic68k

Version 3.4 fixed what I hope is the last bug in the comparison code, again spotted by Doug Kelly
of the SRS. The error occurred when comparing the result of a math operation on two variables
with a constant. I also noticed that version 3.3 was incorrectly printing out version 3.2 in the
header of the listing file; this version now prints out version 3.4.

Version 3.3 fixed a few bugs reported by Doug Kelly of the Seattle Robotics Society. The copy
library was not being included when invoked, and the library code had an error in it. Also fixed an
obscure error when adding two literals on one side of a test.

Version 3.2 fixed a bug in the 2D array index calculations. It also includes updated library files
minmx68k.lib and inkey68k.lib, both contributed by Doug Kelly of the SRS.

Version 3.1 fixed a number of bugs in the 3.0 release. My thanks to Doug Kelly of the SRS for his
determined efforts in using the original release, and in helping me weed out these bugs.

Version 3.0 was adapted from the 68hc11 SB68k compiler, version 2.7; this is the baseline release
of the 68k version.

Besides reworking the code generator to support 68000 assembler output, I also added a number of
features. The biggest change is with variable size; all SB68k variables and arrays use 32-bit
integers, rather than the 16-bit integers in the 68hcl1 version.

I added word-sized (16-bit) versions of several statements and functions, including POKEW and
PEEKW. T also added support for 2-dimension arrays.

I included shift and roll functions similar to RROLL() and LSHFT() that work on bytes, rather than
bits. These functions, with names such as RROLLB(), will speed up byte manipulations during
/0.

4. Invocation

You execute SB68k by entering the command:

sb68k infile <options>

where 'infile' contains the path to the source file you wish to compile. SB68k writes its output, the
assembly language source for the target, to the standard output, which is normally the screen.

You can redirect the output file to another file by entering the command:

sb68k infile <options> >outfile

where 'outfile' is the path to an output file to hold the created source lines. This file should carry an
.asm extension, as that is expected by the as32 assembler used with SB68k.

If SB68k did not detect any errors in your source file, its output file should assemble correctly with
the as32 assembler. If SB68k detected errors, it inserts error notices in the output file. These are
almost guaranteed to generate numerous errors if the resulting output file is assembled.

SB68k supports several command-line options, used to control the addresses of key elements in the
final program. These options will be explained in detail below.

Upon completion, SB68k returns an errorlevel that can be used to determine success or failure of
the compilation. If SB68k successfully compiled the source program, it returns an errorlevel of 0.
If SB68k detected one or more errors during compilation, it returns an errorlevel of 1.

5. Command-line options

You can control the placement of variables, code space, and stack space in the target executable by
means of SB68k command-line options. If you supply any options in your command line, they
must follow the name of the SB68k source

file. Refer to the above section on executing SB68k.

You can control where SB68k places the start of its RAM variables by using the /v option. The
format of this option is:

/ VXXXXKXKXKXX

where xxxxxxxx is an eight-digit hexadecimal address that marks the start of the variable space.
SB68k assigns this address to the assembler label VARBEG; if you do not use the /v option, SB68k
assigns a default value of $3000 to VARBEG.

You can control where SB68k places the beginning of the executable code by using the /c option.
The format of this option is:

/ CXXXXXKXXX

where xxxxxxxx is an eight-digit hexadecimal address that marks the start of the code space.
SB68k assigns this address to the assembler label CODEBEG; if you do not use the /c option,
SB68k assigns a default value of $5000 to CODEBEG.

You can control where SB68k places the top of the target's stack space by using the /s option. The
format of this option is:

/ SXXXXXXXX

where xxxxxxxx is an eight-digit hexadecimal address that marks the top of the stack space.
SB68k assigns this address to the assembler label STKBEG; if you do not use the /s option, SB68k
assigns a default value of $4{f0 to STKBEG.

You can control the type of branch instruction SB68k creates by using the /b option. The format of
this option is:

/b

SB68k normally converts a transfer or jump instruction into two assembly language source lines.
The first line is a relative branch around the next line, and the second line is a long jump to the
target address. For example:

while n=3
' other code goes here
wend

contains a branch instruction that tests the value of variable N and branches back to the WHILE
statement if N equals 3.

SB68k normally generates code similar to:

wh1l000
moveq. 1l #$3,d0
cmp. 1l var003 (a5),do
beg *+8 if equal, branch
Jmp whl001 not equal, exit loop
other code goes here
Jmp wh1000 back to top of loop
wh1l001

For short transfers, where the branch target is within the relative addressing limit of the target
MCU, this code is larger and will run more slowly than necessary.

Using the /b option forces SB68k to generate relative branches directly to all targets. If the /b
option is in effect, SB68k would generate the following code for the above example:

wh1000
moveqg.l #$3,d0
cmp. 1l var003(a5),do

bne whl001 if not equal, branch
other code goes here
Jmp wh1l000 back to top of loop
wh1l001

Note that the branch has reversed sense and the JMP instruction has disappeared.

WARNING
Branches to addresses beyond the 68000's relative branch limit will
result in assembler errors, even though SB68k will not report any
compilation errors. SB68k does not maintain an internal program
counter and will not detect that a branch target is out of range.

Beginning users should omit the /b option, and accept the slight increase in size and execution
times caused by the default branch code generation.

Experienced users may, however, use the /b option to gain improved performance. In this case,
however, you must carefully monitor the assembler's output for any errors resulting in out-of-range

branches.

If your code generates out-of-range branches using the /b option, recompile without the option.
SB68k currently does not support any method for selectively compiling direct branches.

Some 68000 target platforms use on-chip firmware to take over the MCU's interrupt vector table.
In this case you need to prevent SB68k from trying to set up a vector table on the target machine.

10

You can prevent SB68k from creating an interrupt vector table by using the /i option. The format
of this option is:

/i

If you use the /i option and your SB68k program must use interrupts, you will have to add SB68k
code to prepare the appropriate RAM-based jump table. Refer to the Motorola literature on your
target MCU for details.

Note that the /i option suppresses ALL changes to the vector area, including the reset vector.

SB68k programs compiled with the /i option must use some resident firmware to transfer control to
the start of the program.

11

6. Environment variables

SB68k supports the use of two DOS environment variables. These variables can help ease
development of multiple projects in SB68k.

When SB68k begins execution, it checks for the existence of two environment variables,

SB68K INCLUDE and SB68K LIBRARY. SB68k assumes SB68K INCLUDE contains the path
to a directory containing custom INCLUDE files. Similarly, SB68k assumes SB68K LIBRARY
contains the path to a directory containing the standard SB68k library files. If either of these
environment variables does not exist, SB68k defaults to the current directory when searching for
any corresponding files.

You can assign a path to either of these variables in your AUTOEXEC.BAT file, using DOS' SET
command.

Example:

set SB68K_INCLUDE=C:\MYPROJ\INC
set SB68K_LIBRARY=C:\SBASIC68\LIB

These commands assign paths to the SB68K INCLUDE and SB68K LIBRARY environment
variables.

12

7. Library files

SB68k normally compiles all operations into in-line assembly language source for the target
machine. In some cases, however, a function may translate into so many lines of source code that
inserting the code in-line each time the function is used would yield an unacceptably large output
file.

In these cases, SB68k automatically appends one or more files of assembly language source code to
the output file. These files, called library files, contain pre-written source code for performing the
corresponding operation.

For example, most versions of the 68000 require several lines of assembly language code to
perform a 32-bit by 32- bit multiplication. Rather than insert this large section of assembler source
every time your program uses the * operator, SB68k instead compiles a JSR to a library assembly
language subroutine.

At the end of your output file, SB68k then includes the library file containing the source code for
this multiplication subroutine.

SB68k only includes library files when necessary, based on your source code.

One library file deserves special mention. SB68k always includes the library file START68K.LIB
during each compilation. The assembly language source in this file will be executed each time the
target machine begins running your SB68k program. In fact, the code in this file is executed
immediately following system reset.

If your SB68k application requires changes to the startup library code, you can customize
START68K.LIB to include those changes.

Note, however, that you should not change any of the labels provided in the original version of

START68K.LIB. Other parts of the SB68k system require that those labels exist, and that they be
named exactly as they are.

13

8. Features

SB68Kk is a free-form Basic that supports enough control structures, such as IF-ELSE-ENDIF, that
line numbers should not be necessary. It does not expect nor support line numbers; if you use
them, you will get a syntax error back.

SB68k does not support GOTO.

SB68k generates code that uses the target's largest commonly available accumulator(s). This
means that for the 68000, SB68k uses 32-bit variables and 32-bit math operations.

SB68k compiles down to fairly concise assembly language. It does no optimization from source
line to source line. That is, it does not maintain a history of register usage and attempt to optimize
out redundant operations. Even so, the generated code is quite compact, and will run fast enough to
accommodate most projects.

For those projects that demand higher performance, SB68k allows you to embed assembly
language source directly in your program. These assembly statements are passed intact to the target

assembler.

SB68k is case-insensitive with regard to statements, labels, variables, and constants. The variable
FOO may also be referred to as foo, Foo or fOo.

SB68k has built-in maximums for several compilation elements such as variables and labels. These
limits are:

* Depth of FOR-NEXT nesting is 25. No one should EVER hit this limit. Compilation parsing
stack is limited to 60 atoms. This is an internal limit of the compiler that determines how
complex a statement the compiler can parse. Again, no one should ever hit this limit.

* Compilation data stack is limited to 60 cells. This should be sufficient for all programs.

¢ Maximum number of variables that a program can declare is 400. Note that an array, no matter
how large, counts as one variable.

e Maximum number of constants is 400. Maximum number of labels is 500.

SB68k supports the following Basic functions and operators:

rem starts an SB68k comment

! (single quote) starts an SB68k comment

include includes other SB68k source files

org changes location of generated code

data stores 32-bit values in a ROM table

dataw stores 16-bit values in a ROM table

datab stores 8-bit values in a ROM table

copy copies a block of data between two memory areas

14

= assignment

+ addition
- subtraction; unary negation
~ 1's complement
integer multiply (signed)
/ integer divide (signed)
mod integer modulus
and boolean AND
or boolean OR
XOor boolean XOR

= test, equal
test, less-than

> test, greater-than

<>, >< test, not-equal

<*x test, unsigned less-than

>* test, unsigned greater-than

rshft () shift argument 1 bit to right

1shft () shift argument 1 bit to left

rroll () rotate argument 1 bit to right

lroll () rotate argument 1 bit to left

rshftb () shift argument 1 byte to right

1shftb () shift argument 1 byte to left

rrollb () rotate argument 1 byte to right

lrollb () rotate argument 1 byte to left

min () returns smaller of two values (signed)
max () returns larger of two values (signed)
minu () returns smaller of two values (unsigned)
maxu () returns larger of two values (unsigned)
peek () read 32-bit contents of an address
peekw () read 1l6-bit contents of an address
peekb () read 8-bit contents of an address
poke write 32-bit value to an address
pokew write 16-bit value to an address
pokeb write 8-bit value to an address

swapw exchange words (l6-bits) within a value
for starts a FOR-NEXT iterative loop

to signed test in a FOR-NEXT loop

to* unsigned test in a FOR-NEXT loop

step optional part of a FOR-NEXT loop

next ends a FOR-NEXT loop

if starts an IF-ELSE-ENDIF structure
else part of an IF-ELSE-ENDIF structure
elseif part of an IF-ELSE-ENDIF structure
endif ends an IF-ELSE-ENDIF structure

while starts a WHILE-WEND structure

wend ends a WHILE-WEND structure

do starts a DO-LOOP structure

while optional part of a DO-LOOP structure
until optional part of a DO-LOOP structure
loop ends a DO-LOOP structure

waitwhile wailts while an I/0 condition exists
waituntil wailts until an I/0 condition occurs
select starts a SELECT-CASE structure

case starts a CASE clause within a SELECT-CASE
endcase ends a CASE clause

endselect ends a SELECT-CASE structure

exit leaves loop structure early

print
printu
printx
inkey ()
outch
interrupt
const
declare
asm
endasm
addr ()
push
pop ()
pull ()
place
pick()
drop
interrupts

interrupt level

gosub

usr ()

return
end

output text to the console

output text; numbers print as unsigned

output text; numbers print as hexadecimal

input a character from the console

output a character to the console

marks start of an SB68k ISR

creates a named constant

creates a 32-bit variable or array

marks start of inline assembly language source

marks end of inline assembly language source

returns address of a label, wvariable, or start of an array
pushes a value onto the SB68k data stack

pops a value from the SB68k data stack

synonym for pop ()

change an element in the SB68k data stack

copy an element from the SB68k data stack

remove one or more elements from SB68k data stack

enables or disables system interrupts; also sets lowest allowed

invokes an SB68k subroutine

invokes an SB68k subroutine, returns one value
returns from an ISR or subroutine

ends an SB68k program or ISR

16

9. Remarks

SB68k provides two comment delimiters, for imbedding remarks in your source files. The
traditional REM statement can be used to start a comment at nearly any point in an SB68k program.
You can also use the newer ' (single-quote). All text following a remark delimiter is ignored by the
SB68k compiler.

You can place a comment at the beginning of any line. You can also place a comment at the end of
any complete SB68k statement. You cannot place a comment within an SB68k statement.

Example:

rem This is a legal comment
! So is this

a=c¢+ 5 ' this is a legal comment, too
a =c¢ + ' this is illegal!

Note that you can always insert a blank line anywhere in your source; SB68k always ignores blank
lines.

17

10. Include files and the INCLUDE statement

SB68k supports the use of include files to help you organize and maintain your projects. Include
files are simply files containing SB68k source code for commonly-used functions.

You can insert any include file into your SB68k program file by using the INCLUDE statement.
SB68k will automatically open the named file, compile the code it contains, then resume compiling
your original file.

For example, you might keep a single file of SB68k code for controlling servo motors. You can
force SB68k to include the code in this file (call it servo.bas) in your current program file, by using
the INCLUDE statement:

include "servo.bas"

Note the use of double-quotes around the file name.

You can, if you like, supply a full pathname with the file name. For example:

include "c:\sbasic\inc\servo.bas"

forces SB68k to search only the supplied path for the file servo.bas. If SB68k cannot find the file
using this path, it will report an error.

You can also, if you wish, set the DOS environment variable SB6SK INCLUDE to contain the full
pathname of a directory dedicated to holding your include files. If SB68K INCLUDE exists,
SB68k will search that directory for any files named in INCLUDE statements, provided that the file
name does not itself contain any path information. If SB68K INCLUDE does not exist, SB68k
defaults to searching the current directory.

To summarize:

1. If the file name does not contain any path information, SB68k checks for the existence of a DOS
environment variable, SB6SK INCLUDE. If SB68K INCLUDE exists, SB68k searches the path
in that variable for the named file. If SB68K INCLUDE does not exist, SB68k searches the
current directory.

2. If the file name contains path information, SB68k checks only the given path, regardless of the
existence of SB68K INCLUDE.

Rule 2 above means that you can force SB68k to search the current directory, even if
SB68K INCLUDE exists, by using an INCLUDE statement of the form:

include ".\test.bas"
Here, the backslash serves as path information, forcing SB68k to search the full path given in the
INCLUDE statement.

18

11. Labels

SB68k does not support line numbers, but it does support line labels. Line labels consist of a string
of up to 20 characters, including a required terminating colon (:)

Labels must begin with an alphabetic character or an underscore (' '); remaining characters in a
label can also include digits. Any text following a line label definition is ignored.

NOTE
Though legal, starting labels with an underscore can cause obscure
problems if you embed assembly language in your SB68k source file.
See the section below on the ASM statement and the ENDASM
statement, regarding references to SB68k variables from within an

ASM block.
Example:
foo: ' define the line label foo
a =3 ' write a value to A
return ' return from this subroutine
main: ' start of the main program

gosub foo ' execute the subroutine foo

This example shows several important points. Note that labels require a trailing colon only when
they are defined, but not when they are referenced. Thus, the GOSUB to FOO doesn't need a colon
at the end of FOO.

Also, every SB68k program MUST contain the line label MAIN, even if it contains no other line
labels. The startup code that supports SB68k on the target system always jumps to the label MAIN
to begin execution. If your program does not have a MAIN, the compiler will report an error.

Note that the line label MAIN does not mark the first line of your program's code; it only marks the

starting point for execution of your program following reset. You are free to place the line label
MAIN anywhere in your file you deem appropriate.

19

12. Numeric constants

SB68k supports decimal, hexadecimal, and binary numeric constants. To enter a hexadecimal
number in an SB68Kk file, use the $ prefix. To enter a binary number in an SB68k file, use the %

prefix.

Hexadecimal numbers may contain the characters 0-9, A-F, and a-f. Binary numbers may contain
the characters 0 and 1.

The following examples show how to enter different numeric
constants:

foo 1234
bar = $1234
alpha = %$10000
cat = $12 + 34

assigns decimal 1234 to FOO
assigns hexadecimal $1234 to BAR
assigns decimal 16 to alpha

adds hex $12 to decimal 34

SB68k also supports ASCII character constants. To enter an ASCII constant, enclose the character
in single-quotes. The value used will consist of the binary equivalent of the quoted character. An
ASCII constant always consists of eight bits; the upper eight bits of the variable involved will
always be 0.

For example:

foo = 'a' ! assigns lowercase-A (97) to foo

20

13. Variables, arrays, and named constants

SB68k requires you to declare the names of all variables used in your program. You declare
variables with the DECLARE statement. For example,

declare foo

creates the SB68k variable FOO.

Variable names must begin with an alphabetic character or an underscore (' '); remaining characters
in a variable name can also include digits.

NOTE
Though legal, starting variable names with an underscore can cause
obscure problems if you embed assembly language in your SB68k
source file. See the section below on the ASM statement and
ENDASM statement, regarding references to SB68k variables from
within an ASM block.

All variables use four bytes of RAM (32 bits). The first variable defined is always located at
assembler address VARBEG. Variables are assigned addresses based on the order of their
declarations.

You must declare a variable before your code can reference that variable. This means that you will
usually place all DECLARE statements in a block at the beginning of your SB68k source file.

Note that, unlike traditional Basics, SB68k does not automatically initialize all variables to zero.
The value of any variable following system reset is unknown! Your SB68k program must provide
any needed variable initialization.

SB68k also supports single-dimension arrays, or vectors. Each element in a vector array occupies
one 32-bit location (four bytes). You use the DECLARE statement to define a vector array in much
the same way you use it to define a simple variable. For example:

declare foo(5H)

defines the vector array FOO, consisting of five sequential 32-bit locations. The first element in
any vector array is always element zero. Thus, FOO in the above example consists of the five
elements named FOO(0) through FOO(4).

SB68k also supports double-dimension arrays. Each element in a 2D array occupies one 32-bit
location (four bytes). You use the DECLARE statement to define a 2D array in much the same way
you use it to define a vector array. For example:

declare foo(5,4)

21

defines the 2D array FOO, consisting of 20 sequential 32-bit locations. The first element in a 2D
array is always element (0,0). Thus, FOO in the above example consists of the 20 elements named
FOO(0,0) through FOO(4,3). When using 2D array, remember that the elements are arranged in
memory with the first subscript incrementing faster. Thus, the map for the 2D array FOO would
look like:

FOO(0,0), FOO(1,0), FOO(2,0), ... FOO(2,3), FOO(3,3),
FOO (4, 3)

You can use arrays anywhere a variable name would be legal, including the left side of an
assignment operator. For example:

declare foo(5,4)

foo(2,0) = 100/n

SB68k allows you to create named 32-bit constants. You create constants with the CONST
statement. For example:

const bar = 34

creates the SB68k constant BAR with a value of 34. CONST statements may refer to previously
defined constants, and may include any number of math operations. CONST statements may not,
however, refer to variables, as the contents of variables are not known at compile-time. If you refer
to a variable inside a CONST statement, the compiler will report an error.

You must create a constant before your code can reference that constant. This means that you will
usually place all CONST statements in a block at the beginning of your SB68k source file.

Note that named constants do not consume any space in the final executable file. They only exist
as equates in the assembler source file generated by SBasic.

22

14. Data tables

SB68k allows you to store tables of data in ROM, for access by your program at run-time. This
technique is used often for storing pre-defined information, such as lookup tables for motor speeds
or mathematical functions.

To store 32-bit values in a data table, use the DATA statement. Follow the DATA statement with a
list of values to be written into ROM. For example:

data o, 1, 2, 3 ' store 4 32-bit values in table

SB68k will generate suitable assembly language source to store the values into code memory at the
current location. For the 68000, this example would generate assembly language source similar to:

de.1l 0,1,2,3

To store 16-bit values in a data table, use the DATAW statement. Follow the DATAW statement
with a list of values to be written into ROM. For example:

dataw 1234, 5678, $1111, $4321 ' store 4 16-bit values in table

SB68k will generate suitable assembly language source to store the values into code memory at the
current location. For the 68000, this example would generate assembly language source similar to:

dc.w $04d2,$162e,$1111,$4321

To store 8-bit values in a data table, use the DATAB statement. Follow the DATAB statement
with a list of values to be written into ROM. For example:

datab Sff, 123, 256, 'z' ' store 4 8-bit values

SB68k will generate suitable assembly language source to store the values into code memory at the
current location. For the 68000, this example would generate assembly language source similar to:

dc.b Sff,$7b,$00,$7a

Note that the third value appears in the SB68k source as 256, but is converted to 0 in the output
source file. This happens because SB68k only writes the low eight bits of a DATAB list item to the
output file.

In order to access items within a DATA (or DATAB or DATAW) table, you must provide a label
at the start of the list. Your program can then use this label to find the first item in the list. For
example:

declare n
declare sum
foo:

data 1,2,3,4
data 5,6,7,8

23

main:
sum = 0
for n =0 to 7
= sum + peek(addr(foo) + n * 4)
next
end

This code uses the ADDR() function to locate the start of the data table at label FOO. The list item
of interest is found by adding an offset value (N * 4) to the address of FOO. The PEEK() function
then reads the 32-bit value stored at that address in the table.

To use the above technique with a DATAW table, you must change PEEK() to PEEKW() and
replace the multiplication by 4 in the offset calculation with a multiplication by 2. To use the
above technique with a DATAB table, you must change PEEK() to PEEKB() and remove the
multiplication by 4 in the offset calculation.

Note that SB68k writes a DATA table in place. That is, the table appears in exactly the same
position in the output file as it appears in your SB68k source file.

This means you cannot place a DATA table inside a block of executable code. If you do, the target
MCU will eventually try to execute the DATA table as if it were machine code, and your program

will crash.

For that reason, put your DATA statements outside of executable blocks. A good place to write
DATA statements is immediately before the MAIN: label in your program.

24

15. COPY statement

SB68k provides the COPY statement, used to move data from one memory area to another. This
proves very handy when you need to initialize a large array. Format of the COPY statement is:

copy from, to, count

where FROM is the address of the data block, TO is the address of the destination area, and

COUNT is the number of BYTES (not variables) to move.

For example, assume you need to initialize the array FOO with a table of data, already existing in a

block of DATA statements. You would use statements similar to:

declare foo(10)

table:
data $1234, $5678, S$1, $2, $3, s$4
data $5, $6, $7, $8

copy addr (table), addr(foo), 40

This code uses the ADDR() function to locate the addresses of the TABLE data block and the FOO

array, then moves 40 bytes of data from the table to the array.

Note that COPY cannot be used to move data into an area of memory that overlaps the source area.
Should you need to perform this operation, use two COPY statements, first to move the data into an

intermediate area, then to move it into the final destination area.

25

16. Operators
SB68k supports all of the common arithmetic operators:

= (equal-sign) sets the value of a variable to the result of a calculation. This is the traditional
assignment operator. All assignments store a 32-bit value into a variable.

+ (plus-sign) performs 32-bit addition.

- (minus-sign) performs 32-bit subtraction. It also acts as the unary negation operator.

~ (tilde) performs 32-bit one's complement. This is logically identical to N XOR $fffftfft.
* (asterisk) multiplies two 32-bit signed values, yielding a 32-bit product.

Run-time support for SBasic68k's multiplication operator on a 68000 MCU relies on a library file,
included with the SB68k distribution. This file is automatically added to the assembler source file
created by SBasic68k, whenever your program invokes the multiplication operator.

Note that this library file is only included if your code uses a multiply operation. You can create
smaller executables by eliminating any use of the multiplication operator, if appropriate.

/ (forward-slash) divides a 32-bit dividend by a 32-bit divisor, yielding a 32-bit quotient; the
remainder is lost.

Run-time support for SBasic68k's division operator on a 68000 MCU relies on a library file,
included with the SB68k distribution. This file is automatically added to the assembler source file
created by SBasic68k, whenever your program invokes the multiplication operator.

Note that this library file is only included if your code uses a divide operation. You can create
smaller executables by eliminating any use of the division operator, if appropriate.

MOD (modulus) divides a 32-bit dividend by a 32-bit divisor, yielding a 32-bit remainder; the
quotient is lost.

Run-time support for SBasic68k's division and MOD operators on a 68000 MCU relies on a library
file, included with the SB68k distribution. This file is automatically added to the assembler source
file created by SBasic68k, whenever your program invokes either operator.

Note that this library file is only included if your code uses a division or MOD operation. You can
create smaller executables by eliminating any use of these operators, if appropriate.

Examples:
alpha = foo + bar ' adds two wvariables
beta = gamma - $1234 ' subtracts a hex constant

26

varl = 3 * var?2 ' multiplies a variable
c = delta / 88 ' divides a variable by a constant
m = gamma MOD 10 ' takes the modulus function

SB68k also supports most of the common Boolean operators:
AND performs the logical AND of two 32-bit values.
OR performs the logical inclusive-OR of two 32-bit values.

XOR performs the logical exclusive-OR of two 32-bit values.

Examples:
alpha = foo AND $7f ' leaves only low 7 bits of foo
beta = alpha OR 255 ' sets all low 8 bits of alpha
gamma = beta XOR Sffffffff ' inverts all bits in beta

27

17. Comparisons

SB68k supports a wide range of comparisons, for use with control structures such as IF-ELSE-
ENDIF and DO-LOOQOP. All comparisons test two 32-bit values and return TRUE if the values meet
the comparison test.

= (equal-to) yields TRUE if the two 32-bit values are equal.

< (less-than) yields TRUE if the first 32-bit value is less than the second 32-bit value. This is a
signed comparison; $80000000 is less than 0.

> (greater-than) yields TRUE if the first 32-bit value is greater than the second 32-bit value. This is
a signed comparison; 0 is greater than $80000000.

<> (not-equal-to) yields TRUE if the two 32-bit values are not equal.
>< (not-equal-to) yields TRUE if the two 32-bit values are not equal.

<= (less-than-or-equal-to) yields TRUE if the first 32-bit value is less than or equal to the second
32-bit value. This is a signed comparison.

>= (greater-than-or-equal-to) yields TRUE if the first 32- bit value is greater than or equal to the
second 32-bit value. This is a signed comparison.

<* (less-than unsigned) yields TRUE if the first 32-bit value is less than the second 32-bit value.
This is an unsigned comparison; 0 is less than $80000000 unsigned.

>* (greater-than unsigned) yields TRUE if the first 32-bit value is greater than the second 32-bit
value. This is an unsigned comparison; $80000000 is greater than 0 unsigned.

SB68k does not allow you to store the result of a comparison in a variable. SB68k also does not

allow multiple comparisons in a single operation. Control structures such as IF-ELSE-ENDIF can
use only one comparison in the IF- clause.

28

18. Control structures

SB68k supports several structures for controlling the flow of your program. Used properly, these
control structures can improve the quality of your program design, making your source file easier to
read, understand, and debug.

Some of the following control structures allow or require a comparison clause. Such clauses
consist of an expression, a comparison operator, and a second expression. The comparison clause
is evaluated as your program runs and, depending on the evaluation, control transfers within the
control structure.

Example:

while a < 5
= a +

a 1

wend

Here, the comparison clause "a < 5" determines whether control remains in the WHILE-WEND
loop or transfers to the line following the WEND statement.

All comparison clauses may contain one and only one comparison operator. Multiple comparisons,
such as:

while a < 5 and c¢c-1 = 3

are illegal and will generate compilation errors.

Note also that you do not enclose comparisons within parentheses. Doing so will result in a
compilation error.

18.1. WHILE-WEND

WHILE-WEND is a conditional loop structure. Control executes all statements between the
WHILE statement and the WEND statement for so long as the comparison in the WHILE clause is
TRUE. When the comparison becomes FALSE, control exits the loop by transferring to the line
following the WEND statement.

Example:

while a < 50 ' loop while a is less than 500
a = a + ' increment a
wend ' end of loop

0
1
This example loops for so long as the value in A is less than (signed) 500.

Note that WHILE-WEND is obsolete, even though SB68k still supports it. WHILE-WEND has
been replaced by the more flexible DO-LOOP structure.

29

18.2. DO-LOOP

DO-LOOP is a loop structure that may be either conditional or unconditional. Control executes all
statements between the DO statement and the LOOP statement. You may include an optional
comparison clause in either the DO statement or in the LOOP statement.

Examples:
do ' start of a do-loop
gosub process ' do something useful
loop ' end of loop

The above example will loop forever, since it has no comparison clause. An endless loop is often
used as the core of a large program.

do while a < 500 ' loop while a is less than 500
a=a+1 ' increment a
loop ' end of loop

This example mimics the WHILE-WEND loop above.

do until a > b ' loop until a is greater than b
a=a+ c/2 ' change value of a
loop ' end of loop

The above example loops until the value in A is greater (signed) than the value in B.

do ' start of a do-loop
a = peekb($1000) ' read a value from an I/0 port
loop while a = 0 ' loop while a equals 0

The above example loops for so long as the value read from the I/O port equals 0.

do ' start of a do-loop
a = peekb($1000) ' read a value from an I/0 port
loop until a = S$ff ' loop until a equals S$ff

The above example loops until the value read from the I/O port equals $ff.

The DO-LOOP provides great flexibility for loop control, because you can control when the
comparison occurs in the loop. If you place the comparison in the DO statement, the test is
performed before the body of the loop is executed. By placing the comparison in the LOOP
statement, you can force the body of the loop to execute before the comparison is performed.

18.3. FOR-NEXT
The FOR-NEXT structure creates an iterated loop. This means that a selected variable, called the
index variable, controls exactly how many times the loop is executed.

Control executes all statements between the FOR statement and the NEXT statement until the value
in the index variable EXCEEDS a specified limit. The index variable is always tested at the top of

30

the loop. The comparison is signed for the usual FOR-NEXT loop, although you can use an
unsigned comparison if necessary.

Example:

for n = 1 to 10
a=a+n
next

Here, the variable N starts with a value of one. The statement inside the loop is executed ten times,
with N incrementing each time the NEXT statement executes.

Eventually, N holds the value 11 when the FOR statement executes. At this point, the statement
inside the loop is not executed. Instead, control passes directly to the statement following the
NEXT statement.

Sometimes you must use a limit larger than $7ffftfff. Since SB68k uses 32-bit math, numbers
larger than $7fffffff are treated as negative in signed comparisons. Therefore, the following
example:

for n = 1 to $90000000

a=a+1
next

will exit immediately, as SB68k treats $90000000 as a negative number, and 1 is already greater
than a negative number.

To change the above example to use an unsigned comparison, use the TO* operator. The above
example becomes:

for n = 1 to* $90000000

a=a+1
next

This loop will execute the expected $90000000 times.

Remember to leave room on your limit value so that the index variable can actually exceed the
limit. For example:

for n = 1 to* Sffffffff
a=a+1
next

This loop will never end, since the value of N can never exceed the limit of $ffffffff.
Note that it is legal (but not good practice) to modify the index variable inside the loop.

Normally, the index variable increments by one each time control reaches the bottom of the loop.
You can change the value by which the index variable increments with the STEP operator.

31

Example:

for n =1 to 10 step 2
a=a+n
next

Here, the variable N starts with a value of one, and increments by two each time control reaches the
NEXT statement. Thus, N takes on the values 1, 3, 5, 7, 9, and 11. When N becomes 11 at the top
of the loop, control immediately passes to the statement following the NEXT statement.

18.4. SELECT-CASE

The SELECT statement marks the beginning of a SELECT-CASE control structure. The SELECT-
CASE structure allows your code to select one option out of a list, based on the value of an
argument, called the selector. Only the CASE statement associated with the matching selector
value, if any, is executed.

The general format of a SELECT-CASE structure is:

use value of FOO as selector
if FOO = 123...

select foo !
|l
' execute this code
|l
|l

case 123

endcase end of case 1

if FOO = 456...
execute this code

case 456

end of case 2
end of select structure

endcase
endselect

This structure replaces the older ON-GOTO construct, and allows creation of code that is easier to
debug and maintain.

The SELECT-CASE structure supports variations for handling special cases. For example:

select foo + 3*j use expression for selector

|l

case 1 ' if selector = 1...

case n ' or N...

case ‘X! ' or ASCII character X...

foo = n + 3 ' change FOO

endcase ' end of first case

case 2 ' if selector = 2...

case 3 ''or 3...

foo =n + 2 ' change FOO

endcase ' end of second case

foo = 4 ' default action...
endselect

This example shows the use of multiple CASE statements within a CASE clause. This feature
comes in handy if your code must perform the same function for a group of selector values.

32

This example also shows the method for performing a default action. The line FOO = 4 executes if
no CASE clause matches the selector value. Note that the default clause does not require an initial
CASE statement or a terminating ENDCASE statement.

Also, this example shows that the selector value for this example is an expression. You can use any
valid algebraic expression as the selector value in a SELECT statement.

Note, however, that CASE statements only accept a numeric value, a constant, or a variable as an
argument. You cannot use an algebraic expression as the argument to a CASE statement! Doing
so will generate a compiler error.

Finally, this example shows that you can change the selector value within a CASE clause, without
affecting the actions of the SELECT statement. This is because control passes to the ENDSELECT
statement immediately after executing the code in any CASE clause. Thus, any following CASE
clauses do not evaluate the changed selector value.

18.5. EXIT
The EXIT statement allows you to leave a looping structure before the terminating condition, if
any, is reached.

Control automatically jumps to the end of the currently active looping structure.

You can also use EXIT to leave a SELECT-CASE structure. In this case, control will jump to the
corresponding ENDSELECT statement.

Example:

for n = 1 to 10
if n =5
exit
endif
next

Here, control automatically leaves the FOR-NEXT loop when N equals 5.

Note that you can use EXIT inside DO-LOOP, WHILE-WEND, FOR- NEXT, and SELECT-CASE
structures. You cannot use EXIT outside of these looping structures.

18.6. IF-ELSE-ELSEIF-ENDIF

The IF-ENDIF structure selectively executes a block of statements, depending on a comparison at
the beginning of the structure. If the comparison is TRUE, the statements are executed, otherwise
they are not.

Example:

33

Here, the middle statement is executed only if the value of A is $12.

You can use the ELSE modifier to provide greater flexibility to the IF-ENDIF structure.
Statements between the ELSE statement and the ENDIF statement are only executed if the
comparison in the IF statement is FALSE.

Example:
if a = 8§12
b =Db * 2
else
b = -b
endif

Here, B is set to -B only if A is not $12.

Note that you do not include parentheses around the comparison clause of any structure. Doing so
will cause SB68k to report an error during compilation.

You can also use the ELSEIF modifier to simplify nested IF-ENDIF structures.
Consider the following example, in which three different conditions must be tested:

if a $12
=1

5ol

else
if foo = w+2
n = 3
else
if bar = a+tw

endif
endif
endif

This type of test sequence can be difficult to decipher. Using the ELSEIF
modifier simplifies the structure:

if a = $12
n=1

elseif foo = w+2
n = 3

elseif Dbar = a+tw
n =25

endif

Note that the ELSEIF modifier requires the same type of comparison clause used by the IF
statement.

34

19. Functions and statements
SB68k supports several functions and statements useful for embedded control applications.

Generally speaking, a function returns a value, while a statement does not. All functions contain
parentheses, though not all functions actually need an argument inside the parentheses.

All statements, however, appear without parentheses.

19.1. SWAPW()
The SWAPW)() function exchanges the two 16-bit words of the 32-bit argument. This operation is
useful for sending both halves of a variable to a word-wide I/O port.

Example:
j = $12345678 ' prepare J
pokew ioport, swapw(j) ' send $1234 to I/0 port

19.2. RSHFT() and LSHFT()
The RSHFT() function and LSHFT() function shift the 32-bit argument one bit position, either right
or left. This operation can be used as a fast multiply or divide by 2.

Example:
n = $c0000003 ' initial value of n
n = rshft(n) ' n now holds $60000001
n = lshft(n) ' n now holds $c0000002

Note that the shift functions move the argument one bit in the specified direction, moving a 0 bit
into the vacated position. Thus:

LSHFET ()
RSHFT ()

X <- xXXXXxXXX (32 bits) xxxxxxxx <- 0
0 —> xxxxxxX (32 bits) XXXXXXXX —-> X

19.3. RSHFTB() and LSHFTB()
The RSHFTB() function and LSHFTB() function shift the 32-bit argument one byte position, either
right or left. This operation can be used as a fast multiply or divide by 256.

Example
n = $123456 ' initial value of n
n = rshftb (n) ' n now holds $00001234
n = lshftb (n) ' n now holds $00123400

Note that the shift functions move the argument one byte in the specified direction, moving a $00
byte into the vacated position. Thus:

35

LSHFTB ()
RSHFTB ()

Sxx <- xxxx (4 bytes) xxxx <- $00
$00 -> xxxx (4 bytes) xxxx -> $xx

19.4. RROLL() and LROLLY()
The RROLL() function and LROLL() function rotate the 32-bit argument one bit position, either
right or left. This operation can be used as part of a pulse-width modulation (PWM) function.

Example:
n = %1111 ' initial value of n
n = rroll(n) ' n now holds $80000007
n = lroll(n) ' n now holds $0000000f

Note that the roll functions move the argument one bit in the specified direction, placing the rotated
bit into the position at the opposite end of the word. Thus:

o <—————— + o S—————— +
| | = LROLL () | | = RROLL ()
xXXxXxX (32 bits) xxxx xXXxXxX (32 bits) xxxx

19.5. RROLLB() and LROLLB()
The RROLLB() function and LROLLB() function rotate the 32- bit argument one byte position
(eight bits), either right or left. This operation can be used with byte-wide I/O functions.

Example:
n = $123456 ' initial value of n
n = rrollb (n) ' n now holds $56001234
n = lrollb (n) ' n now holds $00123456

Note that the roll functions move the argument one byte in the specified direction, placing the
rotated byte into the position at the opposite end of the word. Thus:

- <——————- + - Se————— +

| | = LROLLB () | | = RROLLB ()
xxxX (4 bytes) xxxx xxxxX (4 bytes) xxxx

19.6. PEEK()

The PEEK() function returns the 32-bit value stored in a specific address. This is the usual function
for reading 32-bit I/O ports.

Example:

a = peek($1000) ' get 32-bit value from address $1000

You can make your use of PEEK easier to understand if you combine it with named constants
defined with the CONST statement.

Example:

36

const porta = $1000 ' define address of port A
a = peek(porta) ' get 32-bit value at port A

19.7. PEEKW()
The PEEKW)() function returns the 16-bit value stored in a specific address. This is the usual
function for reading 16-bit I/O ports.

Example:
a = peekw($1000) ' get 16-bit value from address $1000

You can make your use of PEEKW easier to understand if you combine it with named constants
defined with the CONST statement.

Example:

const porta = $1000 ' define address of port A
a = peekw(porta) ' get 16-bit value at port A

19.8. PEEKB()
The PEEKB() function returns the 8-bit value stored in a specific address. This is the usual
function for reading 8- bit I/O ports.

Example:
a = peekb($1020) ' get 8-bit value from address $1020

You can make your use of PEEKB easier to understand if you combine it with named constants
defined with the CONST statement.

Example:

const portb = $1020 ' define address of port B
a = peekb (portb) ' get 8-bit value at port B

Recall that the = (assignment) operator writes a 32-bit value to a variable. In the case of the
PEEKB and PEEKW functions, the upper bits of the variable will always be written as 0. Thus,

using PEEKB to read a value of $45 in the above example results in storing $00000045 in variable

A.

19.9. POKE statement
The POKE statement writes a 32-bit value to a specific address. This is the usual statement for
writing data to 32-bit I/O ports.

Example:

poke $1000, a ' write value in A to address $1000

37

Note the difference in syntax between the PEEK() function and the POKE statement; PEEK uses
parentheses around the address argument, while POKE does not use parentheses.

You can make your use of POKE easier to understand if you combine it with named constants
defined with the CONST statement.

Example:

const porta = $1000 ' define address of port A
poke porta, a ' write value in A to port A

19.10. POKEW statement
The POKEW statement writes a 16-bit value to a specific address. This is the usual statement for
writing data to 16-bit I/O ports.

Example:

pokew $1000, a ' write low 16 bits in A to addr $1000

Note the difference in syntax between the PEEKW() function and the POKEW statement; PEEKW
uses parentheses around the address argument, while POKEW does not use parentheses.

You can make your use of POKEW easier to understand if you combine it with named constants
defined with the CONST statement.

Example:

const porta = $1000 ' define address of port A
pokew porta, a ' write low 16 bits in A to port A

19.11. POKEB statement
The POKEB statement writes an 8-bit value to a specific address. This is the usual statement for
writing data to 8-bit I/O ports.

Example:
pokeb $1000, a ' write low 8 bits in A to addr $1000

Note the difference in syntax between the PEEKB() function and the POKEB statement; PEEKB
uses parentheses around the address argument, while POKEB does not use parentheses.

You can make your use of POKEB easier to understand if you combine it with named constants
defined with the CONST statement.

Example:

const porta = $1000 ' define address of port A
pokeb porta, a ' write low 8 bits in A to port A

38

19.12. WAITWHILE and WAITUNTIL statements

The WAITWHILE statement and WAITUNTIL statement provide high-speed testing loops, for use
with 8-bit I/O ports. You can use these single statements to replace larger, less efficient wait-loops
built from the PEEKB() function.

The WAITWHILE statement loops while the contents of an 8-bit port, ANDed with an 8-bit mask,
yields a non-zero result.

The WAITUNTIL statement does the opposite; it loops UNTIL the contents of an 8-bit value,
ANDed with an 8-bit mask, yields a non-zero result.

Example:

waitwhile $1000, $40 ' wait while bit 6 of $1000 is high

This statement repeatedly reads the 8-bit value at address $1000 and ANDs that value with $40, for
so long as the result is not zero. When the result equals zero, the loop terminates.

Example:

waituntil j, n ' wait until mask of value at j is not O

This statement repeatedly reads the 8-bit value at the address contained in variable J and ANDs that
value with the low eight bits in variable N, until the result is not zero. When the result is not zero,
the loop terminates.

You must be aware of a few characteristics of the WAIT loops. The first argument is always
treated as an address, even if you use a variable. In the second example above, the loop does not
test the value in J, it uses the value in J as the address to test.

Second, the WAIT statements always test an 8-bit address; you cannot test a 16-bit I/O port with
these statements.

Also, the WAIT statements always use the low eight bits of the mask argument. Thus, if you
specify a variable as the mask value, the WAIT statements will automatically use just the low eight
bits in the loop test.

Finally, you can improve the speed of the generated code by using only constants, numbers, or
variables as arguments to these statements. Using an argument that contains math or logical
operations will generate larger, slower test loops.

Example:
waitwhile j+4, n/g ' this runs slowly

will run slowly, since the two math operations will be performed inside each test loop. A better
way to write this is:

39

adr = j+4 ' calc the address
mask = n/g ' calc the mask
waitwhile adr, mask ' now do the loop

19.13. ADDR()
The ADDR() function returns the address of a specified label or variable.

Example:

a = addr (MyLabel) ' put address of MyLabel in A

You can use the ADDR() function to locate the first element in an array. To do this, simply leave
off the parentheses when supplying the array's name. For example:

declare foo(5H)

a = addr (foo)
causes A to contain the address of FOO(0).

You cannot use ADDR() to calculate the address of a selected array element; if you include a
subscript after the array name, the compiler will report an error in the ADDR() function.

This isn't really a problem, though, since all array elements occupy four bytes. For example:
a = addr (foo) + n * 4

causes A to contain the address of FOO(N). It does this by finding the address of FOO(0), then
adding four to thataddress for each element named in N. Thus, if N =2, A will hold the address of
FOO(2).

See the discussion below on the INTERRUPT statement for a detailed example of using the
ADDR() function.

19.14. PRINT, PRINTU, and PRINTX statements

SB68k supports a limited PRINT statement. SBasic68k's PRINT statement sends characters to a
default output device, based on the target system. This output device is platform-dependent, and
you will need to modify the outch68k.lib file so it handles the hardware on your system properly.

SB68k supports the following variations of the PRINT statement:

print "a constant string followed by a CR"

print "a string followed by a space";

print "a string followed by a TAB character",

print ' prints a blank line

print foo ' prints the value of foo

print "FOO ="; foo ' prints a string, then a wvalue
print a; b; c¢ ' prints three values

Additionally, SB68k supports two statements similar to PRINT that print values in slightly different
formats. The PRINTU statement prints any values in unsigned format and the PRINTX statement

40

prints any values in hexadecimal characters. The PRINTU and PRINTX statements behave exactly
the same as the PRINT statement with regard to spacing, tabs, and quoted strings.

For example:

print "-1 ="; -1 ' prints -1 = -1
printu "-1 = "; -1 ' prints -1 = 4294967295
printx "-1 = "; -1 ' prints -1 = FFFFFFFF

SB68k also supports the C language's escape character for embedding special characters within a
PRINT string. You can embed any of the following special characters inside a PRINT string:

"\n" inserts a newline ($0a)

"\r" inserts a carriage-return ($0d)
"\f" inserts a form-feed ($0c)

"\a" inserts an alert ($07)

"\b" inserts a backspace ($08)

"\t" inserts a horizontal tab ($09)
"\v" inserts a vertical tab (S$0b)
"\\" inserts a backslash

For example:

print "Hello, world!\n\r\a";

prints the string "Hello, world!" followed by a line-feed, a carriage-return, and a bell.

Run-time support for SBasic's PRINT statements relies on several library files, included with the
SB68k distribution. These files are automatically added to the assembler source file created by
SBasic68k, whenever your program invokes a variation of the PRINT statement.

You may modify the PRINT statement library routines, if desired, to create support for other output
devices. However, you must keep the names of all subroutines defined inside a library file
unchanged.

This is because the assembler source created by SB68k uses fixed names for library functions. If
you change the names of the library routines, the assembler will report an undefined label error
when it tries to find the library subroutines.

Note that these library files are only included if your code uses a PRINT statement. You can create
smaller executables by eliminating any use of the PRINT statement, if appropriate.

NOTE
Your code must issue any setup instructions necessary to prepare the
default I/O port for use with the PRINT statements. These are
generally platform-dependent, and require that you have a good
working knowledge of your target 68000 system.

19.15. INKEY()

41

SB68k supports a version of the INKEY() function. You can use INKEY/() to receive characters
from a default input device, based on the target system.

Unlike the INKEY() function in traditional Basics, SBasic's version does not expect or allow an
argument.

If no character was received from the console, INKEY() returns 0. If a character was received,
INKEY() returns a value containing the character in the low eight bits; additionally, INKEY() sets
bit 8 of the returned value. Setting bit 8 allows your program to distinguish between

receiving a NULL (returned value = $0100) and not receiving any character (returned value = $0).

For example:

do

n = inkey ()
loop while n = 0
n = n and S$ff

This code loops until INKEY() returns a valid character from the console. It then strips off the
upper byte, leaving only the received character in N.

INKEY/() sets bit 8 to permit receiving any character, including NULLSs, from the console input
device.

The actual code that supports the INKEY/() function appears in the library file INKEY68K.LIB.
You can edit the supplied INKEY68K.LIB source file to support using INKEY () with other
devices. Take care, however, to ensure your new version of INKEY() preserves the register usage
of the original.

NOTE
Your code must issue any setup instructions necessary to prepare the
default I/O port for use with the INKEY() function.

19.16. OUTCH statement
SB68k provides the OUTCH statement, used to send an 8-bit character directly to the console. This
statement provides the same functionality as the usual Basic phrase:

PRINT CHRS (N) ;

only the OUTCH statement takes much less space, both in the source file and in the final
executable.

For example:

outch n+2

This example adds 2 to the current value in variable N, then sends the low eight bits of the sum
directly to the console device as an ASCII character.

42

The actual code that supports OUTCH appears in the library file OUTCH68K.LIB. You can edit
the supplied OUTCH68K.LIB source file to support using OUTCH with other devices. Take care,
however, to ensure your new version of OUTCH preserves the register usage of the original.

NOTE
The routine contained in OUTCH68K.LIB is used by all console
output statements, including all variations of PRINT. Changing the
routine in OUTCH68K.LIB will also change the behavior of all
variations of PRINT.

OUTCH only sends the low eight bits of its argument to the console. Therefore, OUTCH can be
used directly with the value returned by INKEY(), as shown:

do

n = inkey ()
loop while n = 0
outch n

This code loops until INKEY() returns a non-zero value for N, indicating that a character was
entered at the console. The value in N is then sent back to the console as an echo. Since OUTCH
ignores the upper bytes in N, the character echoes properly; your code does not need to alter the
upper bytes of N before calling OUTCH.

NOTE
Your code must issue any setup instructions necessary to prepare the
default I/O port for use with the OUTCH statement.

19.17. MIN() and MAX()

The MIN() function and MAX() function return the smaller or greater of two arguments,
respectively. Both functions use signed comparisons. You must supply two arguments for either
function, with a comma separator between arguments. You may use either constants or algebraic
expressions for either or both arguments. For example:

print min(-4, 3); "is smaller than"; max (-4, 3)

prints the correct result, as a signed comparison between -4 and 3 will properly show that -4 is
smaller than 3.

19.18. MINU() and MAXU()
The MINU() function and MAXU() function perform the same operations as MIN() and MAX,
except these functions use unsigned comparisons.

For example:

print minu(-4, 3); "is smaller than"; maxu(-4, 3)

will print apparent nonsense, as -4, taken as an unsigned number, is larger than 3.

43

20. Subroutines, GOSUB, and USR()

SB68k supports the traditional Basic concept of subroutines. A subroutine is a block of SB68k
statements that can be invoked, or called, from elsewhere in the SB68k program. After these
statements complete execution, control returns to the calling section.

A subroutine contains a line label marking the start of the subroutine, and at least one RETURN
statement, which transfers control back to the calling section.

20.1. GOSUB statement
The calling section of SB68k code invokes, or calls, a subroutine by means of the GOSUB
statement.

Example:
main:
do ' start of an endless loop
gosub foo ' call subroutine FOO
loop ' loop forever
foo: ' start of subroutine FOO
a=a+1 ' increment A
return ' return to caller

This example, while not very useful, shows how a subroutine is invoked and how it is defined.
Note that you can use a GOSUB to a subroutine before that subroutine is defined in your code.

Note that code inside a subroutine has full access to all variables defined with the DECLARE
statement. Changes made to a variable from inside a subroutine remain in effect when control
returns from that subroutine.

All GOSUBs push a return address onto the target's return stack. SB68k's data stack resides a fixed
distance below the return stack. Excessive nesting of GOSUBs could clobber values on the data
stack.

The address of the subroutine invoked must be either a label or a variable; you may not use
algebraic expressions or functions as addresses for a GOSUB statement.

GOSUBs may pass one or more arguments to the called subroutine. Your code should include the
arguments after the name of the subroutine invoked. For example:

main:
do ' start an endless loop

gosub foo, 3, jJ ' call FOO with two arguments
loop ' loop forever

SB68k automatically pushes all arguments onto the data stack, then calls the named subroutine as
above. Code in the subroutine can use the data stack operators, such as the PICK() function, to test
or change the arguments.

44

Pay careful attention to the order in which SB68k pushes the arguments; they are pushed in the
order given. For example:

gosub foo, 3, jJ

| = This argument is on top of data stack
Fm———————— This argument is next on data stack

This method of passing arguments means that a subroutine may be passed different numbers of
arguments at any time. SB68k performs no checks to see if you have passed the correct number of
arguments.

SB68k similarly does not "clean up" the data stack before returning control to the calling routine.
Your code must update the data stack, if necessary, to remove any arguments. You can choose to
do this within the called routine, or in the calling routine after the subroutine invocation.
Regardless of where you perform this cleanup, it must be done or your program will eventually
corrupt the data stack, likely crashing.

Note that GOSUBs make no allowance for the called routine returning a value. Thus, code that
uses a GOSUB to invoke a subroutine must rely on global variables to check the results of the
GOSUB. This can result in awkward code that can prove difficult to maintain.

20.2. USR(
To return a value to the calling routine, use SBasic's USR() function. The USR() function is similar
to GOSUB, in that it calls an SB68k subroutine. It can also include one or more arguments.

Unlike GOSUB, however, USR() returns a value from the called routine for later use. For
example:

n = usr (foo, 3) ' call FOO, put returned value in N
J usr (bar) ' call BAR with no arguments

Note the difference between USR() and GOSUB. The USR() function, like any other SB68k
function, requires parentheses around its list of arguments.

The address of the subroutine invoked must be either a label or a variable; you may not use
algebraic expressions or functions as addresses for a USR() function.

USR() functions use the data stack in exactly the same manner described above for the GOSUB
statement. Also, the first argument in the USR() list is always the address of the called subroutine.

45

21. RETURN statement

SBasic's RETURN statement serves two functions. You can use it to return control from a
subroutine, and you can use it to return control from an interrupt. For details on processing
interrupts, see the Interrupts section below.

When used in main-line code (code not in an interrupt service routine), RETURN generates the
proper code to return control from a subroutine. For the 68000 CPU, this is an RTS instruction.

Note that SB68k does not check to see if you are using a RETURN statement after a label. A
RETURN statement always generates a Return-from-Subroutine instruction in main-line code,
regardless of where it occurs.

When used in an interrupt section, RETURN generates the proper code to return control from an
interrupt or exception. For the 68000 CPU, this is an RTE instruction.

Additionally, a RETURN statement in main-line code may optionally include a value that will be
returned to the calling routine. For example:

return ' this statement just returns
return J+3 ' this statement returns a value

You may include a RETURN statement with a returned value at any point in your code, even inside
an interrupt section. However, the returned value will only have meaning if it occurs in main-line
code, and even then only if control is returning to a USR() invocation. Returned values to a
GOSUB are ignored, as are returned values from an interrupt section.

Note that returning a value from inside an interrupt section is guaranteed to create obscure bugs,
since the values created by the main-line code will change randomly when the interrupt completes.
Do not try to return a value in the interrupt section unless you are a very experienced programmer
and know exactly what the effects will be.

46

22. Interrupts
SB68k provides support for processing interrupts on the target system.

You can write interrupt service routines (ISRs) directly in SBasic68k, rather than having to drop
down into assembly language for the target machine. However, you must declare a block of SB68k
code as an ISR by using the INTERRUPT statement.

22.1. INTERRUPT statement

The INTERRUPT statement can accept a single argument, which is the address on the target
system to use as an interrupt vector. SB68k will determine the address of the ISR code, then write
that address to the vector address you specify.

Later, when your program is running on the target system, an interrupt will cause control to transfer
to the address stored in the vector address. This in turn starts execution of your SB68k routine.

Example:
interrupt $80 ' use TRAP 0 as the interrupt vector
a = peekb(porta) ' read 8 bits from port A
end ' return from the interrupt

Given the above example, an interrupt that uses $80 as its vector will cause control to jump to the
statement containing the PEEKB() function. This small program will read a value from port A,
then return from the interrupt.

Note that your SB68k routine does not get written to address $80; only the address of your routine
gets written there. If necessary, examine the code created by the compiler to help understand how
SB68k interrupts work.

22.2. END and RETURN statements

You must use an END statement to terminate all ISR code following an INTERRUPT statement.
When it processes this END statement, SB68k compiles the proper Return from Exception
instruction for the target system.

You sometimes need more than one exit from an ISR. If so, simply use the RETURN statement to
exit the ISR. SB68k will automatically compile the proper instruction for leaving the interrupt
section.

Example:

interrupt $f£ffO0

if n = $66
return

endif

n = $10

end

47

In the above example, control leaves the ISR immediately if N contains the value $66. If not, then
N is changed to $10 and control leaves the ISR through the normal END statement.

In rare cases, you may need to combine a line label with the INTERRUPT statement. This can
happen if your target system already has a monitor in ROM that has taken control of the interrupt
vector area. In this case, you will likely need to prepare a jump table for your ISR, so the monitor
can pass control to your ISR by jumping through the appropriate address in your table. To do this,
you should combine a line label with use of the ADDR() function.

Example:
interrupt ' note that no address is used!
timerisr:
if u <> 0 ' if u is not yet O
u=u-1 ' decrement u
endif
pokeb timerreg, $40 ' rearm interrupt
end
main:
pokew memtable, $4ef9 ' write a JMP instruction to memory
poke memtable+2, addr (timerisr) ' write addr of ISR

Here, the code in MAIN modifies the RAM addresses at MEMTABLE. It stores a JMP instruction
($4e19) followed by the address of the jump target.

When the RTI interrupt occurs, the monitor will pass control to address MEMTABLE. The code
left there by MAIN will in turn pass control to the ISR at RTIISR, where the actual interrupt
processing occurs.

Note that the above example does not require an argument to the INTERRUPT statement. This
means SB68k will not create an entry in the target's vector area. The above code, following the
label MAIN, must be used to provide the target processor with access to the ISR.

If necessary, you can use the /i option on SB68k's command line to suppress generation of all

interrupt vectors, including the reset vector. You can use this option if the target MCU already
contains firmware for activating your program following reset.

48

23. INTERRUPTS statement

You can enable or disable system-wide interrupts by using the INTERRUPTS statement. This
statement takes a single argument that is ON to enable interrupts or OFF to disable them. This
statement only affects system-wide interrupts, and its exact implementation varies, based on the
target system.

For the 68000 CPU, INTERRUPTS ON is compiled into an ANDI #$f8ff,SR instruction and
INTERRUPTS OFF is compiled into a ORI #$0700,SR instruction.

Example:

INTERRUPTS ON ' turn on system-wide interrupts

Additionally, you can follow the INTERRUPTS statement with a literal argument in the range of 0
to 7. The argument is used to set the value of the interrupt mask (IRM field) in the status register
(SR), effectively setting the interrupt priority level.

Example:

INTERRUPTS 5 ' allow only interrupts at level 6 or higher

Note that using an argument of 0 to the INTERRUPTS statement permits all interrupts, while using
an argument of 7 prevents all interrupts EXCEPT level 7 interrupts, which are non-maskable.

49

24. ORG statement

Normally, SB68k generates all code so it occupies sequential addresses on the target machine,
starting at the address named CODEBEG. You can think of this range of addresses as SB68k's
original code section.

If necessary, you can force SB68k to compile code at other addresses, by using the ORG statement.
The ORG statement takes one of three forms:

org <addr> or
org code or
org <addr> code

where <addr> is the address where you want subsequent SB68k code to compile. You can think of
these other address ranges as alternate code sections. For example:

org $200

causes subsequent SB68k code to compile in an alternate section, starting at address $200. SB68k
will continue to compile all code into sequential addresses, until you end the program or change the
compile origin with another ORG statement. Note that any address you specify in an ORG
statement must be word-aligned; that is, it must be an even address.

If you use the keyword CODE as the argument to an ORG statement, SB68k resumes compiling at
the last address in the original code section.

Perhaps a larger example will clarify this. Assume that the following program was compiled with a
CODEBEG address of $8000:

main:
n = 14 ' this code compiles at $8000
org $400 ' change the origin

tablel: ' use a label at new origin
datab 0,1,2,3 ' this code compiles at $400
org $500 ' change the origin
interrupt $80 ' TRAP 0 ISR compiles at $500
end ' bogus ISR, just for example
org code ' return to original code section
j = addr (tablel) ' sets J to $400
end

You may use as many ORG statements, and change between alternate code sections and the
original code section, as often as you want.

In rare cases, you might need to change the address of SBasic68k's code section inside your
program. For example, you may need to force the compiler to generate a JMP instruction to a

50

vector area; this can happen if the JMP instruction must be in EPROM and thus cannot be modified
at run-time. In such situations, you can use the third variation of the ORG statement above.

For example, the following code was compiled using a /c option of $f700:

org $8000 code ' redefine code section here
main:
n = 14 ' this is the mainline code
' rest of mainline code goes here

org $14000 need to vector to an ISR

|l
asm ' switch to assembly language
jmp rtiisr ' use an assembly JMP instruction
endasm ' back to SBasic
org code ' return to code section
end ' end of program

The /cf700 option started compilation with the code section at $f700. This caused SB68k to write
the startup library code at $f700. The ORG $8000 statement then moved MAIN down to $8000
and also caused the code section to move to that address. The rest of the mainline code (not shown
here) compiled from there.

Next, the ORG $14000 writes a JMP instruction into the vector area for use by an ISR. Finally, the
ORG CODE statement switched back to the code section, now somewhere above $8000.

This last step is important. SB68k automatically switches to the code section before adding any
library files at the end of the compilation. If the code section had not moved to $8000, SB68k
would have added the library files at $f700, which was the original code section. The resulting
executable file would have failed.

51

25. The data stack

SB68k supports a data stack, for temporary storage of data. For the 68000 CPU, the data stack
resides about 256 bytes below the return stack. Both stacks grow downward (towards lower
addresses) as items are pushed onto them.

Do not confuse the use of these two stacks. The return stack holds all data used by the target MCU
in servicing interrupts and subroutine calls. Items placed on the return stack are not currently
accessible by your SB68k code.

The data stack, however, contains items explicitly placed by your program. You are free to use the
data stack in any manner you like, and items placed on the stack will remain until your code
specifically removes or modifies them.

25.1. PUSH statement
You can push items onto the data stack by using the PUSH statement. The PUSH statement takes a
single argument; the 32-bit value of that argument will be pushed onto the data stack.

Example:

push n+5

adds 5 to the current value of N and pushes the sum onto the data stack. The value in N does not
change.

The size of the data stack depends on where you place the return stack, using the /s option. The
data stack will grow downward in memory until it runs into whatever values, if any, lie below it.
There are no runtime checks for pushing too many items onto the data stack.

25.2. POP() and PULL()
You can pull (or pop) items from the data stack by using the POP() function. POP() returns the top
(most recent) item pushed onto the data stack.

Example:
n = pop() + 5
pops the top item off the data stack, adds 5 to that value, and stores the sum in variable N.

There are no runtime checks for popping too many items from the data stack. The data stack
resides below the return stack, and popping items causes the data stack pointer to move upwards in
memory. If you pop more items from the data stack than you pushed onto it, you risk corrupting
the return stack. This in turn will cause your program to crash on a later RETURN statement.

You can also use the PULL() function to remove items from the data stack. PULL() works exactly
the same was as the POP() function; it is simply a synonym for POP().

52

25.3. PICK()
You can copy a value from within the data stack by using the PICK() function. PICK() locates a
specific item within the data stack and returns that value.

Example:

n = pick(2)

copies the third item in the data stack into N. The size of the data stack does not change, and the
value in the third item does not change.

Note that the item on the top of the stack is item 0; the second item is item 1. SB68k does not
check to see how many items are actually on the data stack. If you supply an argument to PICK()
that is larger than the current data stack, SB68k will return a bogus but legal value.

25.4. PLACE statement
You can alter a value within the data stack by using the PLACE statement. PLACE stores a 32-bit
value into a specified item in the data stack.

Example:

place 2, n

stores the value in N into the third item in the data stack. The value in N does not change, and the
size of the data stack does not change.

SB68k does not test the actual size of the data stack before executing the PLACE statement. Using
PLACE to modify an item beyond the actual data stack will corrupt that location in memory and
could crash your program.

You can combine PICK() and PLACE to create 32-bit variables local to a section of code, such as a
subroutine. For example:

foo:
do

place 0, pick(0) + 1 ' increment the item
loop while pick(0) < 5 ' loop until it hits 5

This code uses an item, already stored on the data stack by previous code, as a local variable.
Changes to this variable occur only in the data stack, not in a DECLAREd variable.

25.5. DROP statement

In some cases, you want to remove items from the data stack without actually using the removed
values. The DROP statement serves this purpose. It takes a single argument, which gives the
number of items (NOT BYTES) to remove from the data stack. For the 68000, DROP removes
four bytes for each value. For example:

drop 3 ' remove 12 bytes on a 68000

53

SB68k does not check that you are DROPping a valid number of items from the stack. If you
DROP too many items, you risk corrupting the return stack, located immediately above the data
stack on a 68hc11. If this happens, your program will likely crash.

25.6. SWAP statement
The SWAP statement makes it easier to manipulate items on the data stack. It exchanges the values
in the topmost and second cells on the data stack.

Example:
push 2 ' first push a 2
push 3 ' stack has 3, then 2
swap ' now stack has 2, then 3

Note that SWAP does not alter the size of the data stack, only the contents of the top two cells on
the stack. SWAP always uses 32-bit cells.

Do not confuse the SWAPW() function, which exchange bytes within a variable, and SWAP,
which exchanges cells on the data stack.

54

26. ASM and ENDASM statements

The ASM statement and ENDASM statement allow you to imbed assembly language source inside
your SB68k program. Assembly language source lines between these two statements (with one
exception) are not processed by SB68k; instead, they are passed directly to the output file for
subsequent assembly.

This feature allows you to drop down into assembly language when necessary, should you need to
write code that must run faster or take up less space. Additionally, imbedded assembly language
gives you direct access to registers on the target system not currently supported by SBasic. For
example, you can gain access to the 68000's hardware stack register (a7) by using imbedded
assembly language.

The following example shows how to imbed 68000 assembly language:

foo:
asm ' switch to assembly language
movea.l #IOREGS, a3 point A3 at i/o regs
move.l timer0 (a3),do get 32-bit timer wvalue
move.l d0, time save in variable TIME
endasm ' switch back to SBasic
return ' and return

This example shows an SB68k routine named FOO that uses imbedded assembly language to
access some kind of timer. The value read from offset timerO is stored in the SB68k variable TIME.
The example then uses the ENDASM statement to switch back to SBasic68k, where the RETURN
statement returns control to the calling routine.

Note that you will generally use an SB68k label at the start of an assembly section; other SB68k
routines can use this label to pass control to your assembly section. Note also that imbedded
assembly language lines can (and should) have comments appended to them.

With one exception, all source lines between an ASM statement and an ENDASM statement are
passed unaltered to the output file for processing by the assembler. Thus, you cannot use SB68k
statements or functions within an assembly section. Such statements or functions would be
processed by the assembler, not by SBasic68k, and will result in assembler errors.

The sole exception to the above involves an underscore character. As shown in the example above,
you can refer to SB68k variables, constants, or labels by prepending an underscore to the name.
Before SB68k passes each assembly source line to the output file, it scans the line for any
underscores. If SB68k detects an underscore, the following characters are parsed and tested against
SBasic's list of known variables, constants, and labels. If found, the underscore and following
characters are replaced with SBasic's internal name. Since this internal name is what the assembler
will use to resolve operands, the SB68k name will be understood by the assembler. In the above
example, SB68k would convert the string " time" to something like "var009."

55

SB68k can handle multiple occurrences of underscores within a source line. For example, it will
properly resolve a line such as:

move.l # main+2* consO uses a label and a constant

If SB68k cannot resolve the character string following an underscore into the name of a variable,
constant, or label, the line is passed unchanged to the output file. This will usually result in an
assembler error message, but it will not cause an SB68k error! This means that if you use inline
assembly language, you must check not only for SB68k errors but for assembler errors as well.
SB68k will not know that the assembler could not resolve the label.

It is easy to lose track of which addresses are known to SB68k and which are known to the

assembler. Remember that labels known to SB68k are automatically converted to an internal label

before SB68k writes them to the output file. Thus, your SB68k source may refer to a label
WAMPUM, but it will be converted to something like 1bl010 before the assembler sees it.

To refer to standard assembler labels such as I/O registers, make sure that you make them known to

the assembler by including them within an ASM section. The above example could have been
written:

foo:
asm ' switch to assembly language
timer0 equ $20 offset to timer0
IOREGS equ $200000 address of I/0 regs

movea.l #IOREGS, a3 point A3 at i/o regs

move.l timer0 (a3),do get 32-bit timer wvalue

move.l d0, time save 1in variable TIME
endasm ' switch back to SBasic
return ' and return

56

27. ASMFUNC statement

The ASMFUNC statement gives SB68k access to labels and routines within a block of assembly
language code. See the section above on the ASM statement. The format for the ASMFUNC
statement 1is:

asmfunc foo

This statement tells the SB68k compiler that subsequent references to the label FOO must be
passed to the output file as FOO, not as a converted label.

ASMFUNC adds tremendous power to SB68k, allowing you to write your own SB68k extensions
in assembly language, then use them as if they were an integral part of SB68k. For example:

declare stack ' declare a variable
asmfunc getstk ' define an asm entry point
main: ' enter here
stack = getstk(0) ' get addr of return stack
do loop ' silly loop
asm ' switch to assembly language
getstk entry point to getstk()
move.l a7,do copy SP to DO
rts return addr of stack
endasm ' back to SB68k
end

Here, the ASMFUNC statement tells SB68k that references to the label GETSTK are to be passed
unchanged to the output file. Thus, when the SB68k code invokes the function GETSTK() to get
the current hardware stack address, SB68k generates a JSR to GETSTK, not a JSR to an address
with an internal SB68k label.

The actual code for subroutine GETSTK exists in the ASM block. GETSTK moves the stack
pointer into the 68000's dO and returns. The code generated by SB68k then stores the d0 into
variable STACK and falls into the silly loop at the end of the program.

This example shows how to set up an ASMFUNC statement and its associated assembly language.
It also shows how to use an ASMFUNC label as a function. In this case, you must adhere to
SB68k's general rules regarding functions.

Functions, which return a result in the DO register, must be called with an argument. Since the
GETSTK routine doesn't need an argument, anything will work, but you must include an argument
of some kind. That's why I show an argument of 0 for GETSTK.

You can also use ASMFUNC to create statements. Remember that an SB6&k statement doesn't
return a value, but simply performs an operation. For example:

asmfunc setstk ' define an asm entry point

57

main: ' enter here
setstk $006000 ' change hardware stack addr
do loop ' silly loop
asm ' switch to assembly language
setstk entry point to setstk
move.l (a7)+,as3 get return addr from stack
move.l (ad) +,a’ change stack pointer
Jmp (a3) return to SB68k
endasm ' back to SBasic
end

This example is more advanced and shows how to change the return stack pointer from inside
SBasic. The SB68k program uses the SETSTK statement to set the return stack pointer to $6000,
essentially moving the hardware stack. The tricky part here is that SB68k will execute this
statement via a JSR to SETSTK. If the assembly language code simply moved the new stack
pointer into the A7 register and returned, the program would crash since the return address would
be undefined. The code above changes the A7 register, but saves the return address in the A3
register. It finally returns by jumping through the A3 register.

Here you can see how SB68k processes the arguments to a statement. The argument $006000 for
the SETSTK statement is pushed onto SB68k's data stack; it is NOT passed in the dO register.

Thus, before the assembly language code in the SETSTK routine can do anything with the
argument, it must first move the top item of the data stack into a spare address register. Refer to the
GOSUB statement above for details on how SB68k parses arguments to statements.

Note that regardless of how you access the arguments passed, your assembly language routine
MUST remove all arguments from the data stack before returning! If not, repeated invocations of
your routine will eventually crash the target system.

This brings up another element of the ASMFUNC usage. SB68k does no error checking to make
sure your program uses an ASMFUNC label consistently. Thus, you could use the same assembly
language routine as both a function and a statement, if you so choose. What's more, you could pass
varying numbers of arguments to the same ASMFUNC label as a statement. You are responsible
for ensuring your assembly language routine behaves properly in all cases. SB68k will blindly load
up the arguments and perform the JSR; your code has to deal properly with any variations in
argument count.

Note that the second example is not completely general, since it can be called only from the top
level (main) of your SB68k program. If, for example, you tried to do a SETSTK from within an
SB68k routine, that routine would crash when it executed a RETURN statement, since its return
address had moved when the stack pointer changed.

When writing assembly language code invoked with ASMFUNC labels, remember to preserve

SB68k's registers. For the 68000, this includes a4 through a7. Additionally, any argument returned
to the calling routine is passed back in register d0.

58

To summarize, you can use an ASMFUNC label as either a statement or a function. If used as a
statement, you can supply zero, one, or more arguments; any arguments will be pushed left to right
onto the data stack before the JSR to your label is executed. If used as a function, you MUST
supply one and only one argument to the function. This argument will be passed to the called
routine in register d0, though your routine can ignore it. Upon returning from your routine, the
contents of register dO will be used as the returned value of the function.

Additionally, remember that ASMFUNC labels do not exist as SB68k labels. You cannot do a
GOSUB to an ASMFUNC label, since that label only exists in the assembly language module.

Since the ASMFUNC statement only affects subsequent references, the statement must appear in

your source file before any references to the target label appear. Thus, it's best if you put all of
your ASMFUNC statements near the beginning of your source file.

59

28. ASMFUNC, _INKEY, and _OUTCH

Generally, you should not use ASMFUNC to define labels used internally by SB68k run-time
routines. Doing so will cause the assembler that processes the resulting output file to report an
error. This happens because SB68k will create two identical labels in its output assembly language
file, one label that you defined in your ASM section and a matching label in an SB68k library file.

The exceptions to this rule involve the labels INKEY and OUTCH. SB68k reserves these labels
for internal routines that handle character I/O. By default, the OUTCH routine sends the character
in the low byte of register d0 to the hardware's serial port, and the INKEY routine returns a
character from the serial port in register d0. SB68k automatically appends a library file containing
the assembly language source for these routines whenever it processes a statement that requires
them.

In these two cases, SB68k permits your source file to override the normal inclusion of a library file.
For example, if SB68k detects an ASMFUNC statement defining the label OUTCH:

asmfunc outch

SB68k does not append the OUTCH library file. Instead, SB68k relies on whatever OUTCH
assembly language routine you define in your SB68k source file to handle all character output.

This feature allows you to redirect the output from all SB68k PRINT and OUTCH statements to an
alternate device. Similarly, you can redirect the input for the SB68k INKEY() function from an
alternate device. This makes it easy to add SB68k support for formatted output to devices such as
LCDs, or character input from custom keyboards. For example:

asmfunc outch

asm

outch
move.b d0,$10040 send char in dO0 to I/O port
rts

endasm

main:
print "2 + 2 ="; 243
end

This sample program sends a mathematical statement to the I/O port that should convince anyone
your computer is loony.

Note that the labels OUTCH and INKEY must appear within an ASM-ENDASM block. Also

note that the argument to these ASMFUNC statements includes the assembly-language
(underscored) version of the routine name, NOT the normal SB68k representation.

60

29. Character I/0 on the 68000

The PRINT and OUTCH statements generate code for sending characters and text to some type of
host, using library routines. For the 68000, this is usually hardware-dependent, based on the serial
port device on your board.

Note, however, that SB68k does not actually set up the serial port for serial transfers. Thus, it is
not usually enough to simply PRINT a string; your code must first (as a minimum) enable the serial
port transmitter and set the port's baud rate.

This same requirement exists for the INKEY() function. Before your code can successfully invoke
the INKEY() function, it must first enable the serial port's receiver and set the port's baud rate.

Refer to your target system's documentation for details on setting up the system's serial port. The

OUTCHG68K.LIB and INKEY68K.LIB files included in the standard SB68k distribution work with
the Motorola M68332EVS evaluation system, and can serve as a starting point for your own code.

61

