T/ TCP vul nerabilities

M ke Schi ffman <m ke@ nf onexus. com> (1998)

I ntroduction and I npetus

T/TCP is TCP for Transactions. It is a backward conpati bl e extension for
TCP to facilitate faster and nmore efficient client/server transactions. T/ TCP
is not in wde deploynment but it is in use (see appendix A) and it is supported
by a handful of OS kernels including: FreeBSD, BSDi, Linux, and SunGCS. This
short paper will docunment the T/ TCP protocol in light detail, and then cover
weaknesses and vul nerabilities.

Background and pri nmer

TCP is a protocol designed for reliability at the expense of expediency
(readers unfanmiliar with the TCP protocol are directed to the ancient-but-

still-relevant: http://ww.infonexus.com ~daenon9/ M sc/ TCPI P-priner.txt).
VWhenever an application is deemed to require reliability, it is usually built
on top of TCP. This lack of speed is considered a necessary evil. Short |ived

client/server interactions desiring nore speed (short in ternms of tinme vs.
anount of data flow) are typically built on top of UDP to preserve quick
response tinmes. One exception to this rule, of course, is http. The
architects of http decided to use the reliable TCP transport for epheneral
connections (indeed a poorly designed protocol).

T/TCP is a small set of extensions to make a faster, nore efficient TCP
It is designed to be a conpletely backward conpati ble set of extensions to
speed up TCP connections. T/ TCP achieves its speed increase fromtwo nmgjor
enhancenents over TCP: TAO and TIME WAIT state truncation. TAOis TCP
Accel erat ed Open, which introduces new extended options to bypass the 3-way
handshake entirely. Using TAO a given T/ TCP connection can approximte a
UDP connection in terns of speed, while still maintaining the reliability of a
TCP connection. |In nost single data packet exchanges (such is the case with
transactional -oriented connections |ike http) the packet count is reduced by a
t hird.

The second speed up is TIME WAIT state truncation. TIME_WAIT state
truncation allows a T/ TCP client to shorten the TIME WAIT state by up to a
factor of 20. This can allow a client to make nore efficient use of network
socket primtives and system nenory.

T/ TCP TAO

TCP accel erated open is how T/ TCP bypasses the 3-way handshake. Before we
di scuss TAO, we need to understand why TCP enpl oys a 3-way handshake.
According to RFC 793, the principal reason for the exchange is the prevention
of old duplicate connection initiations wandering into current connections and
causing confusion. Wth this in mnd, in order to obviate the need for the
3-way handshake, there needs to be a nechanismfor the receiver of a SYNto
guarantee that that SYNis in fact new. This is acconplished with a new
extended TCP header option, the connection count (CC).

The CC (referred as tcp_ccgen when on a host) is a sinple nonotonic

variable that a T/ TCP host keeps and increnents for every TCP connection
created on that host. Anytine a client host supporting T/ TCP wi shes to nake a
T/ TCP connection to a server, it includes (in it's TAO packet) a CC (or CCnew)
header option. |If the server supports T/TCP, it will cache that client's

i ncl uded CC value and respond with a CCecho option (CC val ues are cached by

T/ TCP hosts on a per host basis). If the TAO test succeeds, the 3-way
handshake i s bypassed, otherwi se the hosts fall back to the ol der process.

The first tine a client host supporting T/ TCP and a server host supporting
T/ TCP nmake a connection no CC state exists for that client on that server.
Because of this fact, the 3-way handshake nust be done. However, also at that
time, the per host CC cache for that client host is initialized, and al
subsequent connections can use TAO. The TAO test on the server sinply checks
to make sure the client's CCis greater then the |last received CC fromthat
client. Consider figure 1 bel ow

Client Server
8
i 0 --TAOtdata--(CC = 2)--> ClientCC =1
m 1 2 > 1; TAO test succeeds
e 2 accept data ---> (to application)
[fig 1]

Initially (0) the client sends a TAO encapsul ated SYNto the server, with a
CC of 2. Since the CC value on the server for this client is 1 (indicating they
have had previous T/ TCP-based conmuni cation) the TAO test succeeds (1).
Since the TAO test was successful, the server can pass the data to application
layer imediately (2). |If the client's CC had not been greater than the
server's cached value, the TAO test would have failed and forced the 3-way
handshake.

T/TCP TIME_WAIT truncation

Before we can see why it is ok to shorten the TIME_WAIT state, we need to
cover exactly what it is and why it exists.

Normal Iy, when a client perfornms an active close on a TCP connection, it
nmust hold onto state information for twi ce the maxi mum segment |ifetime (2MSL)
which is usually between 60 - 240 seconds (during this tine, the socket pair
that describes the connection cannot be reused). It is thought that any
packet fromthis connection would be expired (due to IP TTL constraints) from
the network. TCP nust be consistent with its behavior across all contingencies
and the TIME_WAIT state guarantees this consistency during the | ast phase of
connection closedown. |t keeps old network segnents from wandering into a
connection and causing problems and it hel ps inplenment the 4-way cl osedown
procedure. For exanple, if a wandering packet happens to be a retransm ssion
of the servers FIN (presumably due to the clients ACK being lost), the client
must be sure to retransmt the final ACK, rather then a RST (which it would do
if it had torn down all the state).

T/ TCP allows for the truncation of the TIME WAIT state. |If a T/TCP
connection only lasts for MSL seconds or |less (which is usually the case with
transactional -oriented connections) the TIME WAIT state is truncated to as
little as 12 seconds (8 tines the retranmi ssion timeout - RTO). This is
al l owabl e froma protocol standpoint because of two things: CC number

protection against old duplicates and the fact that the 4-way cl osedown
procedure packet | oss scenario (see above) can be handled by waiting for the
RTO (multiplied by a constant) as opposed to waiting for a whole 2MsL

As | ong as the connection didn't last any |onger then MSL, the CC nunber
in the next connection will prevent old packets with an ol der CC nunber from
bei ng accepted. This will protect connections fromold wanderi ng packets
(if the connection did last longer, it is possible for the CC values to wap
and potentially be erroneously delivered to a new i ncarnati on of a connection).

Dom nance of TAO

It is easy for an attacker to ensure the success or failure of the TAO
test. There are two nmethods. The first relies on the second ol dest hacking
tool in the book. The second is nore of a brutish technique, but is just as
ef fective.

Packet Sniffing

If we are on the local network with one of the hosts, we can snoop the
current CC value in use for a particular connection. Since the tcp_ccgen is
i ncrenented nonotonically we can precisely spoof the next expected val ue by
i ncrenenting the snooped nunber. Not only will this ensure the success of our
TAO test, but it will ensure the failure of the next TAO test for the client
we are spoofing.

The Nunbers Gane

The ot her method of TAO doni nance is a bit rougher, but works al nost as

well. The CCis an unsigned 32-bit nunber (ranging in value fromO -
4,294,967,295). Under all observed inplenentations, the tcp_ccgen is
initialized to 1. |If an attacker needs to ensure the success of a TAO

connection, but is not in a position where s/he can sniff on a | ocal network,
they should sinply choose a | arge value for the spoofed CC. The chances that
one given T/ TCP host will burn through even half the tcp_ccgen space with
anot her given host is highly unlikely. Sinple statistics tells us that the

| arger the chosen tcp_ccgen is, the greater the odds that the TAO test wll
succeed. \When in doubt, aim high

T/ TCP and SYN fl oodi ng

TCP SYN fl oodi ng hasn't changed much under TCP for Transactions. The
actual attack is the same; a series of TCP SYNs spoofed from unreachable |IP
addresses. However, there are 2 major considerations to keep in mnd when
the target host supports T/ TCP

1) SYN cookie invalidation: A host supporting T/ TCP cannot, at the sane
time, inplenment SYN cookies. TCP SYN cookies are a SYN fl ood defense
techni que that works by sending a secure cookie as the sequence nunber
in the second packet of the 3-way handshake, then discarding all state
for that connection. Any TCP options sent would be lost. |If the fina
ACK cones in, only then will the host create the kernel socket data
structures. TAO obviously cannot be used with SYN cookies.

2) Failed TAO processing result in queued data: If the TAOtest fails, any
data included with that packet will be queued pending the conpletion of
t he connection processing (the 3-way handshake). During a SYN fl ood,
this can make the attack nore severe as nmenory buffers fill up holding
this data. In this case, the attacker would want to ensure the failure
of the TAO test for each spoofed packet.

In a previous Phrack Magazine article, the author erroneously reported that
T/ TCP would help to alleviate SYN flood vulnerability. This obviously
i ncorrect statenent was made before copious T/ TCP research was done and is
hereby resci nded. M bad.

T/ TCP and trust rel ationships

An old attack with a new twist. The attack paradigmis still the sane,
(readers unfamliar with trust relationship exploitation are directed to
P48-14) this tinme, however, it is easier to wage. Under T/TCP, there is no
need to attenpt to predict TCP sequence nunbers. Previously, this attack
required the attacker to predict the return sequence nunber in order to
conpl ete the connection establishnment processing and nove the connection into
the established state. Wth T/TCP, a packet's data will be accepted by the
application as soon as the TAO test succeeds. All the attacker needs to do is
ensure that the TAO test will succeed. Consider the figure bel ow

Attacker Server Trust ed
0 - spoof ed- TAO >

1 TAO test succeeds

2 data to application

3 ---TAO response- >
4 no open socket
5
6

® 34

tears down connection

[fig 2]

The attacker first sends a spoofed connection request TAO packet to the
server. The data portion of this packet presumably contains the tried and true
non-interactive backdooring command “echo + + > .rhosts™. At (1) the TAO test
succeeds and the data is accepted (2) and passed to application (where it is
processed). The server then sends its T/ TCP response to the trusted host (3).
The trusted host, of course, has no open socket (4) for this connection, and
responds with the expected RST segnent (5). This RST will teardown the
attacker's spoofed connection (6) on the server. |f everything went according
to plan, and the process executing the conmand in question didn't take too |ong
to run, the attacker may now log directly into the server.

To deal with (5) the attacker can, of course, wage sone sort of denial of
service attack on the trusted host to keep it fromresponding to the
unwar r ant ed connecti on.

T/ TCP and duplicate nessage delivery

Ignoring all the other weaknesses of the protocol, there is one major flaw

that causes the T/ TCP to degrade and behave deci dedly NONTCP-1i ke, therefore
breaking the protocol entirely. The problemis within the TAO nechani sm
Certain conditions can cause T/ TCP to deliver duplicate data to the
application layer. Consider the tinmeline in figure 3 bel ow

Client Server
--TAO (data)--->
TAO test succeeds
accept data ---> (to application)
crash (reboot)
ti meout (resends) --TAO (data)--->
TAO test fails (data is queued)

® 3~
~No o~ wWNEO

est abl i shed <- SYN- ACK(SYN)-- fallback to 3WHS
--ACK(SYN) - ---- > established (data --> application)
[fig 3]

At time O the client sends its TAO encapsul ated data to the server (for
this exanpl e, consider that both hosts have had recent comunication, and the
server has defined CC values for the client). The TAO test succeeds (1) and
the server passes the data to the application |ayer for processing (2).

Before the server can send its response however (presumably an ACK) it crashes
(3). The client receives no acknowl edgenent fromthe server, so it tinmes out
and resends its packet (4). After the server reboots it receives this

retransm ssion, this tinme, however, the TAOtest fails and the server queues
the data (5). The TAO test failed and forced a 3-way handshake (6) because the
servers CC cache was invalidated when it rebooted. After conpleting the 3-way
handshake and establishing a connection, the server then passes the queued data
to the application layer, for a second tine. The server cannot tell that it
has al ready accepted this data because it mamintains no state after a reboot.
This violates the basic premise of T/TCP that it nust remain conpletely
backward conpatible with TCP

In closing

T/TCP is a good idea that just wasn't inplenented properly. TCP was
not designed to support a connectionless-1like paradigmwhile stil
mai ntaining reliability and security (TCP wasn't even designed with security
inmnd at all). T/ TCP brings out too many problenms and di screte bugs in TCP
to be anything nore then a novelty.

Appendi x A: Internet hosts supporting RFC 1644

This information is ganked from Richard Steven's T/ TCP honmepage
(http://ww. kohal a. coml ~rstevens/ttcp.htm). It is not verfied to be correct.

- Www. ansp. br

- ww. elite. net

- WWw. i gm uni canp. br

- www. neosoft. com

- www. sbq. org. br

- www. ui daho. edu

- www. yahoo. com

ECF

1)
2)
3)
4)

Appendi x B: Bi bliography

Braden, R. T. 1994 "T/TCP - TCP Extensions for Transactions...",
Braden, R T. 1992 "Extending TCP for Transactions - Concepts..
Stevens, W Richard. 1996 "TCP Il lustrated volune I11", 328 p
Smith, Mark. 1996, "Formal verification of Comrunication...", 15

38 p

p

38 p

