Agenda

- 1. Introduction and Overview
- 2. Protocol Primer
- 3. Protocol Flaws
- 4. Existing Tools and Gap Analysis
- 5. Radiate
- 6. Theory into Practice: Radiate and Libnet
- 7. Closing Comments and Questions

Mike Schiffman

- Senior Consultant with @stake
 - The Premier provider of Digital Security Services
- Technical Advisory Board for Qualys, Inc.
- Consulting Editor for Wiley & Sons
- R&D background
 - Firewalk, Libnet, Libsf, Libradiate, Phrack Magazine
- Books:
 - Building Open Source Network Security Tools, Wiley & Sons
 - <u>Hacker's Challenge</u> I, Osborne McGraw-Hill
 - <u>Hacker's Challenge II</u>, Osborne McGraw-Hill

Overview

- What you will learn
 - Brief intro to the 802.11 protocol
 - Weaknesses in the 802.11 protocol
 - How to use libradiate to build custom 802.11 security tools
- What you should know
 - General understanding of the TCP/IP protocol suite
 - Primarily layers 2 3
 - General understanding of wireless
 - General network security concepts
 - The C programming language

Nomenclature

- Network Security Tool or Tool
 - A network security tool is an algorithmic implement that is designed to probe, assess, or increase the overall safety of or mitigate risk associated with an entity across a communications medium.
 - This is dry but it works
- Toolkit
 - An API, or set of APIs used to build Network Security Tools
 - A C programming library
 - "Component"

802.11 is Everywhere

- 802.11-based networks are wonderful inventions
 - Corporate America
 - Coffee shops, Hotels, Airports, "Residential ISPs"
- Many new products and services on top of 802.11
 - Newer, faster physical interfaces being turned out on top of the same layer 2 protocols
- However, there are a "few" security concerns...
 - We need a way to be able to test for security issues
 - Sure, some tools do exist
- But what we really need is a way to be able to test for arbitrary security issues with custom tools
 - We need a generic 802.11 toolkit

802.11 Primer

- Borne out of the IEEE 802 LMSC
- 802.11 WLAN standard
 - PHY layer: 802.11b 2.4Ghz up to 11Mbps
 - PHY layer: 802.11a 5Ghz up to 54Mbps
- Drop in replacement for Ethernet
 - Upper layer protocols should be none the wiser
 - This seamless integration comes at a stiff price under the hood complexity

802.11 Primer: Physical Interface

- 802.11b is the most widely deployed
- Direct Sequence Spread Spectrum (DSSS)
 - 2.4GHz ISM Band
 - Industrial / Instrumentation, Scientific, Medical
 - 2.400GHz 2.4835GHz
 - 14 channels or frequency divisions
 - 1 11 used in the United States
 - 1000mW power maximum
 - Most devices are 30mW 100mW

802.11 Primer: MAC Sublayer Tidbits

- CSMA/CA
 - LBT (Listen Before Talk)
 - Exponential back off and retry
 - Collision avoidance via physical carrier sense and Network Allocation Vector (NAV)
 - Sent in most frames (duration ID)
 - Informs other stations how long the medium will be in-use
 - Virtual carrier sense (station waits until NAV is 0 before attempting to send)

Configuration Options

AD Hoc

Infrastructure

The Need for an 802.11 Wireless Toolkit

Mike Schiffman BlackHat Briefings July 2002

Version 2.0

Where Security & Business Intersect^{5M}