
By Cody Sixteen
CODE610.BLOGSPOT.COM | PATREON.COM/CODYSIXTEEN

Find preauth RCE in
Symantec Web
Gateway
QUICK TUTORIAL

Contents
Intro ... 2

Environment .. 3

Preparing (the basics) .. 4

Lƴƛǘƛŀƭ αǇǊƻƻŦ-of-ŎƻƴŎŜǇǘέ .. 5

Weaponizing .. 15

±ŜǊƛŦȅƛƴƎ αǇǊƻƻŦ-of-ŎƻƴŎŜǇǘέ... 19

Summary ... 21

References ... 22

Intro
Lƴ ǘƘƛǎ ŘƻŎǳƳŜƴǘ LΩƭƭ describe how I found RCE bugs in Symantec Web Gateway 5.0.2.8. This

time [1] we will talk about the bug available for unauthorized users. Reader ς with the basic

knowledge of python language and OWASP TOP 10 - will be able to continue and should be able to

ǳƴŘŜǊǎǘŀƴŘ ǘƘŜ ǿƘƻƭŜ ƛŘŜŀ ƻŦ ŎǊŜŀǘƛƴƎ αǉǳƛck ǇƻŎέ described below. In the final stage we will end up

with the fully working preauth RCE exploit.

Enjoy and have fun! ;)

Cody

https://code610.blogspot.com/2020/03/postauth-rce-in-symantec-web-gateway.html
https://twitter.com/CodySixteen

Environment
In my little laboratory I used similar environment that I used during the last research. In my

VirtualBox I prepared:

¶ Kali Linux ς with all my scripts and tools (we will also use it as a jumphost)

In the VMPlayer I prepared:

¶ Symantec Web Gateway 5.0.2.8

When your Gateway VM is ready to go we need to ΨŦƛȄΩ ƻƴŜ ǘƘƛƴƎ to continue. Log in as root and

check if in your webroot directory (/var/www/html/) you can find uploads folder.

If you can not ς create it and make it writable. This is the only way this exploit scenario will work.

Both machines should see each other (which means that both of them should be connected to the

one network ς Ƴƻǎǘ ƻŦ ǘƛƳŜ LΩƳ ǳǎƛƴƎ bridge ƴŜǘǿƻǊƪ ǎŜǘǘƛƴƎǎ ǿƘŜƴ LΩƳ ŘƻƛƴƎ ǎƻƳŜ ǊŜǎŜŀǊŎƘ ƻƴ

VirtualBox, so it should work for you as well).

Next...

Preparing (the basics)
²ƘŀǘΩǎ ǊŜŀƭƭȅ ƛƳǇƻǊǘŀƴǘ ǘƻ ŎƻƴǘƛƴǳŜΥ

¶ You are familiar with the basic python programming concepts [3]

¶ You understand how to create basic python client and/or server [4]

¶ You are familiar with requests[5]

¶ ¸ƻǳ ǳƴŘŜǊǎǘŀƴŘ ǿƘŀǘ ƛǎ ŀ αǊŜǾŜǊǎŜ ǎƘŜƭƭέ ώ6]

If for all of ǘƘƻǎŜ αrequirementsέ ȅƻǳǊ ŀƴǎǿŜǊ ƛǎ ΨȅŜǎΩ ς you are on a very straight way to building

your initial poc! ;)

.ǳǘ ƛŦ ȅƻǳΩǊŜ ƴƻǘ ς ŘƻƴΩǘ ǿƻǊǊȅΦ wŜŀŘƛƴƎ ŀƭƭ ƻŦ ǘƘƛǎ Ŏŀƴ ōŜ ŀ ƭƛǘǘƭŜ ōƛǘ ƻǾŜǊǿƘŜƭƳƛƴƎ ƛŦ ȅƻǳΩǊŜ ƴŜǿ ǘƻ

the python programming but I believe that practicing step-by-step and part-by-part will give you

results you want to achieve. Sooner than you think. ;)

¢ŀƪŜ ȅƻǳǊ ǘƛƳŜ ŀƴŘ ǊŜŀŘ ǘƘŜ ƳŀƴǳŀƭόǎύΦ LΩƳ ǊŜŀŘȅ ǿƘŜƴ ȅƻǳ ŀǊŜΦ

https://www.learnpython.org/
https://realpython.com/python-sockets/
https://requests.readthedocs.io/en/master/
http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet

Lƴƛǘƛŀƭ αǇǊƻƻŦ-of-ŎƻƴŎŜǇǘέ
Ok. Assuming you alǊŜŀŘȅ ƪƴƻǿ Ƙƻǿ ǘƻ ōǳƛƭŘ ŀ ǎƳŀƭƭ ǇȅǘƘƻƴ ǿŜō ŎƭƛŜƴǘ ƭŜǘΩǎ connect to Symantec

Web Gateway via SSH. We should be on the same step as before[1]:

Ok but as you probably remember ς we already done that last time.

So I decided to try a new approach and this time when I was connected to the VM (via ssh) I listed

web root of the Gateway:

To do that I used simple command:

$ ls ςl | grep ςe α\.phpέ

I listed all PHP files inside webroot to prepare a list to use it later with Burp Suite. But to do that, first

of all I need to clean my filelist log (history output):

https://code610.blogspot.com/2020/03/postauth-rce-in-symantec-web-gateway.html

So far, so good. Withe tmpfile4 (list of our PHP files) I prepared a new file (this time on my Windows

where I started Burp Suite) ς swglist.txt (simply copy/paste of found files):

Next thing was to prepare my browser to use Burp as a proxy and go to the address of Symantec

Web Gateway to intercept the request and send it to Intruder. Next step is to add our new created

list of files to BurpΩs Intruder:

What we are doing here is called simple enumeration. Similar results you should achieve using

gobuster or dirb (available on default Kali installation). After a while we should see some results:

I was sure that if there is a small length of the response ς the app is not presenting any interesting

page. (Un)fortunately it wasnΩt the case here. ;)

For example:

So at this stage I sorted all the responses to try each page one-by-one. I started here:

Response presented by the Burp Proxy:

LetΩs see response in browser:

Looks like it works! Great. Checking next file from our responses ς showSquidErrs.php:

Also looking good. ;) So I decided it will be a good idea to check all of those files simultaneously in the

browser and in the Burp Suite. For example:

Pretty obvious XSS bugs. It will be so easy to spot preauth XSS bug in Ψcommercial applianceΩ? Well...

Yes. ;] Next I switched from simple HTML injection to something more interesting ς JavaScript:

Worked like a charm! So at this stage I was wondering how many (preauth) XSS bugs are still

available there?

To find the answer for my own question I decided to go to the next file - timer.php:

(As you can see I used grep only for _GET and _POST parameters. IΩm sure there are more vulnerable

spots, for example _SESSION, etc...)

Next file ς blocked.php:

Response is presented below:

So again I tried to read the code and find few more bugs (or just to get proof that this-or-that

parameter is indeed vulnerable):

Good. Next file ς temppassword.php:

LetΩǎ ŎƘŜŎƪ ǘƘŜ target parameter then:

Great! Another and another XSS bug. Next file that I found can be accessible by unauthorized user is

uploader.php. The name of the file was very promising so I decided to dig a little bit deeper. On the

screen below youΩll find initial request:

I tried very first webshell-file IΩm trying to upload during webapp pentests. Response is presented on

next screenshot:

Looks interesting! Why our file upload failed? My quick hint was that I used wrong extension of the

file (PHP). But it wasnΩt true. ;)

Remember our ΨscenarioΩ? So my upload failed because there was never an upload folder on the

server! ;) This is the ΨfixΩ I talked at the beginning:

Now ς as you can see on the screen presented below ς I was able to create the file I want on remote

Gateway:

So I decided to upload my PHP webshell again:

Great! Looks like itΩs almost done ;]

Checking example with php extension:

Created again:

Good. I think it is a good moment to start preparing our exploit ;)

Weaponizing
LetΩs start from the same step as we finished last section. Our goal for now is to create a proof-of-

concept code that can:

¶ Connect to remote webpage

¶ Check if there is an /upload/ directory

¶ If so ς upload PHP file

Simple skeleton should behave like this example presented below:

So this time weΩll start here:

As you can see I used a workaround for SSL/TLS (ssl.wrap_socket). It helped me to connect to the

host. Next part of the code is presented below:

This poc is pretty simple so far. ;) We are preparing our baseUrl (it will be the hostname of our target

VM). Next weΩll define the path to the uploads folder. If this request will work fine, the (HTTP) status

code of the response should be equal to 200.

Next ς if our condition is meet ς we will do the same for next URL ς path to the uploads. Now if our

status_code is also equal to 200 it means that we are ready to go and we can now upload our

webshell.

As an Ψexample uploadΩ I used sh.php filename with content α<?php phpinfo();έ to simply check if our

uploaded file can be executed when weΩll visit it using browser:

Good, created. Checking the file in the browser:

Great! Our next goal is preparing a working reverse shell ;] LetΩs do it!

