

Introduction

Kan 2005

 A constant battle—cat and mouse game

 The detection/profiling mechanisms have changed little over the years

Malware/Rootkits are increasingly sophisticated in evasion

BEIJING.CHINA

2002-2005

(FOCUSTEAM

"con 2005 **Rootkit Introduction** Rootkit first appeared on Windows in 1999 (NTRootkit, Hoglund): Different agenda than viruses Non-destructive information gatherers Usually running in the kernel (easier) to hide)

BEIJING.CHINA

2002-2005

(FOCUS T F A M

'con 2005 **Rootkit Detection** At the beginning of this year, there was almost no commercial products Rootkit detection has suddenly become popular. F-Secure, Microsoft, etc. have all released products. Rootkit products will not be very useful unless they adapt as quickly as the rootkits Rootkit evasion techniques are advancing much faster than rootkit detection 2002-2005 FOCUSTEAM **BEIJING.CHINA**

Rootkit Detection

Three current detection mechanisms:
 Anti-virus software approach
 HIPS (Host Intrusion Prevention Systems)
 Execution Path Analysis (EPA)
 The newcomer: Differential testing

BEIJING.CHINA

2002-2005

XFOCUS T F A M

Rootkit Detection Anti-Virus

Very effective at preventing use of known rootkits

 New signatures are made as new variants and rootkits come out

 Detects the rootkit's fingerprint before it has a chance to run

BEIJING.CHINA

2002-2005

(FOCUS T F A M

- Few rootkits are observed in the wild
 - This gives them a low priority

XFOCUS T E A M

- Rootkits are evasive and non-destructive
 - Few samples of rootkits are sent to AV companies
- ♦ Too late...
 - Rootkits will just unhook antivirus (usually a filter driver over the file system)
 - Then when an AV definition comes out, it is too late J

2002-2005

BEIJING

Rootkit Detection Host IPS

Two layers of defense

(FOCUS T F A M

Tries to prevent exploitation of the machine (stop buffer overflows, RLIBC attacks, etc.)

If hackers get past that defense, then try to block the hacker from getting into the kernel

BEIJING.CHINA

- Many weaknesses outlined in a Phrack 62 (Butler)
- API hooks are easy to evade

XFOCUS T E A M

- Most HIPS cover only those that are likely to be used by an exploit
- Hard to cover all ways a rootkit can be introduced:

REI IING C

- Crazylord evaded a rootkit detector by using a symbolic link \Device\PhysicalMemory
- Defenseless against use of new kernel privilege escalation vulnerabilities

Rootkit Detection 2005 Execution Path Analysis (EPA)

- Discussed at BlackHat Las Vegas 2003 by Joanna Rutkowski
 - An old idea now applied specifically to rootkits
- Uses instruction trapping to profile system calls
 - Goes through a learning period when the system is known to be clean
 - Remembers the instruction counts or code paths of the system calls

Detects rootkit when the execution path of a system call differs

REI IING CHINO

2002-2005

XFOCUS T F A M

- Large performance degradation tracing through all system calls
- Difficult to implement correctly (many ways to disable):

BEIJING.CHINA

2002-2005

- Overwriting the trap handler in the IDT
- Overwriting EFLAGS.TF in the TSS
- Overwriting EFLAGS.TF via POPF

XFOCUS T F A M

Rootkit Detection Differential

📽 X'con 2005

- Query same information from top locations:
 - First use user-mode APIs

(FOCUS T F A M

Then use low-level methods (looking at the registry file, NTFS directly, etc.)

BEIJING.CHINA

2002-2005

If these differ, something is hiding information

Rootkit Detection **X Con 2005** Problems with Differential

- Was quickly defeated (see rootkit.com)
- They are easy targets for rootkits
- These methods are too basic

(FOCUSTEAM

 Rootkits can make special cases to handle these tools

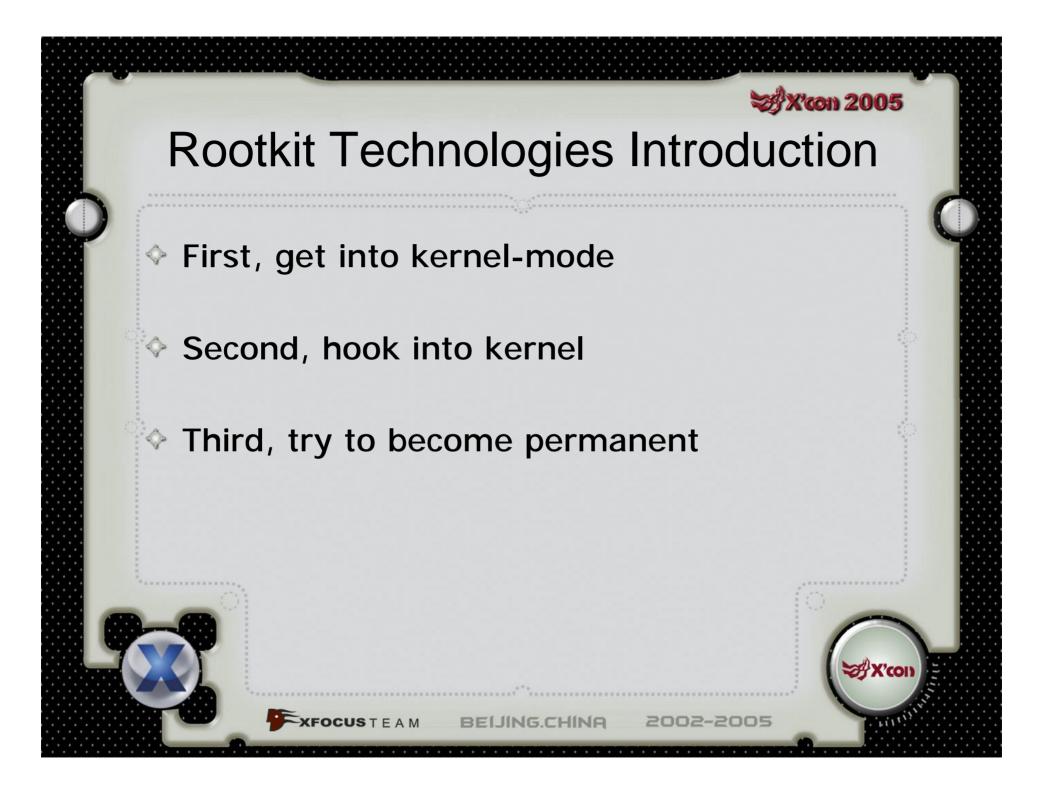
BEIJING

😹 X'con 2005

Rootkit Technologies Introduction

User-mode rootkits (not covered here)

- Hide in other processes
- Keyboard sniffing
- May be "diskless" (AV cannot detect)
- Metasploit, CANVAS, and CORE IMPACT are all diskless


BEIJING.CHINA

2002-2005

Won't be discussed in this presentation

Kernel-mode rootkits Coming up next...

XFOCUS T E A M

Rootkit Technologies 2005 Getting into Kernel #1

Using ZwSetSystemInformation or ZwLoadDriver

- Enable SeLoadDriverPrivilege
- The problem is that it will be pageable (as Hoglund/Butler note)
- But there is a magic trick: MmResetDriverPaging J

Service Control Manager (the normal way)

No special tricks required

XFOCUS T F A M

This will require creating a registry key

Both require a physical file be present Makes the rootkit an easy target for antivirus detection

Rootkit Technologies 2005 Getting into Kernel #2

- Use a kernel-mode exploit.. some examples:
 - ◆ LPC (local): 原创 (eyas)

XFOCUS T F A M

Norton Antivirus (local): s.k. chong

RELINGO

2002-2005

SymDNS (remote): barnaby jack

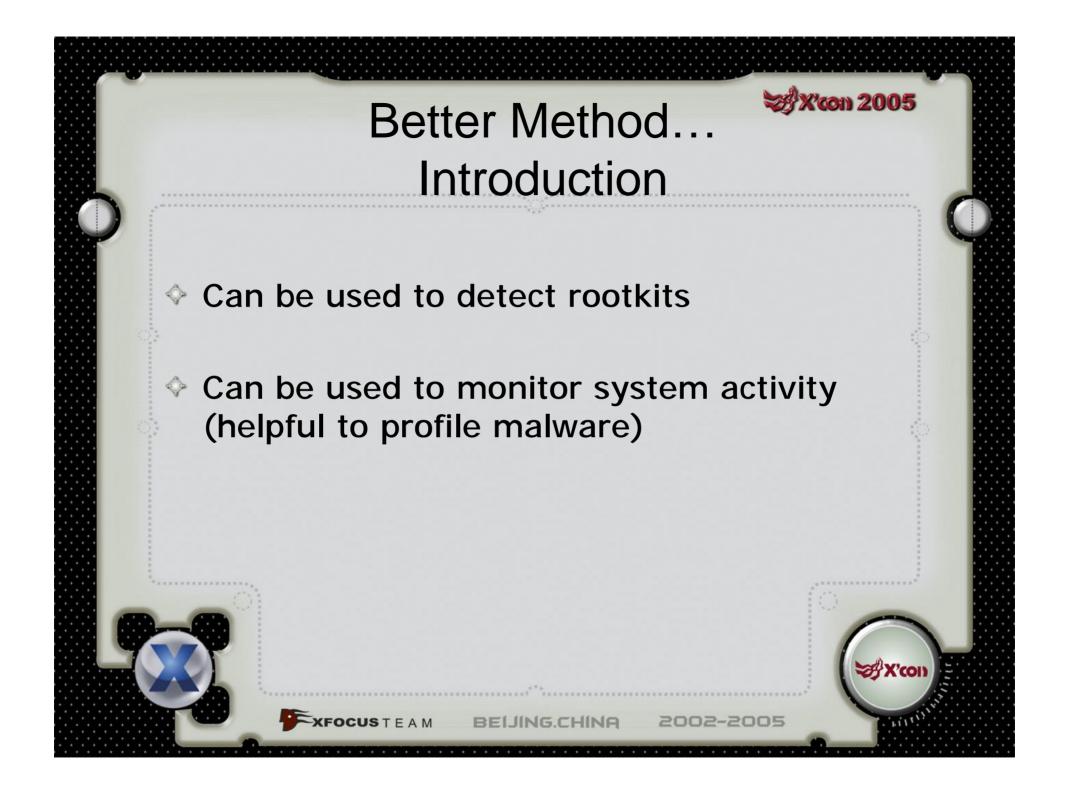
- Install Ring3->Ring0 call gate from user mode
 - See paper by crazylord

(FOCUS T F A M

- No disk access (AV can't detect)
- Less complicated than kernel-mode exploits
- Modify x86 GDT directly from user mode
 May not work for newer versions of
 Windows

Rootkit Technologies 2005 Hooking into the Kernel

- Once your code is running the kernel, now what?
- Hooking system call table
 - Used to either add new system calls or hide information like files, registry keys, etc.
- Hooking interrupt handlers
- Manipulate page tables entries (executable, no readable)


REI IING C

2002-2005

Hooking driver dispatch tables

XFOCUS T F A M

Add filter drivers

😹 X'con 2005 Better Method... Windows Executive Objects Windows uses "executive objects" Controlled by an Object Manager ♦ Handles are all indirect references to objects Everything is an object

BEIJING.CHINA

2002-2005

XFOCUS T E A M

Better Method... X'con 2005 Windows Executive Objects

Memory \diamond sections ♦ LPC ports ♦ I/O completion ♦ Drivers WMI

Desktops

Mutexes

Events

Semaphores

♦ I/O Controllers

XFOCUSTEAM

Processes

Devices

Registry keys

♦ Threads

♦ Jobs

♦ Files

♦ Sockets

♦ Security tokens

BEIJING.CHINA

These are all objects!

Better Method... Windows Executive Objects

- How does the Object Manager track so many types of objects?
- It doesn't "memorize" all these executive object types
- Instead, executive object types are registered dynamically
- There are set of callbacks for each object type, and it is responsible for opening, creating, securing, and closing that object type

2002-2005

XFOCUS T F A M

Better Method... Example

X'con 2005

- During system initialization, IoInitSytsem() registers the FILE_OBJECT type
- Later you call NtCreateFile() to create a new file:
- This calls ObCreateObject(name, FILE_OBJECT)
- The Object Manager calls the Open callback with the mode set to Create routine registed for the FILE_OBJECT

2002-2005

 If the Open callback returns successfully, then the handle is returned to NtCreateFile

BEIJING.CHINA

XFOCUS T E A M

Better Method...

(°con 2005

- We can replace the callbacks for all object types we're interested in
- If we're interested in finding out every time a process or file is opened:

XFOCUSTEAM

 Find the FILE_OBJECT object type and replace the Open callback
 Find the EPROCESS object type and replace the Open callback

BEIJING.CHINA

Better Method...

con 2005

In the callback, we analyze the event and then call the original callback

If we're just profiling:
 We record the event and allow it to pass

If we're doing rootkit detection:

FOCUSTEAM

We check if there are any matching signatures

BEIJING.CHINA

2002-2005

If a signature matches, we execute the signature action (e.g., report, block, etc.)

2002-2005

Saves on performance big time

XFOCUS T F A M

- Can be isolated to specific object types, specific processes, or just the kernel
- Attempts to open an object that doesn't exist don't even reach the Open callback (thus no overhead)
- Attempts to create an object when the caller doesn't have adequate permission doesn't even reach the Open callback (thus no overhead)
- New possibilities!
 - Able to monitor almost all aspects of the systems behavior

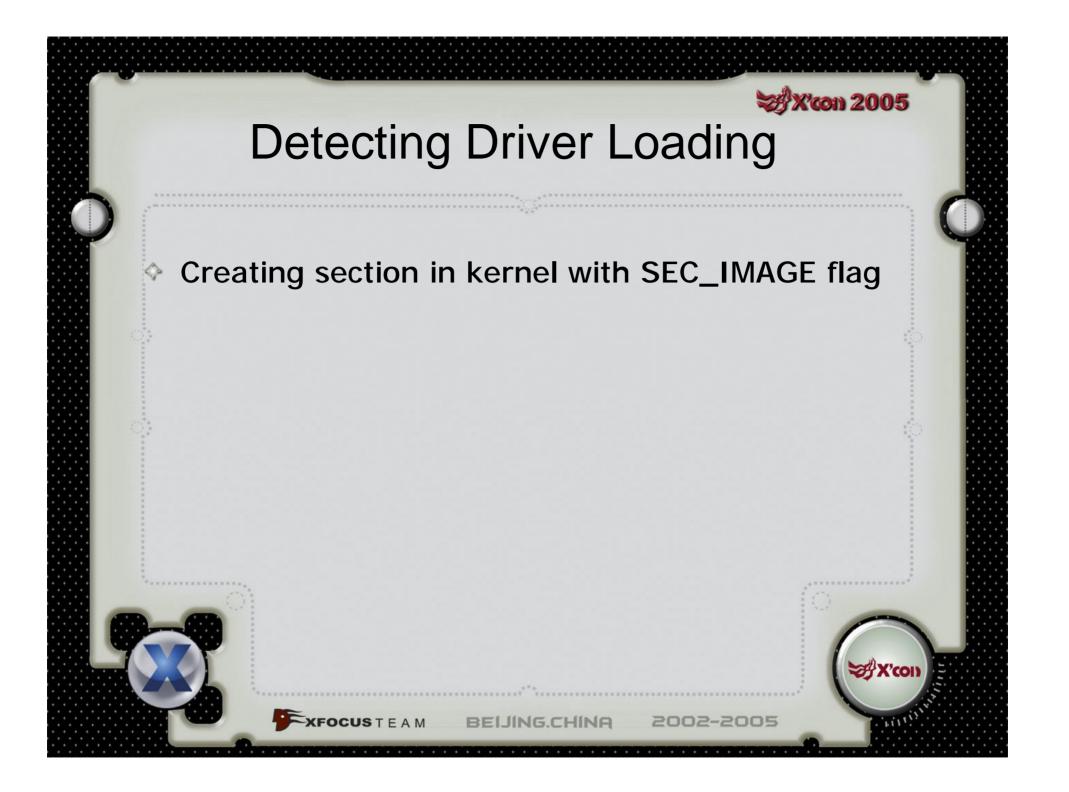
REI IING CHINO

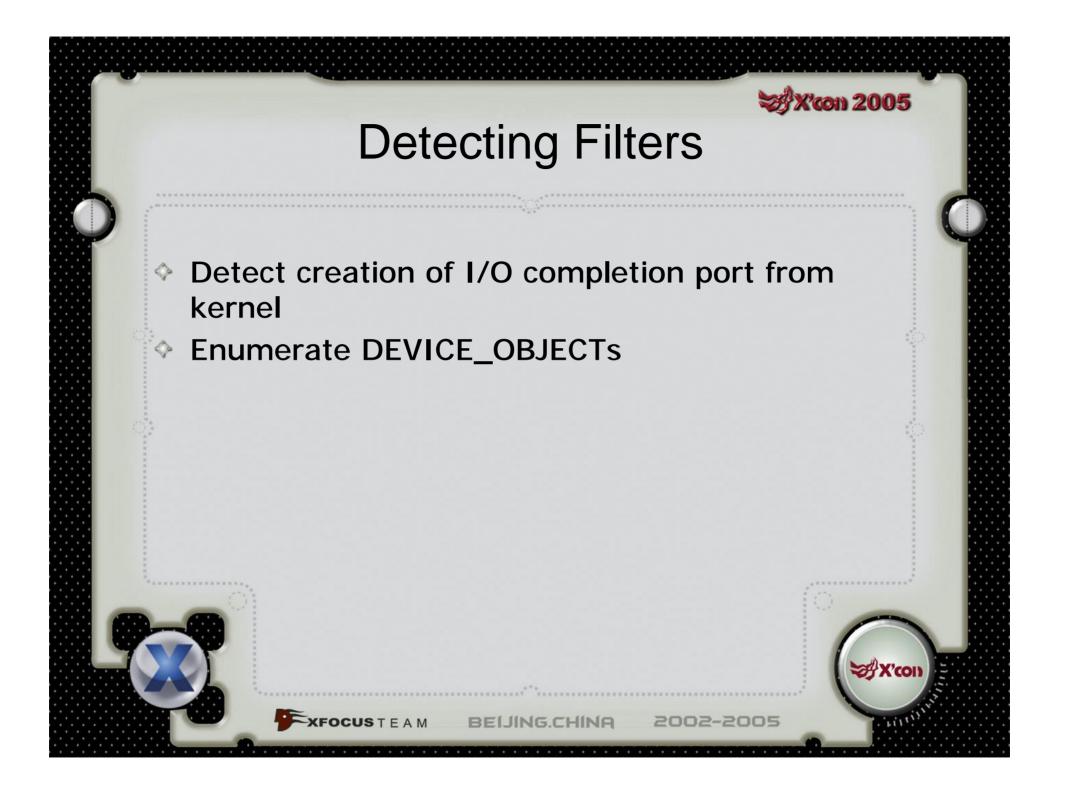
Remember, almost everything is an object!

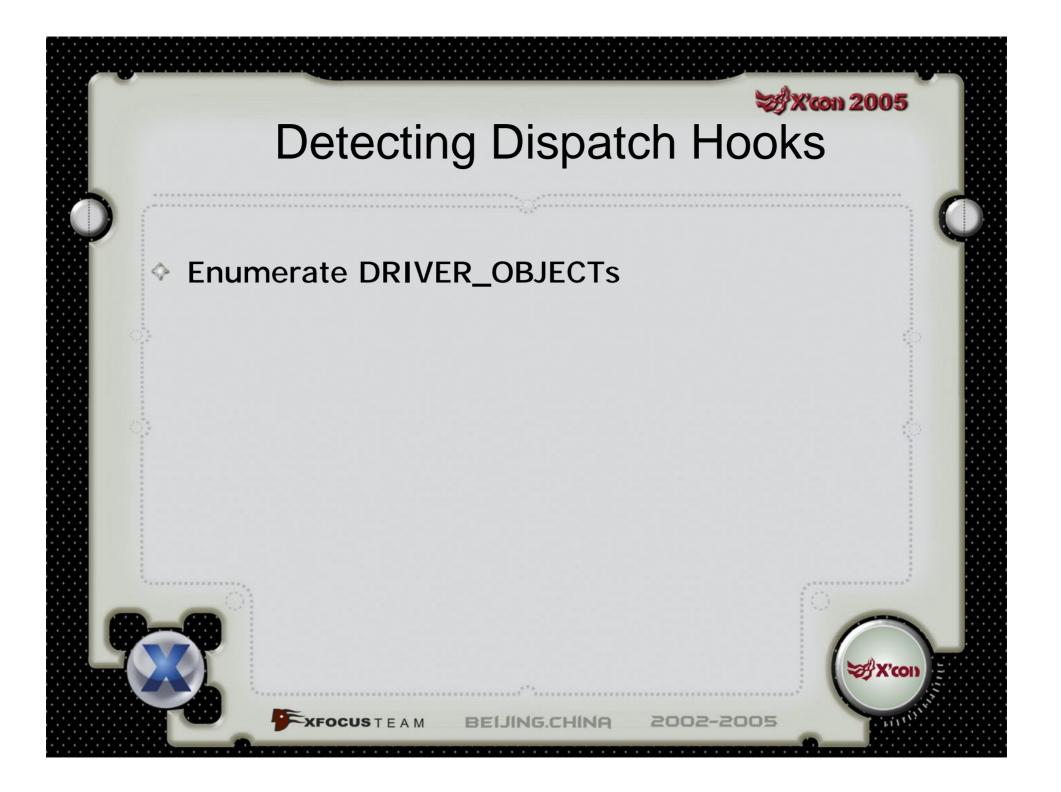
Better Method... How To

Con 2005

If we want to profile malware:


- Start the malware in a suspended state
- Monitor all object types
- Apply it only to the malware process
- If we want to detect rootkits:


(FOCUSTEAM


- Process signatures and only monitor the object types that has a matching signature
- Apply it only to kernel mode (e.g., ignore user-mode processes)

REI IING CHINO

Detecting Hidden Rootkits

 Some of the things rootkits do make them easier to detect J
 Return address into non-readable page
 Return address into non-paged memory pool

BEIJING.CHINA

2002-2005

XFOCUSTEAM

Removing a Rootkit...

2002-2005

- Still experimental...
- Creates instability to remove rootkit (unknown hooks)
- Replace all rootkit code with INT 3 (breakpoint)
- Add INT3 handler

(FOCUSTEAM

- If the return address is to a suspicious place, add INT 3 to that page also
- After we no longer see any new pages for a while, replace INT 3 with NOP

BEIJING.CHINA

Self-Preservation

('con 2005

- Since this is a cat and mouse game, rootkits will improve to hide from this method
- We need to protect ourselves from when the rootkit authors begin specifically targeting this detection mechanism

BEIJING.CHINA

2002-2005

Thus, we need to take whatever selfpreservation mechanisms we can to stay in control

XFOCUSTEAM

X'con 2005

- Prevent a rootkit from being loaded in the first place
 - Disable access to
 Dovice Development

FOCUSTEAM

- \Device\PhysicalMemory
- Disable driver loading methods
- Limitations:
 - The attacker will use a new kernel privilege escalation vulnerability, and get past this step

- Prevent a rootkit from making itself permanent
 - Disable any attempt to create HKLM\SYSTEM\CurrentControlSet*\Type with type 0 or 1 (change to 4 for disabled)
 - Disable any attempt to modify an existing an HKLM\SYSTEM\CurrentControlSet*\Type
- Limitations:

(FOCUS T F A M

- The rootkit may physically patch hal.dll, ntoskrnl.exe, etc.
- Be wary of accessing the registry keys through symbolic links

BEIJING.CHINA

Ensure no driver except FAT/NTFS loads before us

XFOCUSTEAM

- Install ourselves at the beginning of the "Boot Bus Extender"
- Prevent any changes to HKLM\SYTSEM\CurrentControlSet\GroupOrderList

BEIJING.CHINA

X'con 2005

Ensure no one changed the object type callbacks

- Keep a thread in an infinite loop watching the hooked callbacks every few 100 milliseconds or so
- Restore callbacks if they are changed and report an attack
- Find out where the callbacks pointed to (this lets us know who did it)
- If it is not a known system driver, unload it

2002-2005

(FOCUSTEAM

Summary

K'con 2005

- Presented a method of observing system behavior
 - User-mode and kernel-mode
- Presented a method to block certain behaviors
 - Signature language can be used to detect known rootkits
- Presented self-preservation methods

XFOCUSTEAM

- Needed if new rootkits come out that aren't recognized
- In the end, this is just a step in the cat and mouse game

BEIJING.CHINA

Acknowledgements

😹 X'con 2005

Many kung fu masters for Windows kernel-mode exploitation and rootkits:

Joanna Rutkowska, Jamie Butler, flashsky, S.K. Chong,

Barnaby Jack, Greg Hoglund, Derek Soder, crazylord

BEIJING.CHINA

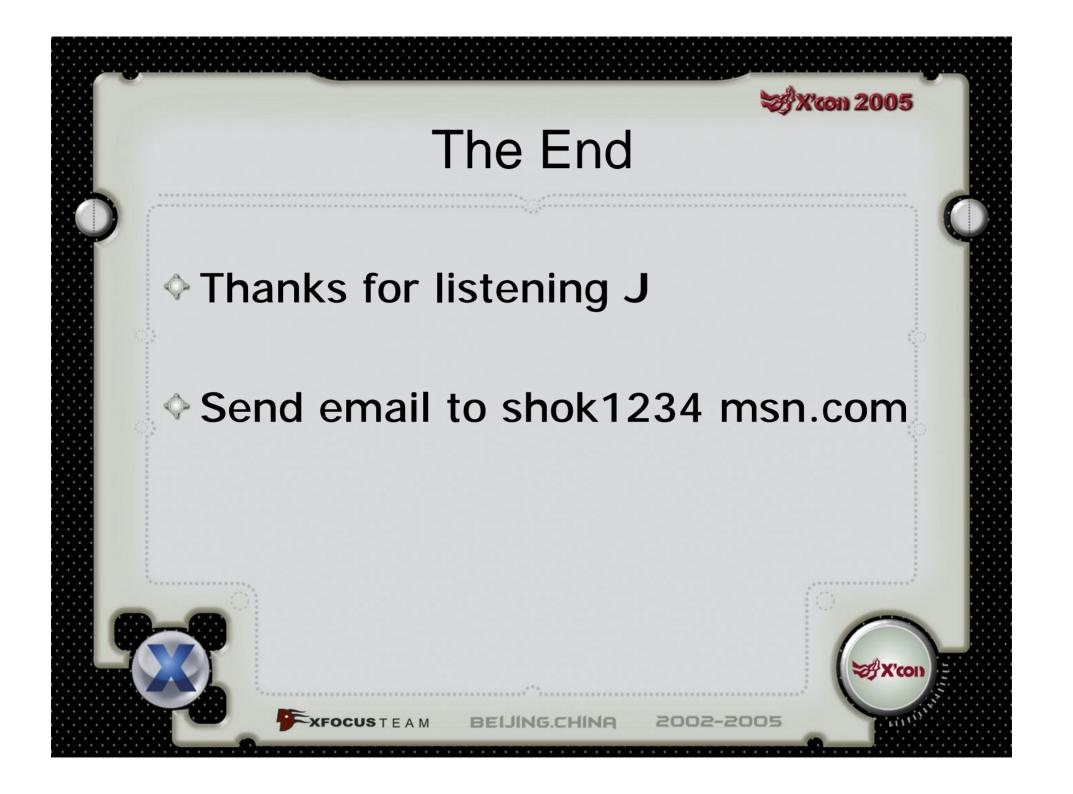
2002-2005

XFOCUSTEAM

STKIT– Shok Toolkit J

📽 X'con 2005

- Remember this URL...
- Remember this URL...
- Remember this URL...
- Remember this URL...


XFOCUSTEAM

http://www.cybertech.net/~sh0ksh0k

Will not be publicly announced, so you must remember Code will be put there in the next 2 weeks

BEIJING.CHINA

