
Detecting Malicious JavaScript Code in Mozilla

Oystein Hallaraker and Giovanni Vigna
Reliable Software Group

Department of Computer Science
University of California, Santa Barbara

hallarak@stud.ntnu.no, vigna@cs.ucsb.edu

Abstract

The JavaScript language is used to enhance the client-
side display of web pages. JavaScript code is downloaded
into browsers and executed on-the-fly by an embedded inter-
preter. Browsers provide sand-boxing mechanisms to pre-
vent JavaScript code from compromising the security of the
client’s environment, but, unfortunately, a number of attacks
exist that can be used to steal users’ credentials (e.g., cross-
site scripting attacks) and lure users into providing sensi-
tive information to unauthorized parties (e.g., phishing at-
tacks). We propose an approach to solve this problem that
is based on monitoring JavaScript code execution and com-
paring the execution to high-level policies, to detect mali-
cious code behavior. To achieve this goal it is necessary to
provide a mechanism to audit the execution of JavaScript
code. This is a difficult task, because of the close integra-
tion of JavaScript with complex browser applications, such
as Mozilla. This paper presents the first existing implemen-
tation of an auditing system for JavaScript interpreters and
discusses the pitfalls and lessons learned in developing the
auditing mechanism.
Keywords: Mobile Code, JavaScript, Web Applications.

1. Introduction

Mobile code consists of small pieces of software that are
transferred across networks and executed on a remote com-
puter. While code mobility improves computing efficiency
and reduces latency, it also introduces security issues that
have to be dealt with. Different models [11] have been
developed to address these issues, including software fault
isolation [15], safe interpreters [13], and sand-boxing [3].
While these techniques provide some form of protection,
vulnerabilities that can be exploited using mobile code are
still common.

JavaScript [7] is a scripting language developed by
Netscape to create interactive HTML pages. JavaScript con-

forms to the ECMAScript standard [1]. Usually, JavaScript
code is embedded in HTML code. When a browser down-
loads a page, it parses, compiles, and executes the script. As
with other mobile code schemes, malicious JavaScript pro-
grams can take advantage of the fact that they are executed
in a foreign environment that contains private and valuable
information.

The existing JavaScript security solution is based on
sand-boxing, which allows the code to perform a restricted
set of operations only. JavaScript programs are treated as
untrusted software components that have access to a lim-
ited number of resources within the browser. The problem
with the current solution is that scripts may conform to the
sand-box policy, but still violate the security of the system.

For example, incross-site scripting(XSS) attacks,
a malicious web application gathers confidential data
from a user. A typical example of a XSS at-
tack is when a user is tricked into clicking on a
link hosted by a malicious host (e.g.,www.evil.com).
The link, appears to be pointing to a resource on
a trusted site (e.g.,http://www.bank.com/accounts.html,
but, instead, it contains JavaScript code as the re-
source name (e.g.,http://www.bank.com/<script>send-
cookieto(hacker@evil.com)</script>). When the resource
is requested by the user’s browser, the code is sent
as part of the HTTP request to the destination of the
link (i.e., the trusted web server). Since the requested
resource does not exist (e.g., there is no file called
“<script>sendcookie...</script>”), the trusted web server
returns an error message that contains the name of the re-
source that could not be accessed. As a result, the page
containing the error message is interpreted by the client’s
browser as a page from the trusted site containing some
JavaScript code. Therefore, the code is executed in the con-
text of the trusted site and has access to the cookies pre-
viously set by the trusted site, including session identifiers
and authentication tokens.

Another example is represented by scripts that abuse sys-
tems resources, such as opening windows that never close

1

or creating a large number of pop-up windows.
We propose a novel solution where all operations from a

downloaded JavaScript program are monitored and logged.
Based on the auditing information, different intrusion de-
tection techniques can be used to evaluate the actions of the
script and take appropriate countermeasures if malicious be-
havior is detected.

To the best of our knowledge this is the first implemen-
tation of a security auditing mechanisms that addresses the
execution of JavaScript code within a browser.

This paper is structured as follows. Section 2 introduces
the current security mechanisms for JavaScript in Mozilla
and discusses related work. In Section 3, we describe the
architecture of the Mozilla browser. Section 4 and 5 present
our auditing system and show how malicious JavaScript
code is detected. In Section 6, we present an evaluation
of the system. Finally, in Section 7 we conclude and outline
future work.

2. Related Work

JavaScript was developed as a light-weight script-
ing language with object-oriented capabilities. The cur-
rent JavaScript security solution is based on executing
JavaScript code within a sand-box [2]. The JavaScript sand-
box is similar to the Java sand-box, but it is more restrictive
since JavaScript does not provide any built-in support for
file access. This means that by default, a JavaScript pro-
gram cannot read files on the local drive or access random
XPCOM objects (see Section 3 for a discussion of XP-
COM). Other examples of operations that are not allowed
are opening a window smaller than 100x100 pixels, using
theHistory object to find out recently visited pages, and
unconditionally close a browser window. In addition to re-
stricting many operations, Mozilla uses two main JavaScript
security policies. The first policy, called thesame-origin
policy, is used to isolate one document from another, while
the second one, called thesigned-scriptpolicy, provides
means to enforce finer-grained access control.

The same-origin policy prevents documents or scripts
loaded from one origin (i.e., a web server), from getting
or setting properties of a document from a different origin.
In this context, “same origin” means same protocol, host,
and port. This policy provides the foundation for isolating
one script from another, and ensures that a document down-
loaded from one source cannot be changed by JavaScript
code downloaded from another origin. There is one excep-
tion to this rule: a document can set its domain to a suffix
of its current domain. This means that a document from
http://store.factory.com can access a document
from http://factory.com after setting its domain to
factory.com . This policy applies to both windows and
frames.

Having all JavaScript programs executing within the
sand-box created frustration in the JavaScript programmers
who desired to have access to more functionality. A sec-
ond policy, the signed-script policy, was therefore devel-
oped to give scripts more functionality and give a user
the option to define a finer-grained security policy. Script
signing allows a script to get out of the sand-box and
is similar to the mechanisms used for signed Java ap-
plets. When the browser downloads a script that is dig-
itally signed, the browser first verifies the signature and
then extracts the principals of the script. The principals
can either be derived from validating the signature of a
script or they can be derived from the origin of the script.
If a principal is derived from the origin of the script, the
principal is called acodebase principal. Signed scripts
are allowed to ask for extended privileges/capabilities at
runtime, using the commandnetscape.security.-
Privilegemanager.enableprivilege() . The
privilege represents permissions to access specific targets
and a prompt will appear in the browser window whenever
a script asks for a privilege. The privileges range from auto-
matically bypassing the same-origin checks to reading ran-
dom files on the local drive.

In addition to these policies, Mozilla also developed
a concept called configurable security policies (CAPS).
Mozilla’s configurable security policies allow users to con-
figure the general security policies and to define different
security policies for different security domains. There is
currently no user interface for this, and users must manu-
ally change theuser.jsconfiguration file to modify a policy.
For example, by editing theuser.jsfile, a user can deny all
scripts access to certain methods, e.g,window.open() ,
or allow scripts from certain domains only to access some
properties.

Sand-boxing is a crucial aspect in JavaScript security,
and this technique has been extensively researched by the
security community. In [3], different sand-boxing meth-
ods are presented that can be used to enforce strict secu-
rity policies. Janus is another practical tool for applica-
tion sand-boxing [14]. Janus provides an environment for
placing an entire web browser or helper application inside
a sand-box, and then monitoring system calls originating
from the application contained within the sand-box. The
problem with these sand-boxing facilities is that they are
too generic. Both the mentioned systems can prevent scripts
from accessing private information outside the browser, but
they provide no means for protecting information within the
browser. In addition, most accesses from the JavaScript en-
gine to the OS are performed through the browser process,
making it difficult to determine the origin of an operation.

2

3. The Mozilla JavaScript Architecture

Mozilla is an open-source, free software project that in-
cludes a web browser and an e-mail client. The open-source
Mozilla browser has hundreds of contributors, and is con-
stantly evolving.

3.1. The SpiderMonkey JavaScript Engine

SpiderMonkey [12, 6] is the code-name for the imple-
mentation of the JavaScript engine embedded in Mozilla. It
is a stand-alone JavaScript engine that parses, compiles, and
executes JavaScript code. The engine conforms with the
ECMAScript standard [1], which is the standardized ver-
sion of JavaScript. ECMAScript defines built-in types for
Undefined, Null, Boolean, Number, and String. In addition
ECMAScript defines a collection of built-in objects which
include the Global object, the Object object, the Function
object, the Number object, the Math object, the Date ob-
ject, the RegExp object and some Error objects. An appli-
cation embedding SpiderMonkey may also define its own
application-specific objects in addition to the built-in ob-
jects. In a browser like Mozilla, the application-specific ob-
jects are responsible for providing access to the Document
Object Model (DOM) [16] from within the JavaScript en-
gine.

The DOM is a platform and language neutral interface
that allows scripts to dynamically access and update the
content, style, and structure of web documents. The DOM
typically contains an object-instance hierarchy that mod-
els the browser window and some browser window infor-
mation. It also contains an object-instance hierarchy of
elements of an HTML document, which is created when
the document is loaded into the browser. For example,
some of the objects made accessible by the DOM are the
window object, thedocument object, thenavigator
object, and thelocation object. Thewindow object
is the global object from which all other objects inherit.
The document object contains the HTML elements of
the current document. Thenavigator object encapsu-
lates information about the browser, while thelocation
object contains information about the current URL. Each
object has a number of properties which can either be a
built-in type, an object, or a method. An example of
this is thehref property accessed using the expression
document.location.href . A JavaScript program
first accesses thedocument object which is a property of
the window object. Thelocation object is a property
of the document object, andhref is a property of the
location object.

SpiderMonkey exposes a public API that applications
can use to compile and execute scripts, instantiate host ob-
jects, and define properties. The engine does not provide

any securityper se, and all mechanisms to provide access
control and safety must be implemented in the embedding
application, e.g., the web browser.

3.2. Mozilla and SpiderMonkey

Mozilla [4] is a large and modular software project that
is written in both C, C++, and JavaScript. Several technolo-
gies are used in Mozilla to break the project into smaller
pieces that can be developed independently and efficiently.
The main mechanism that supports the integration of the
different components is the Cross-Platform Component Ob-
ject Model (XPCOM) [5, 4], which is similar to Microsoft’s
Component Object Model (COM). Other technologies used
are XPConnect and the Cross-Platform Interface Defini-
tion Language (XPIDL). All these technologies will be ex-
plained in detail in the following subsections.

Parts of Mozilla are written in JavaScript, which means
that the SpiderMonkey interpreter executes both scripts on
behalf of a downloaded web page and scripts that are part
of the “native” code of the Mozilla browser. The “native”
JavaScript code is considered part of the browser code and
is not executed within a sand-box.

3.2.1 Cross-Platform Component Object Model (XP-
COM)

The main goal of XPCOM is to provide a modular frame-
work that is both platform-independent and language-
independent. XPCOM enables a software project to be bro-
ken up into smaller modularized pieces that are integrated
at runtime, and separates the implementation of an object
from its interface. The advantages of developing modular
software are many: the code can be reused in many ap-
plications, components can be updated without needing to
recompile the whole application, and performance can be
improved by only loading the modules that are needed at a
certain point in time.

The basic idea is that related functionality is gathered
in one entity, called a component or a module. The com-
ponent implements one or more interfaces through which
other components can access its functionality. An interface
consists of one or more methods and variables. Each com-
ponent has a uniqueclassID andcontractID that de-
scribe the component. In addition, each interface the com-
ponent implements has a uniqueinterfaceID which
must be specified before accessing the component. The
component manager keeps track of all the components in
the system, and is responsible for finding the correct com-
ponent when acontractID or classID is specified.
An important concept in XPCOM is object ownership, also
called “component lifetime”. Since a component can imple-
ment many interfaces, interfaces must be reference counted.

3

All XPCOM objects keep track of how many references
to it are being used and they delete themselves when the
count reaches zero. This functionality is implemented in
thensISupports interface, which all XPCOM interfaces
inherit. ThensISupports interface also provides the
QueryInterface method, which allows one to find out
which interfaces a component supports at runtime.

3.2.2 XPConnect and XPIDL

Another important mechanism for component integration is
XPConnect, which enables simple interoperability between
XPCOM and JavaScript. XPConnect allows JavaScript ob-
jects to transparently access and manipulate XPCOM ob-
jects. It also allows JavaScript objects to export XPCOM-
compliant interfaces that can be accessed by other XPCOM
objects. This mechanism is used when a script accesses
the DOM or when scripts access other XPCOM objects in
Mozilla. An example of the use of XPConnect is when a
native DOM method is called from JavaScript. The argu-
ments passed have no types and it is the job of XPConnect
to translate these arguments to the correct C++ types before
the method is invoked. In addition, XPConnect must trans-
late the return value from the method to a correct JavaScript
value. When accessing the DOM, XPConnect also takes
advantage of DOMClassInfo which will be explained in the
next section.

All interfaces of an XPCOM object must be declared
in XPIDL (Cross Platform Interface Definition Language)
in order to work with XPConnect. An XPIDL compiler is
used generate both C++ header files and XPConnecttype-
lib files. The typelib files are binary representations of one
or more interfaces, and are used when XPConnect accesses
an interface. A typelib file consists of detailed information
about each method and variable an interface consists of, and
provides functionality to quickly map an interface id to an
interface description.

3.2.3 Interaction

JavaScript is used in three different ways in Mozilla. The
first (and most common) way to use JavaScript is to access
and manipulate objects in the DOM to create a dynamic en-
vironment for documents and to access browser-related in-
formation. Because XPConnect uses DOMClassInfo (see
the following paragraph) when accessing the DOM’s XP-
COM objects, a JavaScript programmer does not need to
specify which interface of the DOM object he wants to ac-
cess. On a second level, JavaScript code can access script-
able1 XPCOM components that are not part of the DOM
by using theComponents object. At this level, the cor-
rect component and interface must be specified. The third

1Scriptable means that it can be accessed from scripts.

and last way to use JavaScript in Mozilla is to write entire
XPCOM objects in JavaScript. Other XPCOM objects can
then call and use an XPCOM object written in JavaScript
just like any other XPCOM object. Downloaded JavaScript
code embedded in web pages typically falls in the first cat-
egory only, since, by default, this code does not have access
to any of Mozilla’s components except for the DOM XP-
COM objects. “Native” JavaScript scripts most often fall in
the second and third category.

When a JavaScript program access and manipulates the
DOM, DOMClassInfo [9] is used. DOMClassInfo serves
two roles: interface flattening and implementing behavior
that is not defined in the IDL description of the component.
Usually, when one wants to communicate with another XP-
COM object, one of the object’s interfaces must be speci-
fied. This is also the case when the DOM XPCOM objects
are accessed. But instead of having the JavaScript program-
mer specify the interface, XPConnect automatically finds
the correct interface by using DOMClassInfo. The second
important use of DOMClassInfo is to express things that
cannot be expressed in the IDL. All the DOM XPCOM ob-
jects have helper classes that inherit a scriptable interface,
and these helper classes are contacted whenever XPCon-
nect does not find the correct method to call in any of the
interfaces a DOM XPCOM object implements. By using
helper classes, a DOM object can appear different when
accessed from scripts instead of being accessed from an-
other XPCOM object. An example of the use of DOM-
ClassInfo is implementing array behavior. When a script
executes “history[0] ” this will magically be converted
to “history.item(0) ” by using the helper class of the
History object. Another example is when a script tries to
set thewindow.location property. In the IDL defini-
tion of thewindow object there is no setter function for the
window.location property. Therefore, in the helper
class of thewindow object,window.location is con-
verted towindow.location.href , which is most of-
ten what the JavaScript programmer is setting when he tries
to change the location property of the window.

When Mozilla starts the SpiderMonkey interpreter, XP-
Connect builds a number of wrapper objects that are re-
sponsible for making all the DOM objects available into
the JavaScript engine. Whenever a script tries to access
an object in the DOM, the wrapper object is contacted and
the wrapper object then calls the correct XPCOM object
by using DOMClassInfo. The arguments are converted
to the correct type using the code contained in typelib
files. An illustrative example of this is when a JavaScript
script callsdocument.getElementById(...) . In
this case, first XPConnect finds thatdocument is a prop-
erty of thewindow object. It then examines the interfaces
for thewindow object to see if aGetDocument method
is implemented. The return value fromGetDocument

4

is an nsIDOMDocument . XPConnect then searches for
a method calledgetElementById by looking at the
nsIDOMDocument interface, and, finally, it calls the
method.

An important part of the interaction between SpiderMon-
key and Mozilla is the SecurityManager. The SecurityMan-
ager is implemented as a XPCOM object and is responsible
for enforcing the security mechanisms that all downloaded
JavaScript programs are subject to. The SecurityManager
keeps information about the script that currently executes
within SpiderMonkey. Whenever a script tries to access in-
formation outside the engine, the SecurityManager grants or
denies the access based on the sand-box policy, the same-
origin policy, and the signed-script policy.

3.2.4 LiveConnect

LiveConnect [8] is a technology used to enable commu-
nication between JavaScript, Java applets and other plug-
ins. Using LiveConnect, JavaScript code can interact with
standard Java system classes built into the browser, ac-
cess downloaded Java applets, and communicate with Java-
enabled Navigator plug-ins. The technology also allows ap-
plets and Java-enabled plug-ins to interact with JavaScript
scripts, reading and writing JavaScript object propertiesand
calling JavaScript methods. The communication between
applets/plug-ins and scripts is still restricted by the same-
origin policy (see Section2), which means that a script can
only call an applet’s method if both the script and the applet
have the same origin or if the script is signed and has the
UniversalBrowserRead capability.

LiveConnect is a very powerful technology, and opens
new ways for JavaScript programs to interact with their exe-
cution environment. A stand-alone JavaScript program can-
not access the filesystem, but using LiveConnect, JavaScript
programs can access Java classes that allow reading and
writing to files and directories. This of course assumes that
the script is signed and has the correct privileges.

4. Auditing JavaScript Code Execution

When designing an auditing system there are several is-
sues that have to be addressed: where to integrate the audit-
ing system, what should the auditing information include,
and how should the auditing information be represented.

The main challenges in developing an auditing system
for SpiderMonkey/Mozilla are to achieve completeness and
correctness as much as possible. When the JavaScript ex-
ecution environment is initialized, a large number of func-
tion callbacks are registered in the JavaScript engine. These
hooks are used when scripts try to access a specific property
or method that are not native in the engine. This means that

SpiderMonkey:

LiveConnect + XPConnect

JavaScript scripts

Mozilla

DOM

Java plug-in

- parses
- compiles
- executes

Native function calls,
access checks,
Java Interaction

Figure 1. Basic interaction between Spider-
Monkey and Mozilla.

a JavaScript program that executes in SpiderMonkey com-
municates with Mozilla in many different ways. Though
most calls are directed to the DOM and forwarded using
XPConnect, some calls go directly to the SecurityManager
or are transferred through LiveConnect to the Java Virtual
Machine (JVM). It is up to the embedding application, in
this case the Mozilla browser, to define and implement all
the correct function callbacks. To ensure completeness in
our auditing system, all these calls must be intercepted and
logged.

The auditing system must also be capable of differenti-
ating between “native” scripts that execute on behalf of the
browser, and scripts that are downloaded as part of HTML
pages. Since “native” JavaScript code executes with all
privileges set, these scripts can perform any operation that
is allowed to the browser program itself and should not be
audited. SpiderMonkey is a stand-alone JavaScript engine
without explicit knowledge of whether the currently execut-
ing script is “native” or downloaded. Most of the auditing
is therefore done in XPConnect, which is the layer between
the JavaScript engine and Mozilla2. In addition, some au-
diting is also done in DOMClassInfo, in LiveConnect, and
in the SecurityManager. Figure 1 shows the basic interac-
tion between SpiderMonkey and Mozilla. As explained, our
auditing mechanism is mainly implemented in the XPCon-
nect and LiveConnect layer, though some calls do not use
these layers and must be audited elsewhere.

Another important choice in designing the auditing sys-
tem is deciding what to audit and how to represent the log-
ging information. Due to the nature of the communication
between SpiderMonkey and Mozilla, we decided to focus
on the auditing of method calls and property getters and
setters. As mentioned earlier, there is a mediated com-
munication between SpiderMonkey and Mozilla, and audit-
ing must be able to discern what are the security-sensitive
part of this chain of invocation. An example of this is

2With the notable exception of communication with the Java Virtual
Machine through LiveConnect.

5

when a script executesdocument.location.href =
"somewhere" . If the document property has never been
accessed before, XPConnect first gets thedocument ob-
ject, then gets thelocation object, and finally sets the
href property. The fact that XPConnect first gets the
document object andlocation objects is not impor-
tant, since these get operations are only intermediate op-
erations that are done in order to set thehref property.
Intermediate operations are consequently not logged.

When SpiderMonkey communicates with its environ-
ment all arguments in getters/setters and method calls will
be passed asjsvals, which is an internal JavaScript engine
type. These arguments must be converted to the correct
type, before any logging can be done. A jsval is one of 7
different types: string, null, void, double, int, boolean,or
object. When a JavaScript script executes a method call,
the types of the arguments given are compared to the types
of the arguments in the corresponding method signature.
Depending on the comparison between these types, differ-
ent conversions are done. The conversion also depends on
which technology is used in the intermediate communica-
tion, either LiveConnect or XPConnect. An example is
when a script calls a method that expects a string argument,
but instead passes an object. XPConnect will automatically
call thetoString method on the object to get a string rep-
resentation of the object. The conversion will be different
if the method call is forwarded through LiveConnect to the
Java Virtual Machine. In our system, all types are converted
to a string representation before they are written to the audit
log.

Figure 2 shows a simple output from the auditing system
when a script executes the instructiondocument.loca-
tion = "http://www.newlocation.com"; . The
audit information produced is XML-encoded and includes a
timestamp, the origin of the script, the method, the method
arguments, and the return value. Thetime element is
the time when the operation was executed. Thehost el-
ement is the origin of the script that executes the opera-
tion. Themethodelement includes information about the
name of the getter/setter/method call, and which object
the getter/setter/method was called on. It is important to
include theobject information, since there are examples
where there exist different methods with the same name,
e.g.window.open(..) anddocument.open(...) .
The argumentselement give all the arguments with their
corresponding type and value. If thetypeof theargument
is “object”, the corresponding class of the object is writ-
ten in thetype element. Thereturn element contains the
result of the operation. This element has two attributes:
bool, which says if the operation was successful or not, and
param, which gives the type and value of the return value.

<call>
<time>Thu Jul 1 15:58:34 2004</time>
<host>http://www.simplehost.com</host>
<method>

<name>location</name>
<object>HTMLDocument</object>

</method>
<arguments>

<argument>
<type>STRING</type>
<value>http://www.newlocation.com</value>

</argument>
</arguments>
<return>

<bool>true</bool>
<param>

<type>STRING</type>
<value>http://www.newlocation.com</value>

</param>
</return>

</call>

Figure 2. XML encoding of JavaScript events.

5. Detection

In this section we describe how malicious JavaScript
code can be detected leveraging the implemented auditing
facility and a simple intrusion detection system (IDS). Intru-
sion detection systems [10] can be separated into two main
categories: anomaly detection systems and misuse detection
systems. Anomaly detection systems compare the behavior
of a script to the “normal” behavior of scripts, and interpret
deviations from the “normal” behavior as a problem. Mis-
use detection systems are based on comparing the operation
of a script to some predefined attack scenarios (also called
“signatures”). The auditing system we have developed does
not restrict the IDS to be of any specific type. However, the
IDS used in the following two examples is a misuse detec-
tion system. We show how malicious JavaScript code can
be detected by comparing the output of the auditing system
to known attack signatures.

5.1. Example 1

In the first example we look at a simple cross-site
scripting attack (see Section 1). A user visiting a ma-
licious web site, saywww.evil.com, can be tricked into
clicking on the following link: <a href=”http://www.-
trusted.com/<script>document.location=’http://www.-
evil.com/cookie.cgi?’+document.cookie</script>” >Click
here to collect your prize. When the user clicks on the
link, an HTTP request will be sent totrusted.com, request-
ing the page “<script>document.location=’http://www.-
evil.com/cookie.cgi?’+document.cookie</script>”. The
trusted host will receive the request and check if it has the
resource which is being requested. When thetrusted.com
host does not find the requested page, it will send a return

6

� � � � � � � � � �
	 � �
 � �

� � � � � �
	 � �
 � �� � � �

� � � � � �
 � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � �
� � � � � � � � � � � � � � � � � � �
 � 	 � � � � � � � � � � � � � � � �
� � � � � � � � � � � �
 � �

 � � � � � � � � � � � � �
 �
� � � � � � � � ! � � � � � � � � � � � " � # � # $ � � � � �
 � 	 � � � � � � � � %

& � � � � � �
 � 	 � � � � � � � � � � � ' � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � (� � � � � � � � � � � � � � �
 � � � � � � � �
� � � � � � � � � � � � � � � � � �
 � �

Figure 3. A typical cross-site scripting sce-
nario.

message with the error code 404: “File does not exist”.
The web server may also decide to include the requested
filename in the return message, to specify which file was
not found. If this is the case, the filename (which is a
script) will be sent from thetrusted.comweb server to
the user’s browser and will be executed in the context of
the trusted.comorigin. When the script is executed, the
cookie set bytrusted.comwill be sent to the malicious
web site as a parameter of the invocation of thecookie.cgi
server-side script. The cookie will be saved and later
used by the owner of theevil.comsite to impersonate the
unsuspecting user with respect totrusted.com. Figure 3
shows this scenario. This attack exemplify how a malicious
hacker can perform an attack that bypasses the same-origin
check to execute JavaScript code with the privileges of
someone else. Figure 4 shows the script that is executed
and Figure 5 shows the audit information produced by the
auditing system.

Based on the information we have about cross-site script-
ing attacks, the intrusion detection system is implemented
as a state-transition model that includes the following
check:

if((event.method.name==cookie)&&(event.arguments==0)){
state1.add(event.host);

}
if((event.method.name==location)&&(event.arguments! =0)

&&(state1.includes(event.host))){
log("You may have been exposed to

cross site scripting");
}

Whenever a script reads the cookie associated with the
script’s origin, the origin of the script is added to the list

<script>
document.location=’http://www.evil.com/cookie.cgi?’ +
document.cookie;
</script>

Figure 4. Cross-site scripting example.

state1. To separate between property getters and property
setters, we check if the property operation has any argu-
ments. If the property operation has arguments, it is a set
operation. If the property operation does not have any ar-
guments, it is a get operation. When a script now sets the
location of the document, the IDS checks if the origin of
the script that performed the operation is already in the list
state1and detects a possible cross site scripting attack.

This is a very simplified signature that addresses one spe-
cific event only. However, the example shows how the audit
information can be used to evaluate a script’s behavior with
respect to a predefined attack scenario.

5.2. Example 2

The second example is a script that calls
window.open() every time the user unloads the
document. The HTML source is shown in Figure 6, and
parts of the auditing information produced is shown in
Figure 7. The audit information shown will be logged every
time the user tries to exit the document. This is an example
of a script that does not necessarily cause a security threat
to the user, but is abusing the browser’s resource (and
can be problematic for an inexperienced user). In the
state-transition based IDS we add the following checks:

if((event.method.name==open)&&
(event.method.object=="window")){

if(stateW4.includes(event.host)){
log("Script has opened 5 windows.

Possibly a malicious script!")
}
else if(stateW3.includes(event.host)){

stateW3.delete(event.host);
stateW4.add(event.host);

}
else if(stateW2.includes(event.host)){

stateW2.delete(event.host);
stateW3.add(event.host);

}
else if(stateW1.includes(event.host)){

stateW1.delete(event.host);
stateW2.add(event.host);

}
else{

stateW1.add(event.host);
}

}

The IDS checks how many times a script calls
window.open() and identifies the script as malicious if
it opens more than five windows.

7

<call>
<time>Tue Jul 13 11:29:39 2004</time>
<host>http://trusted.com</host>
<method>

<name>cookie</name>
<object>HTMLDocument</object>

</method>
<arguments>
</arguments>
<return>

<bool>true</bool>
<param>

<type>STRING</type>
<value>My_cookie</value>

</param>
</return>

</call>
<call>

<time>Tue Jul 13 11:29:39 2004</time>
<host>http://trusted.com</host>
<method>

<name>location</name>
<object>HTMLDocument</object>

</method>
<arguments>

<argument>
<type>STRING</type>
<value>
http://www.evil.com/cookie.cgi?My_cookie
</value>

</argument>
</arguments>
<return>

<bool>true</bool>
<param>

<type>STRING</type>
<value>
http://www.evil.com/cookie.cgi?My_cookie
</value>

</param>
</return>

</call>

Figure 5. Audit information produced by the
script in Example 1.

<html>
<body onUnload="reopen()">

<script>
function reOpen(){

window.open(self.location,");
}

</script>
</body>
</html>

Figure 6. HTML containing a script that
causes the window to never close.

<call>
<time>Tue Jul 20 10:05:34 2004</time>
<host>http://www.somehost.com</host>
<method>

<name>open</name>
<object>window</object>

</method>
<arguments>

<argument>
<type>OBJECT:location</type>
<value>
http://www.cs.ucsb.edu/˜hallarak/
</value>

</argument>
<argument>

<type>STRING</type>
<value>
</value>

</argument>
</arguments>
<return>

<bool>true</bool>
<param>

<type>OBJECT:window</type>
<value>
[object window @ 0x8865950]
</value>

</param>
</return>

</call>

Figure 7. Audit information produced every
time the user tries to unload the document in
Example 2.

5.3. Example 3

Figure 8 shows an HTML document containing a script
that calls window.alert() every 100 milliseconds.
This causes an alert box to appear in the browser window
constantly, and the user cannot exit the window. Figure 9
shows the audit information produced every time the user
tries to close the alert box. As in the previous example with
window.open() , this malicious script is detected using
a signature that keeps track of the number of times a certain
method is called.

6. Evaluation

The overhead introduced by our auditing system is
highly dependent on the JavaScript code that executes in
SpiderMonkey. Scripts that do not communicate with the
DOM or other parts of Mozilla will not be audited at all,
and the overhead is, in these cases, very small. However,
most useful JavaScript programs interact with their host en-
vironment to make static HTML pages more interactive.

To evaluate the performance of the auditing system, we
designed three scripts that interact with the DOM in differ-
ent ways. All the scripts consist of only one method call,

8

<html>
<body>
<script language=JavaScript>

function alrt() {
alert("Never Close!");

}
dummy=setInterval("alrt()","100");

</script>
</body

</html>

Figure 8. HTML containing a script that
causes an alert box to constantly appear in
the browser window.

<call>
<time>Fri Jul 30 10:47:33 2004</time>
<host>http://www.somehost.com</host>
<method>

<name>alert</name>
<object>window</object>

</method>
<arguments>

<argument>
<type>STRING</type>
<value>Never Close!</value>

</argument>
</arguments>
<return>

<bool>true</bool>
<param>

<type>VOID</type>
</param>

</return>
</call>

Figure 9. Audit information produced in Ex-
ample 3.

Script Number
of oper-
ations

Time
without
audit-
ing

Time
with au-
diting

Percent
over-
head

Script1 10 0.013sec 0.016sec 23%
Script2 250 0.255sec 0.327sec 28%
Script3 500 0.498sec 0.669sec 34%

Table 1. Overhead introduced by the auditing
system.

that is,document.write("message") . The only dif-
ference is how many times this method is called. We per-
formed our experiments on an Intel Pentium 4, 2.4GHz
processor and a WD Caviar 7200rpm hard disk. The op-
erating system is Red Hat Linux, kernel version 2.4.22.
Our auditing system is developed for Mozilla version 1.7
Beta. Table 1 shows the time it takes to run the three dif-
ferent scripts with and without the auditing system. Each
script has been run 100 times. The number of operations
is the number of audited operations, i.e., the number of
document.write() invocations that appear in the au-
dit log. The overhead caused by the auditing is mainly due
to file I/O, when writing auditing information to the log
file. There is a trade-off between the time overhead and
how fast an attack can be detected. Using more buffering,
the overhead can be reduced, while increasing the detec-
tion time. This parameter can be configured in our system
to match the security requirements of different installations.
As the figure shows, the overhead caused by the auditing
system increases with the number of operations. Note that
we have not focused on optimizing the auditing system, and
the overhead can be easily decreased using more efficient
I/O buffering techniques.

7. Conclusions and future work

In this paper we have presented a novel auditing facil-
ity for JavaScript code execution. This mechanism is com-
bined with an intrusion detection system to detect mali-
cious JavaScript code, including the very common cross-
site scripting attacks. In designing and implementing the
auditing mechanism, we found that the complexity of the in-
teraction between the JavaScript interpreter and the browser
required careful evaluation of design trade-offs.

We implemented our system and evaluated the overhead
introduced. Even though, our system introduces a some-
what substantial overhead with respect to the execution time
of non-audited scripts, the security benefit may be worth-
while in security-critical environments.

Future work will focus on implementing more efficient

9

auditing techniques and in extending our intrusion detection
system with more sophisticated signatures.

Acknowledgments

This research was supported by the National Science
Foundation under grants CCR-0209065 and CCR-0238492.
The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either ex-
pressed or implied, of the National Science Foundation or
the U.S. Government.

References

[1] ECMA-262, ECMAScript language specification,
1999. http://www.ecma-international.
org/publications/standards/Ecma-262.htm .

[2] V. Anupam and A. J. Mayer. Secure Web Scripting.IEEE
Internet Computing, 2(6):46–55, 1998.citeseer.ist.
psu.edu/anupam98secure.html .

[3] R. P. D. Peterson, M. Bishop. A flexible contain-
ment mechanism for executing untrusted code. 2002.
http://nob.cs.ucdavis.edu/˜bishop/
papers/2002-sandbox/2002-sandbox/2002%
-sandbox.html .

[4] I. C. P. D.Boswell, B.King. Creating Applications with
Mozilla. September 2002.http://books.mozdev.
org/chapters/ .

[5] I. O. Doug Turner. Creating XPCOM Components. Decem-
ber 2003. http://www.mozilla.org/projects/
xpcom/book/cxc/index.html .

[6] B. Eich. Embedding the JavaScript Engine, A Bare Bones
Tutorial. February 2000.

[7] D. Flanagan.JavaScript: The Definitive Guide, 4th Edition.
December 2001.

[8] S. Furman. Java Method Overloading and LiveConnect
3. http://www.mozilla.org/js/liveconnect/
lc3_method_overloading.html .

[9] F. Guisset. The Mozilla DOM hacking Guide, Febru-
ary 2004. http://www.mozilla.org/docs/dom/
mozilla/hacking.html .

[10] R. Kemmerer and G. Vigna. Intrusion Detection: A Brief
History and Overview.IEEE Computer, pages 27–30, April
2002. Special publication on Security and Privacy.

[11] J. T. Moore. Mobile Code Security Techniques. Techni-
cal Report MS-CIS-98-28, 1998.citeseer.ist.psu.
edu/moore98mobile.html .

[12] mozilla.org. JavaScript C Engine Embedders’s Guide.
[13] J. K. Ousterhout, J. Y. Levy, and B. B. Welch. The

Safe-Tcl security model.Lecture Notes in Computer Sci-
ence, 1419:217–??, 1998.citeseer.ist.psu.edu/
ousterhout97safetcl.html .

[14] D. A. Wagner. Janus: an Approach for Confinement of Un-
trusted Applications. Technical Report CSD-99-1056, De-
cember 1999.

[15] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation.ACM SIGOPS Op-
erating Systems Review, 27(5):203–216, December 1993.
citeseer.ist.psu.edu/wahbe93efficient.
html .

[16] L. Wood. Document Object Model (DOM) Level 1 Spec-
ification. Technical Report REC-DOM-Level-1-19981001,
W3 Consortium, 1998. Version 1.0.

10

